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A simple proof of a lower bound on the number of 2mX2m matrices with 0, 1 entries and 

each of whose rows and columns adds to the fixed sum m is presented. In fact, it is shown 

that for any fixed 0 < "A < 1 / 2 the number of such matrices is asymptoticaly at least 

(2;'r+>.m. The inductive proof employed in the present paper might also turn out to be 

useful in obtaining lower bounds for other types of Kostka numbers. 
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1. Introduction 
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0, 1 matrices, i.e. matrices whose only entries are the bits 0 and 1, occur as the characteris

tic functions of finite binary relations. Thus, let R !;;;;; NXE be a binary relation on the set 

NXE, where N = {v1, ... ,vm} and E = {e1,. .. ,en}· Define 

a· . = {1 if R (vi,ej) 
1.J 0 otherwise. 

Then the m X n matrix AR = ( ai,j) contains a complete description of the relation R. Here 

are some examples from graph theory. If N is the set of nodes, E is the set of edges of a 

graph G and R (vi,ej) if and only if vi is incident to ej, then AR is called the incidence matrix 

of G = (N,E). If N = Eis the set of nodes of a graph G and R(vi,vj) if and only if Vi is 

adjacent to Vj, then AR is called the adJacency matrix of G = (N,E). Some information 

regarding the structure of such incidence matrices can be found in [10]. 

For each m,k let {'z} be the number of different m Xm square matrices with 0,1 entries 

such that the sum of the entries of each row and each column is exactly k. 
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A lot of interesting results are known about { k }• when k is small with respect to m. For 

fixed k, [2] gives the general asymptotic result 

{m} ~ (km)! ·ex [-(k-1)2 l 
k (k !)2m p 2 ' 

as m tends to oo. If k = 2, [3] provides the recursive formula 

A general asymptotic formula is also given in [7], in which it is stated that for any 
0 < c < 1 and any 1 < k < c· vlog;, 

{m} = (mk)! . [exp [- (k -1)
2 l +O(m -l+c2 ;2)] 

k (k !)2m 2 ' 

as m tends to oo. 

Further asymptotic results are also known for small k, e.g. see [9] for k =3, and [8) for 

k = 0 ((logn)11 4 -t:]. 
For larger k the result of [5] is known, which can be stated as follows: if k < cm, for 
c < 1 / 6, then uniformly 

{m} = (mk) ! . ex [- (k -1)
2 

+ 0 [~] ] · 
k (k !)2m P 2 m 

For more information see [4). 

In addition, there has been a lot of work regarding an exact furmula for { k}. Such a 

rather unmanageable formula is given in page 235 of [2]. Additional work, which is 
influenced by the theory of group characters, can be found in [ 11 ]. A necessary and 
sufficient condition for the existence of 0, 1 matrices with prescribed row and column sums is 

provided by the Gale-Ryser theorem (see (10]). The numbers {t} are also known in the 

literature as Kostka numbers (see [3], [6]). 

However, very little seems to be known on {t} when k is close tom /2, e.g. {:}or even 

{ m Zm 1}. The purpose of the present paper is to give a simple proof of a lower bound on 

the size of{:}. This is done by furmulating an inductive property that must be satisfied 

by all potential 0, 1 matrices. Moreover, if this property is satisfied by the first k rows of the 
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matrix ( k < m) then it is possible to extend the matrix by adding one more row in such a 
way that the property is still satisfied by the first k + 1 rows of the matrix. This makes it 

possible to recursively construct such matrices and hence give a lower bound on { 2,;:'}· 

There is a lot of interest in determining the value of {~}· In fitct, it appear.; that there is 

work in progress 'by Odlyzko, Zagier and McKay in order to determine the exact asymp

totic behaviour of { ~} (personal communication with McKay). 

2. The Counting Arguments 

An obvious way to obtain a lower bound fur { ~} is to count all possible arrangements of 

the bits 0, 1 on the top half of the matrix and then reflect the resulting configuration to the 
bottom hal£ In fact, the following result can be shown. 

Theorem 2.1. For all m > 0, 

Proof: Let a 2m X 2m square matrix be given. Split the matrix into two parts. The top m 
rows constitute the top part and the bottom m rows constitute the bottom part. For any given 

row of the top part there are (~ J different ways to arrange the bits 1 and 0 inside this 

row in such a way that the sum of its entries is m. In particular, there are (~ J m different 

ways to arrange the bits 1 and 0 inside the top part of a matrix in such a way that the sum 
of the entries of each row is m. It remains to fill the bottom part of the matrix. This is done 
as follows. For each i ~ m, move a copy of the i - th row to the m + i - th row and change 
each entry b of the resulting bottom row of the matrix into b', where 

{

Oifb=l 
b' = 1 if b = 0. 

