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In this paper we discuss by means of two examples the justification of some (often implicit) limit arguments 

used in the development of structured population models. The first example considers the usual equation 

for size dependent population growth, in which it is implicitly assumed that discrete finitely sized young are 

produced from infinitesimal contributions by all potential parents. The second example shows how a pair of 

sink-source terms may transform into a side condition relating the appearance of individuals in the interior 

of the individual state space to the outflow of individuals at its boundary. The main mathematical tool in 

dealing with these example is the Trotter-Kato theorem. 
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1. INTRODUCTION 
Models even at best are only approximations. 
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In populations dynamics we often assume that (i) we are dealing with large numbers of individuals 

so that we may use deterministic models and that (ii) individuals either do not interact or if they do 

move sufficiently fast so that we need not take account of positive spatial factors. Both assumptions 

may be approximately true in many practical situations. The first type of approximation, i.e. replacing 

a stochastic model with a deterministic one if the numbers of individuals is sufficiently large, is sup

ported by the limit theorems of KURTZ (1981) and the formal expansion procedures of VAN KAMPEN 

(1981). The second approximation is supported by limit considerations for reaction diffusion equa

tions. 
A second type of approximation has to do with our conception of the underlying individual physio

logical or behavioural mechanisms. Such approximations will be the subject of this paper. 

Still a good deal of conceptual classification is needed concerning the translation of various sup

posed mechanisms on the individual level into equations governing population behaviour. As an 

example consider the usual equation for substrate dependent growth of a bacterial population 

dN 
dt = g(s)N, (1.1) 

where N is bacterial density (number per unit of volume), and s is substrate concentration. Strictly 

speaking (1.1) is no more than a description of observed population growth behaviour. Contrary to 

the usual claims it is not a representation of a mechanistic model. The alleged mechanistic underpin

ning is roughly: (i) assume that deaths or washout may be neglected, (ii) individuals divide after hav

ing taken up a unit amount of substrate, (iii) per capita substrate uptake rate, and therefore per capita 

division rate, equals g(s). Moreover, this argument i.a. implies regularly occuring divisions, at least 

within one clan, whereas (1.1) implicitly assumes that divisions occur totally at random. 

· The structured population methodology as advocated in METZ & DIEKMANN (to appear) (early 

references are BELL & ANDERSON (1967), FREDERICKSON, RAMKRISHNA & TSUCHIYA (1967), and 
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SINKO & STREIFER (1967)) was specifically developed for dealing with the type of problems alluded to 
above. In structured population models the state of a population is assumed to be a frequency distri
bution over a space of individual states, spanned by quantities like size, age, nutrient reserves etc., 
and an equation is written down describing how this distribution changes due to continuous physio
logical processes, births, and deaths. (A reinstatement of (1.1) as an equation for overall population 
growth associated with a size structured population model under two different sets of fairly restrictive 
assumptions may be found in DIEKMANN et al (1984) and in HEIJMANS (1984a).) 

When developing structured population models we regularly make all sorts of approximating 
assumptions either implicitly or explicitly. Generally these assumptions are phrased on the level of the 
individual whereas it is the population which is our main concern. In this paper we shall demonstrate 
for two specific examples the essential correctness of the implied limit arguments. The first example 
deals with an apparent conceptual inconsistency in the usual equations for size structured population 
dynamics. The second example is mainly technically motivated: it yields a mathematically rather 
unexpected result. We shall confine ourselves to the linear case only, as there we can use a ready 
made tool in the form of the Trotter-Kato theorem. A comparable problem was treated in HEIJMANS 
(1984b) (see also METZ & VAN BATENBURG (1984a,b)). Many more examples are treated without proof 
in METZ & DIEKMANN (to appear). 

In the remaining part of the introduction we shall discuss the two examples from a biological point 
of view. In section 2 we summarize some versions of the Trotter Kato theorem. In sections 3 and 4 

·the two examples are dealt with in all rigorous detail. Finally in section 5 we shall return to the wider 
context again and discuss some open problems. 

The equation for size structured population growth usually encountered in the literature ( SINKO & 
STREIFER (1967), STREIFER (1974), VAN SICK.LE (1977), MURPHY (1983), METZ & DIEKMANN (to 
appear)) reads 

a a 
atn(t,x) = - ax (y(x)n(t,x)) - µ,{,x)n(t,x) (1.2) 

y(x0)n(t,x0) = J rb(y)n(t,y)dy, 

where x denotes size, n (t, ·) the size density at time t, y the individual growth rate, µ the per capita 
death rate, x 0 birth size, b the size specific per capita birth rate and r is a fudge factor, introduced for 
convenience, which may be interpreted as the probability that a newborn survives the (infinitesimally 
short) nursery stage. However, if we stick to the literal interpretation of this equation we have to 
admit to a very non biological assumption: births occur at a finite rate in an instantaneous depen
dence on the present population, but without affecting specifically these individuals who happen to 
reproduce at that time. Apparently, the continuously growing parents can yet instantaneously create 
time and again additional masses x 0 , or else live newborn are created by magic out of added 
infinitesimal contributions from all parents together. 

In an attempt to solve the implied anomaly we shall first formulate a different model which may be 
equally unrealistic biologically but which at least has the virtue of not violating any obvious biological 
constraints, and then rederive a slightly modified form of (1.2) by taking appropriate limits. In our 
model we assume that individuals give birth to offspring of size t: while concurrently their size is 
decreased the same amount. The corresponding population equation reads 

a a 
atn(t,x) = - ax (g(x)n(t,x)) - {J.(x)n(t,x) + {J.(x + t:)n(t,x + t:) - µ,{,x)n(t,x) (1.3) 

g(t:)n(t,t:) = J p,{J.(y)n(t,y)dy. 

where g is again individual growth rate, {J. per capita birth rate, t: the size of a newborn, and p, nur
sery survival. t: is assumed to be small and we shall consider the limit when we let formally t:J,0. In 
nature usually roughly the same amount of energy is available for reproduction, which depending on 
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the species can either be spent on producing a few large or many small young. Therefore we set 

/J.(x)=E- 1b(x).' 

