
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

M.L. Kersten, F.H. Schippers

A general object-cantered database language
a preliminary definition

Computer Science/Department of Algorithmics & Architecture Report CS-R8615 April

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Preface

Godel

A General Object-Centered Database Language

A Preli mi nary Definition

Martin L. Kersten, Frans H. Schippers
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1980 Mathematics Subject Classification: 69042, 69H23, 69K14
1985 CR Categories: D.3.2, H.2.3, 1.2.4.
Key Words & Phrases: object-oriented languages, database management, knowledge representation.

This report describes the programming language Godel, intended for the construction of
knowledge based applications. Godel uses both the object-centered, the rule-oriented, and the pro­
cedural programming paradigms. These paradigms are used in an unconventional way, thereby sim­
plifying the maintenance of complex relationships among (static) objects and modelling dynamic
behaviour through actor-like objects, called guardians.

This report is a working document. It focuses on the syntax and it presents an informal
semantic definition. In-depth discussions of topics such as the concurrency philosophy and storage
techniques used are presented separately. The language definition given here assumes a teletype-like
user interface, which simplifies the language specification and its implementation. A functional pro­
totype has been implemented in C-PROLOG under UNIX BSD4.2.

Acknowledgements

Ideas incorporated in the design of Godel have come from many sources. Experience in the
design the algorithmic language for interactive information systems, called PLAINS showed the lack
of flexibility and self-reference, necessary to design knowledge-based applications. The strongest
influences are those of the SMALL TALK language,2 which showed us that its object-oriented para­
digm is far from an object-centered paradigm. In particular, the rigid means to communicate
between objects was considered inadequate for a knowledge base environment. The declarative and
unification aspects have been influenced by PROLOG.1 The work closest to ours are languages for
actor-systems. 3

A number of individuals have contributed ideas and criticism throughout its design phase.
Many of those have affected the definition of the language reported here. We wish to acknowledge
personally; A. Siebes, T. Budd, H. Bal, L. Meertens.

Report CS-R8615
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

1. Introduction

Godel is a programming language designed primarily to support the construction of adaptable information systems and knowledge based applications. Knowledge base applications are typically
designed to provide non-experts access to a large set of facts and complex interrelationships among
them, to search knowledge using incomplete information, to safeguard a knowledge base content
and its users against unwanted situations such as integrity violations, and to aid in the interpreta­
tion of the knowledge rules. The following capabilities of Godel are of particular interest for these
applications.

1. Data base management
The language deals with a database of objects; integrity of the database is guaranteed through a
generalized trigger mechanism; object selection is declarative, based on fi,rst-order logic; tran­
saction processing primitives are included.

2. Knowledge base management
Both simple facts (objects) and rules to derive facts are stored in the database in a uniform
way. Facts can play roles in different interpretation domains concurrently. Both structural
inheritance, i.e. using the value of an objects' subcomponent, and behavioural inheritance, i.e.
using a value obtained from an objects' controllers, are provided.

3. Data flow driven computation
Operations are triggered when the operational constraints associated with processes become
true in a particular state of the database or when an event is recognized. Primitive trigger con­
ditions are the insertion and modification of objects in the database.

4. Modularity
Facts and rules can be logically grouped into knowledge bases through tagging. The level of
integration of multiple knowledge bases accessed during a single session can be precisely con­
trolled. The visibility rules for object properties support information hiding.

5. Input/ output
Simple I/O statements are provided to communicate with the user at a teletype-like terminal.
External formated files, such as those generated by traditional database systems, can be readily
included.

Studies in language design for knowledge base applications have identified certain features
that provide good support for knowledge engineering and knowledge base design. These features include ·
l. Data paradigm

The data in a database is not static; rather it evolves over time to meet the changing informa­
tion requirements of users. A declarative specification of the behavioural properties of data
forms a proper basis to cope with database evolution. It allows both data and meta-data to be
treated in a uniform fashion.

2. Object-oriented paradigm
Object-oriented computation models provide data independence between applications and the
conceptual knowledge base by encapsulating application-oriented behaviour into abstract data
types (ADT), which are themselves objects.

3. Object-centered paradigm
The object-centered paradigm takes the object-oriented approach one step further by making
class membership a dynamic property of objects. This way evolution of the knowledge base is
accommodated without loosing the ability to safeguard its integrity.

4. Rule-oriented paradigm
The rule-oriented paradigm allows for the description and use of procedural knowledge without
specifying in advance all allowable control paths.

3

5 Polymorphic typing
The language is basically typeless. Variables need not be declared before use. In essence, types
are considered 'first class values' and thus may be the result of expressions. A typing system is
nothing more than a restricted symbolic evaluation of the program to reveal processing incon­
sistencies. A dynamic typing system is easily included using the language primitives provided.

6. Cooperative problem solving
Techniques for cooperative problem solving provides the means for distributed knowledge
manipulation and forms a basis for contemplating parallel implementation architectures. The
integrity of the database is guaranteed by the atomic behaviour of guardians which is imple-
mented through data sharing. ·

7. Self-referential
An essential aspect of knowledge base systems is their ability to explain their behaviour within
the same formalism. The computational model and most language features are documented
(and implemented) in terms of itself.

8. Language size
A limited number of language features simplifies self-reference. It makes implementation feasi­
ble.

This report is limited in scope. It focuses on the language syntax and semantics only. The
rational which discusses its functional capabilities and its features is given elsewhere. A graphics­
oriented development environment, called Escher, is anticipated and will include functions such as:
a syntax driven editor, a symbolic debugger, a database browser and report facility, and a
knowledge base design aid.

