
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C. Ebergen

A technique to design delay-insensitive VLSI circuits

Computer Science/Department of Algorithmics & Architecture Report CS-R8622 June

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

CopyrigJit tO Stichting Mathematisch Centrum, Amsterdam

A Technique to Design Delay-Insensitive VLSI Circuits

Jo C. Ebergen

Centre for Mathematics & Computer Science,
Department of Algorithmics and Architecture,

P.O. Box 4079, 1009 AB Amsterdam,
The Netherlands

A technique for a hierachical design of delay-insensitive circuits is presented. The tech

niques are developed by means of the trace-theory formalism. The design consists of the

formulation of a specification and its decomposition into basic elements. Parallelism is

allowed in a specification. The notion of delay-insensitive circuit is formalized. Three

examples are given to illustrate the technique.

1980 Mathematics Subject Classification: 68810, 68037, 68FXX, 94C99.

CR Categories: B.6.1, B.7.1, F.1.1.

Keywords & Phrases: delay-insensitive circuit, VLSI design, parallelism, trace semantics,

specification, decomposition.

1. INTRODUCTION

The purpose of this paper is to present some techniques to design delay-insensitive circuits

and to illustrate these techniques by some examples.

The reason to design delay-insensitive circuits is the avoidance of timing problems. These

problems are created by, for example, delays in wires and switches, the glitch phenomenon

[1], and scaling [9]. By designing delay-insensitive circuits one obtains a separation of tim

ing concerns and functional correctness concerns, which simplifies the design of a VLSI cir

cuit. Moreover, delay-insensitive circuits tend to be faster.

A circuit is formally described as a cooperation between a number of communicating

components instead of a sequential finite-state machine as in classical switching theory.

Accordingly, we allow parallelism in the formal descriptions of circuits. The design tech

niques are based on a formalism, trace theory, in which circuits can be specified adequately

and in which one can perform calculations to obtain a decomposition of a specification into

specifications of smaller circuits. The decomposition is such that the connection of the cir

cuits specified satisfies the original specification irrespective of delays in connection wires.

Thus the design of a circuit is separated into two parts: the decomposition of a specification

into simpler constituents, and the physical realization of the basic constituents. It is only at

the physical realization level that timing and other physical concerns become relevant. At

the decomposition level the designer deals with the structural complexity of his design. In

order to bridle this complexity, the formalism allows for a hierarchical decomposition

method. In this paper we deal only with specifications and their decomposition and not

Report CS-R8622
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

with physical realizations.
Related work in the design of delay-insensitive circuits, where different techniques and

sometimes different formalisms are employed, can be found in [5, 6, 7, 9, 12, 13].

In Section 2 the trace-theory formalism is briefly introduced and it is shown how circuits

can be specified. In Section 3 we give a formalization of decomposition and of delay

insensitive specifications. In Section 4 some design techniques are illustrated in the design

of three circuits: a Quick Return Linkage, a 4-counter, and a token ring. We conclude

with some remarks and conjectures.

2. SPECIFYING CIRCUITS

In this section we briefly present an informal account of trace theory. For a further intro

duction the reader is referred to [7, 13]. Trace theory also bears some resemblance to

Hoare's CSP [3]. A trace structure Risa pair <A, X>, where A is a finite set of symbols

and X ~ A*, in which A* is the set of all finite sequences over A. The elements of A* are

called traces. A is called the alphabet of R, denoted by aR and X is called the trace set of R,

denoted by tR. The empty trace is denoted by t:. We use the following operators to con

struct trace structures:

R;S = <aR U aS, tRtS >
R I s = <aR u aS, tR u tS >

[R] = <aR, (tR)* >
Rll s = <aR u aS, {tE(aR u aS)* I ttaR EtR /\ ttaSEtS }>

prefR = <aR, {tl3s::tsEtR }>
RtA = <aR n A, {ttA itEtR }>,

where tt A is the trace t projected on A, i.e., the trace t from which all symbols not in A

have been removed. The above operations are called concatenation, union, repetition,

weaving, taking the prefix-closure, and projection respectively. With respect to the priority

of the binary operators we adopt that weaving has highest priority, then concatenation fol

lowed by union. The abbreviation R 2 is used for R; R.
A directed trace structure is a triple <A, B, X>, such that <A U B, X> is a trace

structure. A is called the input alphabet of R, also denoted by iR; B is called the output

alphabet of R, also denoted by oR. We have aR = iR U oR. For brevity's sake we adopt