Moreover in species with many small young, infant mortality is generally much higher than when 
young are large. For the sake of the argument we shall assume that these deaths all occur in the nur
sery. If recruitment is to stay bounded when we let E go to zero we have to put 

Formally setting 

a 
/J,(x +E)n(t,x +E)~fJ.(x)n(t,x)+a,;(b(x)n(t,x)), 

and taking limits in (1.3) gives (1.2) with y(x)=g(x)-b(x) and x 0 =O, i.e. the original growth rate is 
corrected by an amount corresponding to the mass loss in reproduction. 

REMARK In fact, the limit equation resulting from (1.3) may differ slightly from (1.2). So far we have 
been rather vague about the range of possible sizes an individual may attain. If we assume that in 
principle x can take any value in 11\t +, there is no problem. However, if we assume, as we shall do in 
section 3, that there exists an Xm<oo such that g(xm)=O and g(x)>O for x<xm, we can just as well 
confine the domain of n (t,-) to [E,xm). Since g(x )>0 for all x in that domain, there is no need for a 
boundary condition at the right-hand-side of it. In the limit equation (1.2), y(xm)<O and we therefore 
do need a boundary condition n(t,xm)=O to prevent nonuniqueness of the solutions to (1.2) due to a 
possible instream of individuals at xm. (Of cour,.se we shall eventually want to confine the domain of 
the limit equation to an interval [O,x) where y(x)=O and y(x)>O for x<x. But we cannot do this 
immediately as we cannot impose such a restriction on (1.3) for E>O.) 

Of course the present modified account also contains some troublesome points. For example, how 
should we interpret a birth size zero? A more detailed discussion of these points will be deferred till 
section 5, after we have taken a look at the mathematical side of the limit argument. 

Our second example concerns size dependent cell kinetics. This example differs from the previous one 
in that the sizes of the daughter cells depend on the size of the dividing mother. We assume that the 
two daughter cells may differ in size, but that the distribution of their relative sizes, represented by 
the probability density d(p),d:(l/2-A,112+A)~D\t+, where p is the fraction size of a daughter, is 
independent of the size of the mother. The population equation is 

1 a a f !!JJ!l x x -;;-n(t,x) = --;-(g(x)n(t,x)) - b,(x)n(t,x) + 2 b.(-)n(t,-)dp. 
ut uX 0 P P P 

(1.4) 

g denotes the individual growth rate and b, the size specific division rate. It is assumed that individu
als who have passed size 1 are no larger capable of dividing, i.e. b.(x)=O for x > 1, but either 
differentiate or die. 

I b.(y) 
Now assume that b.(x)=O outside (1-E, 1) but that yet for E,l,0 the quantity J, --dy converges 

1-• g(y) 
to a number larger than zero. This means that the probability that a newborn cell is eventually going 
to divide 

I b,(y) 
'TT,= 1 - exp(- J--dy) 

I-• g(y) 
(1.5) 

converges to a value '1To >0. In the limit cells will only divide on reaching x = 1, and they do so with 
probability 7T0 • The corresponding population equation is 
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a a 
-;-n(t,x) =--a (g(x)n(t,x)) + 2d(x}ir0g(I)n(t, 1). 
ut X 

(1.6) 

This limit model may be used as a convenient approximation when cell division occurs only in a very 
narrow size window. 

2. THE 'fROITER-KATO THEOREM AND SOME OTHER RESULTS FROM SEMIGROUP THEORY 
In this section we mention some known results from the theory of strongly continuous semigroups. 
For details and proofs we refer to the book of PAZY (1983). 

Let {T(t)}r;;.0 be a strongly continuous (or C 0 -) semigroup of linear operators on some Banach 
space X. Let A be a linear operator on X with domain D(A). For M;;;;.O,wEIR we define G(M,w) as 
the class of all operators A which are the generator of a C0-semigroup {T(t)}r;;.o satisfying 

II T(t)ll ,;;;;,Me"'1' t ;;;;.o. 
The Hille-Yosida theorem says that any closed, densely defined linear operator A fo~ wich there exist 
constants wER,M;;;;.O such that 
(i) (w,oo)Cp(A), where p(A) is the resolvent set of A, 
(ii) llR(>.,Atll,;;;;,MJ(>.-w)n, for all >.>w,n = 1,2, ... , 
is an element of G(M,w). Here R(>.,A)=(M -A)- 1 is the resolvent of A. 

If A 0 is the generator of a C0-semigroup and B:X-»X is a bounded linear operator, then 
A =Ao+ B, with domain D(A)=D(A 0 ), is also the generator of a C0 -semigroup. This perturbation 
result is used in both sections 3 and 4. 

Let a(A) be the spectrum of A. The spectral bound s(A) of a closed, linear operator A is defined as 

s(A) = sup{Re>.: AEa(A)}, (2.1) 

where the supremum of the empty set is -oo, by definition. If A EG(M,w), then s(A),;;;;,w. 

Assume that X is a Banach lattice (see e.g. SCHAEFER (1974)) and denote by X + the cone of posi
tive elements of X. We say that {T(t)}1;;.o is a positive semigroup if every operator T(t),t;;;;.O, is posi
tive, i.e. T(t)X + c;;X +. If A is the generator of a positive C0-semigroup, then R(>.,A) is a positive 
operator for every >.>s(A), and s(A)Ea(A), if a(A)¥:0. These results were proved by GREINER, 
VOIGT & WOLFf' (1981). 

The remainder of this section is devoted to the Trotter-Kato theorem, which relates the convergence 
of a sequence of infinitesimal generators (resp. their resolvents) to the convergence of the associated 
semigroups. What the word "convergence" stands for in this context can be found in the precise 
results below. We now give two different versions of the Trotter-Kato theorem; the first is applied in 
section 4 and the latter in section 3. 

THEOREM 2.1 Let A be a closed, densely defined linear operator and let A, E G(M, w ), O<t:<£o. If for 
some >. with Re>.>w we have 

R(>.,A,)c/>-»R(>.,A)cp, t:J,0, 

for all c/>EX, then A EG(M,w). Let {Tc(t)}1;;.o and {T(t)}1;;.o be the semigroups generated by A, and A 
respectively, then for every cp EX and t;;;;;. 0, 

T.(t)cJ>-»T(t)cp, t:J,O, 

and the convergence is uniform for t in bounded subsets of (0, oo ). 