4

2. Summary of the language.

This section presents an informal and intuitive introduction of the features of Godel by means
of 'a card game'. Seated at the table are three players, called Shorty, Fat Boy, and Sue. A fourth
person, the arbiter, shuffles a deck of cards and arrange them in a rectangle of 4 rows and 13
columns. When this is finished the arbiter takes three pieces of paper and writes down a task for
person.
The task for Shorty becomes:

For every two different cards in the same column exchange them such that the clubs occupy the
first row, diamonds the second, hearts the third, and spades the fourth row.

The task for Fat Boy and Sue becomes:
For every card not in the proper column select a card from the proper column (and which is not
at the correct column either) and exchange them

As soon as the players receive their (private) goal the system is set into motion. All players move
until no more actions are possible. The player who moves least recently is the winner.

This trivial game, of course, sorts all the cards by suites and value. The points of interest are
that all players (processes) can work in parallel without knowledge of each others' task; the actual
sequence of actions is determined by the state of the table (=database); the tasks are described by a
high level declarative rule selecting the interested database states and a simple algorithm action;
concurrent access is synchronized through an exclusive locking scheme. Below a sketch is given of
the Godel description for this game.

examples

object card[x: = l y: = l color: =hearts number:= 4)
I* 50 more cards*/

object card[x: = 13 y:=4 color: =diamonds number:= l /*ace*/)

function exchange(O,P)
when O<>undef and P<>undef and P<>O
[

V:= O; 0:= P; P:= V

guardian 'Shorty'
when Cl.x=C2.x and Cl<>C2 and C2.color<>Cl.color
[

when Cl.color=clubs and Cl.y<> l [
exchange(Cl .y,C2.y)

when Cl.color=diamonds and Cl.y<>2 [
exchange(Cl .y,C2.y)

I* the other two cases are similar. *I

guardian 'Sue'
when Rl.x < > Rt.number
[

11

when R2.x = Rt.number and R2.number< >Rt.number
[

exchange(Rl.x,R2.x)
exchange(Rl.y,R2.y)

guardian 'Fat Boy' : = 'Sue'

In the programming language Godel all information is stored in a database shared by continu­
ously running processes. The static information regarding entities is described in objects, i.e. in the
form of a labelled directed graph. The object name is a symbolic reference for use within programs.
Each object has a set of attributes which describes its properties. Compound objects can be
described through nested attribute definitions or by assigning a new object to an attribute.

5

Objects can be selected from the database through predicates. The free variables in the predi­
cate are bound with objects in the database such that the predicate becomes true. A set constructor
mechanism provides the means to manipulate large collections of objects with a single statement.

The dynamic behaviour of a Godel program is described by gu,ardians, which describe algo­
rithms to transform the database from one state to another. They become active by observing a
particular, declaratively described state of the database. Guardians are objects in their own right.
Thus they can be manipulated with the object denotation and modification primitives by a supervi­
sor.

Object components are accessed through the dot(.) operator. Similar to record denotation in
conventional high-level languages. The dot-dot (..) operator provides access to substructures of an
object without specifying the full attribute path. That is, the dot-dot operator iillplements structural
inheritance. The hat (/\) operator provides access to attributes of guardians which currently govern
the object. This way behavioral properties can be described in a modular fashion and dynamically
accessed.

Traditional language constructs such as functions, assignment statement, repeat statement,
conditional statement and primitive input/ output statements are included as well.

The syntax of algorithmic and declarative statements is the prime topic of this report. A more
detailed description of the dynamic behaviour of the Godel language is given in .4 For an intuitive
understanding of the concepts described here keep the card-game example in mind.

3. Notation, terminology and vocabulary

The vocabulary of the Godel interpreter consists of basic symbols classified into letters ([a­
zA-Z]), digits ([0-9]), brackets, operators, and word symbols. Optional comma and semicolon
separators are used at various places to improve readability of the syntax.

syntax
brackets : : = '[' I 'I' I '(' I ')' I T I T ·

operator ::='<'I'>' I'<=' I'>=' I'<>' I'=' I'?' I'+' I'-' I'*' I 't'

I':=' I':+' I':-' I'-' I"-' I'/\' I'/\/\'.

wordsymbols : : = access I and I div I do I function I guardian I if
I mod I not I object I or I read I return I undo I when I write.

comma ::=','I/* empty*/.

semicolon ::= ';'I/* empty*/.

4. Identifiers, built-in objects and comments

Identifiers serve to denote objects, attributes, functions, guardians, and variables. The lexical
convention for identifiers is the same as in PROLOG. Identifiers starting with an upper case letter
are considered variables. They bind with objects in the database either explicitly, through a modify
or definition statement, or implicitly, when used in expressions. The scope of validity of a variable
identifier starts with its first occurrence and terminates when the closing bracket of the correspond­
ing lexical scope is reached. The initial value of a variable is the primitive object undef

The lexical conventions for numbers and booleans is identical to those in Pascal. Floating
point numbers are not yet supported.

Sequences of characters enclosed by single quote marks are called string literals and are con­
stants of object type string. The character set for strings is similar to that of the language C. Thus,
the class of allowable characters for string constants exceeds the class of special symbols.

The symbol undef represents the unknown object, which is the result of any arithmetic expres­
sion in which an unknown value occurs or where an object or an attribute referenced does not exist.