the convention that when the characters a ? , a ! , or a appear in the context of one of the

above operators the trace structures < {a}, 0 , {a}>, < 0 , {a}, {a}>, or

< {a}, {a}, {a}> respectively are meant. The above operations are defined on directed

trace structures in a similar way, i.e., the construction of the trace set remains the same and

the construction of the alphabet is split into the analogous construction of the input alpha

bet and the output alphabet. For example, R; S = <iR U iS, oR U oS, tR tS> for

directed R and S.
We specify a circuit by means of a prefix-closed, non-empty, directed trace structure R

for which iR n oR = 0. In fig. 1 a number of specifications for circuits are given. For

each circuit its name, a specification in the form of an expression or a so-called command,

and its schematic is given. For some circuits an alternative command is given with the

same trace structure.
All specifications in fig. 1 are given starting in a certain initial state. An other

specification of the same circuit, but starting in a different initial state, can be represented

schem~tically by putting inverters in terminal wires. For example the C-element started in

a state where the first occurrence of input b has already occurred is specified and depicted

as in fig. 2.

Name Specification

Wire W(a, b) =pref[a?; b !]

Fork

C-element

C-element with

2 replicated inpu~

Ex or

Toggle

Sequentializer

C-element in a
different initial state

pref[a ?; b ! II c !]

=pref[a?;b!] II pref[a?;c!}

pref[a? II b?;c!]

pref[(a?;e!)2 i (b?;d!)2

I (a?;e! llc!)2 II (b?;d! llc!)2]

pref[(a?I b?);c!]

pref[a ?; b !; a?; c !]

pref[a ?; aa !] II pref[b ?; bb !]

II pref[aa !; n? I bb !; n?]

fig. I

pref(a?;[c !; a? II b?])
=pref[a?; c !] II pref[c !; b ?]

fig.2

3

Schematic

a?------.......... b!

a?••--~~<:: : b!
..._, --t-..., c!

:::-P-......-....... c!

a?=cE:e!
c!

b? d!

a? ... 4 :::
;;: 9 :

aa!

bb!

n?

: :: --'pi--.-...... c !

4

A specification R is operationally interpreted as follows. With each symbol in aR a ter

minal of the circuit is associated. These points form the boundary aR between the circuit

and its environment. Initially the voltage levels at these points are 0. Transitions in these

voltage levels, i.e., changes from 0 to 1 or from 1 to 0, can be caused by the environment, if

the symbol is an input, or by the circuit, if the symbol is an output. Environment and cir

cuit can engage in many behaviors by causing transitions in the patterns specified. The

specification is read as a prescription for the behavior of both circuit and environment at

their boundary. For example the specification for the Fork prescribes that the environment

starts with causing a transition in the point associated with a. Then the circuit must cause

transitions at b and c, which may occur in arbitrary order. The environment gives a new

transition at a only after it has received both transitions at b and c. Subsequently, the cir

cuit causes transitions at b and c again, etc.. Thus a game is played between environment

and circuit where each in turn must make a move (a transition) according to the rules as

laid down in the specification. For reasons of simplicity we deal with non-terminating com

ponents only in this paper.
To maintain a dear distinction between formalism and physical realization we talk about

components instead of circuits, where component should be understood as a kind of auto

maton and circuit as a physical realization.

3. DECOMPOSITION AND DELAY-INSENSITIVITY

We begin this section by defining decomposition of a specification. The motivation behind

the definition is that if we say 'R can be decomposed into Sand T', then we may interpret

this by 'the circuit as specified in R can be a connection of the circuits as specified in S and

T'.
Notice that we talk about decomposing a specification and not composing two, or more,

specifications to obtain a new one. As explained in the previous section, a specification R

gives a prescription of a component in a prescribed environment. We take this environ

ment into account when we look for a connection of components that satisfies the behavior

of the prescribed component in R. If we would consider only S and T in a composition

method, then we exclude the effect of the environment, as prescribed in R, in which the

components in S and T are supposed to operate. Therefore we consider not only S and T,
but also R to define our decomposition method.

Consider the cooperation of the components in S and T, ~d of the environment in R.