THEOREM 2.2 Let A,EG(M,w),O<t:<f() and assume that 
(i) there is a dense subset D of X such that 

A ,<{>-'>A<{>, t:,j,O, 

for every <{>ED, 
(ii) there exists a A with ReX>w for which (X -A )D is dense in X 
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Then the closure .i. of A is an element of G(M, w). If {T.(t)}1;;.o and {T(t)}1;;.o are the semigroups gen

erated by A, and A respectively, then for every <{>EX and t~O 

T.(t)<f>--»T(t)<f>, t:,j,O, 

and the convergence is uniform for t in bounded subsets of (0, oo ). 

REMARKS 
(i) !! we know, one or the other way, that the operator A in theorem 2.2 is closed, then, of course, 

A=A. 
(ii) From the proof of theorem 4.5, chapter 3, in PAZY (1983) it follows that conditions (i) and (ii) of 

theorem 2.2 imply that for every <{>EX and AEC with ReX>w, 

R(A.,A ,)<f>--»R(X,A )<{> as t:,j,O. 

(iii) In the literature several other versions of the Trotter-Kato theorem can be found. In the original 
paper of TROTTER (1958), it was allowed that the semigroups {T.(t)}r;;.0 acted on different 
Banach spaces X,. Although this generality is useful in many applications, we don't need it in 
this paper. 

3. FROM SIZE JUMPS TO REDUCED GROWTH 

3.1 The model 
We recall the model for size-structured population growth, described in the Introduction (see (1.3)). 

an a 
at(t,x) + ax-(g(x)n(t,x)) = -{3,(x)n(t,x) + {3.(x +t:)n(t,x+t:) (3.la) 

I 

g(t:+)n(t,t:+)- g(t:-)n(t,t:-) = p,j/3.(x)n(t,x)dx 

g(O)n(t, 0) = 0 

n(O,x) = i/;(x). 

a 

(3.lb) 

(3.lc) 

(3.ld) 

For technical reasons we allow that possibly some individuals of the initial population have size 
between 0 and t:, and therefore we replaced (l.3b) by (3.lb) and added the boundary condition (3.lc) 
which guarantees that there is no influx of individuals at x =O. In (3.lb), 

g(t:+)n(t,t:+)- g(f-)n(t,€-) = lim(g(€ + h)n(t,€ + h)- g(t:- h)n(t,£ -h)]. 
h!O 

We assume that the growth rate g(x) is such that individuals cannot grow beyond a maximum size 
which we normalize to x = 1; see Assumption 3. la below. As a consequence the last term at the right
hand-side of (3.la) has to be taken zero if x +t:> I. Note that we have taken µ_O. 

A natural choice for the underlying population state space is M[O, I], i.e. the space of all Borel 
measures on [0,1]; see METZ & DIEKMANN (to appear). However, (3.1) makes no sense for measures. 
There are at least two different ways to obviate this problem. The first is to integrate (3.1) with 
respect to x and to work with distributions (functions of bounded variation). In stead of this, we 
have chosen to use the so-called backward equation 
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am am 
-'.1-(t,x) - g(x)-'.1-(t,x) = -P((x)m(t,x) + P((x)m(t,x - t:) + p(p((x)m(t,t:) 
vt . vX 

(3.2a) 

m (O,x) = <P(_x ), (3.2b) 

satisfied by the clan averages 
I 

m (t,x) = J <P(_~)Nx(t,d~), (3.3) 
0 

where the measure Nx(t, ·)represents the expected state at time t of a clan descending from an ances
tral individual sized x at time zero. In (3.2b) </> is an arbitrary continuous function, i.e. 
<j>EX: =C[O, 1], and we look for a solution m((t,x;<j>) of (3.2), such that m((t,-;<j>)EX for every t;;a.O. If 
we are able to find such a solution m((t, ·;cp) for every </>EX, then the solution n((t, ·;if;) of the forward 
equation (3.1), where i/;EX* =M[O, l], can be defined by means of the duality relation 

<<j>,n((t, ·;if;)> = <m((t, ·;<j>),if;>. (3.4) 

Here<·,·> is the pairing between elements of X and x•, i.e. for cpEX=C[O, 1] and i/;EX* =M[O, l], 
I 

<<t>,if;> = j<P<.x)if;(dx). 
0 

In subsections 3.2 and 3.4 we shall give a precise description of the relation between the backward 
and forward equation in terms of semigroups and generators. 

From this point on, we shall work with the backward equation, and where necessary, interpret the 
results in terms of the forward equation. It turns out that this is a well-suited approach. 

3.2 The semigroup solution of the backward equation 
In this subsection we show that, under some reasonable assumptions, we can associate a strongly con
tinuous semigroup of linear operators on X = C[O, 1] with the initial value problem (3.2). 

ASSUMPTIONS 3.1 
a) g is Lipschitz continuous on [0,1]; g(x)>O,x E[O, l]; g(l)=O. 
b) p( is Lipschitz continuous on [0,1]; there is an a>t: such that p((x)=O,xE[O,a] and 

P((x)>O,x E(a, l]. 

Here a denotes the minimum size at which an individual can reproduce. We can write (3.2) as the 
abstract Cauchy problem: 

dm 
dt (t) = A(m(t), m(O) = <j>EX, (3.5) 

where the closed, unbounded operator A ( with domain 

D(A() = {</>EXn w}o,![O, l]: gcf>'EX}, 

is given by 

(A(</>)(x) = g(x)1J;(x) - P((x)<P(_x) + P((x)<P(_x - t:) + p(/Jlx)<P(_t:). 

We write A( as the sum of two operators: 

A( =Ao +B0 

where the closed, unbounded operator A 0 has the same domain as A ( and is given by 

(3.6) 
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(Ao<f>)(x) = g(x~: (x), 

and where B. is a bounded operator given by 

(B,</>)(x) = -/3.(x)</>(x) + /3.(x)</>(x - t:) + p,/3.(x)</>(t:). 

