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Multigrid Solutions of Monotone Second-Order

Discretizations of Hyperbolic Conservation Laws

S.P. Spekreijse

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

This paper is concerned with two subjects: the construction of second-order accurate monotone upwind
schemes for hyperbolic conservation laws and the multigrid solution of the resulting discrete steady state
equations. By the use of an appropriate definition of monotonicity, it is shown that there is no conflict
between second-order accuracy and monotonicity (neither in one nor in more dimensions).

It is shown that a symmetric block Gauss-Seidel underrelaxation (€ach block is associated with 4 cells)
has satisfactory smoothing rates. The success of this relaxation is due to the fact that, by coupling the
unknowns in such blocks, the nine-point stencil of a second-order 2D upwind discretization changes into a
five-point biock stencil.
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1. INTRODUCTION

To obtain solutions of first-order finite-volume upwind schemes for the 2D steady Euler equations
nested nonlinear multigrid (FMG-FAS) iteration has proved to be a very efficient solution process
[3.4]. Encouraged by this successful application of nonlinear multigrid, it is natural to ask whether it
is possible to use nonlinear multigrid for the efficient solution of second-order finite-volume monotone
upwind schemes as well.

To answer this question we have to discuss the following subjects: how to construct a second-order
monotone upwind scheme and how to choose the nonlinear multigrid components such as the relaxa-
tion method, the restriction and prolongation operators, and the coarse grid operators.

Because of the complexity of the Euler equations (a hyperbolic system of conservation laws), we
start analyzing these subjects for the less complicated scalar hyperbolic conservation laws. Scalar
hyperbolic conservation laws are interesting by themselves and, without the complexity of hyperbolic
systems, the analysis is more complete and more transparant. The results of the scalar analysis can be
generalized, in a straightforward manner, to systems of hyperbolic conservation laws such as the Euler
equations. We will report on this in a seperate paper.

In section 2 we describe the construction of second-order monotone upwind schemes. By using a
definition of monotonicity based on positivity of coefficients, it is shown that there is no contradiction
between monotonicity and second-order accuracy (neither in one nor in more dimensions). It can
easily be seen that the constructed schemes are TVD (Total Variation Diminishing) in one dimension
but not in two or more dimensions. Much attention is payed to the construction of a limiter. Due to
its smoothness, the VAN ALBADA limiter [9] appears to be the most attractive one.

In section 3 we show what nonlinear multigrid method we apply. In the multigrid method, a good
relaxation process is of crucial importance. A block Gauss-Seidel underrelaxation (with w = 0.5)
appears to be a satisfactory smoothing operator.

In section 4 numerical results are shown. Excellent steady solutions are obtained for linear prob-
lems with contact discontinuities and for nonlinear problems with shocks. As in the first-order case,
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multigrid appears to be an efficient solution process.
In the last section some conclusions are listed.

2. THE CONSTRUCTION OF A SECOND-ORDER MONOTONE UPWIND SCHEME
Consider the following nonlinear, scalar hyperbolic conservation law

d d a _
Et—u + E;f(u) + ayg(u) =0. 2.1

Suppose that the fluxfunctions f(u) and g(u) can be split in positive and negative parts i.e.
f@=fr@+f @;
g =g ) +g  w); _ (2.2)

-where
4ot y=0; L (u)<0; VueR
du " du ’
d .+ =0; d - <0; V 2
s w)=0; s w)<0; VueR. (2:3)

To discretize (2.1) we apply the finite-volume technique. So, the discrete values of u are associated
with cell centers and are regarded as approximations of the mean value of u in each cell. To avoid
technical details we discretize (2.1) on an equidistant grid with mesh size h. Furthermore, the space
discretization is based on the Projection-Evolution - approach [11,13]. Because we are only interested
in steady state solutions of (2.1), the simplest time discretization is used i.e. “forward Euler”. (Later,
the time dependency in the descretized form of (2.1) is dropped, and multigrid is used to solve the
nonlinear time independent system of discretized equations directly).

