
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J. Heering, J. Sidi, A. Verhoog (eds)

Generation of interactive programming environments - GIPE

Intermediate report

Computer Science/Department of Software Technology

Bibliptheel\
!entrumvcorw~en miOf~a

Amslerdem

Report CS-R8620 May

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright <~ Stichting Mathematisch Centrum, Amsterdam
"'

Generation of Interactive Programming Environments

Jan Heering
CW/

Amsterdam

The Netherlands

-GIPE-

Intermediate Report

Editors

Jacqueline Sidi
SEMAMETRA

Montrouge

France

Ard Verhoog
BSD/Automation Technology bv

Utrecht

The Netherlands

The objective of the GIPE-project is to realize a prototype system for generating interactive programming
environments from formal language definitions. Partners in this five-year project, which has started in
November 1984, are BSO/Automation Technology (Utrecht), CWI (Amsterdam), INRIA (Rocquencourt/
Sophia-Antipolis), and SEMA (Montrouge). In this intermediate report we describe a common development
environment, various language definition formalisms, and the environment generator itself.

1986 CR Categories: 0.2.1 [Software Engineering]: Requirements/Specifications - Languages; 0.2.6
[Software Engineering]: Programming Environments; 0.3.1 (Programming Languages]: Formal
Definitions and Theory; D.3.4 (Programming Languages]: Processors; F.3.2 [Logics and Meanings of
Programs]: Semantics of Programming Languages.

1980 Mathematics Subject Classification: 68899 [Software].

Key Words & Phrases: generation of programming environments, language definition, syntax definition, type
checking, inference rule semantics, structured operational semantics, algebraic semantics.

Note: Partial support received from the European Communities under ESPRIT project 348.

Report CS-R8620
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Participants

D. Clement (SEMA)
J. Despeyroux (INRIA - Sophia-Antipolis)
T. Despeyroux (INRIA - Sophia-Antipolis)
N.W.P. van Diepen (CWI)
L. Gallot (INRIA - Sophia-Antipolis)
L. Hascoet (INRIA - Sophia-Antipolis)
J. Heering (CWI)
P.R.H. Hendriks (CWI)
G. Kahn (INRIA - Sophia-Antipolis)
P. Klint (CWl/University of Amsterdam)
B. Lang (INRIA - Rocquencourt)
J. Sidi (SEMA)
J. Symes (BSO/ Automation Technology)
G.P. Verhoog (BSO/ Automation Technology)

External consultants

J.A. Bergstra (University of Amsterdam/University of Utrecht)
P. Borras (SEMA)
M. Devin (INRIA/Bull)
V. Pascual-Migot (INRIA - Sophia-Antipolis)

BSO I Automation Technology bv
Kon. Wilhelminalaan 3
3527 LA UTRECHT
The Netherlands

CWI
Kruislaan 413
1098 SJ AMSTERDAM
The Netherlands

INRIA
Centre de Rocquencourt
Demaine de Voluceau
Rocquencourt
78153 LE CHESNAY CEDEX
France

INRIA
Centre de Sophia-Antipolis
Route des Lucioles
06565 VALBONNE CEDEX
France

SEMA METRA
16-18, Rue Barbes
92126 MONTROUGE CEDEX
France

OUTLINE OF THE GIPE PROJECT

D1 - ESTABLISHMENT OF A COMMON ENVIRONMENT

D1.A1 - THE EFFICIENCY OF THE EQUATION INTERPRETER
COMPARED WITH THE UNH PROLOG INTERPRETER

D1 .A2 - A COMPARISON OF TWO WINDOW SYSTEMS

D1.A3 - SYNTAX DIRECTED EDITING OF LE_LISP

D2 .. DEFINITION OF COMMON INTERFACES

D2.A1 - INTERFACES BETWEEN LISP AND PROLOG

D2.A2 - INTERFACES BETWEEN LISP AND ASH

D2.A3 -THE VIRTUAL TREE PROCESSOR

D4 .. PROPOSAL FOR A LANGUAGE DEFINITION
FORMALISM AND SELECTION OF TEST CASES

D4.A1 - USER DEFINABLE SYNTAX FOR SPECIFICATION LANGUAGES

D4.A2 - SPECIFICATIONS IN NATURAL SEMANTICS

D4.A3 - PROPOSAL FOR .AN ALGEBRAIC SEMANTICS DEFINITION
FORMALISM

DS .. GLOBAL OUTLINE OF
AN ENVIRONMENT GENERATION SYSTEM

D5.A1 - PARTIAL EVALUATION AND w-COMPLETENESS OF
ALGEBRAIC SPECIFICATIONS

Generation of Interactive Programming Environments
Outline of the GIPE Project

1. INTRODUCTION

1.1. Objectives of the GIPE project

The objectives of the project are:

J. Heering (CW!)

G. Kahn (INRJA)

P. Klint (CW!)

B. La.ng (JNRJA)

To investigate the possibilities for automatically generating interactive programming environ
ments from language specifications. A "programming environment" is here understood as a
set of integrated tools for the incremental creation, manipulation and transformation of struc
tured, formalized objects such as programs in a programming language, specifications in a
specification language, or formalized technical documents.

To create a software environment that allows experimenting with formalisms for specifying
various aspects of structured, formalized objects.

To evaluate the adequacy of various formalisms (some of them existing, some of them to be
designed as part of the project) for the specification of various aspects of (programming)
languages (such as concrete and abstract syntax, type checking rules, dynamic semantics) and
interactive programming environments (syntax-directed editing, pretty printing, program mani
pulation and transformation).

To create appropriate interfaces and a software architecture for the integration of selected
language specification formalisms in a single system.

To manipulate large formal specifications (which may even use combinations of different for
malisms), to incrementally maintain their consistency, and to compile such specifications into
executable programs.

To design and implement a prototype system for the generation of interactive programming
environments from language specifications.

1.2. Advances

Many difficult problems have to be solved in order to achieve these objectives. Advances are
needed in three· directions. First, most problems involved have only been solved in a batch-oriented
setting but not in an interactive setting. For example, the problem of generating parsers from BNF
grammars can be considered to be solved (if we exclude error recovery). However, the parsing
problem is far from solved if we want to parse incrementally, i.e., when editing and parsing are
being combined as is the case in a syntax-directed editor. Secondly, some problems have not been

- I - GIPE outline

dealt with at all, such as, for instance, the simultaneous use of several semantic formalisms. Thirdly,
none of the approaches so far has yielded an integrated system capable of handling large formal

definitions.

For the sake of completeness, we give here a list of partly solved and partly open questions:

Specification of lexical and concrete syntax of programming languages and the derivation of

lexical scanners and parsers from these specifications is largely solved. However, the incre

mental parsing problem is almost entirely open.

Specification of abstract syntax and the automatic derivation of functions for the construction

of abstract syntax trees is solved. The treatment of comments - which is trivial in the case of

batch-oriented compilation - is not yet very well understood.

Specification of type checking rules and the generation of incremental type checkers is a sub

ject of current research.

Specification of pretty printing and automatic derivation of pretty printers has only been

solved for simple cases. Open problems are the specification of flexible output formats, of

multiple views of the same progra~, and of more advanced (e.g. graphical) output techniques.

Combination of parsers or pretty printers to handle multiple formalism documents is still an

unexplored area.

Specification of dynamic semantics and generation of language processors from such

specifications is a subject of current research. Some experimental systems exist in this area.

Major problems to be solved are: balancing the (theoretical) adequacy of the modeling power

of specification formalisms with their descriptive convenience, modularity of specifications,

specifications using multiple formalisms, and compilation techniques for obtaining acceptable

performance of the generated language processors.

Some results are available in the area of automatic derivation of syntax-directed editors from

language specifications. Many problems remain to be solved: specification of dialogues, multi

ple input devices, etc.

We expect that the proposed project will lead to advances in most (if not all) of the above

mentioned areas.

2. POSITION OF GIPE WITHIN THE ESPRIT PROGRAMME

This project carries out research on specification techniques for programming languages and interac
tive programming environments. It involves primarily the subjects mentioned in ESPRIT area 2.4.

The project aims at developing expertise that is essential for the development of future, more flexible

and advanced, software development environments. As such it can be considered as a long term

complement to project 32 "Portable Common Tool Environment (PCTE)". The prototype program

ming environment generator will be developed under Unix. As a consequence, it is very likely that

the resulting prototype system can be interfaced with the PCTE, and we are making efforts in this

direction.

The project does not depend heavily on the results of other ESPRIT projects, but the resulting

Interactive Programming Environment Generator may very well be used for maintaining and pro

cessing the many kinds of formal specifications (based on many different formalisms) that will

emerge from other ESPRIT projects in widely different areas, such as formal semantics of interfaces,

specifications of office systems, office document languages, formal descriptions in Computer

Integrated Manufacturing, etc.

On a more global, longer-term scale, the results of the project lead to an order-of-magnitude

reduction in the costs of developing programming environments for existing (e.g. Ada, Chill) and

next generation languages (e.g. Concurrent Prolog, functional programming languages). This cost

reduction will be the consequence of several aspects of the proposed Interactive Programming

Environment Generator:

Factorisation of the design, development, and maintenance efforts and costs for all com
pon~nts of interactive programming environments that are language independent.

- 2 - GIPE outline

Reduction in design, development, and maintenance costs for all language dependent aspects
of these environments, resulting from the use of higher-level, specialized, and thus more tract

able specification formalisms, together with the assistance from specialized design tools. The

use of high-level, mathematically well understood specification formalisms should ultimately

provide an additional reduction of maintenance costs resulting from the replacement of tradi

tional benchmark validation by more reliable formal certification techniques [37].

Uniformity of the generated interactive environment as to conceptual structure and user inter

face for all programming or specification languages used. This will reduce the costs of train

ing users, and allow a greater mobility of users between sites and/ or languages.

In addition, the ease and low cost of environment generation should reduce the design costs of new

languages by permitting rapid prototyping and experimentation.

3. STATE OF THE ART

3.1. Introduction

One of the most successful paradigms in .Computer Science consists in isolating a subclass of prob

lems that can be completely formalized. On the basis of this formalisation, one may then build gen

eral purpose tools so that solving a problem in the given class is reduced to presenting and debug

ging its formal specification. The best known examples of that paradigm are lexical analysis and

parsing: lexical analyser generators and parser generators have been the subject of very intense

study since the pioneering work of Brooker and Morris [2] and Ross [34]. First, a great deal of

attention was given to the theoretical framework - finite automata, regular expressions, context-free

languages, LR(k) languages - followed by considerations of efficiency and flexibility of use in vari

ous computing contexts. Today, Lex [24] and Yacc [18] are standard tools in the Unix system.

Lexical analysis and parsing represent but a small fraction of the computing task performed

by a translator. To push compiler generation further, research has proceeded along two different

lines:

(l) The first strategy consisted in theoretical research on the semantics of programming languages.

Advocated early by C. Strachey and the authors of the Vienna Definition Language, this
approach resulted in a flurry of interesting results during the seventies. In particular, the ideas

coming from Denotational Semantics have cristallized into a beautiful experimental system

created by P. Mosses at Oxford. His Semantics Implementation System (SIS) is able to inter

pret a formal description of a programming language, say L, and execute on that basis a pro

gram in L.

(2) The second strategy consisted in analyzing in greater detail what is going on computationally in

certain phases of a compiler. As a result, D. Knuth introduced attribute grammars, which

immediately appealed to less theoretically inclined researchers, even though, of course, they

gave rise to quite interesting theoretical problems. Systems allowing the processing of large

attribute grammar descriptions were built and used in the seventies in many places. A typical

example is the GAG system of Kastens c.s. [20] used in Karlsruhe for the construction of an

Ada compiler.

As these developments were taking place, use of computers in a time-shared, interactive fashion

spread throughout research and industry, culminating today in the concept of an individual worksta

tion. As a consequence, it became abundantly clear that a programmer was not working with a sin

gle - albeit sophisticated - language processor, but rather within a programming environment

including a wealth of computing tools. Experimental systems have explored different approaches

and ideas that should, in one form or another, be incorporated in such systems. Clearly, in such

environments, many features are directly linked to the syntactic and semantic nature of the language

under consideration, and much of the behavior of the interactive system must be derived from a for

mal characterisation of the various aspects of this language. In a nutshell, this is what the present

proposal is trying to achieve.

- 3 - GIPE outline

3.2. Language-dependent programming environments

The creation and maintenance of software is becoming increasingly expensive. To improve upon

this situation several software tools and language-specific programming environments have been pro

posed, implemented, and have come into use, some of them with considerable success.

Programming environments are based on the premise that the productivity of a programmer

can be increased by relieving him from the burden of many administrative and clerical aspects of

programming. It is the task of a programming environment to take care of these aspects automati
cally, and, evidently, a programming environment can provide more assistance if it contains more

knowledge about the programming language being used. Typical services provided by such

language-dependent programming environments are: syntax-directed editing, debugging, pretty print

ing, separate compilation, maintenance of libraries of programs, and incremental dataflow analysis.

Systems that fall into this category are: Interlisp [36], Small talk [11], and the Cornell Program Syn

thesizer [35].

The implementation of a programming environment dedicated to a particular language (e.g.

Pascal, Ada, Chill) requires a very substantial design and implementation effort. This is exemplified

by the current efforts to build Ada Programming Support Environments (APSEs).