Now it will be shown that the sum of the entries of each column must be equal to m. 
Indeed, let C be an arbitrary column with entries x 1 ,. . .,x 2m. By construction of the matrix 

2m 
for each i = 1,. . .,m, xi + xi+m = 1. Hence, ~xi = m, as desired. This establishes the 

i=l 

desired lower bound. 

The upper bound is much easier to prove. There are 2m possible rows in any matrix. How
ever, the sum property satisfied by the matrix columns implies that the entries of any row 
can be computed from the entries of the remaining 2m - 1 rows • 
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Here is a table comparing the values of f;:} with the approximate values of the upper 

and lower bounds of theorem 2.1, form = 1,2, ... ,10. In addition, the third column of the 

(
2m]3m /2 table gives the approximate lower bound of theorem 2.4, i.e. m . L. Meertens has 

written a computer program to derermine the values of { :;;:} from which the vallles below 

corresponding to m .;:;;:; 4 are taken. For m > 4 the values are taken from the tables in [ 4 ]. 

[~r [~J3m/2 2m [~J2m-l m 
m 

1 2 2.82 2 2 

2 36 216 90 216 

3 8.00·103 7.15·105 2.97·105 3.20·106 

4 2.40·107 l.18·1011 1.17·1011 8.24·1012 

5 1.02·1012 1.02·1018 6.73·1018 4.19·1021 

6 6.22·1017 4.91·1026 6.41·1028 4.19·1032 

7 5.61·1024 1.33·1037 1.09·1041 9.16-1045 

8 7.53·1032 2.07·1049 3.48·1055 4.40·1061 

9 1.52·1042 1.87·1063 2.19·1072 4.74·1079 

10 4.63·1052 9.98·1078 2.79·1091 1.16-10100 

A less trivial approach to obtain a better lower bound is via the method of filling co"ect pat
terns. The idea is as follows. Start filling up the rows of a 2m X 2m matrix starting from the 
top and moving downwards. After k rows have been filled call the resulting pattern correct 
if: 

(i) each of the k rows has exactly m 1 's, and 
(ii) each of the 2m columns has.;:;;:; m l's and~ m O's. 

Then it can be shown that 

Lemma 2.2. Every co"ect pattern of k < 2m TOWS can be extended to a correct pattern of k + 1 Tows. 

Proof: Let a correct pattern of k < 2m be given. Define 

N 0 (i) = I {(j,i) : aj,i = O} I, 

N1(i) = l{(j,i): aj,i = l}I, 
i.e. the number of O's and 1 's respectively in the i-th column. So, by definition of correct pat
terns w~have that for all i = 1, ... ,2m, 

No(i) .;:;;:; m, N 1 (i) .;:;;:; m. (1) 
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Further, define Mo = I { i : No ( i) = m} I and Mi = I { i : Ni ( i) = m} I as the number 
of columns having already their maximal share of O's and l's respectively, viz. m. Note 
that 

No(i) + Ni (i) = k, (2) 

for i = 1,. . ., 2m, and 

2m 2m 

~No(i) = ~Ni(i) = mk. (3) 
i=i i=i 

Claim: Moi Mi :::;;;;; m. 

Proof of the claim: Assume on the contrary that Mi = m + r, for some r ;;ai: 1. The proof 
of M 0 :::;;;;; m is entirely similar. (Note that this implies k ;;ai: m.) Then 

2m 
~Ni(i) ~ (m + r)m + (m - r)(k - m), 

i=i 

since there are m + r columns with m occurrences of 1 and the remaining m - r columns 

have by (1), (2) at least k - m occurrences of 1. Therefore it follows from (3) that 

mk ;;ai: (m + r)m + (m - r)(k - m) 

or equivalently k ;;ai: 2m, contradicting the assumption k < 2m. This proves the claim. 

From the claim the result follows immediately. Indeed, put 

{

O if Ni (i) = m 

ak+i,i= 1 ifNo(i)=m 

and choose the remaining entries in the (k + 1)-th row such that there are m occurrences of 
1 and m occurrences of 0. Obviously such a pattern of k + 1 rows is still correct, which 
completes the proof of the lemma • 

Based on this last lemma the counting argument runs as follows. Let 0 < c < m be a 
fixed constant integer. Consider 2m X 2m matrices with only the first m rows filled in such a 

way that each row has exactly m O's and exactly m 1 's. Let A ( c) be the number of such 

matrices each of whose columns has at most m -c O's and m -c l's. (Note that A (c) is 
positive only if 2c :::;;;;; m.) This requirement means that rows m + 1,. . .,m + c can be filled in 
an arbitrary manner (of course with the usual restriction that each row has m O's and m 

l 's ), while still retaining a correct pattern. So, to each of these A ( c) half-filled matrices 

there correspond (2: r matrices, which can be filled to a full 2m x 2m matrix forming a 

correct pattern. Hence, it is clear that 

{~} ~ A(c)· [~]' 
It remains to determine a lower bound on A (c). Let Ai(c) be the number of matrices with 
rows 1,. . .,m filled in such a way that at least one of the columns has less than c i's, where 

i = 0, 1. It is clear that 
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[2m]m m -A (c) ~ Ao(c) +A 1(c) = 2A 0 (c). 