It is quite easy to show that Ao generates a strongly continuous semigroup {T0(t)}1;;.0, and therefore 
A., being a bounded perturbation of A 0 , also generates a strongly continuous semigroup {T.(t)}1;;.0 ; 

see section 2. 
Both {T0(t)}1;;.o and {T.(t)}1;;.o are positive semigroups, which is intuitively clear from the biologi

cal interpretation, but can also be shown rigorously; see HEUMANS (1986). Let 1 be the element of X 
which is identically one on [O, 1 ]. Then 

A,1 = p,p,. 

Define the positive scalar "'• by 

"'• = sup{p,/3.(x): x E[O, l]}. 

One sees immediately that 

O:o;;;;;;A • 1:o;;;;;;w,1. 

(3.7) 

We show that A,EG(l,w,). First suppose that w,<s(A,), where s(A,) is the spectral bound of A,. 
Choose i\>s(A,). Then R(i\,A,) is a positive operator, and we get that 

1 
O:o;;;;;;R(i\,A,)l:o;;;;;; i\-w 1, 

£ 

1 
hence llR(i\,A,)ll=llR(i\,A,)lll:o;;;;;; i\-w , and we find that llR(i\,A,)11 remains bounded if i\J,s(A,) 

£ 

which is in contradiction with 

s(A,)Eo(A,). 

Therefore w,;;;;.s(A,). Using the same arguments as above, we find that for i\>w., 

llR(i\,A,)ll:o;;;;;; i\~w , 
£ 

which yields that for n = 1,2, .. 

llR(i\,A ,)n II,,;;;;;; 
1 

, 
(i\-w,)n 

and it follows that A• E G(l,w,). 

We end this section with some remarks about the forward equation, defined on x* =M[O, l]. 
Let lf;EX*. From (3.4) and the fact that m.(t, ·;<f>) = T.(t)<f> we get that for every </>EX 

<<j>,n.(t, ·;if;)>= <T.(t)<j>,l[;> = <</>, r; (t)if;>, where r; (t) is the dual operator of T.(t). So we find 
that solutions of the forward equation can be represented as n.(t, ·;if;)= r; (t)lf;. In the literature 
{T; (t) }r;;.o is called a weak * continuous semigroup; see e.g. BUTZER & BERENS (1967). Properties of 
r; (t) can be obtained from corresponding properties of T,(t); an illustration of this idea can be 
found in subsection 3.4. 
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3.3 The limit transition justified 
As was argued in the Introduction of this paper, we are mainly interested in very small values of t:, 
and therefore we let t: go to zero. 

ASSUMPTIONS 3.2 

a) /J.(x)=..!_b(x), for some (Lipschitz continuous) function b on [0,1]. 
t: 

b) p, =t:r. 

A motivation for these assumptions was given in the Introduction. Assumptions 3.lb and 3.2a 
together yield that bis Lipschitz continuous on [0,1], b(x)=O for x..;;a and b(x)>O for a<x..;;l. 

With these assumptions, equation (3.2a) becomes 

am am 1 . -a-(t,x) - g(x)-a (t,x) = -b(x)-{m(t,x) - m(t,x - t:)} + rb(x)m(t,t:), t x t: 

and by letting t:J,0 we get 

am am a;-(t,x) - (g(x) - b(x)) ax (t,x) = rb(x)m(t, 0), (3.8) 

which is the backward equation corresponding to (1.4). A striking feature of (3.8) is that the reduced 
growth rate 

y(x) = g(x) - b(x) 

is not positive on the whole interval [0,1]: in particular y(l)= -b(l)<O. 
In the rest of this subsection we will show how the Trotter-Kato theorem (section 2) can be used to 

justify the formal transition from (3.2a) to (3.8). In the next subsection we interpret these results in 
terms of the forward equations (1.2) (with x 0 =O) and (1.3). 

First we reformulate (3.8) supplied with initial condition (3.2b) as an abstract Cauchy problem. 

dm 
dt (t) = Am(t), m(O) =<[>EX, (3.9) 

where the closed operator A is given by 

(A</>)(x) = y(x)1';-(x) + rb(x)</>(O) 

for every <f> in its domain 

D(A) = {</>EXn w},;J[O, I]: y<f>'EX}. 

It is not difficult to show that A generates a strongly continuous positive semigroup: this, however, 
will also follow from the forthcoming analysis, which shows that we can apply the (Trotter-Kato) 
theorem 2.2. Let 

w: = sup{rb(x): o..;;x..;; l}. (3.10) 

PROPOSITION 3.3 A, EG(l,w). 

PROOF. At the end of subsection 3.2 it was found that A, EG(l,w,), where 
w, =sup{p,/J.(x):O..;;x..;; I} =w. D 

We make the following assumption. 



AssUMPTION 3.4 There exist a unique x E(O, 1) such that g(x)=b(x). 

In combination with the other assumptions of this section this means that: 

y(x)>O, o:s;;;;x<x 

y(x)<O, x<x:s;;;;I. 
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Now let D=C1[0,l], i.e. the subspace of X containing all continuously differentiable functions on 
[0,1]. Clearly 

D(A,)<;;;,D, D(A)<;;;,D. 

PROPOSITION 3.5 (A -A )D is dense in .x.; for AEIR sufficiently large. 

PROOF. Consider for F EX the inhomogeneous equation 

Aq,(x)- y(x)<J>'(x) = F(x), 

where AEIR is sufficiently large (A>w). The solution of this equation for O:s;;;;x<x is given by 

- x .Brl - y d~ 
q,(x) - [ y(y) exp{ A [ y(~) }dy, (*) 

and a similar expression can be found for q,(x), if x is greater than .X. It is easy to check that </>ED if 
FED. Now, for JEX, the solution of 

A</> - A<P = f, (**) 

on (O,x) is given by(*), with F(x)= f(x)+rq,(O)b(x) substituted. Hence </>ED if FED. Let JEX and 
let <P be the solution of(**), then 

A.IQ) = Ix f (y) + rq,(O)b (y) { _ "IY d~ }d 
'I'\ o y(y) exp "'o y(~) 9'· 

We assume that AEIR is so large that 

x bf,,\ y d~ 1 
ax: = 1~exp{-Al-}dy <-, 

o y(y) o y(~) r 

and for f EX we define 

. - r Ix 1fil - 1' d~ Hx(f). - 1 _ (y) exp{ A (l:.) }dy. 
axr o Y o Y.., 

Then the solution <P of (**) satisfies 

rq,(O) = H x (j). 

