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1. INTRODUCTION 

The purpose of this paper is to present some techniques to design delay-insensitive circuits 

and to illustrate these techniques by some examples. 

The reason to design delay-insensitive circuits is the avoidance of timing problems. These 

problems are created by, for example, delays in wires and switches, the glitch phenomenon 

[ 1 ], and scaling [9]. By designing delay-insensitive circuits one obtains a separation of tim

ing concerns and functional correctness concerns, which simplifies the design of a VLSI cir

cuit. Moreover, delay-insensitive circuits tend to be faster. 

A circuit is formally described as a cooperation between a number of communicating 

components instead of a sequential finite-state machine as in classical switching theory. 

Accordingly, we allow parallelism in the formal descriptions of circuits. The design tech

niques are based on a formalism, trace theory, in which circuits can be specified adequately 

and in which one can perform calculations to obtain a decomposition of a specification into 

specifications of smaller circuits. The decomposition is such that the connection of the cir

cuits specified satisfies the original specification irrespective of delays in connection wires. 

Thus the design of a circuit is separated into two parts: the decomposition of a specification 

into simpler constituents, and the physical realization of the basic constituents. It is only at 

the physical realization level that timing and other physical concerns become relevant. At 

the decomposition level the designer deals with the structural complexity of his design. In 

order to bridle this complexity, the formalism allows for a hierarchical decomposition 

method. In this paper we deal only with specifications and their decomposition and not 
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with physical realizations. 
Related work in the design of delay-insensitive circuits, where different techniques and 

sometimes different formalisms are employed, can be found in [5, 6, 7, 9, 12, 13]. 

In Section 2 the trace-theory formalism is briefly introduced and it is shown how circuits 

can be specified. In Section 3 we give a formalization of decomposition and of delay

insensitive specifications. In Section 4 some design techniques are illustrated in the design 

of three circuits: a Quick Return Linkage, a 4-counter, and a token ring. We conclude 

with some remarks and conjectures. 

2. SPECIFYING CIRCUITS 

In this section we briefly present an informal account of trace theory. For a further intro

duction the reader is referred to [7, 13]. Trace theory also bears some resemblance to 

Hoare's CSP [3]. A trace structure Risa pair <A, X>, where A is a finite set of symbols 

and X ~ A*, in which A* is the set of all finite sequences over A. The elements of A* are 

called traces. A is called the alphabet of R, denoted by aR and X is called the trace set of R, 

denoted by tR. The empty trace is denoted by t:. We use the following operators to con

struct trace structures: 

R;S = <aR U aS, tRtS > 
R I s = <aR u aS, tR u tS > 

[R] = <aR, (tR)* > 
Rll s = <aR u aS, {tE(aR u aS)* I ttaR EtR /\ ttaSEtS }> 

prefR = <aR, {tl3s::tsEtR }> 
RtA = <aR n A, {ttA itEtR }>, 

where tt A is the trace t projected on A, i.e., the trace t from which all symbols not in A 

have been removed. The above operations are called concatenation, union, repetition, 

weaving, taking the prefix-closure, and projection respectively. With respect to the priority 

of the binary operators we adopt that weaving has highest priority, then concatenation fol

lowed by union. The abbreviation R 2 is used for R; R. 
A directed trace structure is a triple <A, B, X>, such that <A U B, X> is a trace 

structure. A is called the input alphabet of R, also denoted by iR; B is called the output 

alphabet of R, also denoted by oR. We have aR = iR U oR. For brevity's sake we adopt 

the convention that when the characters a ? , a ! , or a appear in the context of one of the 

above operators the trace structures < {a}, 0 , {a}>, < 0 , {a}, {a}>, or 

< {a}, {a}, {a}> respectively are meant. The above operations are defined on directed 

trace structures in a similar way, i.e., the construction of the trace set remains the same and 

the construction of the alphabet is split into the analogous construction of the input alpha

bet and the output alphabet. For example, R; S = <iR U iS, oR U oS, tR tS> for 

directed R and S. 
We specify a circuit by means of a prefix-closed, non-empty, directed trace structure R 

for which iR n oR = 0. In fig. 1 a number of specifications for circuits are given. For 

each circuit its name, a specification in the form of an expression or a so-called command, 

and its schematic is given. For some circuits an alternative command is given with the 

same trace structure. 
All specifications in fig. 1 are given starting in a certain initial state. An other 

specification of the same circuit, but starting in a different initial state, can be represented 

schem~tically by putting inverters in terminal wires. For example the C-element started in 