3.3. Language-independent programming environments

If one takes a more general point of view, it becomes clear that all these language-specific program

ming environments have many traits in common. These can, in principle, be factored out by

developing language-independent programming environments, which can be tailored towards a partic

ular language by entering a definition of that language into the system. Another, even more impor

tant, argument in favor of language-independent programming environments is that they provide a
uniform user interface: programmers using different languages can still work with similar if not

identical programming environments for the various languages.

Existing systems in this category are: Mentor [5,6], the Synthesizer Generator [31], Gandalf

[25] and CEYX [16]. These systems are still under development and address only parts of the prob

lems of language-independent programming environments.

These systems have several properties in common. They are all language-independent and use

similar notions to structure the definitions of new languages. The use of the word "language" is

somewhat misleading and restrictive here: these systems are, in fact, all dedicated to the manipula

tion of hierarchically structured information in general. Programs in a programming language are

just one example of such information. Other examples are systems for document preparation, for

VLSI design, and for proof checking. All these systems use trees as their primary data structure for

representing the objects that are being manipulated.

A definition for a new language can globally be subdivided in definitions for:

lexical syntax:
which defines the tokens of the language, i.e., keywords, identifiers, punctuation marks, etc.

concrete syntax (also: context-free syntax):
which defines the textual form of programs, i.e., the sequences of tokens that constitute a legal

program.

abstract syntax:
which defines the abstract tree structure underlying the concrete (textual) form of programs.

tree construction:
which specifies the mapping from parse-tree to abstract syntax tree.

unparsing (also: pretty printing):
which defines the mapping of a program from its abstract syntactic form to its written

representation.

static semantics:
which defines certain constraints on programs that can be verified without executing them, i.e.,

co~straints that do not depend on input data. For instance, in a "legal" program all variables

- 4 - GIPE outline

should have been declared, all expressions should be type consistent, etc.

dynamic semantics:
which defines the meaning of a program, i.e., the relation between its input and output data.

This list is not exhaustive; one could also include documentation, correctness proof systems, etc.

Starting from a language definition, these systems process programs in the defined language in
similar ways. The definition of lexical and concrete syntax contains sufficient information to create
a parser for the newly defined language and to build a parse-tree. A parse-tree typically contains
non-terminals as nodes and terminals as leaves. Subsequently, this parse-tree is transformed into an
abstract syntax tree. An abstract syntax tree typically contains semantic notions as nodes and only
constants and identifiers as leaves. The abstract syntax tree can be built directly and independently
of the parse-tree, when a program is created during syntax-directed editing. If desired, the inverse
operation can be carried out: the abstract syntax tree can be transformed into source text by means
of unparsing (pretty printing). In fact, "unparsing" is a misnomer since the operations of both the
scanner, the parser, and the abstract syntax tree constructor have to be inverted in order to
transform an abstract syntax tree back into source text.

A final similarity between these systems is that they all allow syntax-directed editing for each
new language with a standard user interface.

Many problems are not or only partly addressed by existing systems. We mention only a few:
specifying dynamic semantics, language-independent debugging, language-independent tools for flow
analysis, and general, language-independent, optimization techniques.

3.4. Language specifications

It is clear that most of the unsolved problems in language-independent programming environments
have to do with the specification of static and dynamic semantics. For instance, how can one -
during syntax-directed editing - enforce the immediate, incremental checking of the constraints
imposed by the static semantics of a language? How can one reverse the direction of computing to
support undo facilities in editors and debuggers? In the following two subsections we briefly survey
two specification formalisms that are particularly suited to our purposes: specifications based on
inference rules and on abstract algebra.

3.5. Specifications based on inference rules

Much effort has been invested in the development of attribute grammars (for specifying static
semantics) and denotational semantics (for specifying dynamic semantics). However, both formal
isms have their deficiencies.

The major deficiencies of attribute grammars are:

Specifications based on attribute grammars often result in heavy - seemingly very low level
- notations.

Attributes are attached to single tree nodes rather than tree patterns; as a consequence struc
tural information obscures attributes.

The formalism seems more appropriate for static calculations rather than for dynamic execu
tion.

Semantic analysis of attribute grammars is difficult due to the low level of the formalism.

The major deficiencies of denotational semantics are:

For static semantics, denotational semantics equations are clumsy and the ways to specify tree
traversal are not very elegant.

It is difficult to describe parallel constructs in the dynamic semantics of a language.

Pure denotational semantic definitions may result in overspecifications.

As a result, an approach advocated by Gordon Plotkin in his lecture notes A Structural Approach to
Operational Semantics [29] will be a focus of investigation for the project. This approach consists in
presenting an axiomatization - via axioms and inference rules - of an abstract machine. In this

- 5 - GIPE outline

method, the best aspects of earlier methods are retained:

Semantics is defined recursively on the structure of the formalism (as is the case in denota
tional semantics).

The definition is declarative (Attribute Grammars, Predicate logic).

Extensive use of pattern matching and overloading (SIS [26], Hope [3]).

Furthermore, progress is made on several key points:

The definitions are short, readable, elegant.

Several concepts from attribute grammars can be recovered (such as incremental computa
tion).

Interfacing a definition of this kind with recursive semantic equations or abstract algebraic
specifications seems feasible.

Specifying concurrent behaviour is easy and natural.

Static semantics and translation can easily be expressed.

Constraints - in particular those occurring in software engineering and specifications of
man-machine interfaces - are likely to be easily expressible as well.

One difficult aspect deserves to be mentioned however: even though this approach dates back to
Gentzen, and has been extensively used in theoretical work (Barendregt [l]), not a great deal of
meta-theory is known today. We expect that significant theoretical advances in this area will take
place as the project proceeds. It is clear that this topic, and we shall see this again later on, is
directly linked to studies in compiling Prolog programs.

3.6. Algebraic specifications

Another promising method for specifying the static as well as dynamic semantics of programming
languages is based on abstract algebra. The major use of this method has been for the specification
of abstract data types. Most of the research in this area has concentrated on fully understanding
the mathematical properties of specifications of relatively simple data types. It is clear, however,
that the method can also be used for the specification of more complex data types and for specify
ing various aspects of programming languages and programming environments. There is currently a
lot of activity in this field. The salient points are briefly summarized below.

The so-called initial algebra semantics of algebraic specifications is rather well understood
[8,9].

The theory of the semantics of parametrized or otherwise incomplete specification modules
and the composition of such modules is developing rapidly. Needless to say, libraries of
modules and module composition operators will be of prime importance in an environment
tailored towards algebraic specification [10,32].

For (incremental) compilation and consistency checking of specification modules see the next
section.

Although increasingly large specifications are being produced - specifications currently exist
for simple languages, editors, compilation schemes, etc. - the limits to what can profitably be
specified algebraically are not yet clear.

3.7. Compilation of specifications

The idea of directly compiling and executing specifications presented via axioms and inference rules
is new. The first problem is to define a machine processable version of the inference rule formalism.
This is actually a language design activity and it requires many decisions: what is an adequate type
structure, how does one make wise use of overloading, how does one separate structural conditions
from other conditions that trigger the applicability of inference rules, how does one incorporate a
form of modularity. With regard to compilation, a possible initial strategy is to produce Prolog
code, which is then executed. The compilation process involves of course type checking of the infer
ence rules and generating clauses containing control information that insulate the "inference rule

- 6 - GIPE outline

programmer" from considerations of order in rules, or order in the premises of a rule. Very little
work in this direction has been done so far, but initial attempts look extremely promising [4]. In
terms of efficiency, it is likely that extremely efficient Prolog interpreters (and machines) will become
available as the project proceeds. These interpreters will accommodate interaction with more con
ventional languages, such as Lisp or Pascal, so that inference rule specifications can be interfaced
with other forms of specifications on the one hand, and with system programming tools (in particu
lar graphics) on the other.

The development of specification languages is a natural continuation of the development of
high-level programming languages in the past. Although compilation of specifications may be
viewed in this light, this does not mean that conventional compilation techniques are adequate.
Instead, theorem proving techniques are required and certain restrictions must be imposed on the
formalisms used in order to make compilation possible. Furthermore, especially when the
specifications are large, incremental compilation and proper modularization are an absolute must.

Prolog is an example where imposing restrictions on a formalism, viz. predicate logic, can lead
to easily executable specifications [22]. Similarly, certain restrictions can be imposed on the equa
tions of an algebraic specification so as ~o make their compilation to rewrite rules easy [13]. In gen
eral, however, more sophisticated methods are needed to obtain executable specifications. The algo
rithms needed have much in common with the algorithms used for Prolog-like formalisms and some
work is being done to integrate both approaches (see for example [17]). The incremental compila
tion problem is largely open.

Not only (incremental) compilation of specifications is important in a programming environ
ment, but also (incremental) consistency checking of specification modules [27, 12,33, 15]. Like the
incremental compilation problem, the incremental type checking problem is largely open.

4. DESCRIPTION OF TIIE PROJECT

4.1. Phases of the project

The project is subdivided in the following phases:

Construction of a shared software environment as a point of departure for experimenting with
and making comparisons between language specification techniques. The necessary elements
of this - Unix-based - software environment are: efficient and mutually compatible imple
mentations of Lisp and Prolog, a parser generator, general purpose algorithms for syntax
directed editing and pretty printing, software packages for window management and graphics,
etc. Most of these elements are already available or can be obtained elsewhere; the main ini
tial effort will be to integrate these components into one reliable, shared software environment.

A series of experiments that amount to developing sample specifications - based on different
language specification formalisms, but initially based on inference rules and universal algebra
- for a set of selected examples in the domain of programming languages, software engineer
ing and man-machine interaction.

Construction of a set of tools on top of the shared environment to carry out the above experi
ments. It will be necessary to create, manipulate, and check (parts of) language specifications
and to compile them into executable programs. These tools draw heavily upon techniques
used in object oriented programming (for manipulation of abstract syntax trees), automatic
theorem proving (for inferring properties from given specifications to check their consistency
and select potential compilation methods), expert systems (to organize the increasing number
of facts that become known about a given specification) and advanced information processing
in general (man-machine interfaces, general inference techniques, maintenance and propaga
tion of constraints, etc.).

The above experiments will indicate which of the chosen formalisms is most appropriate for
characterizing various aspects of programming languages and interactive programming
environments. These insights will be used in constructing a prototype system for deriving pro
gramming environments from language specifications. The envisioned "programming

- 7 - GIPE outline

environment generator" consists of an integrated set of tools and an adequate man-machine
interface for the incremental creation, consistency checking, manipulation and compilation of
language specifications.

A more detailed workplan is given in the next section.

4.2. Workplan

The project consists of two phases:

Phase I (years 1 and 2)
Establishment of a common software environment, selection of a set of representative exam
ples, specification of selected examples in two specification formalisms, software tools for
checking the specified examples, global design of a programming environment generator. This
report gives the status of the project after the first year.

Phase II (years 3, 4 and 5)
Evaluation and integration of the specification formalisms and related tools, optimization of
specifications, design of a man-machine interface, application to tough example.

At the end of years 2 and 5 we envisage a review of the results of the project by external
(scientific) experts. In addition to this we will make use of highly qualified external consultants in
order to assess the strong/weak points of the emerging system and, when necessary, to get advice on
specific, scientific or technical, problems.

Here follows a complete list of all tasks in the project. The total estimated manpower for each
task is given between square brackets.

TO [0.2] - Familiarization
Familiarization of new team members.

TI [1.8] - Establishment of a common environment
Construction, installation, and documentation of a common software development environment.
See section DI of this report.

T2 [1.0] - Definition of common interfaces
Definition of common software interfaces and internal representations of objects to be used during
implementation of various tools that will be built on top of the standard software environment. See
section D2 of this report.

T3 [0.5] - Porting the common environment to workstations
Transportation of common environment to workstations.

T4 [1.5] - Proposal for the language definition formalisms to be used and selection of test cases
Definition of the specification formalisms to be used and selection of a representative set of exam
ples for comparing them. See section D4 of this report.

T5 [1.0] - Global outline of an environment generator
Global outline of the programming environment generator to be developed. See section D5 of this
report.

T6 [O. I] - Prepare demonstration
Prepare demonstration of common environment.

T7 [2.5] - Specify selected examples
Specify the selected examples using the proposed specification formalisms.

T8 [2.2] - Experimental software for checking examples
Design and implementation of experimental software tools for constructing, consistency checking,
and processing of specified examples.

T9 [1.0] - Preliminary design of generator
Preparatory study for the architecture of the (prototype) programming environment generator.

TI 0 [0.2] - Prepare demonstration
Prepare dGmonstration of the software tools for checking and processing of specified examples.

- 8 - GIPE outline

Tl 1 [0.2) - Assessment
Assessment of the results obtained in the first phase of the project.

T12 [4.0) - Integration of formalisms
Integration of the two language specification methods.

T13 [5.0) - Integration of tools
Integration of the corresponding software tools.

T14 [3.8) - Man-machine interface design
Design and formal specification of a man-machine interface for the integrated set of language
specification tools.

T15 [6.0) - Optimization
Design and implementation of compilation and/ or optimization techniques for the two language
specification techniques. Techniques currently envisaged are: transformation of equations into
rewrite rules, compilation of equations or rewrite rules to Prolog or Lisp, compilation of Prolog,
application of modern theorem proving techniques for deriving properties of specifications.