Coinments are sequences of characters enclosed by '!*' and '* !'; they may be freely used to
make a program easier to read. A comment may be in.serted between any two identifiers, literal

6

constants, special symbols, or word symbols. Nesting of comments is supported.

syntax
string

escaped

number

5. Object definitions

: : = "" { letter I digit I escaped } "" .

: : = ' \ n' I · \ r I · \ · digit digit digit.

: : = integer I float .

The Godel database is a set of (named) objects. An object definition adds an object to the
database. An object name is either an identifier or a string value. Omission of the name results in
a nameless object. In that case, it can only be manipulated indirectly through a selection expression.
Multiple objects with the same name can be stored in the database.

The properties of the object are described by attributes. Attributes are objects in their own
right. However, they are not directly accessible. Attribute names are only visible in the context of
their defining object; like' record fields in conventional programming languages. Within the scope of
an object definition attribute names hide objects with the same name defined elsewhere. A com­
pound object is obtained when the new attribute is a compound name, i.e. names separated with
dots.

An attribute name can be associated with an expression through an assignment statement
(Sec. 10.1). If the attribute is described by an assignment statement then its value is determined
during object creation. Otherwise its value is the primitive object undef. The value can be altered
later on by an assignment statement. If the attribute is described by a statement block then this
block is executed when the value of the attribute is needed. Then the value is determined by the
first explicit return statement encountered or the value of the last statement. A new behaviour is
obtained by replacing the definition using an assignment. Such a description can be considered a
rule which specifies how a fact is deduced.

Identifiers, numbers, boolean and string literals are considered objects as well. They differ
only in the way they are defined; namely implicit by evaluation of an (literal) expression. A new
primitive object can be defined by ommitting the attribute list.

Creating copies of an object is provided as a variation on the assignment statement (Sec. 10.1).
The access properties (accessrule) are described in Sec 8.4.3.

syntax
object

attributelist

attributeref

attributedef

objectname

: : = object (objectname) attributelist (accessrule)
I object objectname assignment (accessrule)
I object objectname (accessrule).

: : = '[' { attributedef semicolon } ']'.

: : = objectname { '.' attributeref } .

: : = attributeref I attributeref assignment .

: : = identifier I string.

examples

object hummingbird [
isabird
food : = 'honey'

I* property which tells that it is a bird *I
/*hummingbird eats honey*/

object [/* a nameless object *I
father : = 'Martin'
mother : = 'Fernande'
child.son : = 'Joost' I* compound object *I

object office [
openinghour : = 900
closinghour : = 1700
/* This expression is evaluated when used in an expression *I
workinghour : = [clock.decimal>openinghour and clock.decimal<closinghour]

5.1. Predefined attributes

7

As soon as an object is stored in the database it is assigned a set of predefined attributes by
the Godel interpreter. These primitive attributes can be seen as rules automatically. For example,
during the evaluation of an expression the operands are extended with the attribute value automati­
cally.

All objects are stored internally as 'balloons' in the database, i.e. a reference to a cell which
holds an arbitrary number of references to other 'balloons' and primitive objects. The attribute self
refers to the internal name of the object instance, i.e. the identity of the 'balloon'.

The name of an object is used in programs to access its properties. To continue the metaphor
it is a user defined name for the 'balloon'. The name can be changed through an assignment in
which the source is a string valued expression.

The value attribute denotes the current value of an object (or attribute). Note that, the value
of an object is the set of used-defined attribute names. The value of an attribute is a set of primi­
tive objects, integers and strings, and names of nested attributes. Oldvalue denotes the previously
value of the object. That is, the value as it results from a previously committed transaction.

The only predefined attributes for primitive objects are name and value.

attribute
self
name
value
oldvalue

examples

interpretation
internal name of an object or attribute
symbolic name of an object or attribute
current value of an object or attribute
previous committed value of an object or attribute

hummingbird.self I* denotes the internal representation of the hummingbird *I
hummingbird.name I* denotes the string 'hummingbird' *I
hummingbird.value I* denotes the set {isabird, food} */
hummingbird.food.name /*denotes the set {'food'} */
hummingbird.food.value I* denotes the set {'honey}'*/
hummingbird.food.oldvalue I* denotes the previous food *I
25.value I* denotes 25 */

6. Function definitions

Functions are parameterized algorithmic descriptions. A function definition consists of a
function header, an optional scope, and a statement block. A function is internally represented as a
Godel object using the same naming convention.

8

The function header describes the name and the parameter list, i.e. a list of variable names.
The parameters are bound with the actual arguments upon function invocation. The actual number
of arguments should be equal to those required by the formal definition.

The when part of a function, called its scope, is a qualified expression (Sec. 9.1), i.e. a boolean
valued expression in which free variables are bound with objects through a selection process. The
scope is used to safeguard the accidental use of the function with improper arguments, i.e. it is pri­
marily used to implement a typing scheme for parameters and to select the proper overloaded func­
tion.

Assignment within the statement block is restricted to the local variables and the objects refer­
enced by a parameter. The rest of the database can be inspected but can not be altered. Functions
used within scope expressions should have no side-effects, i.e. modifications of objects other then
local variables are prohibited. A return statement terminates the algorithm and it returns the result
of the expression. By default the value of the last executable statement in the function body is
returned. An ommitted or empty body stands for the body '[true]'.