a state where the first occurrence of input b has already occurred is specified and depicted 

as in fig. 2. 
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Wire W(a, b) =pref[ a?; b !] 
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fig. I 
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fig.2 
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A specification R is operationally interpreted as follows. With each symbol in aR a ter

minal of the circuit is associated. These points form the boundary aR between the circuit 

and its environment. Initially the voltage levels at these points are 0. Transitions in these 

voltage levels, i.e., changes from 0 to 1 or from 1 to 0, can be caused by the environment, if 

the symbol is an input, or by the circuit, if the symbol is an output. Environment and cir

cuit can engage in many behaviors by causing transitions in the patterns specified. The 

specification is read as a prescription for the behavior of both circuit and environment at 

their boundary. For example the specification for the Fork prescribes that the environment 

starts with causing a transition in the point associated with a. Then the circuit must cause 

transitions at b and c, which may occur in arbitrary order. The environment gives a new 

transition at a only after it has received both transitions at b and c. Subsequently, the cir

cuit causes transitions at b and c again, etc.. Thus a game is played between environment 

and circuit where each in turn must make a move (a transition) according to the rules as 

laid down in the specification. For reasons of simplicity we deal with non-terminating com

ponents only in this paper. 
To maintain a dear distinction between formalism and physical realization we talk about 

components instead of circuits, where component should be understood as a kind of auto

maton and circuit as a physical realization. 

3. DECOMPOSITION AND DELAY-INSENSITIVITY 

We begin this section by defining decomposition of a specification. The motivation behind 

the definition is that if we say 'R can be decomposed into Sand T', then we may interpret 

this by 'the circuit as specified in R can be a connection of the circuits as specified in S and 

T'. 
Notice that we talk about decomposing a specification and not composing two, or more, 

specifications to obtain a new one. As explained in the previous section, a specification R 

gives a prescription of a component in a prescribed environment. We take this environ

ment into account when we look for a connection of components that satisfies the behavior 

of the prescribed component in R. If we would consider only S and T in a composition 

method, then we exclude the effect of the environment, as prescribed in R, in which the 

components in S and T are supposed to operate. Therefore we consider not only S and T, 
but also R to define our decomposition method. 

Consider the cooperation of the components in S and T, ~d of the environment in R. 

The environment in R is also prescribed as the component in R, i.e., the reflection of R. The 

reflection of R is obtained by making the ~utputs of R inputs..!.. and making th~ inputs of R 

outputs, e.g., if R =pref[ a?; b !], then R= pref[ a!; b?], iR = oR, and o~= iR. The 

cooperation of the components is consequently described by the weave W= RllSllT. This 

weave W can b~ interpreted as the representation of all behaviors of the connection of the 

components in R, S, and T at the points a W such that the respective boundary prescriptions 

are satisfied. 
In order for S and T to be a decomposition of R some restrictions have to be satisfied and 

a phenomenon, called inteiference, must not occur. The restrictions are defined by means of 

the alphabets. Interference is defined below by means of the weave W. The first restriction 

is that dangling inputs or outputs must not occur, i.e., 

(1) oR U oS U oT=iR U iS U iT. 

In ord<!t to prevent 'shortcircuiting', the second restriction is that no outputs are connected 

with each other, i.e., 
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(2) oR n oS= 0, oR n oT= 0, and oS n oT= 0. 

The phenomenon interference can be described as the violation of a boundary prescrip

tion. More formally, suppose there exists ~trace tEtW such that after this trace a com

ponent, as prescribed in Vsay, where VE{R,S, T}, is enabled to generate an output b say. 

The generation of b, however, is not in accordance with the boundary prescriptions of the 

other components in V, i.e., 

tEtW /\ bEoV /\ tbtaVEtV /\ tbfitW. 

We speak then of a boundary violation, or danger of interference. In the case of a boun

dary violation for a Wire, operationally seen, more than one transition is propagating on a 

wire, which can cause hazardous behavior, and must therefore be prevented. Interference 

for a Wire is also called transmission interference, otherwise we speak of computation 

interference [13]. 
Finally, the cooperation of the components in R, S, and T must behave at the boundary 

aR as prescribed in R, i.e., tWt aR = tR. We can now give 

Definition 3.1 We ~y that R can be decomposed into S and T if the restrictions ( 1) and (2) 

hold, the weave of R, S, and T is free of interference, and tWt aR = tR. D 

Note. The above definition does not include the requirement that other phenomena such as 

deadlock and unbounded internal chatter (or livelock [4]) must be absent. Although these 

phenomena are essential for an acceptable definition of decomposition, they are not dealt 

with in detail in this paper. In the last section a few words are devoted to these 

phenomena. (End ef Note.) 