Hence it is enough to determine an upper bound on the quantity A 0 (c). To this end, let 

B 0 (c) be the number of half-way correctly filled matrices with.first column containing less 

than c O's. Clearly, A 0 (c) ~ 2m·B0 (c). Further, let Bo,j be the number of half-way 
correctly filled matrices with the first column containing exactly j O's, where j = O, ... ,c -1. 

So 

Bo(c) =Boo + · · · + Boc-l· , , 

Now it is easy to see that 

Hence, noting that 

[
2m -l]m 
m-1 

and putting 

we obtain 

It follows that 

Hence, the following theorem has been proved. 

Theorem 2.3. For all m > 0 and a191 integer 0 < c < m the following inequality holds: 

3. The Lower Bounds 

Finally, it remains to determine values of c for which theorem 2.3 provides nontrivial lower 

bounds to {: }- The fullowing useful funnula on sums of binomial coefficients can be 

found in page 76 of [2]: for k < m, 

k 2 

i~o [i] = (m -k)· [~]·ftk(2-tr-k- 1 dt. 

(It can be proved easily using integration by parts.) However, for t ;;;a.1, t(2-t) ~ 1. 
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Hence, it follows that for k < m / 2, 

k 2 

i~O (£] ~ (m -k)· (~] ·f (2-t)m-2k-ldt = :-=-:k. [~]. 
In addition, the following formula gives a generalization of the binomial coefficient ( ~ J 
when x ~ m is an arbitrary nonnegative real: 

(~] - f(x + 1)·~~ -x + 1)' 

where f is the g~a function. However, it is easy to show that the function ( ~] is strictly 

, increasing for 0 < x < m / 2, e.g. this can be proved easily using the identity 

nx·n I 
f(x) = lim · 

n--+oo x(x+l)···(x+n)' 

which is stated as formula ( 10) in page 13 of[ 1 ]. It follows from the monotonicity of ( ~ J , 
that for any 0 < A < 1 / 2, 

LNriJ (m] ~ m - IA.m I . ( m J ~ m - IA.m I . ( m J i~O i """m-2LA.mJ LA.mJ """m-2LA.mJ Am· 

Using Stirling's formula 

for approximating the gamma function (see [1]) it is easy to see that for positive A < 1, 

( 
m] 2mH(ll.) 

Am ~ V2'1TA(l -A.)m ' 

where H(A.) = -A.log2A - (1-A.)log2(1-A) is the so called binary entropy of A. Hence, for 
A < 1 / 2 and m large enough it is asymptotically true that 

L1·~=0J [mi·] ~ 1 -A. + (Am - I Am I) / m . ( m ] 
1 - 2A + 2(Am - L Am J) / m Am 

~ 
_1-_A._+_(_Am_-_l_A.m_l)~/_m_. 1 ._1 _.

2
mH(ll.) 

1-2A. + 2(A.m-LA.mJ)/m V2'1TA(l-A.) Vm . 
Consequently, asymptotically, the lower bound of theorem 2.3 becomes 

{
2mm};;:;;;.: [l _ Vm·C(m,A) ]· (2m]m+LNriJ+I 

2m(l-H(ll.)) m ' 

where for each fixed A 

C(m,A.) = 4· A.m- IA.m I 
1-2A. + 2·-__. __ ...__ 

1-A. +'Am-IA.ml 
m 1 

V2'1TA(l-A.)' 
m 

tends to the quantity 

C (A.) = 4· 1 -A. · 1 
1-2A V2'1TA(l-A.) ' 
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as m tends to oo. Moreover, for fixed 0 <A < 1/2, the factor 

_ _ Vm·C(A.) 
E(m,A.) - 1 2m(l-H(A.)) 

converges to 1 as m tends to oo. Hence, asymptotically, the following inequality has been 
proved: 

-;;::: E(m A)· . {2m} [2m] m + LAni J +1 
m ' m 

In fact, without loss of generality, this last inequality can be stated as follows without men
tioning L Am J at all. 

Theorem 3.1. For all 0 < A < 1/2, it is asymptotically true that 

Remark: By properly modifying the above proof the interested reader should have no 
difficulty in formulating the result of theorem 3.1 as a proper inequality, which does not 
refer to asymptotics at all. 
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