An overloaded function is a function definition with a non-unique name. If an overloaded
function is called then one definition is selected for which the scope expression is true; that function
is then evaluated. Overloading built-in operators is allowed. User-defined functions take precedence
over the built-in definitions. The overloaded function can be referenced within the function body
using the self attribute.

syntax
function

fcnheader

fcnname

parameters

scope

body

functionstmt

:: = function fcnheader (scope) (body).

: : = fcnname '(' { parameters } ')' .

: : = identifier I wordsymbols I operator .

::=variable {comma variable}.

: : = when qualifiedexpr.

:: = '[' { functionstmt semicolon } ']'.

: : = statement .

examples

function isa(Object,Guardian)
when guardian.Guardian<> undef[

return Guardian.scope(Object)

function in(O,Set) [
return Set.Elm.value=O.value

object functionresults [
uselater; set:= {1,2,3};
attrl : = in(l,{1,2,3,4})
attr2: = [in(l,{l,2,3,4})]
attr3 : = [in(uselater,set)]

7. Guardian definition

I* attrl = true *I
I* attr2 = true when used *I
I* evaluate when used *I

A guardian is an object which governs the contents of the Godel database. A guardian
definition consists of a name, an optional scope expression, rules and attribute definitions, and an
optional access constraint.

A.guardian is represented as a Godel object internally; all operations applicable to objects are
applicable to guardians as well. A guardian may be assigned attributes and shares the predefined
object attributes. The object naming conventions apply.

9

The database partition governed by a particular guardian is described by a scope expression.
A scope is a qualified expression (Sec. 9.1), i.e. a boolean valued expression with free variables. All
variable bindings such that the scope expression becomes true, are subject to control by the guar­
dian. Omission of a scope expression means that all objects in the database are governed.

The guardian rules specify the algorithmic behaviour of the guardian. The rules are preceded
by a local scope expression, refining the extent to which the guardian governs the database. The
statement block associated with the rule is executed whenever a variable binding is found such that
both global and local scope expressions are true. The statement block is considered a database tran­
saction, i.e. an atomic action. The actions of which can be undone with the undo statement.

A classical object class can be simulated in Godel by tagging the members of a class with the
class name. Functions restricted to the members of a class can be defined readily by checking for
the appropriate class tag. Methods such as found in Smalltalk can be simulated through guardians
watching for message objects. For example, a database of employees can be watched for a negative
salary as shown below. If an object is found which violates this rule then a message is displayed.

syntax
guardian

guardian body

rules

rule

:: = guardian (objectname) guardianbody (accessrule).
J guardian objectname assignment (accessrule).

:: = (scope) rules.

: : = '[' { rule semicolon } ']' .

: : = attributedef
J when qualifiedexpr guardianblock .

guardianblock

guardianstmt

examples

: : = '(' { guardiansmt semicolon } ']' .

: : = statement .

guardian employee class
when O.employee [

when O.salary=undef[
I* salary field does not yet exist *I
0 :+ salary
O.salary := -1

when 0.salary < 0 [
write ['What is the salary of ' O.name ' ? \ n']
read 0.salary

object smith [employee /*notifies the guardian*/]

7.1. Guardian behaviour

Guardians are like processes in traditional programming environments. As soon as a guardian
is defined, i.e. stored in the database, a process is created. This process will, in due course, execute
the statement block for all possible variable bindings provided it satisfies the scope expression.
When all bindings have been tried and no qualifying binding has been found then the guardian is
put to sleep, awaiting new objects and events, such as changes to the database.

The order in which the variables in expressions are bound to objects in the database is expli­
citly left undefined. Similar, the evaluation order of an expression is left to the system. This means
that the user should be careful not to write (scope) expressions which depend on side-effects of func­
tion calls. Moreover, to guarantee that objects are handled once by a guardian a proper tag should
be use<i to represent this state.

10

Unlike existing programming languages the flow of control is primarily data driven. A local
scope expression describes a partial order in which actions should be taken. This means that it is
possible to react on specific actions, such as object declarations, to guarantee the integrity of the
database.

The examples below illustrate the behaviour of guardians. Assume that the database contains
precisely one object. The guardian 'once' is triggered and a single message is generated. This object
is invalidated for future printing. Thereafter no binding will be found which satisfies the guardian
rules of 'once'.
The second example illustrates an infinitely looping guardian. As soon as the transaction commits
the scope of the guardian 'infinite' is satisfied by definition and the process is restarted.
examples

guardian once [
firsttime

when once.firsttime[
write 'hello world\ n'
once:- firsttime

guardian infinite
when 0 [

write [O.name, ':hello world\ n']

I* as soon as a bird object is found with missing attributes*/
I* questions are asked *I
guardian [

when O.isabird and O.name=undef[
write 'What is the name of the bird ? '
read O.name

when 0.isabird and O.food=undef[
write 'What is the food of the bird ? '
read Ofood

7.2. Predefined guardian attributes
Guardians have also the predefined object attributes as introduced in Section 5.1. The follow­

ing table lists the attributes specific to guardians. The scope attribute is a reference to a function
which represents the scope expression. Functions are also available for local scopes, they imply the
use of the global scope function.