The above definition can, in an obvious way, be extended to decompositions into more 

than two trace structures. Moreover, this definition allows for an hierarchical decomposi

tion method, since we have 

Theorem 3.2 If R can be decomposed into SO and Sl, and SO can be decomposed into S2 

and S3, then R can be decomposed into S 1, S2, and S3. D 

The boundary at which the behavior of component and environment is prescribed is con

sidered a fixed boundary. From a physical realization point of view, connecting circuits 

with fixed boundaries is generally impossible; usually one uses connection wires. Instead of 

incorporating connnection wires in a each decomposition, we rather consider specifications 

that can be used for circuits with flexible boundaries. That is, we use specifications that 

remain invariant if the terminals of the prescribed components are extended by Wires. 

Since, physically spoken, connection wires introduce delays, specifications for such circuits 

with flexible boundaries are often called delay-insensitive. In order to abstract from a too 

physical interpretation in our formalism we say that a specification has property DI, or 

shortly, is DI. We define this property more formally. Let R' be the specification R where 

each symbol bis renamed by b'. Let Wires be the (disjoint) collection of wires W(b', b) and 

W(b, b') for b EiR and b EoR respectively. The property DI for a specification is then 

defined by 

Definition 3.3 A specification R is DI if and only if R' can be decomposed into R and 

Wires. D 
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Theorem 3.2 and definition 3.3 imply that in any decomposition in which only DI 
specifications are used, also connection Wires may be incorporated without influencing the 
correctness of the decomposition. This means that in the corresponding correct realization, 
delays incurred in connection wires do not influence the correct functioning of the circuit. 

Charles Molnar was one of the first who tried to formalize the notion of delay
insensitivity by means of the so-called Foam Rubber Wrapper principle [6]. Jan Tijmen 
Udding has defined a number of rules in [12] in order to conclude that a specification 
satisfies the Foam Rubber Wrapper principle. It turns out that definition 3.3 is equivalent 
to these rules. In [8] a formalization of the Foam Rubber Wrapper principle is given 
which is also equivalent to definition 3.3. We do not elaborate on the recognition of the DI 
property any further in this article. All specifications occurring in this article are DI. 

In the next section we illustrate a technique to decompose DI specifications by stepwise 
refinement into a number of basic elements. As a starting point we take a DI command 
satisfying a certain syntax. In a sense the construction of the command determines the con
struction of the decomposition. At the end of a stepwise decomposition the complete 
decomposition can be given by application of the substitution theorem 3.2. The technique 
is such that in each step the decomposition is correct by construction. We do not prove this 
here. Finally, we remark that the techniques presented are neither complete nor generally 
applicable. They only serve as an indication of how a general method may proceed. 

4. EXAMPLES 

Example 4.1. The specification of the Quick Return Linkage (QRL) reads as follows 

QRL =pref(a?;[b !; c?; d!;a?; (b !; c?)ll(d!; a?)]). 

This specification is DI. A schematic for the QRL is depicted in figure 3 . 

:: ... : ......... _ .... 
QRL 

.,_ __ : ... :: 
fig. 3 

In the specification QRL we can distinguish between the odd and even occurrences of a 
symbol. We denote these occurrences by b 1 and bO respectively for the symbol b, say. 
(Operationally seen, we make distinctions between high-going transitions and low-going 
transitions in a terminal.) The specification then reads 

QRL'=pref(a l?;[b 1!;c1?; dl!; aO?; (bO!; cO?)ll(dO!; a 1?)]). 

Note. The QRL serves as a link between two components to signal initiation and completion 
of actions. The initiation of an action is sent by the high-going transitions a 1, b 1, c 1, and 
dl. The completion is sent by the low-going transitions aO, bO, cO, and dO. This phase is 
also called the 'return-to-zero' phase. The component deserves its name because d may 
return to zero before band c do. (End ef Note.) 

From the specifications in fig. 1, we deduce that the distinction between odd and even 
occurrences for an input can be accomplished by a Toggle. The abstraction from odd and 
even occurrences for an output can be made by an Exor; see also fig. 1. Consequently, if 
we are ~ble to decompose QRL', then, by the substitution theorem 3.2, the complete decom
position of QRL can be depicted as in fig. 4. 



al bl 

aO bO 
QRL' cO 

dO 
cl 

dl 

fig. 4 

For the decomposition of QRL' we rewrite QRL'llQRL' as a set of production rules, i.e., 

pref( al?;[ b 1!; cl?; d 1!; aO?; (bO!; cO?)ll(dO!; al?)]) 

llQRL' 

= pref( al?;[ b 1!; cO?ll a 1?]) 