So we get that </>ED if f + H x (j)b ED. We define V <;;;, X as 

V= {JEX:f+Hx(f)bED}. 

Then V<;;;,(A-A)D, and it suffices to show that Vis a dense subset of X. Let/EX and define gEX as 

g = f+ Hx(f)b. 

Let {gn} be a sequence in D converging to g as n__,,oo. The solution of gn = fn + H xlfn)b is given by 
~~> ~w -

fn = gn - 1 + H x(b) b. Now fn E V and fn__,,g- 1 + H x(b) b = f, n__,,oo. Therefore V=X. D 
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PROPOSITION 3.6 A «f>-'J.A cf> as t:tO, for every cf>ED. 

PROOF. Let cf>ED. Then 

1 l(A,cf>)(x) - (Acf>)(x)l~lb(x)l·l-(cf>(x)-cf>(x - t:)) - cf>'(x)I + rlb(x)l·lcf>(t:) - cf>(O)I, 
€ 

for every xE[O,l], and thus 

llA,cf> -Acf>ll = sup l(A,cf>)(x) - (Acf>)(x)l-'J-0, t:tO. D 
xe[l1;1] 

We are now ready to apply theorem 2.2, which give us the the following. 

THEOREM 3.7 A EG(l,w), and if {T(t)}1;;;.o is the semigroup generated by A, then 

T.(t)cf>-'J. T(t)cf>, t:tO, 

for every cf>EX, where the convergence is uniform for t in bounded subsets of (0, oo ). 

This theorem tells us that a solution of the limit equation (3.8) is indeed an approximation of solu
tions of equation (3.2a), presupposed that their initial condition cf> is the same. 

3.4 Interpretation and Concluding Remarks 
In this subsection we interpret our results in terms of the forward equation (3.1). The abstract back
ward equation is written as 

dm 
dt (t) = A,m(t), m.(0) = cf>EX 

Since A, is closed and densely defined, the dual operator A; is well-defined. It is a weak * closed 
operator with domain D(A;) which is weak * dense in x•; see BUTZER & BERENS (1967). Now the 
forward equation can be reformulated as the abstract Cauchy problem 

dn • • dt(t) = A, n(t), n (0) = i/!EX . (3.11) 

Its solutions are n(t)=T;(t)if! (see subsection 3.2). Note that (3.11) admits all initial functions 
if!EM[O, 1], whereas (3.1) only makes sense for densities. 

REMARK We didn't prove that (3.1) corresponds with the abstract equation (3.11). A rigorous prove 
would involve the following steps: 

compute the resolvent operator R(A,A,) for some AEp(A,) 
compute its dual R(A,A,)* =R(A,A;) 
compute the domain D(A;) from the relation 

D(A;)=R(R(A,A;)), 

where R(-) denotes the range 
if i/!ED(A;) compute A; if! from the relation: <c{>,A; if!>= <A,c{>,i/!> for cf>ED(A,) 
finally use that the abstract forward equation is 

dn • 
dt(t)=A,n(t). 

This procedure was carried out by HEUMANS (1984b) for a different population model. 

Our main result, theorem 3.7, can be restated in terms of solutions of the forward equation by using 
the duality relation (3.4); also see the last paragraph of subsection 3.2. One finds that for any 
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1/;EM[O, l], 

n.(t, ·;if;)--;.n (t, ·;if;), as t:!O 

where convergence holds with respect to the weak * topology of x• = M[O, 1 ], and is uniform for t in 
bounded intervals of (0, oo ). 

From assumption 3.4 it follows that for t:=O, individuals with size larger than x shrink towards x, 
without ever reaching this critical size. All their offspring, however, obtains a birth size x =O, and can 

never grow beyond x. So it seems quite reasonable to study (1.2) on the subinterval [O,.X] if t:!O. 

In the Introduction of this paper, we noticed that, as a consequence of the assumption 3.2.a, the 
recruitment would cause an unlimited increase of the biomass if t:!O. For that reason we made 
assumption 3.2.b., i.e. a proportionally high death rate in the nursery. There is, however, an alterna
tive to assumption 3.2.b. Suppose that p( = 1, no matter how small t: is, and make 

ASSUMPTION 3.8 Individuals with size x die at a rate µ(_x)=.K.fil. 
x 

Now equation (3.1.a) takes the form 

~n (t,x) + -!-(g(x)n(t,x)) = _ _gfiln(t,x) - /J((x)n(t,x) + /J.(x + t:)n(t,x + t:). 
ut uX X 

The following intuitive argument should convince the reader that this is indeed a good alternative. 
Consider a cohort of newborns with size x =t:. The flux through x =a, which is g(a)n(t,a), is 

related to the flux through t: in the following way: 

g(a)n(t,a) = g(t:+ )n(t - T(t:),t:+)exp[- l1!t;t-dy], 

where T(t:)= j 0 

d(yy is the time which an individual needs to grow from t: to a. Substituting assump
( g ) 

tion 3.8 we get 

ag(a)n(t,a) = t:g(t:+ )n(t - T(t:),t:+) 

which means that the biomass flux through a is equal to the biomass flux through t:,T(t:) time units 
earlier, and therefore doesn't blow up. It is easy to check that other choices for µ can be made 
without essentially affecting the arguments. As a matter of fact, one might choose µ such that 

~=..l+f(x), where/is an L 1-function. However, the choice ~(x) =..£.where c=Fl, yields com-
g(x) x g x x 
pletely different results. Although we did not prove it, we believe that it is also possible to apply a 
Trotter-Kato theorem replacing assumption 3.2b by assumption 3.8. 