An important issue in the definition of guardians is when and under what circumstances they
become active and modify the database. After a Godel program has been read all guardians are put
into dormant mode, unless explicitly put into any of the other modes through the program
definition. The dormant mode makes a guardian aware of changes in the database and to react on
it, i.e. it becomes active. The sleeping mode turns the guardian into a passive object. The modes
can be manipulated by the user. A more detailed presentation of guardian scheduling is given else­
where.

name

scope
guard.N
action.N
status

meaning
global scope expression
scope expression for N-th rule activation
statement list associated with N-th rule
current status of guardian

11

7.3. Supervisors

The duality of guardians, they are both static and dynamic, makes Godel a self-regulating sys­
tem. For it allows the behaviour of guardians to be statically described by objects. Moreover, a
guardian can be defined which selects other guardians and switches their status. This way a
scheduler or supervisor can be defined.

For example, the following code fragment describes the behaviour of single-thread Godel inter­
preter using the language primitives. When the system starts, this guardian is the sole guardian
active. All other guardians are asleep, i.e. are passive objects. This supervisor selects a single guar­
dian, switches its status and waits for its completion. When the action is finished the guardian is
put to sleep.

examples

object sleeping; I* primitive object definitions *I
object dormant;
object active;

guardian interpreter
when guardian.G
[

processor: = undef
when processor=unde/and G.status = sleeping [

processor: = G.name
G.status: = active

when G.name=processor and G.status = dormant [
processor: = undef
G.status: = sleeping

8. Attribute denotation

An attribute denotation selects attributes of objects for further manipulation. The starting
point for the search is the list of object names, i.e. the names introduced by object definitions, or the
object referred to by a variable. An attribute expression is a reference to a set of Godel objects, i.e.
either attributes, objects or guardians, using their symbolic names and the attribute denotation
operators dot(.) and hat(/\). An attribute expression is evaluated from left to right. If any of the
attribute expressions evaluates to undef then the whole expression is replaced by undef.

Godel includes two forms of property inheritance; structural property inheritance, which
obtains a value of a component of the object, and behavioural property inheritance, which obtains
an attribute of one of the guardians responsible for the object.

syntax
attribute

attrterm

attrfactor

structureprop

behaviourprop

: : = attrterm { behaviourprop attribute } .

: : = attrfactor { structureprop attrterm } .

: : = objectname I variable I uniqbinding I setconstructor.

··=''I',
::='A' I 'AA'.

12

examples

guardian birds [
when Somebird.tobeprinted [

write ['name=', Somebird.name, '\n']
write ['locomotion=', Somebird.locomotion, ' \ n']
Somebird :- tobeprinted /* print it once *I

I* projection *I
employee. { name,sal}
employee. {V: V. value<> undej}

I* results in two internal object names*/
I* project on all non-null attributes *I

8.1. Structural property inheritance
Structural inheritance makes attributes of compound objects accessible. The dot operator (' .')

looks for attributes directly linked with the object. The dot-dot operator (' . .') searches all com­
ponents of the object for the named attribute. If the attribute does not exist then undej is returned.

For example, the predefined object today is defined as a compound object date with attributes
year, month, and day. One may omit the date attribute when referring to any of its components
using the dot-dot operator.

examples

object today [
date : = object [

I* definition of an compound attribute*/
year := 1985
day := 22
month : = 'November'

8.2. Behavioural property inheritance
The attributes (and rules) of the guardian are called behavioural properties, because guardians

govern objects. The behavioral property operator (' /\ ') searches a guardian controlling an object,
i.e. the scope expression is true with the object being bound. The hat-hat operator (' /\/\') inspects
the guardians recursively (supervisors!). The extended example below illustrates the inheritance pro­
perties.

examples

I* declare the database *I
object p [c := 25; d := 'x'; b :+ 29]
object o [a:= 30; a:= 31; b: + p]
guardian g [

e := 'e'
f :=object [g := 'g'; h := 'h']

construct value construct value

o.a {30 31} o .. a {30 31}
o.b p o .. b {p 29}
o.e undef o .. e undef
p.g undef p .. g undef
o.b.c 25 o .. c 25

construct value construct value

oAG.a undef oAAG.a undef
OAAG.b undef OAAG.b undef
oAG.e 'e' OAAG.e 'e'
oAG.g undef oAG .. g 'g'
oAf.h 'h' o.bAAh 'h'

13

8.3. Property exception handling

One of the difficulties in the description of properties is that their always seems to exist excep­
tions to a general case. For example, all birds fly except penguins. This can be handled in Godel in
an effective way through operator overloading and guardians as follows.

For example, the dot operator can be overloaded to handle the default. If the locomotion of a
bird is requested and it has not been defined as a structural property then the function returns the
default, i.e. the bird flies.

examples

function .(0, locomotion)
when 0.isabird and not O.locomotion

return 'flying'

Note that the dot operator used within the scope is automatically interpreted as a different
definition; that is its default meaning.

Another approach would be to store the default value in the birds guardian and consider the
locomotion a behavioural property with deferred evaluation.

examples

I* this example shows use of overloaded names*/

function locomotion(O)
when O.isabird /*parameter typing*/
[

if[O.locomation = undef [return 'flying')

guardian birds
when O.isabird

true [return O.locomation]

locomotion : = [locomotion(O)) I* delayed evaluation *I

object hawk []
object penguin
[

locomotion:= 'walking'

write hawkAlocomotion I* prints 'flying' *I
write hawk.locomotion /*prints 'undef */
write penguinA!ocomotion /*prints 'walking'*/
write penguin.locomotion I* prints 'walking' *I

8.4. Visibility of objects

The construction of safe Godel programs requires facilities for information hiding. In princi­
ple, all attributes are visible to outer layers. That is, the' . .' operator has access to all components of
an object. Similar '/\' and '/\/\' inspect all guardians for the definition of the required behavioural
property.