Hence, (2.1) is discretized by

U,"f,“ =U;; + %Tt [{f+(Ui_—’/:.j”) = UG+ Wi _f_(Uﬁrl/.,.j")}]
+ £ Wi = 87 Wigwu™) + (8™ Wih-u™ — 8~ Wiheu")] @4
where
i+ny = Ulj+ W (RIYUL; — Ul-y )
Uty = UYj + '/M-;{-‘Exwf, ~ Ul
Uijs" = Uiy + ¥ (SINUL; — Ui 1) (23)
Uy = Ul + f/zxp(jgf,,—j)(vztj — Uljar)
and
R} = Uin,; = Uiy 1= Uijo1 = Uiy . (2.6)
Uiy — Ui-y, Ulj— Uij-

and Y:RwR is a continuous function called the limiter. The value Uj; is a numerical approximation
of the mean value of u in cell (i,j) at time 1 =nAt, so
| R G R

UZ/“},T U(&,n,nAt)dédn. 2.7

(G—%h (j—Hh
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L j+
The values U; 4y, j",U,-++ % are approximations of 711- f(/ F’_ o u((i + ¥)h,m,nAt)dn, located at the left
and right side of the cell wall (i +%,j). See fig. 2.1.

Uij+

+
Uij+n

Uij+u

- + - +
Ui-vj Ui—pj|U—y; Ui ivwj|Uivn; Uisry

+
Uij—u

Uij-u

Uij-1
Fig. 2.1  Location of the several variables in
the space discretization.

The limiter ¢ =y(R) is introduced in the discretization in order to construct a monotone, spatially
second-order scheme. The limiter is a function of the consecutive gradients, a common practice in
this field [2,8,10]. Notice that in (2.5) y=0 corresponds to the first-order upwind scheme while y=1
yields the fully one-sided second-order upwind scheme. We define a monotone scheme as follows.

DEFINITION
Consider a discretization of (2.1) given by
Ui = Ul + Al (Ul — Ul + By (Ui 41 — UL))
+ iy j(Ui-1; — Uij) + Dij— (Ui -1 — Upp) 2.8)
where
Ay = ACL U2 UL Ul o)

Bijin = B(...,Uj 1 U} Ui 415-)

az
Clonj = CC U2 UL Ul g o) (2.9)
Dij—y =D Ulj-1, Ul Ui 1)
Scheme (2.8) is called monotone if
Al n ;=0 B+, =0;C/-y /=0, D];_,, =0; (2.10a)
and if
V= Afspj— Bijen — Cioyy — Dij—y=0. (2.10b)

This definition of monotonicity is especially useful for steady state problem as is shown by the follow-
ing theorem.

THEOREM (2.1)
If scheme (2.8) is monotone then a steady state solution of (2.8) is monotone i.e.




R

S

SR e

min (U; -1 ;.U 41, Ui j -1, U je)< U <max(U; -1, U 41, Up -1, U)
where {U, ;} denotes a steady state solution of (2.8).
PROOF
From (2.8) we see that

U = AivyjUisry T Bij+uUijer + CioyjUi—1; + Dij—y Ui j -y
i =
/ AivpjtBijoy +Coy+ D

which, due to the positivity of the coefficients, proves this theorem immediately.

We wish to show under what conditions scheme (2.4) is monotone. It can be easily seen that scheme
(2.4) can be written as (2.8) by taking

B W)~ WU U/ = U/
AT U;* o U-Jr—%j" Un+1 ~ Ui |
Crpy =+ AL WD = Wiy Uiy = Us”
) h vy — Uiiny" U' —Ui-y
Bl = _Ar g (Uien") — 8" (Ui -s") Uijan" = Ulj-u" @11
ST h Ulien" = Ul 4" Ulj+1 — U
DIy = +_A_t'g+(Ui.j_+'/z )—gi(Ui—.}'—'/z")' Uijen" = Urj—y"
) h Uiju" — Uij—y" U — Uij-

To obtain positivity of the coefficients 47y, ;. Bi;+4 etc, it is sufficient (by the Mean Value theorem)
that

Uty — Uiy Tt — U-p "
i+ i—%j 20; it a.j >0:
Uit — Ui Uij — Ui-yy
Ui+'+'/»" - Ui+‘—l/’" Ui; irn Ui; "
L L 20 ) — Lo =0, (2.12)
UZ]H - Ui.j w/ - Ui.j—

Furthermore, inequality (2.10b) is fulfilled by taking At sufficiently small, while assuming uniform
boundedness of the derivatives of f* (u),f (u).g* () and g~ (u), and taking care that the lefthand-
sides of the inequalities in (2.12) are also uniformly bounded.