Tl6 [2.0) - Tough example
Exploration of the limits of the approach by constructing a small but "tough" example (i.e., an
example that is difficult due to the problems involved - such as concurrency or advanced man
machine interfacing - but not due to its sheer size) requiring the use of the specification formalisms
developed in the project.

T17 [1.5) - Strategic plan
Development of a strategic plan for the introduction of the technology developed into an industrial
setting.

LITERATURE

1. Barendregt, H., The type free lambda calculus, in: Barwise, J., ed., Handbook of Mathematica/
Logic, North-Holland, 1977, pp. 1091-1132.

2. Brooker, R., Morris, D., A general translation program for phrase structure languages, Journal
of the ACM, 9 (1962), pp. 1-10.

3. Burstall, R.M., MacQueen, D.B., Sannella, D.T., HOPE: An experimental applicative
language, Internal Report, Department of Computer Science, University of Edinburgh, May
1980.

4. Despeyroux, T., Executable specification of static semantics, in: Symposium on Semantics of
Data Types, Lecture Notes in Computer Science, Springer-Verlag, Vol. 173, 1984, pp. 215-233.

5. Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B. & Levy, J.J., A structure oriented program
editor: a first step toward computer assisted programming, International Computing Sympo
sium, North-Holland, 1975.

6. Donzeau-Gouge, V., Huet, G., Kahn, G. & Lang, B., Programming environments based on
structured editors: the Mentor experience, INRIA Research Report, No. 26, 1980.

7. Fages, F., Formes canoniques dans les algebres booleennes, et applications a la demonstration
automatique en logique de premier ordre, Thesis, University of Paris 6, 1983.

8. Goguen, J.A., Thatcher, J.W., Wagner, E.G., An initial algebra approach to the specification,
correctness, and implementation of abstract data types, in: Yeh, R., ed., General Trends in
Programming Methodology, Prentice-Hall, 1978, pp. 80-149.

9. Meseguer, J., Goguen, J.A., Initiality, induction, and computability, in: Nivat, M., Reynolds,
J., eds, Algebraic methods in Semantics, Cambridge University Press, 1986.

10. Goguen, J.A., Meseguer, J., Programming with parametrized abstract objects in OBJ, in: Fer
rari, D. & Goguen, J.A., eds, Theory and Practice of Software Engineering, North-Holland,
1983, pp. 163-193.

11. Goldberg, A., Robson, D., Smalltalk-80, The Language and its Implementation, Addison
We,sley, 1983.

- 9 - GIPE outline

12. Guttag, J.V., Horning, J.J., Preliminary report on the Larch shared language, Report
MIT/LCS/TR-307, MIT, October 1983.

13. Hoffman, C.M., O'Donnell, M.J., Programming with equations, ACM Transactions on Pro
gramming La.nguages and Systems, 4 (1982), 1, pp. 83-112.

14. Huet, G., Oppen, D.C., Equations and rewrite rules: a survey, in: Book, R., ed., Formal

La.nguages: Perspectives and Open Problems, Academic Press, 1980, pp. 349-405.

15. Huet, G., Hullot, J.-M., Proofs by induction in equational theories with constructors, Journal
of Computer and System Sciences, 25 (1982), pp. 239-266.

16. Hullot, J.-M., CEYX - a multiformalism programming environment, Proceedings of IFIP 83,
North-Holland, 1983.

17. Hsiang, J., Topics in automated theorem proving and program generation, Report R-82-1113,
University of Illinois at Urbana-Champaign, Department of Computer Science, 1982.

18. Johnson, S.C., Yacc - Yet Another Compiler-Compiler, Computer Science Technical Report
No. 32, Bell Laboratories, Murray Hill, New Jersey, 1975.

19. Jouannaud, J.-P., Kirchner, H., Completion of a set of rules modulo a set of equations, CSL
Technical Note, SRI international, April 1984.

20. Kastens, U., Hutt, B., Zimmermann, E., GAG: a practical compiler generator, Lecture Notes
in Computer Science, Vol. 141, Springer-Verlag.

21. Knuth, D.E., Semantics of context free languages, Mathematical Systems Theory, 2 (1968), 2,
pp. 127-145.

22. R. Kowalski, Logic for problem solving, North-Holland, 1979.

23. Lescanne, P., Computer experiments with the REYE rewriting system generator, in: Confer
ence Record of the JOth ACM Symposium on Principles of Programming La.nguages, ACM, 1983,
pp. 99-108.

24. Lesk, M.E., Lex - a lexical analyzer generator, Computer Science Technical Report No. 39,
Bell Laboratories, Murray Hill, New Jersey, 1975.

25. Special issue devoted to the GANDALF system, The Journal of Systems and Software, 5
(1985), 2.

26. Mosses, P., SIS-Semantics Implementation System: reference manual and user guide, Techni
cal Report DAIMI MD-30, Computer Science Department, Aarhus University, Aarhus, Den
mark, August 1979.

27. Nakajima, R., Yuasa, T., eds, The IOTA Programming System, Springer-Verlag, Berlin, 1983.

28. Paulson, L., A compiler generator for semantic grammars, Ph.D. Dissertation, Computer Sci
ence Department, Stanford University, December 1981.

29. Plotkin, G., A structural approach to operational semantics, DAIMI FN-19, Computer Sci
ence Department, Aarhus University, Aarhus, Denmark, September 1981.

30. Reps, T., Teitelbaum, T., Demers, A., Incremental context-dependent analysis for language
based editors, ACM Transactions on Programming La.nguages and Systems, 5 (1983), 3, pp.
449-477.

31. Reps, T., Generating La.nguage Based Environments, MIT Press, 1984.

32. Sannella, D., Wirsing, M., A kernel language for algebraic specification and implementation,
in: Karpinski, M., ed., Foundations of Computation Theory, Lecture Notes in Computer Sci
ence, Vol. 158, Springer-Verlag, pp. 413- 427.

33. Shapiro, E.Y., Algorithmic Program Debugging, MIT Press, 1982.

34. Ross, D., The AED approach to generalized computer-aided design, Communications of the
ACM, 10 (1967), pp. 367-385.

35. Teitelbaum, T., Reps, T., The Cornell program synthesizer: a syntax directed programming
enVironment, Communications of the ACM, 24 (1981), 9, pp. 563-573.

- 10 - GIPE outline

36. Teitelman, W., Interlisp Reference Manual, Xerox, Palo Alto Research Center, 1978.

37. EEC, Study on Ada compiler validation in Europe, Final Report to the Commission,
November 1982.

. 11. GIPE outline

Dl - ESTABLISHMENT OF A COMMON ENVIRONMENT

1. GENERAL CONSIDERATIONS 1

2. LIST OF COMPONENTS 2

2.1. Hardware 2

2.2. UNIX 2

2.3. LISP 2

2.4. PROLOG 3

2.5. MENTOR; Syntax directed editing 3

2.6. Window management 4

2.7. Summary 4

3. REFERENCES 5

DI.Al - THE EFFICIENCY OF THE EQUATION INTERPRETER

COMPARED WITH THE UNH PROLOG INTERPRETER

1. MOTIVATION 1

2. MEASUREMENT METHOD 2

3. MEASUREMENTS 3

4. CONCLUSIONS 3

5. REFERENCES 3

Appendix I: EMPTY 4

Appendix II: REV 5

Appendix HI: ACK 7

Appendix IV: ALPHA 8

D1.A2 - A COMPARISON OF TWO WINDOW SYSTEMS

1. INTRODUCTION 1

2. BWE/ ASH IN A NUTSHELL 1

2.1. Overview of BWE 2

2.2. Only ASH 3

3. LUCASFILM IN A NUTSHELL 3

3. 1. Design aspects of Lucasfilm 3

4. ASH vs. LUCASFILM 4

4. 1. Maqagerial aspects 5

4.2. Architecture apects 6

DI

5. WIG: WINDOW INTERFACE FOR GIPE - RATIONALE 8

Appendix 1 - An example 10

Appendix 2 - List of ASH routines 12

Appendix 3 - List of Lucasfilm routines 19

Dl.AJ - SYNTAX DIRECTED EDITING OF LE...LISP

1. INTRODUCTION 1

2. REQUIREMENTS FOR A LISP EDITOR 1

2.1. Abstract syntax 2

2.2. Pretty printing 2

2.3. Parsing 2

3. ABSTRACT SYNTAX DEFINITION OF LE_LISP/CEYX 3

3.1. Concrete syntax 3

3.2. Abstract syntax operators 4

3.3. Conclusion 5

4. PERSPECilVES 6

Appendix 8

Dl

preliminary

GIPE: CEC 348/A/Tl/3

version 5.1 January 1986

Establishment of a Common Environment

Deliverable Dl of Task Tl - Second Review -

A. Verhoog (BSO)
G. Kahn (INRIA)

The present status of Tl is described in this document. It lists components for the
Common Environment with rationales for each. The environment is constructed around the
Unix operating system. Other components selected so far are: LILL1sP, CEYX, C-Prolog and
Mentor.

This document (Dl) is an intermediate report for the Second Review of January 1986 and
has three annexes (DI.Al, Dl.A2, Dl.A3).
Task TI is planned to finish May 1986 (2.1 My).

1. General Considerations

Task TI consists in building a shared software environment that will be used as a point of departure
for experimenting with language specification techniques.
In constructing this Common (Software) Environment the main guidelines to be followed are:

• Portability of the environment.
That the software developed in the GIPE project be portable is a goal induced by the diverse
hardware the Consortium is planning to use. The environment resulting from Task TI will be
such that compatibility between the partners exists on this "higher" level of software utilities
and components, the Common Software Environment. Application programs using bitmap
displays must also be portable.

• A suitable programming language.
The programming language we are to use should have good facilities for object oriented pro
gramming and dynamically defining functions.

• Minimising the programming effort.
Since relatively little manpower is available to develop various software packages and tools our
selves, we will use existing software as much as possible.

- I - DI

preliminary

2. List of Components

2.1. Hardware

The Consortium does not strive for common (or even compatible) hardware in the first two years.
• Rationale: due to government policies it is not possible to select the most suitable hardware for

the GIPE project freely. However, this is not felt to be a major constraint since it means
that the software components of the Common Environment must be portable, which is a goal
anyway. Another reason to choose one's own equipment is compatibility with hardware
already present (easy support and maintenance).

- Problem areas: bitmap displays form a serious problem. Compatibility is not easily achieved for
them; therefore a "virtual bitmap" is envisaged together with a solution on a higher software
level (cf. 2.6).

Current Status
Hardware in use: VAX, Bull SPS 7 (SM90), Bull SPS 9 (Ridge 32).
Workstation hardware selected by CWI-BSO is Sun2/50 and Sun3. Workstation hardware selected
by INRIA-SEMA is Bull SPS 7, Bull SP~ 9, Sun2 and Sun3.

2.2. UNIX

The operating system component of the Common Environment is UNIX.
• Rationale: all partners have extensive experience with Unix. It is a portable operating system

supported by all major hardware manufacturers and numerous minor companies. This is an
ideal base for a modem software system to be built on. General compatibility is easily
achieved in spite of incompatible hardware: the software developed will have a common basis
in Unix-based language implementations.

Problem areas: Unix is not a fully standardised system yet. This may cause problems when
software tools rely on certain operating system utilities. Special care will be taken to isolate
system dependencies that may vary from one Unix to another. Document processing is
another area of concern: both Troff and 1EX are used. These are incompatible formatting
systems.

Current Status
Unix versions in use by the Consortium are Unix BSD4.2 and Unix System-V.

2.3. LISP

The Lisp programming language has been chosen as the primary implementation and prototyping
language (a secondary one being Prolog). From the major Lisp versions (like: Common Lisp,
Maclisp, Interlisp, Franz Lisp, La_L1sP, Zetalisp) the one developed at INRIA was selected for the
project; this Lisp is called LE..LISP [1].
• Rationale: Lisp is an interpretive and interactive language. Compilation facilities are available

when efficiency is mandatory. An important feature needed in the concept of generating a
programming environment is the ability to define and evaluate functions dynamically. Lisp
has this facility (as opposed to languages like Pascal, C, Ada).
Ltl1sP was chosen because it was readily available to the Consortium, as it is a development
of INRIA itself. This also implies easy maintainability and direct support. Moreover, at
INRIA a layer on top of Ltl1sP was constructed to facilitate object oriented programming.
This layer is called CEYX [1] and includes various libraries one of which is a pretty-print
package. An interface to the Unix YACC Compiler Compiler also exists (CXYACC [l]).
Another important feature of LE...LISP is that it is a portable Lisp implementation. Based on
a low level virtual machine language (LLM3), LE..LISP has been implemented on hardware
like: VAX, Honeywell-Bull 68, Perkin Elmer 32, IBM 30xx, Sel 32, PRIME, Norsk Data,
Bull SPS 7 and Bull SPS 9, and a variety of MC68000 based workstations (including Sun2;
porting to Sun3 remains to be done).

- Problem areas: experiments at CWI (parsing) and INRIA (tree construction) show that some of
the facilities of CEvx (namely dynamically typed objects) impose a substantial overhead in

- 2 - DI

preliminary

time and space (cf. Deliverable D2).

Current Status
At both sites (CWI-BSO and INRIA-SEMA), LE-LISP, CEYX and CXYACC have been implemented
and are operational on the available hardware (cf. 2.1) running Unix BSD4.2 and Unix System-V.