The environment in R is also prescribed as the component in R, i.e., the reflection of R. The

reflection of R is obtained by making the ~utputs of R inputs..!.. and making th~ inputs of R

outputs, e.g., if R =pref[a?; b !], then R= pref[a!; b?], iR = oR, and o~= iR. The

cooperation of the components is consequently described by the weave W= RllSllT. This

weave W can b~ interpreted as the representation of all behaviors of the connection of the

components in R, S, and T at the points a W such that the respective boundary prescriptions

are satisfied.
In order for S and T to be a decomposition of R some restrictions have to be satisfied and

a phenomenon, called inteiference, must not occur. The restrictions are defined by means of

the alphabets. Interference is defined below by means of the weave W. The first restriction

is that dangling inputs or outputs must not occur, i.e.,

(1) oR U oS U oT=iR U iS U iT.

In ord<!t to prevent 'shortcircuiting', the second restriction is that no outputs are connected

with each other, i.e.,

5

(2) oR n oS= 0, oR n oT= 0, and oS n oT= 0.

The phenomenon interference can be described as the violation of a boundary prescrip

tion. More formally, suppose there exists ~trace tEtW such that after this trace a com

ponent, as prescribed in Vsay, where VE{R,S, T}, is enabled to generate an output b say.

The generation of b, however, is not in accordance with the boundary prescriptions of the

other components in V, i.e.,

tEtW /\ bEoV /\ tbtaVEtV /\ tbfitW.

We speak then of a boundary violation, or danger of interference. In the case of a boun

dary violation for a Wire, operationally seen, more than one transition is propagating on a

wire, which can cause hazardous behavior, and must therefore be prevented. Interference

for a Wire is also called transmission interference, otherwise we speak of computation

interference [13].
Finally, the cooperation of the components in R, S, and T must behave at the boundary

aR as prescribed in R, i.e., tWt aR = tR. We can now give

Definition 3.1 We ~y that R can be decomposed into S and T if the restrictions (1) and (2)

hold, the weave of R, S, and T is free of interference, and tWt aR = tR. D

Note. The above definition does not include the requirement that other phenomena such as

deadlock and unbounded internal chatter (or livelock [4]) must be absent. Although these

phenomena are essential for an acceptable definition of decomposition, they are not dealt

with in detail in this paper. In the last section a few words are devoted to these

phenomena. (End ef Note.)

The above definition can, in an obvious way, be extended to decompositions into more

than two trace structures. Moreover, this definition allows for an hierarchical decomposi

tion method, since we have

Theorem 3.2 If R can be decomposed into SO and Sl, and SO can be decomposed into S2

and S3, then R can be decomposed into S 1, S2, and S3. D

The boundary at which the behavior of component and environment is prescribed is con

sidered a fixed boundary. From a physical realization point of view, connecting circuits

with fixed boundaries is generally impossible; usually one uses connection wires. Instead of

incorporating connnection wires in a each decomposition, we rather consider specifications

that can be used for circuits with flexible boundaries. That is, we use specifications that

remain invariant if the terminals of the prescribed components are extended by Wires.

Since, physically spoken, connection wires introduce delays, specifications for such circuits

with flexible boundaries are often called delay-insensitive. In order to abstract from a too

physical interpretation in our formalism we say that a specification has property DI, or

shortly, is DI. We define this property more formally. Let R' be the specification R where

each symbol bis renamed by b'. Let Wires be the (disjoint) collection of wires W(b', b) and

W(b, b') for b EiR and b EoR respectively. The property DI for a specification is then

defined by

Definition 3.3 A specification R is DI if and only if R' can be decomposed into R and

Wires. D

6

Theorem 3.2 and definition 3.3 imply that in any decomposition in which only DI
specifications are used, also connection Wires may be incorporated without influencing the
correctness of the decomposition. This means that in the corresponding correct realization,
delays incurred in connection wires do not influence the correct functioning of the circuit.

Charles Molnar was one of the first who tried to formalize the notion of delay
insensitivity by means of the so-called Foam Rubber Wrapper principle [6]. Jan Tijmen
Udding has defined a number of rules in [12] in order to conclude that a specification
satisfies the Foam Rubber Wrapper principle. It turns out that definition 3.3 is equivalent
to these rules. In [8] a formalization of the Foam Rubber Wrapper principle is given
which is also equivalent to definition 3.3. We do not elaborate on the recognition of the DI
property any further in this article. All specifications occurring in this article are DI.

In the next section we illustrate a technique to decompose DI specifications by stepwise
refinement into a number of basic elements. As a starting point we take a DI command
satisfying a certain syntax. In a sense the construction of the command determines the con
struction of the decomposition. At the end of a stepwise decomposition the complete
decomposition can be given by application of the substitution theorem 3.2. The technique
is such that in each step the decomposition is correct by construction. We do not prove this
here. Finally, we remark that the techniques presented are neither complete nor generally
applicable. They only serve as an indication of how a general method may proceed.