By substitution of (2.5) in (2.12) it is easily seen that (2.12) is fullfilled if

1+ ¥(R) — 1/;¢(S)-—§—>0 VR, S eR. (2.13)

Furthermore, the uniform boundedness of the left handside of the inequalities in (2.12) is obtained by
requiring

WR) — xp(S)-T;—<2M, VR,SeR, Me(0,00). 2.14)
So, (2.1) is a monotone scheme if the limiter ¢ =y(R) satisfies the property that
—2<Y(R) — xp(S)%gzM, VR,S<R. @.15)

This inequality is satisfied if
a<{(R)y<M VR eR (2.16a)

and




—Msﬂé—‘l <2+a VReR | (2.16b)

The monotonicity region given by (2.16) is depicted in figure 2.2. We assume ac[—2,0].

\ 4y /¢=(2+a>R
Yy =M

Fig. 2.2 Monotonicity region.

So, we have found the following theorem.

THEOREM (2.2)
If the limiter y=+{y(R) has the properties that there exist constants M <(0,00),ac[~2,0] such that

asY(R)sM,—M< R <2+a,YReR, then (2.4) is a monotone scheme.

One of the direct consequences of theorem 2.2 is that y(0)=0. Notice that y=0, which corresponds
with the first-order upwind scheme, results in a monotone scheme, as we should expect.

Now, we wish to investigate under which condition scheme (2.4) is second-order accurate with respect
to the space discretization. Define -

Uivnj= Uy + WU ; — Uiy j)
i+n = Uy + 2R ) Uij — Ui—y )

~ 4

Ui-nj=U; + %(U; — Uisr) (2.17)
1

Ut y;=Uy,+ '/—’IP(T)(UL/' = Ui+rj)-

ij

and similar formulas for (j/',l;t,/ and Ujj.cy.

Notice that the U-values correspond with Y(R)=]1, the fully one-sided upwind case, which gives a
second-order accurate space discretization.

LEMMA 2.1
If the limiter y=y{(R) is constructed such that

-~

Uiy = Uiy = Uiviy = Uiy + O(?) (2.18a)




and

ey = Ureny + O0) o (2.18b)

where Uiy y Uity j etc. are given by (2.17), then (2.4) is second-order accurate with respect to the space
discretization.

ProoOF
This lemma is a direct consequence of the formulas (2.30) and (2.31) derived in [7].

From (2.17) we see that

Teng = Uienj + BAR )= DU, ; — Uiy ). (2.19)
o .

™ is bounded aWay from 0, we see that

Furthermore, by assuming that

Ui, — Uy Uit1; —2Ui; + Ui—y
et N T ; 2o =14+ Oh). 2.20
NTU = Uisyy Uij— Ui- ® @20

Hence, using (2.20), we can write

R

R =40+ B (1y(R,; — 1)+ 0GR, @21)

where we assume that Y(R) is twice continuously differentiable in a neighbourhood of R =1. So, if
Y(1)=1 we immediately see from (2.19) - (2.21) that (2.18b) holds.
Furthermore, if Y(1)=1 then also

Uiv1j —2U; + U
Uij— Uiy

- ~ - d —1j
Uity = Ureny + B0 Ly (Uy = Up1y) + 00

- d )
= Upony + WGy = 20y + Uiy ) + OR), @222)

From (2.22) it is easily seen that also (2.18a) holds. Therefore we may conclude that y(1)=1 is a
sufficient condition to obtain a second-order space discretization.

THEOREM 2.3
If Y(1)=1 and if Y& C? in a neighbourhood of 1 then scheme (2.4) is second-order accurate with respect
to the space discretization.

COROLLARY 2.1
Scheme (2.4) is linear if Y(R)=a +bR,a,beR. From theorem 2.2 and 2.3 it is easily seen that no linear
schemes exist that combine the property of second-order accuracy and monotonicity.

Examples of limiters combining the property of second-order accuracy and monotonicity are:

ExaMPLE 1: The VAN LEER limiter [8,10,11]

_ R+|R]
\I’VL(R)—“—“—R+1

By taking M =2 and a=0 it is easily seen that this limiter satisfies the monotonicity restriction (2.16).
Because ;. (1)=1 second-accuracy is obtained.