Selective dynamic sharing of objects is described by an access constraint. The constraint is
written as a qualified expression and specifies the guardians (objects) from which it can be accessed
directly using the dot operator.

Visibility of attributes can be restricted to the object in which they are defined using the con­
struct access name. The result is that the corresponding object (attribute) can only be accessed in
the lexicaJ. context in which it is defined.

14

syntax
accessrule : : = access qualifiedexpr .

examples

guardian random [
seed : = object [value : = 0] access random
I* explicit definition of value attribute *I
value:= [seed:= (seed* 125) mod 8191]

object notebook
[

department : = 'Sales'
name : = 'Johny Goodlook'
address : = 'Amsterdam'
owner : = 'Jones Gerard'

access G.owner = notebook.owner

9. Expressions

Expressions are rules of computation for obtaining values of objects and generating new
values by application of operators. Expressions consist of operands, variables, object references,
and literals. The rules of composition specify operator precedence.

A factor denoting an attribute is automatically extended with the value attribute (unless
predefined attributes have been indicated by the programmer already) to obtain its value. The result
of extending an operand with the value attribute is a set of object references (including primitive
objects). If an operand is a reference to a statement block then this block is executed to obtain its
value. The result of an arithmetic expression is undef if any of the operands is undef An exists test
is included to test for the existence of an object. A boolean term consisting of an attribute only is
interpreted as an inequality test for undef

In expressions mixing integer and floats evaluation results in a float. Mixing strings and
identifiers in expressions results in a string. Integers and floats used in a string expression are
coerced to string as well. Identifiers are coerced to strings and vice versa for object selection.

The pattern matching operator (?) tests a string to determine whether it conforms to a pattern.
The pattern is specified as a string object. The pattern syntax is similar to that used for search
expressions in the editors ex/vi.

syntax
expressionlist

expression

conjunction

negation

exists

comparison

compop

sum

sign

add op

term

mulop

factor

functioncall

constant

: : = expression {comma expressionlist } .

:: = conjunction (or expression).

:: = negation (and conjunction).

:: = (not) comparison J (not) exists.

: : = attribute I attribute < > undef I attribute = undef

:: = sum (compop sum).

::='<'I'>' I'<=' I'>=' I'<>' I'=' J '?' ·

:: = (sign) term (addop sum).

::='+'I'-'.

::='+'I'-' J '+ +'.
: : = factor (mulop term).

::='*'I'/' I mod I div.

: : = constant I attribute I uniqbinding I setconstructor J functioncall.

: : = objectname '(' expressionlist)'.

: : = number I string .

9.1. Variable definitions

15

If an expression contains free variables, i.e. newly defined variables, then a unification process
is started which binds these variables with objects in the database. All free variables are replaced
by object references such that the arithmetic expression in which they are defined do not evaluate to
undef The order in which variables are bound with objects in the database is explicitly left
undefined. The first such binding fixates the variables for the rest of their scope of definition. If no
such binding can be established then the expression becomes undef

A variable can also be bound to an object in the database using an unique binding clause.
The unique clause consists of a result expression followed by a boolean expression. The boolean
expression specifies the scope of variable binding. That is, if precisely one variable binding exists
such that the boolean expression becomes true then the result of the construction is the object
derived from the result expression. The value undef is returned when zero or more then one qualify­
ing variable binding exists.

The set constructor collects all objects specified by the result expression (removing duplicates)
for which the boolean expression evaluates to true. The set constructor results in a nameless object
in which the attributes represent the set elements. The empty set ({}) and enumerated set are sup­
ported by this construct as well.

syntax
qualifiedexpr : : = expression .

uniqbinding : : = '(' expression (':' expression) ')' .

setconstructor :: = '{' (expressionlist) (':'expression)'}'.

16

examples

guardian x I* scope of x */
I* scope of 0 *I when O.isabird<>undef

[
when O.food = 'honey'
[
write {V:V.name=O.name}
I

I* scope of V */
I* end scope V */
I* end scope 0 *I
I* end scope x *I

B=hawk and B.isabird /*is true when B can be bound to a hawk*/

{ B : B.isabird } I* set of all birds *I

(F.son : F.father = 'Martin') I* references the object 'Joost' *I

{ object[Z,Y,X]: isa(Z,zoo) and isa(Y,zoo) and isa(X,bird) and Z<>Y and X.zoo=Z and X.zoo <> Y}

10. Statements

Statements define algorithmic actions to be performed. The object, function, and guardian
constructs have been introduced already. A prototypical use of an object statement is the creation
of an object whenever a particular message is located in the database. They may be used as state­
ments which result in a deferred evaluation. The modify statements replaces or extends the attri­
butes of an object with new values by expression evaluation. The conditional and generator state­
ments provide flow of control. The activate statement causes the execution of the function or awak­
ening of a guardian. The wait statement causes the sequential execution to be temporarily
suspended. The input/ output statements are used for communication with the environment.

An expression denoting a function call causes the execution of the designated function. Upon
activation the formal function parameters are bound to the actual parameters. The sequential exe­
cution in which the function call appears is suspended until the function return value becomes avail­
able. The return value is ignored unless the function appears as part of an expression.