4. SIZE DEPENDENT CELL KINETICS 

4.1 The equation and its semigroup solution 
Consider the model for size dependent cell growth and division described in the Introduction. For the 
sake of convenience we repeat the equation. 

I on a f!.!JI!l. x x -;-(t,x) + -;-(g(x)n(t,x)) = -b((x)n(t,x) + 2 b£(-)n(t,-)dp, 
ut uX o P P P 

(4.la) 

with b(=O outside (1-t:,1) and d=O outside(~ -ll., ~ +ll.). We assume that t: is so small that the 

size of the greatest newborn daughter cell is less than the size of the smallest mother cell, i.e. 
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l 
2 +Ll<l -t:. 

Then the smallest daughter has a size xmin, which satisfies 
l l l 

Xmin = (l -t:)(2 - Ll)>(2 + Ll)(2 - Ll) = :a. 

We impose the boundary condition 

n(t,a) = 0. (4.lb) 

Note that we might as well have taken 

n(t,Xmin) = 0. 

However, we prefer ( 4.1 b ), since a does not depend on t:. As the underlying population state space, 
we choose X=L 1[a,l]. Note that for this choice of X, equation (4.1) makes sense, and hence there is 
no need to work with the backward equation. We make the following assumptions. 

ASSUMPTIONS 4.1 
a) gEC[a, l]; g(x)>O, x E[a, l]. 
b) dEC[O,l]; d(p)=0,p<£(~ -a,~ +Ll); d(p)>O,pE(~ -a,~ +Ll); dis symmetric aroundp= ~' 

.l.+a 
and ft-a d(p)dp=l. 

c) b,EC[a,l]; b,(x)=O, XE[a,1-t:]; b,(x)>O, XE(l-t:,l]. 

We can write ( 4.1) with initial condition 

n(O,x)=<f>(x), xE[a,l] 

where cpEX, as the abstract Cauchy problem. 

dn 
dt(t) = A,n(t), n(O) = cp, 

where the closed operator A, on X is given by 

TH 
d f !!JJ!l x x (A,cp)(x) = -7(g(x)<f>(x)) - b,(x)<f>(x) + 2 b,(-)cp(-)dp, 
x .l._a p p p 

2 

for any cp in its domain 

D(A,) = {cpEX:gcpEW1•1[a, l]/\<f>(a) = 0}. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Using the perturbation result for C0-semigroups, mentioned in section two, one easily shows that A, 
is the infinitesimal generator of a strongly continuous semigroup {T,(t)}i;;;.0 • 

PROPOSITION 4.2 There exist constants wEIR and M;;;;. l (which do not depend on t:}, such that 
A,EG(M,w). 

PROOF. Let 11·11 be the L 1-norm. Then 11·11 is equivalent to 11·11' given by 
I 

llcJ>ll' = j xl<f>(x)ldx, cpEX 
a 

Let for t;;;;.O, 

llT,(t)il' = sup{llT,(t)c/>11' /llcJ>ll': c/>EX,c/4=0}. 
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Since T.(1) is a positive operator, we have 

llT.(1)11' = sup{ltT.(1)</>11' /ll<J>ll': cpEX + ,#0}, 
I 

where X + is the cone of positive elements. If cpEX +, then II T,(l)cpll' = j xn (1,x )dx, where n (l,x) is 
the solution of (4.1) - (4.2). If, in addition, cpED(A,), then a 

d I I I 

di J xn(l,x )dx.;;;;; J g(x )n (1,x )dx ..;;w J xn (1,x )dx, 
a a a 

where w>O is taken so large that g(x)..;;wx, xE[a, l]. So for </>ED(A,)nX + we find that 

I I 

II T,(l)cpll' = J xn(l,x )dx ..;;e"'1 J xcp(x )dx = e"'' ll<Pll'. 
a a 

Since D(A,)nX + is norm-dense in X +•this holds for any cpEX +•and we find that 

llT.(1)ll'..;;e"'1, 1;;;;.o. 

Since 11·11' and 11·11 are equivalent norms, there exists a constant M>O such that 

llT.(t)ll..;;Me"'1, 1;;;;.o, 

and the result is proved. D 

4.2 THE LIMIT TRANSITION AND ITS JUSTIFICATION 

In this subsection we study the limit transition £j.0. Let 'IT, be given by (1.5). 

ASSUMPTION 4.3 There exists a real number '!To E[O, 1) such that lim w, =w0• We expect that the limit 
<!0 

equation looks as follows: 

an a 
Tt(l,x) + Clx (g(x)n(l,x)) = 2'1T0d(x)g(I)n(t, 1) (4.6a) 

n(l,a) = 0, (4.6b) 

which is quite different from (4.1). We rewrite (4.6) with initial condition (4.2), as 

dn 
dt(I) = An (I), n (0) = cp, 

where A is the closed operator 

d 
(Acp)(x) = - dx (g(x)cp(x)) + 2w0d(x)g(l)cp(l) 

with domain 

D(A) = {cpEX:gcpEW1
•
1[a,l]Acp(a) = 0}. 

The following result is not at all trivial. 

THEOREM 4.4 For AEIR large enough we have 

R(>i.,A.)cp~R(>i.,A)cp, £j.0, 

for every cpEX 

PROOF. The proof consists of four steps. 
1. Let the isomorphism u. :X ~x be given by 

(4.7) 

(4.8) 

(4.9) 
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E((x) 
(U(cp)(x) = g(x) cp(x), 

J
x biy) 

where E((x)=exp(- a g(y) dy). Let 

D = D(A) = D(A() = { cpEX :gcpE W 1•1[a, l]Acp(a) = 0}, 

and 

D = u; 1D = {cpEX:cpEW1•1[a,l]/\cp(a) = O}. 

Let A( be the closed operator u(-IA(U( with domain D(A()=D. Then A( is given by 

+H 
- dm afx\ f dfn\ x x 

(A cp)(x) = -g(x)-=x.(x) + 2~ ~r((-)cp(-)dp, 
( dx E((x) -'--a p p p 

2 

b((x) 
where r((x)= g(x) E((x) for XE[a,I]. We define the isomorphism u:x~xby 

_.!IQl 
(Ucp)(x) - g(x). 