(2.23)

ExampLE 2: The VAN ALBADA limiter [9]
R*+R

Yya(R) = (2.29)

R*+1
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By taking M =2 and a=—/ it is easily seen that this limiter combines monotonicity with second-
order accuracy. Another advantage of this limiter is that {4 € C®(R). This is an important property
when we apply Newton’s method (local linearization ) in a relaxation procedure for the solution of
the steady state discrete equations.

For a review of other limiters see [8]. For our numerical experiments in section 4 we have chosen
Van Albada’s limiter because of its smoothness.

ReMARrk 2.1

It has been observed [11] that second-order accuracy can be achieved by assuming a linear distribu-
tion in each cell, rather than the uniform distribution, associated with first-order schemes. In a cell, a
linear distribution in the x direction is achieved if

in — Uy = Uy — Uiy,
similarly in the y-direction. Using (2.17), this means
1
YR NUij = Ui—1)) =W W Ui 1 = Usy)
ij
or, equivalently
1 MRy

R;; ) R

W

ij
So, if a limiter satisfies

¢(71{-) = ﬂ}%l VReR (2.25)

we can speak of linear distributions in each cell. It can be verified that both ¢, and {4 possess this
property. This is no coincidence: they were designed that way. Notice that if a limiter y=y(R)
satisfies (2.25) then the monotonicity conditions (2.16) are equivalent with

asY(R)s<M ; ~M<Y(R)<2 + a; VR eR. (2.26)
Formula (2.25) implies 4{0)=0, hence ac[—2,0]. By taking M =2, (2.26) becomes

as<Y(R)<2 + «a VReR
which means

Ymax — Ymin <2

where
\I’max = glea&((‘l’(R))a ‘I’min = g‘glg(\l’(R ))

Hence, we have found the following result.

THEOREM 2.4
If a limiter y=(R) has the property xp(%): -‘k%g then scheme (2.4) is monotone if Ymax — Ymin <2.

REMARK 2.2
We will use Newton’s method (local linearization) in the relaxation. Therefore we have to linearize
the limiter. It can be easily verified that

Uivp = U + " RYU; — Ui -1)

with




Ui+1 = U
Sl
implies
Ui+ = a(R)U; -
AU; +55 = B(R)AU; (2.27a)
Ui+ s = Y(R)AU; +4
where

a(R) = — Val(R) + %R%(R)
BR) = 1+ 14(R) — 41 + RYSE(R) I (2.27b)
— 9
YR) =4 IR (R).
So, we see that the derivative of U, ., with respect to U; ;,U; or U, ,,, only depends an R; !
REMARK 2.3

To avoid any confusion, we wish to emphasize that in this article the monotonicity is obtained by
multiplying the backward differences with {(R) i.e.

Uivpy = Uy + (R j) (Ui j — Ui—y )

Uy = Uy + R0y = Ui 228)
Another possibility, often encountered in the literature, is
i+ = Uj+ %p(R; ;X Uiﬂ‘jz_— Yy + Yy _2Ui - )
Uy = Uy + H X B Bl fe Dow, (229)
It can be verified that both descriptions are equivalent if
WR) = o(Ry (B 230

The preceding results show clearly that, from a theoretical point of view, description (2.28) is prefer-
able to description (2.29).

3. MULTIGRID SOLUTION

In this paper, as noted before, we are premarily interested in monotone second-order accurate
steady-state solutions of (2.1). Therefore, we omit the superscript »n in (2.4) - (2.6) and we wish to
solve

L)y = RIS @ieng) — @)y + 7 @fu) = f @iy)))
+{g  Wijen) — g  (Wij-m)} + {g7 Wilen) — g W)} 3.D

= (radiy

directly. Here ,=0 and & denotes the meshsize of the finest grid. Note that in (3.1) we multiply with
the meshsize & instead of dividing by & as was done in (2.4). By doing this, (L,u);; receives the




physical meaning of “net flux” into cell (i,j). This is a more appropriate quantity when dealing with
non-uniform grids.

For the multigrid solution of (3.1) and the multigrid terminology used we refer to {1]. A nonlinear
(FAS) multigrid solution of (3.1) is obtained by applying, iteratively, FAS-cycles. One FAS-cycle for
the solution of (3.1) consists of the following steps:

(0) start with an approximate solution uy.

(1) improve u, by application of p (pre-) relaxation iterations to (Lyuy)=ry.