2.4. PROLOG

One aspect of generating an environment from formal specifications is to compile these
specifications into executable code so that they become operational. Experiments in this area have
shown that Prolog can be used as a target language for the compilation of specifications.
Several Prolog systems exist, eg.: C-Prolog, UNH-Prolog, Quintus Prolog, Prolog II. It has been
decided to use C-Prolog from Edinburgh University.
• Rationale: At CWI, two target languages have been investigated that can be used for compiling

specification formalisms (Annexe DI.Al). (Note that the compilation process was done by
hand.) One target language is the one used by the Equation Interpreter [2]. Execution of
"compiled" examples in some specification formalism with this system was somewhat slower
than execution via the other targe~ language which was Prolog. However, the Equation Inter
preter does extensive preprocessing which is unacceptable since formal specifications will
have to be executed many times during their development. The (interpreted!) Prolog route
does not have preprocessing.
At INRIA, experiments with the Typol language (Annexe D4.A2) are carried out and include
a compiler to Prolog. The compilation process, while not completely trivial, is made easy by
the organisation of Prolog programs into separate clauses that match the organisation of
Typol programs into inference rules. The Prolog programs produced can be arranged in such
a way that their execution is as efficient as Prolog permits, by a suitable reordering of
clauses. Of course, for maximum efficiency, it would be very pleasant to make use of a Pro
log compiler.

+ Requirements: it is necessary that (internal data structures of) Prolog can be used and accessed
from within the Lisp language and vice-versa. Communication between Ltl1sP and C
Prolog has been implemented (see Deliverable D2).

Current Status
At INRIA, extensive experiments with C-Prolog [3] have shown this system to be an extremely good
candidate. It is easy to port to any Unix machine, because it is written in C with due care for
machine independence. It is reasonably efficient as a Prolog interpreter. C-Prolog can be integrated
into other software as a subroutine, with excellent communication in both directions (towards Pro
log and from Prolog to the calling system), and even clean treatment of signal handling. Finally, it
proved possible to prepare input to Prolog directly in parsed form rather than through the Prolog
reader routine, resulting in an improvement in speed of problem submission by a factor of 100.
This indicates that C-Prolog is a well written piece of software that has been brought under control.
Two technical difficulties may still come our way: one is the absence of an occur-check possibility.
The second is the lack of some features of Prolog II (freeze, di.ff). It is not clear yet whether these
features are absolutely necessary, given their cost in terms of efficiency.

2.5. MENTOR; Syntax Directed Editing

Mentor is a system for generating syntax directed editors from BNF-like specifications and was
developed at INRIA [4]. It is included in the Common Environment for the purpose of prototyp
ing.
• Rationale: Its main use is to generate syntax directed editors for the various experimental ver

sions of specification formalisms (cf. Deliverable D4) under development in the project. It
allows easy implementation of compilers to other high level formalisms such as Prolog.

Current Status
Mentor is operational at CWI and INRIA.
An initial prototype Typo! environment has been constructed with Mentor. A Typol to TeX
pretty-printer has been developed. The compiler from Typol to Prolog has been developed under

- 3 - DI

preliminary

Mentor.
A complete LE..L1sp/CEYX environment has been developed with Mentor. To achieve this an

abstract syntax had to be defined for LE..L1sP and CEYX. This task turned out to involve delicate

engineering decisions in two areas:

what Lisp primitives should be made into operators of the language?

should the abstract syntax reflect the concrete layout of Lisp programs or should it take more
semantic notions into account?

The technical details and the conclusions of this experiment may be found in Annexe Dl.A3.

2.6. Window Management

The selection of a Window System is currently under investigation. Special attention is being paid
to bitmap displays and a common set of window routines. To achieve portability, we envisage a

suitable Window Interface level for GIPE applications, and a virtual bitmap device for easy imple

mentation of the selected Window System on different hardware.
Possible candidates are: The Brown Workstation Environment [5] which includes a virtual bitmap

device, the Lucasfilm package [6], and Sun Windows.
See Annexe D 1.A2 for a comparison of the BWE and Lucasfilm systems.

Current Status
The Brown Workstation Environment has proven to be a portable and robust system. It is available

on Apollo Computers and Sun Workstations and has been ported to the SPS 7 and SPS 9. BWE

consists of several layers of which only its lowest one, ASH (handling of screen primitives), seems

useful for the project.

2.7. Summary

Apart from Prolog and Mentor, the overall structure of the Common Environment is shown is the

following figure in which the double horizontal line indicates the boundary with application software

yet to be developed.

Application

Lisp- LE ... LISP & CEYX
bitmap

Virtual- UNIX I LLM3
bitmap

Bitmap processor
display

- 4 - DI

preliminary

3. References

[I] LE_llsp & CEYX

• J. Chailloux, "LE.LISP de l'INRIA, Le Manuel de Reference" (version 15), INRIA Report (to
be published), February 1985.

• J.M. Hullot, "CEYX - Version 15, II: Programmer en CEYX," INRIA Technical Report no. 45,
February 1985.

• G. Berry, B. Serlet, "CXYACC et LEX-KIT version 2.1," INRIA Report, March 1984.

[2] Equation Interpreter

• C.M. Hoffmann, M.J. O'Donnell, "Programming with equations," ACM Transactions on Pro
gramming Languages and Systems, 4(1982) 1, 83-112.

[3] C-Prolog

• F. Pereira, D. Warren, D. Bowen, L. Byrd, L. Pereira, "C-Prolog User's Manual, Version 1.5,"
EdCAAD, Department of Architecture, University of Edinburgh, February 1984.

[4] Mentor

• V. Donzeau-Gouge, B. Lang, B. Melese, "Practical Applications of a Syntax Directed Program
Manipulation Environment," Proceedings of the 7th Int. Conf. on Software Eng., Orlando
Florida, March 1984.

• B. Melese, V. Migot, D. Verove, "The Mentor - V5 Documentation," INRIA Technical Report
no. 43, January 1985.

[5] BWE

• J.N. Pato, S.P. Reiss, M.H. Brown, "The Brown workstation environment," Brown University
CS-84-03, October 1983.

[6] Lucasfilm

e M.J. Hawley, "So you've got a new Sun II, or, Writing programs for the Sun window system -
My Way," Lucasfilm Ltd, Technical Report # 117, August 1984.

. 5. DI

GIPE: CEC 348/ A/Tl/1

version 2.2 May I 986

The Efficiency of the Equation Interpreter Compared with the UNH
Prolog Interpreter

Annexe Dl.Al of Deliverable Dl - Second Review -

J. Heering (CW!)
P. Klint (CW!)

There are several alternatives for transforming algebraic specifications into executable
prototypes. In this note the Equation Interpreter (a rewrite rule interpreter) and the Univer
sity of New Hampshire Prolog interpreter are viewed as target systems for executing proto
types. The effici~ncies of these systems are compared with each other.

Note: The measurements reported in this paper apply to Distribution 1 (5/ 16/83)
of the Equation Interpreter. Since then a faster version (Distribution 2, 9/9/85)
has become available which we have not yet tested.

Note: This paper has been issued separately as CWI report CS-R8509. It has been
published in SIGPLAN Notices, 21 (1986), 2, pp. 18-21.

1. Motivation

Transforming formal specifications into executable prototypes has several applications: one
can either use the executable prototype to validate the specification or one may be interested in
using the prototype system itself. Two alternatives for deriving executable prototypes from algebraic
specifications are

(1) transform the specification into a complete (conditional) term rewriting system and execute it
by means of an existing rewrite rule interpreter;

(2) transform the specification into a set of Hom clauses and use an existing Prolog system for
their execution.

Here, we are interested in the relative efficiency of the end products which can be obtained
along these two lines using the Equation Interpreter [HOD82a, HOD82b] and the UNH Prolog
interpreter from the University of New Hampshire, respectively.

Two issues will not be addressed:

(1) The way in which an algebraic specification can be transformed into either a term rewriting
system or Hom clauses.

(2) The relative merits of either the Equation Interpreter or Prolog as programming systems per
se.

We restrict ourselves to the relative efficiency of both systems considered as (abstract) computing
machines.

In the remainder of this note the measurement method and the measurements themselves are
described and some conclusions are drawn. The appendices give detailed information on the pro
grams used for the measurements.

- 1 - DI.Al

2. Measurement method

The efficiency of the Equation Interpreter and Prolog have been compared by executing a
series of examples using both systems. Each example consists of a program and input for that pro
gram. The listings of the programs, the input, and resulting output are given in the appendices. In
choosing the examples we had to avoid violating implementation limitations of the systems involved.
We have avoided, for instance, very long input expressions (which cause overflow of the parse stack
used in the Equation Interpreter), input expressions using too many different variables (a restriction
of the Prolog interpreter), or too many user defined symbols (a restriction of the Equation Inter
preter). Any of these limitations could have been removed by increasing the relevant parameter in
each system, but we decided not to do that and to use the standard version.

The examples are now described in more detail. The first program (EMPTY) is the empty
program. It serves to measure the initialisation times for both systems.

The second program (REV) performs list reversal. It reads a list of 7 elements from input and
replicates it 16 times. The resulting list of 112 elements is reversed two times and finally its length
is determined. This program serves to measure the processing of large data structures.

The third program (ACK) computes Ackermann's function for the value (3,2). This program
serves to measure the speed of recursion and integer arithmetic.

The fourth program (ALPHA) is actually a series of programs of increasing size. These pro
grams define an alphabet of N characters with an equality predicate. Each program defines the
Boolean functions and and or, the conditional function if, and the successor (succ) and equality
(eq_INTEGER) functions on natural numbers. For given N, each program defines N constants
(representing the characters in the alphabet), a function ord that injects these constants in the
integers, and an equality function on characters (eq_CHAR) that is defined by means of ord and
eq_ INTEGER. The input for each program is a conditional expression containing fifteen applications
of eq CHAR with the fifteen last characters in the alphabet as argument; this conditional expression
returns the last character in the alphabet as value. This program has as purpose to measure the
effect of an increasing number of equations on the time needed for preprocessing and for execution.

Measurements have been performed on a VAXll/780 with Berkeley Unix Version 4.2. We
used the first distribution of the Equation Interpreter dated 5-16-83 and version 1.3 of UNH Prolog
from the University of New Hampshire.

Initial experiments showed that the timing of the Equation Interpreter presented problems due
to the fact that it has been implemented as a pipeline of five concurrent processes: two preproces
sors, the actual interpreter and two postprocessors. This organisation makes the timing highly sensi
tive to the scheduling of the individual processes in the pipeline. To avoid these fluctuations, we
have replaced the pipeline by a sequence of five processes. This causes a slight increase in the exe
cution times measured, but we observed that the execution time of the whole system is completely
dominated by the execution time of the actual interpreter (this accounts for more than 95% of the
total execution time).

3. Measurements

The results of the experiment are summarized in Table I. Preprocessing times have been
measured 5 times. Execution times have been measured 10 times. The table gives the averages of
these measurements in seconds. The standard deviation, expressed as percentage of the average of
each series of measurements, never exceeded 6%.

Preprocessing time" will be denoted by t and execution times by T. The total preprocessing
time tE of the Equation In. , . ~ter includes syntactic and semantic checking of the input program,
generation of an equivalent Pascal program (which includes tables for fast pattern matching of terms
at execution time) and compilation of this program. This compilation time varies between 95 and
160 seconds in the above examples. TE indicates the execution time of the Equation Interpreter.

The Prolog system does no preprocessing, i.e. tp =O. The execution times Tp given include the
time needed by the Prolog system to read the example programs.

- 2 - DI.Al

Equation Interpreter Pro log

Example Preprocessing Execution Execution
time time time
tE TE Tp

EMPTY 136.5 2.1 0.2
REV 172.6 61.4 50.5
ACK 155.5 18.5 3.6
ALPHA (N = 15) 331.9 7.8 4.3
ALPHA (N = 20) 428.5 10.7 7.3
ALPHA (N = 25) 528.3 13.7 9.7
ALPHA (N = 30) 688.0 16.3 12.9
ALPHA (N = 40) 911.2 22.1 19.7
ALPHA (N = 50) 1278.4 28.5 27.5
ALPHA (N = 60) 1681.1 34.1 33.3
ALPHA (N = 70) 2168.4 39.8 41.7
ALPHA (N = 80) 2668.1 45.5 54.4
ALPHA (N = 90) 3277.0 50.8 62.7

Table I. Summary of measurements.

4. Conclusions

(1) It is surprising that a system without preprocessing performs so well as compared with a sys
tem with extensive preprocessing.

(2) The preprocessing time tE of the Equation Interpreter tends to become prohibitive. The
trends in the measurements suggest that the Equation Interpreter outperforms Prolog on large
sets of equations. It depends on the particular application which system should be chosen. In
the case of prototyping the same program will probably only be executed a few times. In that
case, the disadvantage of considerable preprocessing time outweighs the advantage of the

t£-tp
shorter execution time. If the number of executions is larger than n0 = the large

Tp-T£
preprocessing time of the Equation Interpreter starts to pay off. In example ALPHA,
n0 =1141, 300 and 275 for N=70, 80, 90, respectively.

(3) All Prolog programs in the measurements were interpreted and not compiled. If compilation
instead of interpretation will be used one may expect a speed up of the execution time by a
factor between 5 and 15.