A guardian call, an expression which denotes a guardian, allows a user to activate a guardian.
The effect is that the guardian will run concurrently with the guardian awakening it. Note that the
called guardian effectively starts working after the statement block in which it is used is committed.
Thus, waiting for the effects of another guardian should be modelled with an intermediate state in
the guardian and a separate rule to continue processing.

syntax

The last statement in a statement block behaves as an implicit return expression.

statement

block

stmtblock

: : = object I function I guardian I modifystmt I conditionalstmt
I generatorstmt I functionseq I waitstmt I inputstmt I outputstmt
I expression I undo I return expression .

: : = statement I stmtblock .

: : = '[' { block semicolon } ']' .

UU. Assignment statements
An assignment statement indicates that the value of an object should be replaced (or

extended) by a new value obtained by evaluating an expression. The left-hand side of an assign­
ment statement can not be a primitive object. The assignment statement comes in three forms; the
becomes (: =), the insert (: +), and the delete (:-).

The assignment operator (: =) assigns a copy of the object obtained from evaluating the
expression. If the expression is a reference to an object in the database then recursively all attri­
butes ate copied and assigned to the destination object. The attributes names are introduced

17

automatically.

If the source is a guardian definition then its scope, attributes and rules are copied. If the des­
tination is a guardian then after transaction commit the new guardian becomes active. This way
multiple processes are introduced.

If the source is a function definition then its scope and statement block are copied. Note, that
this may lead to an overloaded and ambiguous function.

The insert (: +) and delete (:-) operators provides a means to manipulate the set of
object references associated with the object at the left hand sight. The insert operator adds a refer­
ence to the object selected through evaluating the expression. A delete operator removes all links to
objects specified by the expression. These operators make it possible to manipulate both the set of
attributes associated with an object as the value set associated with a single attribute.

syntax
modifystmt : : = attribute assignment .

constructor

assignment

mod op

examples

: : = expression I object I function I guardian I stmtblock .

: : = modop constructor .

··='·='I'·+' I'·-'

object zoos [
zoo
self : + 'The wo Artis'
self : + 'Berlin zoo'

wos : + 'Antwerpen zoo'

zoos:- {Z: isa(Z,zoo) and Z.location='Amsterdam'}

I* to change all references to Amsterdam *I
{A: O .. A='Amsterdam} := 'Mokum'

10.2. Conditional statements

The conditional statement provides a general choice mechanism for sequential actions. In this
statement the qualified expressions are inspected one at time until one is found which evaluates to
true (possibly after variable binding). Then the associated block is executed. Ommission of the
qualified expression is interpreted as true and therefore should only be used for the last block. That
is, to specify a default.

The scope of variables defined within the qualified expression preceding a block terminates
with the closing of the corresponding qualified block. The value of a conditional statement is deter­
mined by the last statement executed.

syntax
conditionalstmt:: = if qualifiedblock

I if '[' qualifiedblock { qualifiedblock} ']' .

qualified block : : = (qualifiedexpr) block.

10.3. Generator statements

A generator statement causes the execution of a statement block for as long as any of the
qualified expressions is true. This statement simulates a traditional for-statement and repeat­
statement. In a generator statement all qualified expressions are repeatedly inspected. If an expres­
sion evaluates to true then the associated block is executed where after the whole statement is res­
tarted. The generator statement is terminated when all qualified expressions evaluate to false.

18

The scope of variables defined within the qualified expression preceding the block terminates
with the closing of the corresponding qualified block. The value of a generator statement is deter­
mined by the last statement actually executed.

syntax
generatorstmt : : = do qualifiedblock

I do '[' qualifiedblock { qualifiedblock } T .
examples

I* the following statements generates integers from I to 100 */
O:= I
do 0<100 [

write O.value
0:=0+1

do Somebird.tobeprinted [
write Somebird.name
Somebird:- tobeprinted

do 0 [write O.name] I* repeatedly writes some object name*/

write {0:0}.value.name I* writes name of all objects*/

10.4. Function sequence statement

The function sequence statement provides a shorthand for repeatedly calling a function with
one argument, which is obtained from the expression list, in the order specified. This construct is
the basis for implementing functions such as the read and write statements discussed below.

syntax
functionseq : : = objectname '[' { constructor comma } ')' .

examples

printtuple [{0:0.isabird}.value]
I* is equivalent to *I

do O.isabird and not O.tobeprinted [0: + tobeprinted]
I* which marks the objects to be printed*/

do O.tobeprinted [printtuple(O) 0:-tobeprinted]

10.5. Wait statement

The wait statement blocks further sequential processing until the qualifying expression
becomes true. The variables introduced in the expression remain bound until the end of the lexical
block in which the wait statement is used. This statement is primarily used for the construction of
supervisors and when waiting for a timer to go off.

syntax
waitstmt

examples

: : = wait qualifiedexpr.

wait birds.dormant /* waits until the guardian is put to sleep *I

wait isa(V,message) I* waits for the next message *I

Currtime : = clock
wait clock >Currtime+ lO /*wait at least lO clock ticks */

19

10.6. Input/output statements

The basis for legible input and output is established in Godel through read and write state­
ments. The default file used for input/ output is the users' terminal which is designated by built-in
objects, called tty input and tty output. Other files can be accessed by redefining the built-in objects
tty _input and tty _output. -

The write statement prints a list of values. The read statement reads values from the terminal.
The type of the object to be read is determined by the old value of the object. The default for read­
ing an attribute is a string terminated with a newline.

syntax
inputstmt

outputstmt

inputlist

outputlist

: : = read inputlist .

: : = write outputlist.

: : = attribute J '[' { attribute comma } ']'.