(2) compute the defect dj, =r, — L,u, o o

(3) find an approximation u,, of u, on the next coarser grid; u,,:=1I, w, where I, is a restriction
operator.

(4) compute ry, = Loyt + 13 d, where I? is (an other) restriction operator and L, is the coarse-
grid operator (an approximation of L, on the next coarser grid).

(5) approximate the solution of

Loyusp =1y

by application of o FAS-cycles, starting with the initial estimate uy, ———}?u,,. The result is called

Uy,
(6) correct the current solution by

. vy
Uy = uy + I5p(Uay — ugp)

where 1%, is a prolongation operator.
(7) improve u, by application of g (post-) relaxation iteration to Lyu, =r;.

The steps (2) - (6) in this process are called “coarse-grid correction”. In order to complete the
discription of the FAS-cycle we have to discuss

(0) the relation between the fine and coarse grid,

(1) the choice of the operators Lo, I3, 13 and I, ,

(2) the relaxation method, '

(3) the FAS-strategy, i.e. the numers p,q,0, (6 =1 characterizes a V-cycle, 6 =2 a W-cycle).

We will now subsequently discuss these topics:

(0) Fine grid construction. A finer grid is constructed from a coarser one by subdivision of a coarse-
grid cell in 4 smaller cells as shown in fig. 3.1.

@Qi—12) | @i.2) h
G.)) 2h
Qi—12-1)| 2,2j—1) &
y
2h h h

Fig. 3.1. The subdivision of a coarse grid cell in four fine grid cells.
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(1) Choice of the operators.. The restriction operator },z,h is defined by

(Wan)ij = (}ihuh)i.ji = Tl({(uh)zi, 2 T Wai—12 T Wndizj—1 + Wi 1251} (32)
The restriction operator I is defined by |

(ran)ij = A3 )iy = naiyy + Ui —125 + Cndaizj—1 + Twdai =125 -1 (33)
The prolongation operator I, is defined by

Tipuan)i 250 = (Dpuan)ni -1 = awizn)on 2 —1: = o) —1.27—1: = an)ij 34
The coarse grid operator L, is defined by a Galerkin approximation

L, =L, 1. (3.5)

Now, the following theorem can be proven.

THEOREM 3.1 :

If the restriction and prolongation operators I # and 1%, are defined by (3.3) and (3.4), and if the coarse-
grid operator Loy, is defined by the Galerkin approximation (3.5), then the coarse-grid operator
corresponds with the monotone first-order discretization (y=0) of the continuous problem on the coarser
grid. In other words:

(Logu)i; = 20[{f* (i) = [ @i -1 )} + {f @ier ) = f ()}
+ {g+(ui.j) —g -} {87 (i) — g )] ‘ (3.6)
This is independent of the limiter used in (3.1)! .

PROOF. .
The proof of this theorem is left as an exercise to the reader. We only wish to remark that for a
(fine-) grid distribution {u, }; ; with the property

Up )i, 2j = (Un)oi — 12 = Waiaj—1 = (Unhai—1.27 -1 V()
holds

)i nj = W)ij+n = )iy = ) —u = )iy VG.J)

where (44)% > Wn)ij+%> ()i 1, and (uy);; -y are calculated according to (2.5), (2.6) (omitting the
superscript n). This result is due to the fact that the limiter y=y(R) is uniformly bounded and
¥(0)=0. :

This theorem has an important practical consequence. We already know that nonlinear multigrid is a
good solution method for the first-order upwind scheme [3,4]. Therefore we may expect to have no
problems in the solution procedure on the coarser grids.

(2) The relaxation method. As noted before, it is our purpose to apply the methods developed in this
paper to systems of hyperbolic conservation laws, e.q. the Euler equations. Now, it is well known
that symmetric point Gauss-Seidel relaxation is a good relaxation method in the nonlinear multigrid
solution procedure for the first-order system of the steady Euler equations in 2D, but not for the
second-order discrete system [3,5]. Even for the simple scalar model problems discussed in section 4,
point relaxation methods did not work well. An explanation is that, for second-order discretizations
of steady hyperbolic problems, a Gauss-Seidel point relaxation in the upstream direction causes
amplification of the error (which does not happen for first-order discretizations). This is the reason
why we shall investigate a block Gauss-Seidel relaxation rather than a point relaxation. We shall

R
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require that no amplification of the error may occur when the block Gauss-Seidel relaxation has the
upstream direction.