5. References

[HOD82a]

[HOD82b]

[OD77]

Hoffmann, C.M. & O'Donnell, M.J., "Programming with equations", ACM Tran
sactions on Programming Languages and Systems, 4 (1982)1, 83-112.

Hoffmann, C.M. & O'Donnell, M.J., "Pattern matching in trees", Journal of the
ACM, 29 (1982), 68-95.

O'Donnell, M.J., Computing in Systems Described by Equations, Lecture Notes in
Computer Science 58, Springer-Verlag, Berlin, 1977.

- 3 - DI.Al

Appendix I: EMPT\'

1.1 Equational program

Symbols
a:O;
noop:1.

For all x:
noop(x) = x.

1.2. Input

a

1.3. Output

a

1.4. Prolog program

(* empty program *)

1.5. Input

Note: all Prolog programs are assumed to reside on the file "prodef'.

[prodefJ.

1.6. Output

?-
[prodef consulted J

yes
I ?-

--- UNH Prolog 1.3 ---

- 4 - DI.Al

Appendix II: REV

11.1 Equational program

Symbols
cons: 2;
nil: O;
rev: 1;
append: 2;
repl2: 1;
repl4: 1;
repl 16: 1;
length: 1;
job: 1;
add: 2;
include atomic symbols; -
include integer_numerals.·

For all x, y, z, h, t, l:

include addint;

append(nil, x> = cons(x, ni L>;
append(cons(x, y), z) = cons(x, append(y, z));

rev(nil) = nil;
rev(consCx, y)) = append(rev(y), x>;
repl2Cni l) = nil;
repl2(consCh, t» = cons<h, consCh, repl2<t»>;
repl4(l) = repl2(repl2<L));
repl16(l) = repl4<repl4<l>>;
length(ni l) = O;
length(cons<x, y)) = add(length(y), 1>;
job(L> = length(rev(rev(repl16(l)))).

11.2. Input

job(cons(a,cons(b,cons<c,cons(d, cons(e, consCf, cons(g, nil))))))))

11.3. Output

112

- 5 - DI.Al

11.4. Prolog program

appendCnil, L, L).
appendCconsCX, L1), L2, consCX,L3)) • append(L1, L2, L3).

revCnil, nil>.
revCconsCH,T), L) ·- revCT,Z), appendCZ, consCH, nil),().

repl2Cnil, nil>.
repl2CconsCH,T1>, consCH, consCH, T2))) :- repl2CT1, T2).

repl2CX, Z), repl2CZ, Y).
·- repl4CX,Z), repl4CZ,Y).

repl4CX, Y) •
repl16CX,Y)

len(nil,0).
lenCconsCH, T), N) :- lenCT, M>, N is M+1.

jobCL, R) :- repl16CL, X), revCX, Y), revCY, Z), lenCZ, R).

H.5. Input

[prodefJ.
jobCconsCa,consCb,consCc,consCd,consCe,consCf,consCg,nil))))))), N).

11.6. Output

Note: in all following Prolog output we have removed irrelevant system messages and have only retained
essential information.

N = 112

- 6 - DI.Al

Appendix III: ACK

m.1 Equational program

Symbols
add: 2;
subtract: 2;
equ: 2;
if: 3;
ack: 2;
include atomic_symbols;
include truth_values;
include integer_numerals.

For all m, n:
include addint, subint, equint;
if(true, m, n) = m;
if(false, m, n) = n;
ack(m, n) = if(equCm, 0), add(n,1),

llI.2. Input

ackC3,2)

Ill.3. Output

29

if(equ(n, 0),ackCsubtractCm, 1), 1),
ackCsubtractCm,1), ackCm, subtractCn,1))))).

llI.4. Prolog program

ackCO, N, R) ·- R is N+1.
ack(M, O, R) ·- M1 is M-1, ackCM1, 1, R).
ackCM, N, R) ·- M1 is M-1, N1 is N-1, ackCM, N1, R1), ack(M1, R1, R).

111.5. Input

[prodef].
ackC3, 2, R).

llI.6. Output

R = 29

- 7 - DI.Al

Appendix IV: ALPHA

Note: we only show the ALP HA example for the case N = 15.

IV.1 Equational program

Symbols
char 0: O;
char 1 : O;
char 2: O;
char 3: O;
char 4: O;
char 5: O;
char 6: O;
char 7: O;
char 8: O;
char 9: O;
char 10: O;
char 11 : O;
char 12: O;
char 13: O;
char 14: O;
char_15: O;
eq_INTEGER: 2;
eq_CHAR: 2;
TRUE: 0;
FALSE: 0;
AND: 2;
IF: 3;
succ: 1;
ord: 1;
include integer_numerals;
include atomic_symbols.

For all x, y, c1, c2:
AND(TRUE, TRUE) = TRUE;
ANDCTRUE, FALSE) = FALSE;
ANDCFALSE, TRUE) = FALSE;
AND(FALSE, FALSE) = FALSE;
IFCTRUE, x, y) = x;
IFCFALSE, x, y) = y;
eq_INTEGERCO, 0) = TRUE;
eq_INTEGER(succ(x), succ(y)) = eq_INTEGER(x, y);
eq_INTEGER(O, succ(x)) = FALSE;
eq_INTEGER(succ(x), 0) = FALSE;
eq_CHARCc1, c2) = eq_INTEGER(ord(c1), ordCc2));
ordCchar 0) = O;
ordCchar 1)
ord(char 2>
ord(char 3)
ord(char 4)
ordCchar 5)
ordCchar 6)
ordCchar 7)

ordCchar 8)
ordCchar 9)

=
=
=
=
=
=
=
=
=

succ(succ(succ<succ(succ(ord(char_O))))));
succ(succ<succ(succ(succ(ordCchar_1))))));
succ(succ(succ(succ(succ(ord(char_2))))));
succ(succ(succ(succ(succ(ord(char_3))))));
succ(succ(succ(succ(succ(ord(char_4))))));
succ(succ(succCsucc(succ(ordCchar_5))))));
succ(succ(succ(succ(succ(ord(char_6))))));
succ(succ(succ(succ<succ(ord(char_7))))));
succ(succ(succ(succ(succ(ordCchar_8))))));

- 8 - DI.Al

ord(char 10) = succCsuccCsuccCsuccCsucc(ordCchar_9))))));
ordCchar 11) = succCsuccCsuccCsuccCsuccCordCchar_10))))));
ord(char 12> = succCsuccCsucc(succCsucc(ordCchar_l1))))));
ord(char 13) = succCsuccCsuccCsuccCsuccCordCchar_12))))));
ordCchar 14) = succ(succCsuccCsuccCsuccCord(char_13))))));
ordCchar 15) = succCsucc(succCsuccCsuccCordCchar 14)))))).

IV.2. Input

IFCAND(eq_CHARCchar_O, char_O>,
ANDCeq_CHARCchar_1, char_1>,
ANDCeq_CHARCchar_2, char_2),
ANDCeq_CHARCchar_3, char_3),
ANDCeq_CHARCchar_4, char_4),
ANDCeq_CHARCchar_5, char_5>,
ANDCeq_CHARCchar_6, char_6>,
ANDCeq_CHARCchar_7, char_7>,
ANDCeq_CHARCchar_8, char_8>,
AND(eq_CHARCchar_9, char_9>,
AND(eq_CHARCchar_10, char_10),
ANDCeq_CHARCchar_11, char_11>,
ANDCeq_CHARCchar_12, char_12),
AND(eq_CHAR(char_13, char_13),
ANDCeq_CHARCchar_14, char_14>,

eq_CHARCchar_15, char_15)))))))))))))))),
char_15, FALSE)

IV.3. Output

char 15

- 9 - DI.Al

IV .4. Prolog program

and(true, true, true).
and(true, false, false).
and(false, true, false).
and(false, false, false).
if(true, X, Y, X).
if(false, X, Y, Y).
eq_INTEGERCO, 0, true).
eq_INTEGER(succ(X), succ(Y), R) • eq_INTEGERCX, Y, R).
eq_INTEGERCO, succ(X), false).
eq_INTEGER(succ(X), 0, false).
eq_CHAR(C1, C2, R) :- ord(C1, N1), ord(C2, N2), eq_INTEGERCN1, N2, R).
ordCchar_O, 0).
ord(char_1, succ(succCsucc(succ(succ(R))))))
ordCchar_2, succ(succ<succ(succ(succ<R>>>>>>

succ(succ(succ(succ(succ(R))))))
succCsucc(succ(succCsucc(R))))))

·-
·-
·-
·-

succ(succ(succ(succ(succ(R)))))) ·-

ord(char_O, R).
ord(char 1, R). -
ordCchar 2, R).
ord<char_3, R).
ord(char_4, R).

ord(char_3,
ordCchar_4,
ordCchar_5,
ordCchar_6, ·- ord(char_S, R)e

ord(char_7, succ(succ(succ(succCsucc(R)))))) ·- ord(char_6, R).
ord(char_8, succ(succ(succ<succ(succ(R)))))) ·- ordCchar_7, R).
ord(char_9, succ(succ(succ(succ(succ<R>>>>>> ·- ord(char_8, R).
ord(char_10, succ(succ(succ(succ(succ(R)))))) ·- ord(char_9, R).
ord(char_11, succ(succ(succ(succ(succ(R)))))) ·- ord(char_10, R).
ord(char_12, succ(succ(succ(succ(succ(R)))))) ·- ord(char_11, R).
ord(char_13, succ(succ(succ(succ(succ(R)))))) ·- ord(char_12, R).
ord(char_14, succ(succ(succ(succ<succ(R)))))) • ordCchar_13, R).
ordCchar_15, succ<succ(succ(succ(succ(R)))))) ·- ord(char_14, R).
job(T) :- eq_CHARCchar O, char 0, RO),

succ(succ(succ<succ(succ(R))))))

andCRO, RO, TO>,
eq_CHAR(char_1, char_1, R1>,
and(TO, R1, T1),
eq_CHAR(char_2, char_2, R2>,
andCT1, R2, T2),
eq_CHAR(char_3, char_3, R3),
andCT2, R3, T3),
eq_CHARCchar_4, char_4, R4),
andCT3, R4, T4),
eq_CHARCchar_5, char_5, R5),
and(T4, R5, T5),
eq_CHARCchar_6, char_6, R6),
and(T5, R6, T6),
eq_CHAR(char_7, char_?, R7>,
and(T6, R7, T7),
eq_CHARCchar_8, char_8, R8),
andCT7, R8, T8),
eq_CHAR(char_9, char_9, R9),
and(T8, R9, T9),
eq_CHAR(char_10, char_10, R10),
andCT9, R10, T10),
eq_CHAR(char_11, char_11, R11>,
andCT10, R11, T11),
eq_CHARCGhar_12, char_12, R12>,

- 10 - DI.Al

andCT11, R12, T12),
eq_CHARCchar_13, char_13, R13),
andCT12, R13, T13),
eq_CHAR(char_14, char_14, R14>,
andCT13, R14, T14),
eq_CHARCchar_15, char_15, R15>,
andCT14, R15, T15),
ifCT15, char_15, false, T).

IV.5. Input

[prodefJ.
job(T).

IV.6. Output

T = char 15

. 11 . DI.Al

G/ PE: C'E(' .'48/ A/Tl/6

version l.2 OJ-02-No

A Comparison of Two Window Systems

Deliverable Dl.A2 of Task TI - Second Review -

A. Verhoog (BSO)

Window systems are becoming standard components of applications with high-level

user interfaces. At the same time. these window systems form a serious obstacle in terms of

availability. portability. efficiency and the architecture of the procedure call interface. Two

of the many window packages curtently in existence have been investigated for suitability

within the GIPE project. A major conclusion of this investigation is that a "higher" level

window interface should be defined. To achieve this Task TI will be extended by 3 man

months.

1. Introduction

This Annexe describes two window systems which are candidates for use within the GIPE project.
From the many systems currently available (BWE, Lucasfilm, the User Interface of PCTE, which is
being developed under Esprit Project 32, WM, X-System, Sun Windows, ...), only the first two have
been investigated. BWE is the Brown Workstation Environment from Brown University, Provi
dence, Rhode Island - USA. It consists of several packages such as ASH (A Screen Handler) and
MAPLE (a menu package). Lucasfilm comes from the Computer Division of Lucasfilm Ltd., San
Rafael, California - USA and was specifically designed for use with the window package SunWin
dows from Sun Microsystems Inc., Mountain View, California - USA. These two window systems
were readily available to the Consortium and both look promising candidates. They are of a rather
different nature. however. Other systems have not been looked at in-depth.

The different natures of BWE (or in fact ASH, being the part of BWE we are actually dealing with)
and Lucasfilm can be summarised as follows: ASH is a relatively low level, but very complete, set of
routines, while Lucasfilm is of a relatively high level, but has some shortcomings. The fact that nei
ther system suffices as a window system interface on the application level, has led to the conclusion
that a higher level interface must be defined. This "Window Interface for GIPE" WIG, will resem
ble the set of functions in Lucasfilm, but will also include various indispensable ASH aspects. WIG
will/ should enable the porting of applications to hardware supporting other window systems, like
the Apple Macintosh.
In the Appendices an example is presented in both the BWE and Lucasfilm setting. It also includes
complete lists of the routines present in the two systems, each with a short description.