II prefl cl?; d 1!] 

II preflaO?; bO!] 

II prefl a O?; dO!] 

llQRL' 
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(1) 

(2) 

(3) 

(4) 

Above we gave for each output in QRL' its immediate preceding inputs that cause the pro
duction of this output. In line ( 1) we have given the production rule for b 1!; in line (2) for 
dl!; in line (3) for bO!; and in line (4) for dO!. One could say that the semicolons between 
inputs and outputs in QRL' are realized by rules (1) thru (4); the other semicolons are real
ized by the environment, i.e., by QRL'. 

From line (1) thru (4) we can derive a decomposition for QRL' into a C-element, c£ line 
(1) and fig. 2.; a Wire, cf. line(2) and fig. 1.; and a Fork, cf. line (3) and (4) and fig. 1. A 
schematic of this decomposition is depicted in fig. 5. 

al?; p 
ao? .. ---e----.... L---.... :::: 
dO! ~ ..... co? 

dl! cl? 

.fig.5 

Example 4.2. A specification of the 4-counter reads as follows 

C 4 = prefl a ? ; b ; P ! ] 11 prefl b ; c ] 11 prefl c ; d] 11 prefl d ; q ! ; e ? ] t {a ? , p ! , q ! , e ? } 

Note. For the above counter, a? and e? denote the increment and the decrement; p ! and 
q ! are acknowledgements of the increment and decrement respectively. For every trace in 
C4 , thf number of increments minus the number of decrements is at least 0 and at most 4. 
Moreover, every trace with this property is also contained in C4 • For the derivation of 
such an expression we refer to [7]. (End ef Note.) 
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We first look at the command for C4 without projection. In this command the so-called 

internal symbols b, c, and d occur. In order to obtain a DI command, we transform each 

internal symbol x into x ! ; x'?. This yields 

C'4 = pref! a?; b !; b'?;p !] II prefl b !; b'?; c !; c'?] 

II preflc !; c'?; d !; d'?]ll prefld !; d'?; q !; e ?] 

Notice that still C'4t{a?,p!,e?,q!}=C4. We have that C4 can be decomposed into C'4, 

W(b, b'), W(c, c'), and W(d, d'). 

For the decomposition of C'4, we rewrite C'4 ll C'4 in the same way as in the previous 

example to obtain a production rule for each output in C'4. We obtain 

C'4 II C'4 

= prefl a?; b !] II prefl b !; c'?] 

II preflb'?;p !] 

II preflb'?; c !] II preflc !; d'?] 

II prefl c'?; d !] II prefl d !; e ?] 

II prefl d'?; q !] 

II C'4 

(1) 

(2) 

(3) 

(4) 

(5) 

From this equation we can find a decomposition for C' 4, consisting of three C-elements, cf. 

lines (1),.(3), and (4), for the outputs b, c, and d respectively; three Forks, cf. lines (2) and 

(3) for the input b', lines (1) and (4) for the input c', and lines (3) and (5) for the input d'. 

The complete decomposition is depicted in the schematic in fig. 6. 

fig. 6 

The circuit that we derived in this example is used in several delay-insensitive VLSI 

designs. For instance, it serves as a control structure for delay-insensitive FIFOs or delay

insensitive pipeline structures [ 10, 11 ]. 

Example 4.3. In this example we specify a token ring and indicate briefly how it can be 

decomposed into basic elements. For a more detailed derivation we refer to [3]. A 

different design for a similar token ring, though using other techniques, can be found in [5]. 

All processes are connected in a ring in which a so-called token is travelling from process 

to process. Only when a process has got hold of the token may it enter its critical section. 

After leaving the critical section it releases the token in the ring again. Since there is at 

most one token in the ring, there is at most one process engaged in its critical section, and, 
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accordingly, mutual exclusion between the critical sections is guaranteed. 
A process communicates with the token ring through the ring interface, which is specified 

by the command 

R = prefla l?;p 1!; aO?;pO!] 

11 pref! b ? ; ( q ! I p 1 ! ; a O?; q ! ) ] 

With each symbol the following meaning can be associated. 

a 1? request of process to enter its critical section; 
p 1 ! grant to enter critical section; 
aO? exit of process from critical section; 
pO! acknowledgement of leave; 
b? receipt of token from left neighbour; 
q ! release of token to right neighbour. 