How to choose the blocks? Notice that by (3.1) nine variables u;j, %41, Wi+2,j5 Uij+1> Uij+2s
U;—1j» Ui—2j> U j—1 and u;;j_, are coupled. Therefore we have a nine-point stencil. On the other
hand, if we combine uy; 3j, U2 —1,2j> U2i,2j -1 and uj; 12— to an unknown vector U, ; as

- T
Ui jit = (25,25 U2i —1,2j>U2i, 25~ 1,U2i 1,2/ —1) 3.7

and if we replace system (3.1) by an equivalent system with unknowns {U;;} then we see that each
equation in this new system corresponds with a five-point block stencil, i.e. U;; is only coupled to
Ui+1j Uij+1,Ui-1; and U; ;. For this reason we consider the cells (2, 2/),(2i —1,2/),(2i,2j —1)
and (2i —1,2j —1) as one block. Thus in our block Gauss-Seidel relaxation the blocks of unknowns
are scanned in succession and for each block the corresponding equations are solved simultaneously.
We use Newton’s method to solve these four nonlinear equations in each block.

In the following example we use local mode analysis to investigate whether our block Gauss-Seidel
relaxation amplifies the error when the blocks are scanned in the upstream direction.

ExampLE
Consider the 1D problem
du du _
o T3, =0 a>0. (3.8)

With the second-order discretizations as described in section 2, the system of discrete steady state
equations becomes

(Lypu); = alw; + V(R )i — u;—1) — {ui—l + (R - )1 -y —u;—2)}] =0 (3.9
Without a limiter (y==1) we obtain ‘
(Lpw); = of3u; — du;—y +u; —3]=0. (3.10)

where a*———g-. This system now is equivalent with

3 —4 0
(@U»=aq0 |+ | g 1 |Uin}=0 @3.11)

where U;=(u,u3 1)

If we apply to this new system point Gauss-Seidel relaxation (which corresponds with block Gauss-
Seidel relaxation for system (3.9)) in the downstream direction, it is immediately clear that an exact
solution is obtained in a single iteration sweep.

Gauss-Seidel relaxation in the upstream direction gives

3 —4 o 10
af 0 3 vt o+ —4 1 Ui-1}=0 (3.12)

where n is the iteration index. Suppose U} =Ae'% Up™*! =G(O)U}, where f[—m,7] and A an arbi-
trarily vector with 2 components and G(f) a 2X2 matrix. From (3.12) it is seen that

3 —4
0 3

and the eigenvalues of G(f) are A5(6) = e " and A%;(0)=-;—e‘io. Hence the spectralradius of G(6) is
equal to 1 for all #[—m,7], and the smoothing factor u; defined as

pg:= max (||, PeO)]) (3.14)

7<|0|S1r

0]
e =0 (3.13)

GO+ | _4 4
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is also equal to 1. The smoothing factor p; can be improved by underrelaxation. This means that
(3.11) is replaced by

3 —4) 4y 10
af 0 3 U:' + 4 1 Ui-1}=0
= +w@ T - (3.15)
where w [0, 1]. Again, assume that U} =A4e'% and U} ! =G, (0)U}, then
G, (0) = (1 — &) + wG(@), (3.16)

and the eigenvalues of G, (#) are Abf(ﬂ)z 1—w+wA§2(). The optimal (smallest) smoothing factor
g, is obtained by w=0.5; then

1
=+ %hi|=—==~0.71
e, = |% + %i| V2

From this example we see that w=1 and w =0.5 are optimal choices for the block Gauss-Seidel
underrelaxation method in the downstream and upstream direction, respectively.

Since we wish to use a problem independent relaxation method, a fixed w is used for all problems and
all directions. In the context of the multigrid method where a single symmetric block Gauss-Seidel -
underrelaxation was used both in the pre- and the post-relaxation, it is shown by numerical experi-
ments that in general w =0.5 is a better choice than w =1.0.

(3) The FAS-strategy. We take p =g =1. Due to the fact that the coarse-grid equations are first-
order accurate (cf. theorem 3.1), each coarse grid equation (y=0) corresponds with a five-point sten-
cil. Therefore, we use a simple symmetric point Gauss-Seidel relaxation on the coarse grids and so we
can afford to apply W-cycle FAS-iterations (i.e. 0 =2).