2. BWE/ ASH in a nutshell

BWE is an integrated toolkit of portable software components allowing applications to use bitmap
based workstations.

The tools, in the form of libraries of subroutines, are such that application programs can effectively
use the available hardware with a minimum of effort.

The facilities offered include:
- menu-based graphical input (keyboard and locators)
- sophisticated graphical output (multiple, overlapping windows)
- text and graphics editing

- I - Dl.A2

- user-level window management.

The design and implementation of the toolkit emphasizes Extensibility (a layered structure of the

c.omponents), Flexibility (tailoring the components to specific application needs) and Portability (C

coding for UNIX environments; bitmap hardware dependencies isolated in virtual device interfaces).

2.1. Overview of BWE

(User-) applications

Window
management

Menu system

Screen handling

Virtual I/ 0 devices

Enhanced virtual machine

Unix operating system

The BWE components are:

• Enhanced Virtual Machine:

application

BSD 4.2 + BWE extensions

UNIX

BWE packages & LE . .L1sP

Virtual device drivers, offering the mtmmum functionality necessary for BWE; facilities

manufacturers may offer are taken into account; adaptions to UNIX to make it compatible

with BSD 4.2 (as far as needed).

• VDI - Virtual Device Interface:
A device independent output device driver for basic graphical operations (display and bitmap).

VDI is based on the emerging ANSI-Standard Virtual Device Metafile and supports fonts,

pixels, strings, disk I/O, points, lines, (filled) polygons, multiple colours and clipping.

• APIO - Apollo Input Only Package:
A low level input driver (to be replaced by a general I/O VDI) providing input from keyboard

and locator devices. The acquired input is passed on to the rest of BWE as a stream of

events.
(Operations: keyboard input, keystroke mapping, locator (mouse) position and buttons, locator

- 2 - Dl.A2

simulation possible)

• ASH - A Screen Handler:
A low level machine-independent window manager. Handles displaying text and graphics on
'logical screens' (bitmaps, of which several classes are supported) in full, in part (i.e. a partial
view of the logical screen (= window) or not at all).
(Operations: window hierarchies & stacks, colour, integer coordinates, multiple views of same
window, user or ASH refresh, window moving/push&pop/finding/sensing)

• MAPLE - A Menu Package:
A high level sophisticated user interface for interactive graphics programs. The (user) applica
tion is run by menu manipulation. Various types of menus are offered including buttons (text
or icons) which are highlighted upon selection and have (application) action routines associ
ated with them. Input is via ASH, output via VDI, so MAPLE is a device independent menu
package.

•WILLOW - Wonderful Integrated Language for Laying-out Windows:
A user interface for managing windows within a system. It has three built-in window manipu
lation methods, others can readily be defined. To the user (and ASH) WILLOW is analogous
to the Shell in UNIX. Communication with ASH is via 'messages' (this is also directly usable
from the application level).
WILLOW can define cq. knows about: window name, window size (minimal, maximal,
optimal), foreground/background colour, fill pattern, compress into/ expand from icon, associ
ation of windows and buttons with application routines, hardcopy, save/set-up files, history
with undo possibility.

2.2. Only ASH

Experiments with BWE soon revealed that the MAPLE package is probably too sophisticated and
also rather big and inefficient. The ASH level, however, has turned out to be a reasonable set of
"screen handling routines", of which 75% has been interfaced with LE.LISP. WILLOW has not
really been investigated, as it was/is too unstable, apart from its expected large size and inefficiency.

3. Lucasfilm in a nutshell

In essence, Lucasfilm provides (high level) bitmap graphics in a window supplied by Sun Windows.
M.J. Hawley of Lucasfilm Ltd. designed and made it because using SunWindows directly proved
inadequate for the applications he had in mind. His work owes much to the work of R. Pike for the
Blit terminal (Olivetti DMD 5620) and L. Cardelli (among others), both from Bell Laboratories.

Since SunTools (which is Sun's own window manager on top of SunWindows) was not satisfactory
either, a Lucasfilm Suntools version was developed as well. The routines we are dealing with are in
the library -/sun. They can be subdivided into various classes, such as mouse routines, menu rou
tines, keyboard routines etc. (cf. Appendix 3). The library -lsuntools implements the Suntools
environment.

Apart from the window libraries, Lucasfilm also has a collection of useful tools, such as a bitmap
editor, a browse program to display bitmaps, a font editor and various programs dealing with mail

and news in a graphical way. Moreover, a large amount of bitmaps are available such as many
(mouse) cursors, icons, textures and just pictures.

3.1. Design aspects of Lucasfilm

By defining appropriate structures like Point, Rectangle, Bitmap and new user functions, e.g. for
menus and input processing, Lucasfilm shields the programmer from Sun Windows.

A Rectangle for instance is identified by two points, the upper left-hand corner (origin), and lower
right-hand corner (corner). The Points themselves consist of an x and y component, which are

- 3 - Dl.A2

coordinates relative to the window's origin.

A Bitmap structure contains a rectangle and a pointer to another structure (a pixrect) containing

information of the underlying SunWindows world. The actual bitmap bits (pixels) are hidden dee

ply in this pixrect structure but can be manipulated.

A typical Lucasfilm application looks as follows:

#include <sun.h>

main (possible arguments) {
InitDisplay();
Ini tDevi ces(devices);

-- This is where the application initializes ...
GoO;

}

Input() {
i n t i = Po l L (devices);

if C i&KBD) {
-- application reacts to keyboard typing

}

if Ci&MOUSE) {
-- application reacts to mouse movements or button clicks

}

-- other input handling (user defined devices)
}

Timeout() { ••. }

In the main routine, the display bitmap is initialized (it is the window in which the program runs)

and the necessary devices are set up. Then a "start-up" follows where the bitmap of the application

is filled with, say, sticky menus or other graphics, and initialisations are done for user input or timer

run-outs. Finally, the whole display is actually put onto the screen as a self-contained (Suntools)

window from which point the application is "driven" by the Input and Timeout routines. In the

Input routine, the devices set up for user input are polled and appropriate actions taken, e.g. to han

dle menu input when some mouse button is depressed and the mouse happens to be in the menu.

One does not, however, code the menu behaviour oneself, merely a menu function is called which

returns the selected menu item.

4. ASH vs. Lucasfilm

The two window systems ASH and Lucasfilm differ in many respects which essentially can be sum

marised as:

- With ASH:

- With Lucasfilm:

one can do (almost) anything, but often with a major programming
effort.

one can do many things (but not all we want) nicely, with a minor

programming effort.

In the following sections the important differences are further elaborated.

- 4 - Dl.A2

4.1. Managerial aspects

Sources of both systems are available, so bugs encountered can in principle be repaired and neces
sary adaptations be made.

Also, of both systems documentation exists, but the ASH manual is not particularly clear; often
small experiments have to be done to grasp the exact meaning of a routine's functioning (in fact,
this applies more or less to all BWE manuals). The Lucasfilm documentation is good except for
small shortcomings which can easily be resolved by inspection of the sources, which are more
comprehensible than those of ASH. ·

We have to do our own maintenance since it cannot be expected from Brown University, nor from
Lucasfilm: both systems come "as is." However, at CWI, a relatively good contact exists with
Lucasfilm, so that we may expect to receive occasional updates.

As for portability of a (window package) interface, one can look at two levels: Portability on the
level that defines the package interface, the applications level and portability on the (lower) level that
implements the package (on existing software/hardware). We are concerned with both these porta
bility levels. The applications level is normally referred to as "the interface" of the package, in this
case a windows package. A higher interface level (Lucasfilm approach) gives a better application
portability (i.e. portability to another windows system), while a lower interface level (ASH) reduces
this portability, since the low-level functions are too specific and unlikely to have counterparts in
another package.
Naturally, portability on the implementation level is an even more desired property. A port of the
windows system implies far less conversion of the applications. In this respect ASH is a winner.
However, such a port may introduce inefficiencies when routines of the implementation level are
"hooked to" the target on too high a level (as is the case with the ASH implementation on the Sun).
Lower level interface packages are generally more portable to other targets than a higher level inter
face. Lucasfilm is too intertwined with Sun software so that its implementation level is vague.
Although porting requires a larger effort it does not lead to loss of efficiency, since the target
system's facilities may be fully utilized.

Indeed, ASH has been ported to different bitmap hardware without too much effort. Implementa
tions are now available on Sun2, SPS7 or SM90, SPS9 or Ridge (with Numelec bitmap displays).
Outside GIPE, work is in progress on a Macintosh implementation of ASH.

The aspects described above are summarised in a table in which the signs have the following mean
ings:

+:
,...., :

good (or present/fulfilled)

questionable, or possible with effort

not so good (or absent).

- 5 - Dl.A2

Managerial Aspects

ASH
Lucas-

film

Availability source source

Documentation ,,_, +
Maintenance own own

Porting of window + •,,_,

system

Efficiency of ported ,,_, ,,_,I+

package

Portability of appli- - +
cations

4.2. Architecture aspects

From the programmer's point of view, developing an application for Lucasfilm is straightforward for

the following reasons:

A good tutorial, with instructive examples.

Classification of the routines in classes
(general window management, menus, mouse, text 110, graphics, "points", "rectangles",

miscellaneous).

The routines form an intelligible, rather small interface with clear names and arguments.

The intricacies of window management are shielded from the programmer.

The following trivial program puts a window on the screen and exits when a mouse button is

pressed.

#include <sun.h>

main() {

}

InitDisplayC>;
InitDevicesCMOUSE);
GoO;

Input() { WaitButtonsC); exit<>; }

This clearly shows the high level approach of Lucasfilm. A program in ASH with the same func

tionality looks less attractive.

- 6 - Dl.A2

#include "ash.h"
#include "apio.h"

main() {
APIO EVENT event;
int x, y, butns; char eh;

ASHinit(ASH MODE_WINDOW);
ASHcursorC1); /* enable mouse cursor */
for C;;> {

APIOget (&event, &x, &y, &butns, &eh>;
if (event== APIO EVENT TPAD && Cbutns&C11214))) exit();

}

}

Strictly speaking, ASH deals only with output. A routine from another BWE package (APIO) has
to be called to handle the mouse (and keyboard) input*.
It may be seen from the above example that using ASH (and APIO for input events) is not quite
straightforward. A few reasons are:

No tutorial documentation, no examples.

ASH is a single big collection of routines, which is difficult to subdivide into classes (which
indeed is not done).

Often the routines require parameters of an unclear nature (or there are just "a lot of
them")

Programs soon become complicated because more routines/statements are needed, gen
erally speaking.

See Appendix I for another example. Note that more pronounced differences appear when dealing
with, say, menus. Even when using MAPLE (the BWE menu package) for such an application with
ASH, the benefits of a Lucasfilm solution are obvious, let alone when menu facilities were pro
grammed with ASH as part of the program.

In the following table, the differences between ASH and Lucasfilm are summarized:

* In ASH-LE....L1sP input is done using new C routines that may be called from LE....L1sP.

- 7 - Dl.A2

Architectural Aspects

ASH Lucas film

As a window package• "big", rather complex "small" and clean

• needs other BWE pack- one integrated package
ages (APIO, MAPLE)
(or extra user program-
ming)

Number of functions 140 115
(all of ASH, with APIO; (incl. menus)
MAPLE another 110)

Sources: #lines 10900 5800
(C code + include files) (incl. 18% APIO)

#chars 237k 136k

Application program size ,._, 300k ,._, 150k

(bytes) (cf. App.I)

Defaults handling many implicit defaults explicit attribute pa-
(=> program behaviour rameters
not so obvious) (= > code is more clear)

5. WIG: Window Interface for GIPE - rationale

With ASH, we have done quite a few experiments, both directly in C and with the LE....LISP interface

of ASH (see Deliverable D2.A3). One application, for instance, is a TEX viewing program. It

enables the user to preview formatted TEX output on a bitmap screen. Output of up to six 'TEX

pages are kept in separate invisible (ASH) windows. Per window only a part, an ASH view, is actu

ally displayed. At the bottom and right sides of such a view are so-called elevators, small horizontal
or vertical bars, which indicate the part of the window on the screen. These elevators can be moved

by mouse operations which results in "viewing" another part of the TEX page.

The above described viewing mechanism with elevators is a typical example of a higher level func

tion that we like to have in a windows interface library. Other functions that should be available
"off the shelf" include: menu routines of fixed appearance, as well as of user defined form and

operation, input routines to enter text or various kinds of graphics (lines, circles, boxes, ellipses, ...).

ASH does not have any of these functions. However, one can draw graphics, but not interactively,

while Lucasfilm supplies four kinds of menus, although not user definable, and has a text input rou

tine. It may become clear that with ASH all such high level window routines could be implemented

(as indeed is done in the MAPLE package of BWE), but are not presently available. Lucasfilm goes

a long way towards a WIG, but has a few serious deficiencies:

It is built on Sun software, so porting is not easy.

There is no provision for (hierarchic/independent) multiple "windows".

No multiple views per window.

To overcome the problems and deficiencies/ discrepancies of ASH and Lucasfilm, a definition of a
higher level windows system package is needed. In the sequel of Task TI, we will develop a suitable

set of window routines that will serve as an interface between GIPE applications and the window
system (-primitives) used. Note that "the window system" can be ASH itself, or SunWindows (as

with Lucasfilm), or yet another window system, like the one available on the Macintosh. The set of

routines suggested above is indeed an interface, implementing a layer that shields the application
from the window system used. In this way, we achieve a high level of portability which is, espe

cially for bitmap applications, essential for further successful software development in the project.