First, we can derive that R can be decomposed into the components preflaO?;pO!], SO, 

TO, and Sl, where 

SO= prefla 1?; aa !] II pref[b ?; bb !] II pref[aa !; n? I bb !; n ?]. 

TO= pref[aa?llsO?;tO! I bb?llsl?;tl! I bb?llsO?;t2!] 

and 

Sl= pref(sO!;[tO?;n!llsl! I tl?;n!llsO! I t2?;n!lls0!]) 

llpref[tl?;pl!j t2?;q!j aO?;q!] 

Here, SO is a basic element, the so-called 'Sequentializer'. 
The next step in the hierarchical decomposition is the decomposition of S 1 and TO. The 

component S 1 can be readily decomposed into Exors. This decomposition is similar to the 

construction of the Or-plane in a PLA. TO is decomposed into a converter that converts 

between 2-cycle signalling and 4-cycle signalling ([9]) and the 4-cycle version of TO, 

denoted by TO' and given by 

TO'= pref[ (aa'?llsO'?; t0'!)2 
I ( bb'?lls 1'?;t1 '!)2

1 ( bb'?llsO'?; t 2' !)2 ]. 

Finally, TO' can be decomposed into C-elements with and without replicated inputs. 
The complete decomposition is depicted in fig. 7. 

5. CONCLUDING REMARKS 

In the above we have presented a short introduction to the specification of circuits, their 
decomposition, and the formalization of the notion 'delay-insensitive circuit'. We also illus
trated by examples some techniques which yield a correct-by-construction decomposition of 

a circuit. 
Although the techniques were applied to specific and simple examples, also other and 

more complicated circuits have been designed in a similar fashion. These designs include 

several token-ring configurations, a termination-detection configuration ([2]), sequence 
detectors, and traffic-light controllers. 

The essence of the approach to circuit design presented here, and the main difference 

with classical switching theory, is the formal description of a circuit as a cooperation of 

communicating components. The underlying theory enables us to reason about the 
phenomenon of interference, by which the notion of delay-insensitivity can be formalized, 
and to develop techniques to design circuits in which interference does not occur. More
over, parallelism is allowed in the design of these circuits. 
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Although the approach presented has nice perspectives, there are still unsolved problems; 
problems that are introduced by non-determinism and parallelism. They have to do with 
progress requirements of a decomposition, i.e., deadlock and unbounded internal chatter (or 
livelock [ 4 ]). Let me explain these phenomena informally by way of example. In fig. 8 a 
decomposition of a Wire, W(a, b), is given. 

a ? ...... ---10:==~===-o---------11111111o b ! 

fig. 8 

The specification of the so-called Select component reads prefla?;( b ! I c !)] , for the Sink we 
have pref c?. In this decomposition there is absence of interference and every trace in 
W(a, b) can also be generated by this decomposition. However, after having received an 
arbitrary number of inputs a, it can stop generating outputs b. If we consider our Wire as 
a non-terminating component, then this is not a correct decomposition. 

In fig. 9 an other decomposition of the Wire W (a, b) is given. Also here there is absence 
of interference and every trace in W (a, b) can be generated by the decomposition. How
ever, after the receipt of an input a, it can take an unbounded sequence of internal symbols 

· c before an output b occurs. If we do not allow an unbounded number of internal symbols 
to occur after every external symbol, then the above decomposition is also incorrect. 
Absence of deadlock and livelock are not required in our definition decomposition in this 
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a?--.. r::)D a-,-· b! 

L : I 
fig. 9 

paper, though any decomposition method should guarantee absence of these phenomena. 
The development of a decomposition method such that absence of these phenomena is 
guaranteed is still a topic of research. The above designs in example 4.1, 4.2, and 4.3 have 
absence of deadlock and livelock. 

Other interesting topics of research are the following. Can the above design techniques 
be generalized to a decomposition method that can be applied to any DI command? Does 
there exist a finite base of primitive elements into which any DI command can be decom
posed in a constructive way? Moreover, can we say anything about the complexity of such 
a method, e.g., with respect to the number of primitive elements needed ? 

Recent research at CWI has given sufficient confidence to conjecture that any DI 
specification can be decomposed constructively into a finite basis of primitive elements. 
Such a set of primitive elements is {Sequentializer, Fork, C-element with and without repli
cated inputs, Toggle, Exor}. (The Sequentializer can also be replaced by the Arbiter.) 
Furthermore, it is conjectured that the number of primitive elements needed in a decompo
sition of a command satisfying a certain syntax is of the order of the length of that com
mand. 
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