4. NUMERICAL RESULTS
For the numerical experiments in this section we have applied the multigrid method described in sec-
tion 3.

In case of linear problems, the first-order scheme (y==0) is linear but, due to the nonlinear Van
Albada limiter, the second-order scheme is nonlinear. On the coarse grids we always deal with first-
order schemes (cf. theorem 3.1.). Hence, for linear problems, the coarse grid equations are linear. It is
easily seen that in case of the following linear examples (example 1 & 2) a single post- and pre- relax-
ation (which are symmetric point Gauss-Seidel relaxations in different directions) is sufficient to solve
the first-order system of discrete equations on the coarser grid exactly. Hence, in those linear cases,
the coarse grid correction is calculated exactly and just one coarser grid is needed in the multigrid
process. In those cases a W-cycle is superfluous; a ¥ cycle is sufficient.

After each FAS-iteration, on the finest grid, the L, - norm of the residuals has been calculated i.e.

ILpufy — ralle, = 2N Lateh)ij — (radijl
@)
where L, and r, are defined by (3.1), n is the FAS-iteration index, u} is the current approximation of
the steady state solution of the second-order scheme and the pairs (i,j) are the cell indices of the
finest grid. After n FAS-iterations we can calculate the approximate convergence factor p, according
to

. IIL,,uﬁ _rh”L, n

Pn —

| Lyt — rallL,
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The initial iterand u}) is obtained by the full multigrid method [1,3]. For each multigrid process, the
convergence factor p= limp, is approximated from the finite set {p,}.
n—og

ExampLE 1
On the square [0,1]X[0,1] we consider the linear convection problem

du du ou
3 Tox TP, T

where a =cos¢,b =sing,pe(0,7/2). Hence,
fwy=fr@y=au; f (u)=0;
g(u) =g+(u) =bu;g (u)=0;.

The boundary conditions (steady state problem) are

u(0y)=1 o<y<l
u(x,0)=0 O0<x <l

0,

The exact solution of the steady state problem is trivially
Ue(x,y) =1 if bx — ay <0,
Ue(x,y) =0 if bx — ay>0.

Thus, the exact solution contains a contact discontinuity.
The observed convergence factors of the multigrid solution process have been calculated for several
angles ¢ and for several meshsizes. The results are summarized in table 4.1.

, ® 1 150 | 300 | 450 | 60° | 75°

1/8 0.11 | 0.13 | 0.13 | 0.13 | 0.11
1716 | 0.17 | 0.25 | 0.27 | 0.25 | 0.17
1732 1 0.29 | 0.38 | 0.39 | 0.38 | 0.29
1764 | 0.41 | 0.44 | 047 | 043 | 0.42

TaBLE 4.1, The approximate convergence factors of the multigrid process for several angles ¢ and for
several equidistent meshes with size A.

From table 4.1 we conclude that the convergence factors are satisfactory and only weakly dependent
of ¢. More meshes are needed to estimate the limit values of the convergence factors when 4 0.

We have applied the same multigrid strategy without limiter (y=1). No significant difference between
the convergence factors with or without limiter was observed.

In figures 1,2 and 3 we show some numerical solutions. These figures correspond with ¢=15°,30°
and 45° respectively.

EXAMPLE 2
On the rectangle [-1,1]X[0,1] we consider the linear convection problem

du du du
at +y8x xay =0

Hence, this problem can be written in form (2.1), (2.2) with

frxyu)y=yu ;
f-(xay.~u):0 5
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b —xu if x<0
ETPM=1 0 i x>0

_ 0 if x<0
8 P =y if x>0

The boundary conditions (steady state problem) are
u(x,00 =0 if x <<—0.65
u(x,00 =1 if —0.65<x<—0.35
u(x,00 =0 if —0.35<x <0
u(—ly) =0 0<y<l
u(x,1) =0 0<x<l

The exact solution is

Upe(x,p) =1 if 0.35<Vx%+y? <0.65
Uex(,y) =0 otherwise.

Computations have been made on a 32X 16 mesh (A=1/16) and on a 64X32 mesh (h=1/32). The
observed convergence rates of the multigrid process were 0.29 and 0.44 respectively.
In figure 4 we show the numerical solution on the 64X 32 mesh.