- 8 - Dl.A2

The table below lists the main requirements for WIG. The relative merits of these requirements are

judged for ASH and Lucasfilm, with meanings as described in section 4.1.

WIG Requirements

ASH
Lucas-

film

Hierarchical and/or
multiple-

windows + -
menus - +

Multiple views + -

Graphics
elementary + +
interactive - ,_,/+

Fonts* ,_, ,_,

Efficient interface + -
with LE....LISP

Portability of
application - +
window system + ,.._,

* Both ASH and Lucasfilm have several fonts included (and are incompatible), but these have not been experi

mented with. It seems that those of Lucasfilm can be used without trouble.

- 9 - Dl.A2

Appendix 1 - an example

A simple example
(without menus)

In both the BWE/ ASH and Lucasfilm environments, a simple example is shown which makes the

following picture in a "stolen"* window (ASH), or in a newly created window (Lucasfilm).

LUCASH Top Left Comer

--- Some Lengthy Centered Text ---

The examples.

1
2
3
4
5
6
7
8
9

= = = ASH example = = =

I* cc -I/pro/include vb1.c /pro/lib/prolib.a */
#include "ash.h"
#include "apio.h"

#define button123()
int butns;

main () {
ASH WINDOW w;
APIO EVENT event;

Cbutns&C11214)?1:0)

int Tx, by, rx, ty, x, y; char eh, s[256J;

w = ASHinit(ASH_MODE_WINDOW);

ASHcursor(1); /* enable mouse cursor */
ASHline C0,0,100,100); /* ie. where is Window's origin */

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

ASHtext C0,16,"X ASH Top Left Corner"); I* 0,0: inappropriate ••• */
ASHinq size CASH SIZE WINDOW, &lx, &by, &rx, &ty);

}

strcpy(s,"--- soiiie Lengthy Centered Text ---">;
ASHinq text extentCs, &x, &y);
ASHtext CCrx-lx-x)/2, Cby-ty)/2, s>;
for C;;> {

}

APIOget <&event, &x, &y, &butns, &eh>;
if (event == APIO EVENT TPAD)

if Cbutton123C)) exit();

* Stolen means: the ASH application runs in the window area on the screen in which the program happens to

have been invoked (rather than creating a new window, like Lucasfilm does).

- 10 - Dl.A2

= = = Lucasfilm example = = =

1 /* cc -1/usr/sun/include vb1.c -lsun -lsuntool -lsunwindow -lpixrect */
2 #include <sun.h>
3
4 main() {
5 char *s, *StrSave<>;
6 Point cp;
7
8 InitDisplay();
9 InitDevices(MOUSE);

10 segment (Display, Dr.o, PtC100;100), F STORE);
11 string(Display, Dr.o, "X LUCAS Top Left Corner.", defont, F_STORE);
12 s=StrSave("--- Some Lengthy Centered Text ---">;
13 cp = Center(Dr>; /* "cp" necessary ••• *I
14 string(Display,
15 Pt(CHS(Dr)-StrHS(defont,s))/2, cp.y >,
16 s,
17 defont,
18 F STORE);
19 GoCT;
20 }
21
22 Input() { if (Poll(MOUSE) && button1230) exitO; }

- 11 - Dl.A2

Appendix 2 - list of ASH routines

ASH routines
as present in the LE..LJ:sP interface

The 92 listed ASH routines comprise the ones defined for the LE.LISP interface. The calling
sequences are in C (as defined in BWE).

1 ASHinit Cmode[,streamJ)

Initialize ASH (only necessary for some special mode).

2 ASHtrace (Level>

Enable various levels of tracing.

3 ASHpush _state ()

Save current window with drawing information.

4 ASHpop _state ()

Restore a window with drawing information.

5 ASHcreate Cparent_Lx,parent_by,Lx,by,rx,ty,border_id,flgs) -- ASH WINDOW

Create a window of given size within the current (parent) window. Various attributes may be
specified (eg. sensitivity, visibility).

6 ASHselect (window)

Make the window current.

7 ASHvisible (flag)

Enable/disable the current window's visibility.

8 ASHpop C)

Pop current window to top of the screen.

9 ASHpush C)

Push current window to bottom of the screen.

10 ASHuncover (x, y)

Push top window at given point to bottom.

11 ASHfind _window (x, y)

Return window on top at (x,y).

ASH WINDOW

- 12 - Dl.A2

12 ASHinq_under Cwindow,x,y) -- ASH WINDOW

Find window directly under given window at point (x,y).

13 ASHinq_rectangle Cx,y ,& lx,&by ,&rx,&ty) ASH WINDOW

Return coordinates of a completely visible rectangle containing point (x,y). The corresponding win
dow is also returned.

14 ASHinq_region_visible Cwindow,lx,by,rx,ty) -- int

Determine if a given region is completely visible in the window.

15 ASHhitable Chittype)

Set hittability of current window.

16 ASHhitCx,y,&window_x,&window_y) -- ASH WINDOW

A hittable top window at (x,y) is returned (or NULL). Hit coordinates are returned as well, if appli
cable.

17 ASHhitwindow (w i ndow)

Mark window as the current hit window.

18 ASHmapCfrom_window,from_x,from_y,to_window,&to_x,&to_y) -- int

Map a point in the from window to coordinates in the to window (if possible) and return the new
coordinates via the last two parameters.

19 ASHremove (w i ndow)

Remove the window.

21 ASHview (parent_ lx,parent_by, lx,by, rx, ty)

Reset the current window's view and locate it in the parent at the specified point.

22 ASHnewview (wi ndow,p_ lx,p _by, lx,by, rx, ty ,b_ id, f lgs)

Create another view of window, yielding a window akin to ASHcreate.

23 ASHnewframe ()

Refresh the screen.

24 ASHresize Clx,by, rx, ty)

Resize the current window, according to the given coordinates.

25 ASHpar_resize (plx,pby,lx,by,rx,ty)

Idem as ASHresize, but the bitmap in the parent window is relocated as well.

26 ASHquickmove (flag)

Set/ reset a mode specially for dragging windows on the screen.

27 ASHinq_size (type,& lx,&by ,&rx,&ty)

Inquire the size of various box types associated with the current window.

- 13 -

ASH WINDOW

Dl.A2

28 ASHinq_top C) -- ASH WINDOW

Return window for actual screen.

29 ASHinq_ window C)

Return current window.

ASH WINDOW

30 ASHinq_parent C) -- ASH WINDOW

Return window of current window's parent.

33 ASHinq_ border_size C id,&lef t,&bottom,&ri ght,&top)

Return border size of specified border id.

34 ASHset window name (name)

Put name in the current window's border.

35 ASHinq_window_name C) -- char *
Get the border name.

36 ASHset userdata C data)

Associate a (pointer) value with a window.

37 ASHinq_ userdata C) char *
Read back the (pointer) value.

45 ASHpush _window C)

Save selected window in a stack.

46 ASHpop _window C)

Restore a window.

54 ASIDine Cx0,y0,x1,y1)

Draw a line in current window, with current combination rule.

55 ASHpolyline Cnumpts,x[J,y[J)

Draw sequence of connected lines.

56 ASHpoint (x, y)

Draw a point in current window.

57 ASHpolypoint Cnumpts,x[J,y[J)

Draw a collection of points.

59 ASHoonvex_polygon Cnumpts,x[J,y[J)

Draw and fill a (convex) polygon.

60 ASHgeneral _polygon C numpts ,x [J, y[J)

Draw artd fill a general polygon.

- 14 - Dl.A2

61 ASHrectangle Cx0,y0,x1,y1)

Draw a filled box.

62 ASHround_rectangle (x0,y0,x1 ,y1, radius)

Draw a filled box with rounded comers.

63 ASHbox (x0,y0,x1,y1)

Draw a rectangular box outline.

64 ASHround_box Cx0,y0,x1,y1,radius)

Draw a rectangular box outline with rounded comers.

65 ASHcircle (x,y, r)

Draw a circle outline with center at (x,y) and radius r.

66 ASHfilled _circle (x, y, r)

Draw a filled circle.

67 ASHellipse <x,y,rx,ry)

Draw an ellipse outline at (x,y) with radii rx and ry.

68 ASHfilled _ellipse (x, y, rx, ry)

Draw a filled ellipse.

69 ASHclear ()

Clear current window.

70 ASHtext (x, y, text)

Display text at given point.

71 ASHcenter_text (text,Lx,by,rx,ty)

Center the text inside the given rectangle.

74 ASHfill Cpattern_id)

Set active fill pattern for current window.

75 ASIDine_style (pattern_id)

Set active line style.

76 ASHcombination rule (ru Le)

Set combination rule.

77 ASHfont (font)

Set font.

81 ASHcUp Cf Lag)

Enabletdisable clipping.

- 15 - Dl.A2

82 ASHclip_region C lx,by, rx, ty)

Define clipping region.

83 ASHinq_bltClx,by,rx,ty,dlx,dby) -- int

Determine whether the blt operation can be done successfully.

84 ASHblt < lx,by, rx, ty ,d lx,dby)

Perform a raster-op of the given rectangle in the current window to the destination window given by
the last two parameters.

85 ASHzoom _blt C lx,by, rx, ty ,dlx,dby ,zoomx,zoomy ,gapx,gapy)

Like ASHblt, but the image is enlarged during the operation.

86 ASHread _pixels (lx,by, rx, ty ,pixels)

Read back saved pixels from the array into the bitmap rectangle.

87 ASHwrite_pixels (lx,by, rx, ty ,pixels)

Save the bitmap pixels in an array.

88 ASHsave _bitmap (f i le)

Save the current window's bitmap in a portable file format (BRIM).

91 ASHload_bitmap C file)

Restore a bitmap from a file.

92 ASHsource Cw i ndow)

Set source window for current window (for use with ASHblt).

95 ASHloadfont (name) -- int

Load a font by it's name; a font id (int) is returned.

97 ASHinq_ text_extent (str ,&x,&y)

Return "x" and "y" size of the text in str.

98 ASHinq_ text_ offset (s t r, &x, &y)

Return lower left box offsets for use with ASHtext.

99 ASHinq_text_next (str ,&x,&y)

Return increments for placing str next to (or under) a previously written text.

100 ASHinq_font_info Cname,hor _sp,vert_sp,space_sz,width,down,up) -- int

Return data on the given font (for the whole font, and for each character in it).

101 ASHinq_font () -- i nt

Return current font in current window.

- 16 - Dl.A2

104 ASHinq_ fill () -- i nt

Return current fill pattern.

105 ASHinq_line_style () -- i nt

Return current line style.

106 ASHinq_ combination_ rule () -- i n t

Return current combination rule.

I 09 ASHpush _ drawinfo ()

Save all drawing parameters of current window; reset them to default values.

110 ASHpop _ drawinfo ()

Restore previously saved drawing parameters.

111 ASHcopy_drawinfo (source)

Copy the drawing information from given window to current one.

112 ASHcursor _move (x, y)

Move cursor to given point in current window.

113 ASHcursor (flag)

Tum the mouse cursor on or off.

114 ASHcursor load (id)

Load a cursor identified by id.

115 ASHcursor restore ()

Get original cursor again.

116 ASHinq_cursor C&id) -- int

Inquire whether cursor is being displayed; optionally return its id type.

117 ASHpush _cursor (f g)

Save cursor's type and mode, possibly enabling/ disabling it afterwards.

118 ASHpop _cursor ()

Restore a saved cursor.

119 ASHcursor_define (i d,ch, font,x,y ,xor _flag)

Dynamically define a new cursor with its hot spot.

120 ASHsensitive_area(lx,by,rx,ty,type) -- ASH SENSE

Define and return a reference to a sensitive rectangle, possibly inverting bits when hit with ASHhit.

121 ASHsensitive remove (sense)

Remove'a sensitive area.

- 17 - Dl.A2

122 ASHsensitive remove all ()

Remove all sensitive areas of the current window.

123 ASHinq_ sensitive () -- ASH SENSE

Return the sensitive area directly under the coordinates of the last ASHhit call.

124 ASHbell ()

Ring a bell.

- 18 - Dl.A2

Appendix 3 - list of Lucasfilm routines

Lucasfilrn window routines

This is an extensive overview of the Lucasfilm library "-/sun" which provides a clean set of routines
for writing interactive graphics programs on the Sun II workstation.

For the suntoo/s environment: (lnitDisplay(3))
High level routines for window management, device initialisation and polling, timing.

lnitDisplay ()

Obligatory routine to initialize the Display bitmap, which becomes a window on the
screen.

lnitDevices (devices)

Initialize the used input devices.

i nt DefineDevice (fd, func)

Define input file fd as an input device, for which func will be called whenever there is
input available. The returned device should be polled.

UndefineDevice (fd)

Undefine a device fd.

int Poll (devices)

Return a mask of those devices that have changed their state.

Go()

Actually start displaying the Display on the screen. Arrange for tirneout and input rou
tines.

Set.Input (func)

Call func instead of the default Input().

SetTimeout (func, seconds, microseconds)

Call func when timer runs out.