: : = expression J '[' expressionlist ']' .

examples

function read(Somebird)
when Somebird.isabird
[

Somebird : = isabird
Somebird : + food
Somebird : + locomotion
write 'what is the name ? '
read Somebird.name

11. Godel programs and sessions

A Godel program is a text file containing a series of object, function, and guardian definitions.
In the prototype implementation this file should be created with one of the editors of the host sys­
tem. A Godel session is started by calling the interpreter with the input file. The program is read
completely before any of the guardians becomes active. The order in which statements are activated
is explicitly left undefined. Any synchronization should be encoded in the application.

syntax
godelprogram : : = { block semicolon } .

References

1. Clocksin and Mellish, Programming in Prolog, Springer Verlag (1981).

2. Goldberg, A. and Robson, D., Smalltalk-80 The language and its implementation, Addison­
Wesley (193).

3. Hewitt, C.E., "Viewing control structures as patterns of passing messages," Artif. Intel/.
8(3) pp. 323-364 (June 1977).

4. Kersten, M.L. and Schippers, F.H., The Design of the Godel Interpreter, In preparation

5. Wasserman, A.I., Sherertz, D.D., Kersten, M.L., Riet, R.P. van de, and Dippe, M., "Revised
Report on the Programming Language PLAIN," SIGPLAN Notices, (May 1981).

syntax

brackets

operator

wordsymbols

comma

semicolon

string

escaped

number

object

attributelist

attributeref

attributedef

objectname

function

fcnheader

fcnname

parameters

scope

body

functionstmt

guardian

guardian body

rules

rule

guardian block

guardianstmt

attribute

attrterm

attrfactor

structureprop

behaviourprop

accessrule

expressionlist

Appendix A: BNF of Godel

: : = T I 'J' I '(' I ')' I '{' I '}' ·

::='<'I'>' I'<=' I'>=' I'<>' I'=' I'?' I'+' I'-' I'*' 1 ·1·

I':=' I':+' I':-' I'·' I'·-' I 'A' I 'A/\'.

: : = access I and I div I do I function I guardian I if
I mod I not I object I or I read I return I undo I when I write.
::=','I/* empty*/.

::=';'I 1* empty *1.

: : = "" { letter I digit I escaped } '"' .

: : = '\ n' I '\ r I '\' digit digit digit .

: : = integer I float .

: : = object (objectname) attributelist (accessrule)
I object objectname assignment (accessrule)
I object objectname (accessrule).

: : = '[' { attributedef semicolon } ']'.

: : = objectname { '.' attributeref } .

: : = attributeref I attributeref assignment .

: : = identifier I string.

:: = function fcnheader (scope) (body).

: : = fcnname '(' { parameters } ')' .

:: = identifier I wordsymbols I operator.

: : = variable { comma variable } .

: : = when qualifiedexpr.

: : = '[' { functionstmt semicolon } ')'.

: : = statement .

:: = guardian (objectname) guardianbody (accessrule).
I guardian objectname assignment (accessrule).

:: = (scope) rules.

: : = '[' { rule semicolon } 'J' .
: : = attributedef
I when qualifiedexpr guardianblock .

: : = '[' { guardiansmt semicolon } ']' .

: : = statement .

:: = attrterm { behaviourprop attribute } .

: : = attrfactor { structureprop attrterm } .

:: = objectname I variable I uniqbinding I setconstructor.

::='/\'I 'A/\'.

: : = access qualifiedexpr .

: : = expression {comma expressionlist } .

expression

conjunction

negation

exists

comparison

compop

sum

sign

addop

term

mulop

factor

functioncall

constant

qualifiedexpr

uniqbinding

setconstructor

statement

block

stmtblock

modifystmt

constructor

assignment

mod op

Appendix A: BNF of Godel

:: = conjunction (or expression).

:: = negation (and conjunction).

: : = (not) comparison I (not) exists .

: : = attribute I attribute < > undef I attribute = undef.

::=sum (compop sum).

::='<'I'>' I'<=' I'>=' I'<>' I'=' I'?'·
:: = (sign) term (addop sum).

::='+'I'-'.

::='+'I'-' I'++'.
: : = factor (mulop term).

::='*'I 'I' I mod I div.

: : = constant I attribute I uniq binding I setconstructor I functioncall.

: : = objectname '(' expressionlist)'.

: : = number I string .

: : = expression .

: : = '(' expression (':' expression) ')' .

:: = '{' (expressionlist) (':'expression)'}'.

: : = object I function I guardian I modifystmt I conditionalstmt
I generatorstmt I functionseq I waitstmt I inputstmt I outputstmt
I expression I undo I return expression .

: : = statement I stmtblock .

: : = '[' { block semicolon } ']' .

: : = attribute assignment .

: : = expression I object I function I guardian I stmtblock .

: : = modop constructor .

::=':='I':+' I':-'.
conditionalstmt:: = if qualifiedblock

qualifiedblock

generatorstmt

functionseq

waitstmt

inputstmt

outputstmt

inputlist

outputlist

godelprogram

I if '[' qualifiedblock { qualifiedblock} ']' .

: : = (qualifiedexpr) block.

: : = do qualifiedblock
I do '[' qualifiedblock { qualifiedblock } ']' .

: : = objectname '[' { constructor comma } ']' .

: : = wait qualifiedexpr.

: : = read inputlist .

: : = write outputlist.

: : = attribute I '[' { attribute comma } ')'.

: : == expression I '[' expressionlist ']' .

: : = { block semicolon } .