EXAMPLE 3. On the square [0,1]X[0,1] we consider the nonlinear problem

d 0 d _
T e W+ 5,8 =0
where
fu)= Yu? gwy=u
Hence,

fray=%u*y; = nu )
gty =u ;8 w)=0
where u* =max (4, 0),u”~ =min (, 0).
The steady state equation is
9

9,2
—_—u + —1 =
ayu i You

i.e. the inviscid Burger’s equation. Two different sets of boundary conditions have been considered.
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PROBLEM 3a
With the boundary conditions Ay
u@y)=1 0<y<i 1.0
u(ly)=—1 0<y<l
u(x,0)=1-2x 0O<x<l A B
the solution is (see figure a) 05 ¢
U () = 1 if (x,y) in region A. c
Ugr(x,y) = —1 if (x,y) in region B. ‘ > X
Up(x,y) = — ~2 —=X it (x,y) in region C. | 0.5 1.0

figure a.
The regions A and B are separated by a shock, originating at (x,y)=(0.5,0.5).
Computations have been made on a 32X32 and a 64X 64 grid. The observed convergence factor the

multigrid process were 0. 49 and 0.46 respectively. In figure 5 we show contour plots of the numerical
solutions on the 64X 64 grid. Figure 5a shows the first-order and figure 5b the second-order solution.

PrROBLEM 3b
With the boundary conditions Ay
u(0,y)=1.5 0<y<il 10
u(,y)=—05 <y <1 ’
ufx,0)=15-2x 0O<x<l A
the solution is (see figure b) 05t B
Uilx,y)=15 if (x,y) in region A c
Ugp(x,y)=—05 if (x,y) in region B > X
Upx,p) = 15-2x 5 2x if in region C 075 1.0
-2y
figure b

Regions A and B are separated by an oblique shock, originating at (x,y)=(0.75,0.50).

Again, computation have been made on a 32X32 and a 64X64 mesh. The observed convergence fac-
tors were 0.35 and 0.45 respectively. In figure 6 we show the contour plots of the numerical solutions
on the 64X64 grid. Figure 6a shows the first-order and figure 6b the second-order solution.

5. CONCLUSIONS

In this paper, it is shown that the multigrid method can be an efficient solution procedure to obtain
steady-state solutions of second-order accurate, monotone upwind schemes for hyperbolic conserva-
tion laws, also when the solution contains an (oblique) contact discontinuity or shock. The key to
success for the multigrid method is the efficient relaxation (smoothing) procedure. It has been shown
that a symmetric block Gauss-Seidel underrelaxation (each block is associated with 4 cells) is an
efficient smoothing operator. Futhermore, the coarse-grid operators have been obtained by a Galerkin

&
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approximation which has the important practical consequence that coarse-grid operators are first-
order accurate. Hence, simple relaxation methods, such as point Gauss-Seidel relaxation, are efficient
on the coarser grids.

By the use of a definition of monotinicity, based on positivity of coefficients, it is shown that there
is no conflict between second-order accuracy and monotinicity (neither in one nor in more dimen-
sions). The limiter, applied in the second-order scheme to preserve monotonicity is the smooth limiter
of Van Albada.

The ideas described in this paper can be generalized to systems of hyperbolic conservation laws as
e.g. the Euler equations. A report on this application is in preparation.
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Figure 2. As figure 1 but $=30°.
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Figure 3. As figure 1 but $=45°.




FIGURE 4a
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FIGURE 4b

Figure 4. Numerical solutions for example 2. A contour plot of the first-order solution is shown in
figure 4a, the second-order solution in 4b. In figure 4c the solutions at the boundary y =0 are shown
for the first and second-order scheme.

FIGURE 5a FIGURE 5b

Figure 5. Contour plots of the first- and second-order solutions of the inviscid Burgers equation (con-
sidered as a boundary value problem) with a shock.

FIGURE 6a FiGURE 6b

Figure 6. As figure 5 but with an oblique shock.




FIGURE 1a FIiGURE 1b

FIGURE 1c FIGURE 1d

Figure 1. Contour plots of the numerical solution of the first and second-order scheme. ¢=15°. Fig-
ure la and 1b are solutions on a 32X32 mesh and figure Ic and 1d are solutions on a 64X 64 mesh.
Figure 1a and Ic are obtained with the first-order scheme and figure 1b and 1d with the second-order
scheme.
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