4. EXAMPLES

Example 4.1. The specification of the Quick Return Linkage (QRL) reads as follows

QRL =pref(a?;[b !; c?; d!;a?; (b !; c?)ll(d!; a?)]).

This specification is DI. A schematic for the QRL is depicted in figure 3 .

:: ... : _
QRL

.,_ __ : ... ::
fig. 3

In the specification QRL we can distinguish between the odd and even occurrences of a
symbol. We denote these occurrences by b 1 and bO respectively for the symbol b, say.
(Operationally seen, we make distinctions between high-going transitions and low-going
transitions in a terminal.) The specification then reads

QRL'=pref(a l?;[b 1!;c1?; dl!; aO?; (bO!; cO?)ll(dO!; a 1?)]).

Note. The QRL serves as a link between two components to signal initiation and completion
of actions. The initiation of an action is sent by the high-going transitions a 1, b 1, c 1, and
dl. The completion is sent by the low-going transitions aO, bO, cO, and dO. This phase is
also called the 'return-to-zero' phase. The component deserves its name because d may
return to zero before band c do. (End ef Note.)

From the specifications in fig. 1, we deduce that the distinction between odd and even
occurrences for an input can be accomplished by a Toggle. The abstraction from odd and
even occurrences for an output can be made by an Exor; see also fig. 1. Consequently, if
we are ~ble to decompose QRL', then, by the substitution theorem 3.2, the complete decom
position of QRL can be depicted as in fig. 4.

al bl

aO bO
QRL' cO

dO
cl

dl

fig. 4

For the decomposition of QRL' we rewrite QRL'llQRL' as a set of production rules, i.e.,

pref(al?;[b 1!; cl?; d 1!; aO?; (bO!; cO?)ll(dO!; al?)])

llQRL'

= pref(al?;[b 1!; cO?ll a 1?])

II prefl cl?; d 1!]

II preflaO?; bO!]

II prefl a O?; dO!]

llQRL'

7

(1)

(2)

(3)

(4)

Above we gave for each output in QRL' its immediate preceding inputs that cause the pro
duction of this output. In line (1) we have given the production rule for b 1!; in line (2) for
dl!; in line (3) for bO!; and in line (4) for dO!. One could say that the semicolons between
inputs and outputs in QRL' are realized by rules (1) thru (4); the other semicolons are real
ized by the environment, i.e., by QRL'.

From line (1) thru (4) we can derive a decomposition for QRL' into a C-element, c£ line
(1) and fig. 2.; a Wire, cf. line(2) and fig. 1.; and a Fork, cf. line (3) and (4) and fig. 1. A
schematic of this decomposition is depicted in fig. 5.

al?; p
ao? .. ---e----.... L---.... ::::
dO! ~ co?

dl! cl?

.fig.5

Example 4.2. A specification of the 4-counter reads as follows

C 4 = prefl a ? ; b ; P !] 11 prefl b ; c] 11 prefl c ; d] 11 prefl d ; q ! ; e ?] t {a ? , p ! , q ! , e ? }

Note. For the above counter, a? and e? denote the increment and the decrement; p ! and
q ! are acknowledgements of the increment and decrement respectively. For every trace in
C4 , thf number of increments minus the number of decrements is at least 0 and at most 4.
Moreover, every trace with this property is also contained in C4 • For the derivation of
such an expression we refer to [7]. (End ef Note.)

8

We first look at the command for C4 without projection. In this command the so-called

internal symbols b, c, and d occur. In order to obtain a DI command, we transform each

internal symbol x into x ! ; x'?. This yields

C'4 = pref! a?; b !; b'?;p !] II prefl b !; b'?; c !; c'?]

II preflc !; c'?; d !; d'?]ll prefld !; d'?; q !; e ?]

Notice that still C'4t{a?,p!,e?,q!}=C4. We have that C4 can be decomposed into C'4,

W(b, b'), W(c, c'), and W(d, d').

For the decomposition of C'4, we rewrite C'4 ll C'4 in the same way as in the previous

example to obtain a production rule for each output in C'4. We obtain

C'4 II C'4

= prefl a?; b !] II prefl b !; c'?]

II preflb'?;p !]

II preflb'?; c !] II preflc !; d'?]

II prefl c'?; d !] II prefl d !; e ?]