Let A be the closed operator u- 1AUwith domain D(A)= u- 1 D=D. For cpED(A) we have 

- !!!£. (Acp)(x) = -g(x) dx (x) + 27T0d(x)g(x)cp(I). 

-
2. We show that for every cpED, 

- -
A (cp~A cp as £..J,0. 

Let cpED, then 

+H 
- - ~EJJ!lxx (A(cp)(x) - (Acp)(x) = 2 E ( ) j r(-)cp(-)dp - 27T0d(x)g(x)cp(I). 

( x -'--a p ( p r 
2 

We define g= max g(x), d= 
1 
m~ d(p). Now 

xe[a,l] pe[2-A,2+AJ 

I ++A 
- - ~EJJ!lxx 

llA(cp -Acpll =/I E ( ) j r(-)cp(-)dp - 27T0d(x)g(x)cp(l)jdx 
a ( x -'--a p ( p p 

2 

++A ++A 
j j2g(x) j EJJ!lr(~)cp(~)dp - 27T0d(x)g(x)cp(l)jdx 

<+-A)(l-!) +-A p ( p p 

++A ++A 
o;;;2g j I j EJJ!lr((~)cp(~)dp - 7T(d(x)cp(l)jdx + 2gl7T( - 7Tol·jcp(l)j. 

<+-A)(l-!) +-A p p p 

This second expression at the right-hand-side can easily be estimated. We write the first expression as 
the sum of three integrals: 

++A +-A <++A)(l-!) 

<+-fxl-€) <+-fxl-€) + +L 
It is the middle integral which causes most troubles, and we restrict our attention to this term. Let 
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x 
<...!..+a)(I-•) ...!.._a 

2 2 I 
= 2g J I J -d(~)r,(y)cp(y)dy - 'lT,d(x)<P(l)ld.x 

...!.._a x Y Y 
2 --++a 

<++a)(I-<) I I 

= 2g J I J l_d(~)r,(y)cp(y)dy - J d(x)r,(y)<P(l)dyldx 
...L_a 1-,Y Y 1-. · 

2 

<++a)(I-<) I 

~2g J {j8r,(y)dy}dx~2g.2A.8. 
+-a I-< 

Here we have chosen t:>O so small that 

I x I x 
1-d(-)cp(y) - -d(-)<P(l)l<8, 
y y I I 

15 

I I (I 
for every xE[2-A,(2+A)(l-t:)] andyE[l-t:,l], and we used that 11 _ r,(y)dy='lT,~l. This shows 

- - - I < 
that A,<t>~Acp as t:J,0, for cf>ED. 
3. We show that for AEIR large enough (in particular ;\.>w; see proposition 4.2) 

- -
R(;\.,A,)<f>~R(;\.,A)<f>, as t:J,0, 

- -
for every cf>EX. Choos~ A>w so large that AEp(A)=p(A). Let cf>EX, and define t/;ED as tf;=R(A,A)cf>. 

Let for t:>O, cp,=(;\.-A,)o/. From 
- -
A ,tf;~A if;, as t:J,O 

we get cp,~cf> as t:J,0. Since R(;\.),)= u,- 1 R(A,A,)U., we deduce from proposition 4.2 that 

-- M 
llR(;\.,A,)11~ ;\.-w, t:>O. 

Here we have used explicitly that '1To < 1. Now 
- - -

lim R(;\.,A,)<f> = lim[R(;\.,A,)(cf> - cf>,) +if;)= if;= R(;\.,A)cp. 
<!o <!0 

4. We finally show that for AEIR large enough, 

R(;\.,A,)<f>~R(A,A)<f>, as t:J,O, 

for every cf>EX. It is easily checked that 

U,cp~Ucp, t:J,O and u,- 1 cp~u- 1 cp, t:J,O, 

for every cf>EX, and that there exists a constant L >0 such that II U, II, II Ull, u; 1 ll, ll u- 1 11 ~L, t:>O. 
For every cf>EX we have 

llR(;\.,A,)<f>- R(;\.,A)<f>ll = llU,R(;\.,A,)U,- 1cp - UR(;\.,A)U- 1cpll = 
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ll(U. - U)(R(X,A.)u.- 1 - R(X,A.)u- 1 + R(X,A.)u- 1 - R(X,A)u- 1 + R(X,A)u- 1)cj> 

+ U(R(X).) ___:_ R(X,A))(u.- 1 - u- 1 + u- 1)cj> + UR(X))(U; 1 - u- 1)cf>ll 

:s;;; llU, - Ull llR(X),)ll llU; 1cf>- u- 1c/>ll + llU, - Ull llR(X,A,)U- 1cj>- R(X))U- 1c/>ll + 
ll(U, - U)R(X,A)U- 1cf>ll + llUll llR(X,A,)- R(X))ll llU; 1cp- u- 1cf>ll + 
llUll ll(R(X),)- R(X)))U- 1cf>ll + llUll llR{X,A)ll llU; 1cp- u-1cf>ll, 

and all these terms go to zero as £..j,0. D 

It is easily checked that A is a closed, linear operator with dense domain, and therefore we may apply 
theorem 2.1 which gives us that the solution of (4.1), (4.2) converges to that of (4.6), (4.2) as £..j,0. 

THEOREM 4.5 A EG(M,w), and if {T(t)}r.,,0 is the semigroup generated by A, then for every cj>EX, t;;;..O, 

T.(t)c/>-»T(t)cf>, as £..j,0. 

Moreover, the convergence is uniform with respect to t in bounded subsets of (0, oo ). 

5. DISCUSSION 

In the previous two sections we have argued for the essential biological correctness of two simple 
population models by deriving them through appropriate limit arguments from more realistic and 
correspondingly more complicated models. Here simple means both relatively easy to handle and 
relatively parameters sparse. We expect these cases to be examplary for a general procedure: (i) start 
imagining how any simplification works out on the level of the individual, (ii) take good care that 
birth rates keep behaving, (iii) translate the individual behaviour into a structured population model 
both before and after the simplification, (iv) use the Trotter-Kato theorem to connect the two. The 
upshot is that our intuition derived from the individual level appears to be essentially correct when 
applied to the population level, at least when we are careful. To emphasize the latter point we wish to 
finish with three cautionary notes. 