II prefl d'?; q !]

II C'4

(1)

(2)

(3)

(4)

(5)

From this equation we can find a decomposition for C' 4, consisting of three C-elements, cf.

lines (1),.(3), and (4), for the outputs b, c, and d respectively; three Forks, cf. lines (2) and

(3) for the input b', lines (1) and (4) for the input c', and lines (3) and (5) for the input d'.

The complete decomposition is depicted in the schematic in fig. 6.

fig. 6

The circuit that we derived in this example is used in several delay-insensitive VLSI

designs. For instance, it serves as a control structure for delay-insensitive FIFOs or delay

insensitive pipeline structures [10, 11].

Example 4.3. In this example we specify a token ring and indicate briefly how it can be

decomposed into basic elements. For a more detailed derivation we refer to [3]. A

different design for a similar token ring, though using other techniques, can be found in [5].

All processes are connected in a ring in which a so-called token is travelling from process

to process. Only when a process has got hold of the token may it enter its critical section.

After leaving the critical section it releases the token in the ring again. Since there is at

most one token in the ring, there is at most one process engaged in its critical section, and,

9

accordingly, mutual exclusion between the critical sections is guaranteed.
A process communicates with the token ring through the ring interface, which is specified

by the command

R = prefla l?;p 1!; aO?;pO!]

11 pref! b ? ; (q ! I p 1 ! ; a O?; q !)]

With each symbol the following meaning can be associated.

a 1? request of process to enter its critical section;
p 1 ! grant to enter critical section;
aO? exit of process from critical section;
pO! acknowledgement of leave;
b? receipt of token from left neighbour;
q ! release of token to right neighbour.

First, we can derive that R can be decomposed into the components preflaO?;pO!], SO,

TO, and Sl, where

SO= prefla 1?; aa !] II pref[b ?; bb !] II pref[aa !; n? I bb !; n ?].

TO= pref[aa?llsO?;tO! I bb?llsl?;tl! I bb?llsO?;t2!]

and

Sl= pref(sO!;[tO?;n!llsl! I tl?;n!llsO! I t2?;n!lls0!])

llpref[tl?;pl!j t2?;q!j aO?;q!]

Here, SO is a basic element, the so-called 'Sequentializer'.
The next step in the hierarchical decomposition is the decomposition of S 1 and TO. The

component S 1 can be readily decomposed into Exors. This decomposition is similar to the

construction of the Or-plane in a PLA. TO is decomposed into a converter that converts

between 2-cycle signalling and 4-cycle signalling ([9]) and the 4-cycle version of TO,

denoted by TO' and given by

TO'= pref[(aa'?llsO'?; t0'!)2
I (bb'?lls 1'?;t1 '!)2

1 (bb'?llsO'?; t 2' !)2].

Finally, TO' can be decomposed into C-elements with and without replicated inputs.
The complete decomposition is depicted in fig. 7.

5. CONCLUDING REMARKS

In the above we have presented a short introduction to the specification of circuits, their
decomposition, and the formalization of the notion 'delay-insensitive circuit'. We also illus
trated by examples some techniques which yield a correct-by-construction decomposition of

a circuit.
Although the techniques were applied to specific and simple examples, also other and

more complicated circuits have been designed in a similar fashion. These designs include

several token-ring configurations, a termination-detection configuration ([2]), sequence
detectors, and traffic-light controllers.

The essence of the approach to circuit design presented here, and the main difference

with classical switching theory, is the formal description of a circuit as a cooperation of

communicating components. The underlying theory enables us to reason about the
phenomenon of interference, by which the notion of delay-insensitivity can be formalized,
and to develop techniques to design circuits in which interference does not occur. More
over, parallelism is allowed in the design of these circuits.

10

aO?
al?

b?

-

Fr.. - - - ·- -·-·1 .To -
I t' tl' ~

tO'
I ,..

<L I I
~---<

t2'
~1

I
I

I

~~
I

I I
's IJ 44 ' so ' bb

~~ I

~ I l I
I. ~ - ·--- -.-.-.-1
44 bb

I So I

I

I

fig. 7

r· - . -·-·-Sil

tl I I

tO I l
t2 I - I

I I
I I
I I
I :: I
I I
' - ·- . - - .J

sl

sO

n

PO!
pl!

qi

Although the approach presented has nice perspectives, there are still unsolved problems;
problems that are introduced by non-determinism and parallelism. They have to do with
progress requirements of a decomposition, i.e., deadlock and unbounded internal chatter (or
livelock [4]). Let me explain these phenomena informally by way of example. In fig. 8 a
decomposition of a Wire, W(a, b), is given.

a ? ---10:==~===-o---------11111111o b !

fig. 8

The specification of the so-called Select component reads prefla?;(b ! I c !)] , for the Sink we
have pref c?. In this decomposition there is absence of interference and every trace in
W(a, b) can also be generated by this decomposition. However, after having received an
arbitrary number of inputs a, it can stop generating outputs b. If we consider our Wire as
a non-terminating component, then this is not a correct decomposition.