Cautionary note (i) 
Our derivations in a sense are still largely metaphorical. 

What we mean by this remark is best explained by referring back to the example from section 3. 
Reproducing in general is much more complicated then just splitting off lumps of biomass. One also 
has to account for the inherent organization of anything viable. This necessarily leads to more compli
cated individual state spaces. The following example, adapted with considerable changes (we hope for 
the better) from EDELSTEIN & RADAR (1983) and CHIPOT & EDELSTEIN (1983), should make clear that 
a "realistic" representation of the processes on the individual level anyhow entails a very complicated 
state space, even when reproduction occurs by simply splitting of mass. It is only in the limiting case 
where the young have become infinitesimally small that the individual state can be efficiently 
described by size only! 

Models cultured in stirred fluid media generally grow in roughly spherical pellets of densely 
intertwined hyphae. The kinetics of pellet formation can be understood as a balance between 
diffusion limited growth of pellets, abrasion at the pellet surface, and the "birth" of new pellets from 
viable fragments among the abrasion products. If we forget about the hyphal structure, the state of an 
individual pellet is just its "shape", parametrized by a function f of the two angular coordinates cf> and 
0, giving the distance of the center of gravity of the pellet to its surface (or rather an equivalence class 
of such functions under rigid rotation). 

Pellets grow through the local transformation of absorbed nutrients into fungal biomass. The 
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internal gradient resulting from local absorption and diffusion of nutrients from the surrounding 
homogeneous medium is very steep. Therefore the accretion of mass effectively happens at the sur
face and locally is proportional to the available surface area. This already would cause a spherical 
shape since regions of smallest (or even negative) curvature push out faster. 

Abrasion also makes for a spherical shape, but only roughly so. Small lumps of biomass are torn of 
preferentially at the more exposed "bumps". Locally, however, the detachment of a lump will lead to 
a distortion of the smooth spherical shape. 

In the limit of infinitesimal abrasion fragments the pellets become exactly spherical, i.e. f (O,q,)=x, 
independent of 0 or q,. The growth component fig V of the size change of a pellet satisfies fig Vex S, 
where Vcxx 3 represents the volume of the pellet and Scxx2 its surface area. This transforms into 
figx =a for some constant a. If we assume that vulnerability to abrasion of a surface element is pro
portional to the diameter of a pellet, the abrasion component of the size change satisfies fi0 Vcxx·S or 
fi0 x = - bx. Therefore dx I dt = figx + fi0 x = :y(x) =a - bx. (Note that y(O) =a >0! This is a common 
property of the so-called von Bertalanffy growth laws, a family of growth laws of well documented 
wide applicability (for x >0).) Finally the production of new pellets of size zero equals 

00 

CJ x 3n(t,x)dx. 
0 

Apparently the limiting form of the model can indeed be represented by (1.2), but the biologically 
justifying preliminary stages are considerably more complicated than the models embodied in (1.3). 

Cautionary note (ii) 
Our derivation only applies to finite time intervals. 

This is inherent in the use of the Trotter-Kato theorem. That this is not just a technical imperfec
tion is shown by the following example. 

Consider the cell kinetics model from section 4 except that this time the half width !:J.. of the support 
of the distribution d of relative sizes of the daughter cells will play the role of the parameter t: in the 
Trotter-Kato theorem. It is not difficult to show by the same means as before that the limit model 
corresponds to 

a a 
atn(t,x) = - ox (g(x)n(t,x)) - b(x)n(t,x) + 4b(2x)n(t, 2x). (5.1) 

However, when g(x)=ax, i.e. individual growth is exponential, the relative size distribution will for 
t:>O stabilize for large t (i.e. n(t,x)IN(t)~n(x), where N(t)= J n(t,x)dx; see HEIJMANS (1984a)), 
whereas this is no longer the case for the solution to (5.1). When t:.,1,0, convergence to the stable distri
bution becomes slower and slower and in the limit the relative size distribution will remain periodi
cally dependent on time, returning some characteristics of the initial data for ever and ever (see e.g. 
Chapter II of METZ & DIEKMANN (to appear)). 

Clearly the large time behaviour is a subject which has to be considered separately. In the example 
it is not difficult to show that for t:.,1,0 the stable size distributions n, converge to the unique stable (i.e. 
invariant but not necessarily attractive) size distribution of the limit model. In other cases, but not the 
present one, also the attractivity property of the stable size distribution is retained. An interesting 
problem then is whether after discounting for the asymptotic population growth by multiplying the 
solution with e -r,t where r, is the intrinsic rate of natural increase (dominant eigenvalue) associated 
with each model, we have uniform convergence for all tE{O,oo). 
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Cautionary note (iii) 
As yet the derivations are confined to the linear case, i.e. direct or indirect interactions between indi
viduals are not allowed. 

Ultimately we shall wish to prove limit theorems for the nonlinear case as well. After all, the 
strength of the structured population methodology is that it allows us to incorporate biologically real
istic mechanisms for density dependence, like feedback through a limiting of individual growth by 
food shortage. 

Such limit theorems could be of two kinds. Either one could take recourse to direct nonlinear 
extensions of the Trotter-Kato theorem, (which indeed exist for nonlinear contraction semigroups; see 
EVANS (1978)) or one could try to use the property that for a given course of the environment the 
equations of structured population models are always linear, but possibly time inhomogeous, and 
combine some extension of the Trotter-Kato theorem to linear time inhomogeneous systems (if such 
an extension exists) with a construction technique for solutions of structured population equations 
which explicitly considers the population part of the equations as just a means of generating food 
consumption in terms of past food availability. However, all this is music of the distant future, as 
even full proofs of existence and uniqueness theorems for nonlinear structured population equations 
of any generality are still conspicuously lacking. Only the first hesitating steps towards a proof of an 
existence and uniqueness theorem for somewhat more general structured population models are being 
taken at this very moment. Therefore the present paper should only be considered as a first introduc
tion into the fascinating problem of putting a rigorous basis under the structured population metho
dology. 
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