In fig. 9 an other decomposition of the Wire W (a, b) is given. Also here there is absence
of interference and every trace in W (a, b) can be generated by the decomposition. How
ever, after the receipt of an input a, it can take an unbounded sequence of internal symbols

· c before an output b occurs. If we do not allow an unbounded number of internal symbols
to occur after every external symbol, then the above decomposition is also incorrect.
Absence of deadlock and livelock are not required in our definition decomposition in this

11

a?--.. r::)D a-,-· b!

L : I
fig. 9

paper, though any decomposition method should guarantee absence of these phenomena.
The development of a decomposition method such that absence of these phenomena is
guaranteed is still a topic of research. The above designs in example 4.1, 4.2, and 4.3 have
absence of deadlock and livelock.

Other interesting topics of research are the following. Can the above design techniques
be generalized to a decomposition method that can be applied to any DI command? Does
there exist a finite base of primitive elements into which any DI command can be decom
posed in a constructive way? Moreover, can we say anything about the complexity of such
a method, e.g., with respect to the number of primitive elements needed ?

Recent research at CWI has given sufficient confidence to conjecture that any DI
specification can be decomposed constructively into a finite basis of primitive elements.
Such a set of primitive elements is {Sequentializer, Fork, C-element with and without repli
cated inputs, Toggle, Exor}. (The Sequentializer can also be replaced by the Arbiter.)
Furthermore, it is conjectured that the number of primitive elements needed in a decompo
sition of a command satisfying a certain syntax is of the order of the length of that com
mand.

Acknowledgements

Acknowledgements are due to the members of the Eindhoven VLSI Club and Lambert
Meertens.

References

[1] Chaney, T.J., Molnar, C.E., Anomalous Behavior in Synchronizer and Arbiter Circuits,
IEEE Transactions on Compu,ters, vol. C-22, no.4, April 1973, pp. 421-422.

[2] Dijkstra, E.W., Feijen, W.H.J., van Gasteren, A.J.M., Derivation of a Termination
Detection Algorithm for Distributed Computations, Information Processing Letters, vol. 16,
1983, pp. 217-219.

[3] Ebergen, Jo C., A Circuit Design for a Token Ring: an Example in the Derivation of
Delay-insensitive VLSI Circuits, C.W.I. report, to appear, 1986.

[4] Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall International, 1985.

[5] Martin, A.J., The Design of a Self-timed Circuit for Distributed Mutual Exclusion, in:
Fuchs, H., 1985 Chapel Hill Conference on Very Large Scale Integration, Computer Science
Press, 1985.

[6] l\1olnar, C.E., Fang, T.-P., Rosenberger, F.U., Synthesis of Delay-insensitive Modules,
in: Fuchs, H., 1985 Chapel Hill Coriference on Very Large Scale Integration, Computer Science
Press, 1985.

12

[7] Rem, M., Concurrent Computations and VLSI Design, in: Broy, M., Control Flow and

Data Flow: Concepts ef Distributed Programming, Springer-Verlag, 1985.

[8] Schols, H., A Formalization of the Foam Rubber Wrapper Principle, Master's Thesis,

Eindhoven University of Technology, 1985.

[9] Seitz, C.L., System Timing, Chapter 7 in Mead & Conway, Introduction to VLSI Systems,

Addison-Wesley, 1980.

[lO]Seitz, C.L., Personal Communication.

[11]Sproull, R.F, FIFO Controls for Four-Phase Storage Elements, Position paper for

Workshop on Computational Models and Realizations, Institute for Biomedical Com

puting, Washington University, St. Louis, 1985.

[12]Udding, J.T., Classification and Composition of Delay-insensitive Circuits, Ph. D.

Thesis, University of Technology Eindhoven, 1984.

[13]van de Snepscheut, J., Trace Theory and VLSI Design, Ph. D. Thesis, University of

Technology Eindhoven, 1982.