SetExit (func)

Call func when program exits normally.

i nt Iconic ()

"True if in an iconic state.

- 19 - Dl.A2

Setlcon (b, s)

Define an icon b (a small bitmap) with labels for the program.

SetDisplayRect (r)

Take rectangle r as the Display rectangle (rather than the default size).

SetNamestripe (s)

Give the program's window a name.

Display Lock (r)

Lock a rectangle r on the display.

DisplayUnlock ()

Unlock a rectangle r on the display.

Menus: (Hit(3))
Routines for defining menus; 4 types: string, bitmap, slider or switch. Each can be sticky or popup.

int Hit Cm, buttons)

Wait for one of the mouse buttons to be pressed when in a menu, and return the selected
menu item.

Menu *NewMenu (arguments)

Return a menu made up from string arguments. Menu hierarchies are possible.

Menu *NewMenuArray (char **items)

Like NewMenu, but the string items are in one array.

BMenu *NewBMenu (x, y, i terns)

Make a menu of bitmap items, which are arranged in x rows and y columns.

Slider *NewSlider(value, min, max, title, orient, Tic, tic)

Make a slider which lets the user input a value within a specified range. The range may be
annotated with tick marks.

SetSlider Cs, value)

Set and update the slider's value.

Switch *NewSwitch(title, s1, s2, s3)

Create and return a two or three state switch.

int AddMenu Cm, s, max, scroll)

Add a string item s to the bottom of a menu and scroll if applicable; return true if success
ful.

- 20 - Dl.A2

int DelMenu Cm, s, max)

Delete items from n;ienu; return true if successful.

Rectangle DrawPopup Cm, p)

Draw a popup menu (Menu, BMenu, Switch or Slider) at point p.

UndrawPopup Cm)

Undraw menu m.

Mouse: (mouse(3))
Mouse related routines. Inquiring for pressed mouse switches (buttons), manipulating the mouse
cursor.

i nt button (i)

True if any button of the given combination is pressed on the mouse (i
23, 123).

i nt buttoni ()

Same as button(i).

i nt buttons C i)

True if all buttons of the given combination are depressed.

W aitButtons ()

Poll the mouse until the buttons change.

i n t MouseButton ()

Return the currently depressed mouse button.

SetMouse C p)

Position the cursor at p. ·

Cursor *SetCursor (Cursor *c)

Set the cursor to a new cursor c and return the current one.

CursorOn C)

Tum the cursor on.

CursorOff C)

Tum the cursor off.

DeclareCursor (name, hx, hy, code, bits)

Declare a cursor by name and point out its hot-spot.

- 21 -

1, 2, 3, 12, 13,

Dl.A2

Cursor *ReadCursor C fname)

Read a cursor from file and return it.

int WriteCursor (Cursor *c, fname)

Write cursor c to a file, and report success or failure.

Keyboard & Text: (kbdchar(3))
Keyboard I/O and displaying typed text on the screen.

kbdchar C)

Return the next character typed at the keyboard.

i nt keydown Cc)

Return true if key c is currently down.

kqueue Cc)

Put c in the input character queue.

Point stringfCb, p, font, f, fmt, args)

Make up a string from the args according to fmt and draw it in bitmap b at point p.
Return the position where the next character should be drawn.

ReadString (prompt, s, maxlen, r, p)

Popup a rectangle with a prompt and read a string, displayed starting at point p.

Point PutChar Cc, font, r, p, f)

Draw one character at point p (in the given font and code f).

Point PutString Cs, font, r, p, f)

Draw a string at point p (in the given font and code f; wrap within ractangle r if applica
ble).

Point GetString Cs, maxlen, font, r, p)

Read a string into s typed at the keyboard. Input is done within the rectangle r.

Point BoldString Cb, p, s, font, f)

Display string s in a boldish fashion.

Ree tang le TextRect C font, s)

Return a rectangle large enough to hold s in the given font.

Graphics drawing primitives: (balloc(3))
Low level bitmap routines for bitmap allocation, bitblt, drawing points, text, fill patterns, line seg
ments.

- 22 - Dl.A2

Bitmap *balloc C r)

Allocate a Bitmap with the size of r and return it, or 0 if no memory is left.

bfree (b)

Free up any space used by b.

bitblt Cdb, p, sb, r, f)

Bit block transfer: copy bits from area r in source sb to point p in destination db using
code f (store, or, xor, set, clr).

rectCb, r, f)

Draw rectangle r in bitmap b using code f.

texture C db, r, sb, f)

Paint in destination bitmap dp the given texture sb.

segment Cb, p1, p2, f)

Draw a line segment in bitmap b from p 1 to p2.

Point string Cb, p, s, font, f)

Draw a string at point p (in the given font and code f; return point for the next character).

int point Cb, p, f)

Draw the pixel at p in b using code f and return its value.

getpoint (b, p)

Return the pixel value of p in bitmap b (0 or I).

Oear (b)

Clear all pixels in bitmap b.

DeclareBitmap (name, x, y, bits)

Declare a Bitmap structure known by name, consisting of a rectangle x wide and y high,
where bits define the initial pixels.

short realbits (b) []

Via this array one can access the current pixels of a bitmap b.

For Point arithmetic: (Pt(3))
Routines to manipulate 'Points' and inquiring whether a point is within a distance of gap from a
line or segment.

Point Pt Cx, y)

Make a Point structure with fields x and y, and return it.

- 23 - Dl.A2

int eqpt Cp1, p2)

True if p 1 and p2 are the same point.

Point PtCopyCp1, p2)

Point p 1 becomes point p2.

Point add Cp1, p2)

Return Pt(pl.x+p2.x, pl.y+p2.y).

Point sub Cp1, p2)

Return Pt(pl.x-p2.x, pl.y-p2.y).

Point mul Cp1, p2)

Return Pt(pl.x*p2.x, pl.y*p2.y).

Point div Cp1, p2)

Return Pt(pl.x/p2.x, pl.y/p2.y).

Point shift Cp, n)

Return Pt(p.x << n, p.y << n); n<O is right shift.

ponline Cp, p1, p2, gap)

True if p is within a distance of gap from the line pl...p2.

ponsegment Cp, p1, p2, gap)

True if p is within a distance of gap from segment pl...p2.

For Ree tang le arithmetic: (Rect(3))
Rectangle manipulation and inquiries of sizes, relationships between rectangles and points.

Rectangle RectCxo, yo, xc, ye)

Make a rectangle structure out of points (xo,yo) and (xc,yc) with fields o (origin) and c
(comer).

int eqrect Cr1, r2)

True if r 1 and r2 are the same.

int rXr Cr1, r2)

True if rectangles rl and r2 intersect.

Rectangle RptCp1, p2)

Make a rectangle out of points p 1 and p2.

Rectangle Raddp Cr, p)

,Return Rpt(add(r.o, p), add(r.c, p)).

- 24 - Dl.A2

Rectangle Rsubp Cr, p)

Return Rpt(sub(r.o, p), sub(r.c, p)).

Rectangle inset Cr, n)

Return a rectangle inset n pixels from the border of rectangle r.

Rectangle RectCanon (p1, p2)

Returns a canonical rectangle made from two points where p 1 and p2 are not necessarily
origin and comer.

int pinr (p, r)

True if p is contained in r.

int ponr (p, r, gap)

True if p is within a distance of gap from the border of r.

i nt rinr (r1, r2)

True if r1 is contained in r2 (inclusive).

UpdateRect Coldr, newr)

Undraw the old rectangle and draw the new one.

RectClear (r)

Clear the pixels in rectangle r.

Rectlnvert (r)

Invert the pixels in r.

RectFlash (r)

Invert the pixels in r twice.

int InRpt Cp, p1, p2)

True if point plies in the rectangle Rpt(pl,p2).

int HS(r)

Return the horizontal size of r.

int VS (r)

Return the vertical size of r.

Other: (sunutil(3))
All kinds of miscellaneous routines, e.g. higher level graphics (circles, ellipses); user input of points,
rectangles, confirmation; font manipulation and I/O, bitmap 1/0.

- 25 - Dl.A2

border Cb, r, n, f)

Draw a border in bitmap b starting at rectangle r and extending inward n pixels.

DoubleBox (b, r, f)

Draw a double box (border) in rectangle r in bitmap b.

DrawShadow (r)

Draw a shadowlike grey texture of some thickness at the right and bottom sides of r.

circle Cb, p, r, f)

Draw a circle of radius r with center at p.

disc Cb, p, r, f)

Draw a disc with radius r centered at p in bitmap b. The code f is applied to the whole
circle area (disc).

ellipse Cb, p, a, b, f)

Draw an ellipse centered at p with half-axes a,b in bitmap b.

int Confirm (button)

True if button was depressed by the user as a confirmation.

Point GetPointCbutton)

Get a point from the user and return it.

Rectangle GetRect (button)

Let the user sweep out a rectangle, and return it when user releases button.

Rectangle TrackRect Cr>

By moving the mouse, slide r; fix it when a button is pressed and return the new rectangle.

nap (n)

Sleep for n Hz.

move (p)

Move to point pin the display which becomes the new current point (DisplayPt). Used in
conjunction with line().

line Cp, f)

Draw a line on the display from the current point to p.

spline C b, Point *p, n, f)

Draw a splined curve from p[O] to p[n-1], in mode f.

int Between Cx, min, max)

True if min :.;;;;; x :.;;;;; max.

- 26 - Dl.A2

int Oip Cx, min, max)

Return value x clipped into range min ... max (inclusive).

i nt Transfonn (x, p1, p2)

Transform x from range pl (ie. pl.x .. pl.y) to range p2 (ie. p2.x .. p2.y) and return it.

Point PtTransfonn (p, c1, c2)

Transform p from coordinate frame c I to c2 and return it.

Rectangle RectTransfonn (r, c1, c2)

Transform r from coordinate frame c I to c2 and return it.

Point Center (r)

Return the center point in rectangle r.

Bitmap *readBitmap (fp, fname)

Read a bitmap from file fp (a FILE pointer) and return it.

Bitmap *ReadBitmap (fname)

Read a bitmap from the named file and return it.

writeBitmap Cb, fp, fname)

Append bitmap b to file fp (in format bitmap(5)).

int WriteBitmap Cb, fname)

Write bitmap b to the named file and report success or failure.

Font *ReadFont(fname)

Read and return the font in file fname.

i n t WriteFont (font, fna me)

Write the font on file fname (in format sunfont(5)).

FontFree (font)

Free the allocated font.

int CharHS (font, c)

Return the horizontal size of character c in the given font.

int CharVS (font, c)

Return the vertical size of character c in the given font.

i nt StrHS (font, s >
Return the horizontal size of string s in the given font.

i nt StrVS C font, s)
'" Return the vertical size of string s in the given font.

- 27 - Dl.A2

i nt FontVS (font)

Return the default vertical size of the font.

int FileExists Cfname)

True in file fname is readable.

char *SearchPath (path, fname)

Look for file fname in every directory in path until found, and return the pathname.

char * PicturePath C)

Returns the path in which to search for bitmap pictures.

char *FontPath C)

Returns the path in which to search for Sun fonts.

char *StrSave Cs)

Save s in memory somewhere and return a pointer to it.

. 28. Dl.A2

GIPE: CEC 348/S/Tl/4

version 1.2 December 1985

Syntax Directed Editing of LELisP

Annexe Dl.A3 of Deliverable Dl - Second Review -

D. Clement (SEMA)

1. Introduction

The LISP language is known to be a quite flexible programming language. The LISP program
mer has the possibility to define his own programming style, even to a certain extent his own pro
gramming language. There· is no LISP predefined construct, and users may not only define their own
functions, but also system functions such as DE or EVAL (although results may be surprising).

On the other hand, the concrete syntax of LISP is rather simple. LISP objects are atoms or lists of
objects. Parsing LISP programs is merely reduced to lexical analysis of identifiers and construction
of list of terms. In this context, the design of a syntax directed editor for LISP with the Mentor sys
tem exhibits unusual difficulties.

We shall point out main aspects of LISP that are relevant in the context of syntax directed editing.
Then we will describe the general principles followed in the design of a Mentor editor to deal with
the LELISP/CEYX language. Experiments carried out on a large variety of LISP programs have shown
that these principles were insufficient. Interactions between the editor and the LELISP environment
were found to be too weak to make the system practical. However, experience gained during this
task convinced us that a LISP syntax directed editor is feasible in the context of the environment
generator currently under development.

2. Requirements for a LisP Editor

A LISP environment provides a large number of functions, among which LISP programmers will
select their favourite constructs. In fact the LISP system itself is built from a small collection of basic
primitives, and it is easy to augment it with a private collection of primitives, i.e. to build a special
purpose environment. In all generality a LISP editor should allow to define, not only new functions,
but also new abstract syntax trees and new parsing as well as unparsing rules. This means that the
description of the LISP formalism in use should be extensible by the user of the editor. To be more
precise, users should be able to:

describe the abstract syntax they want to associate to their new constructs.

describe the pretty-printing rules for the corresponding abstract trees.

describe parsing rules, i.e. the concrete syntax and tree building actions, for their new con
structs.

Such functionalities are indeed very attractive. Their implementation raises several technical prob
lems. The first question put by these remarks regards the definition of a formalism to describe
abstract 'syntax, pretty-printing, and parsing. One should allow changes in one of these three aspects

- 1 - Dl.A3

independently of the other two. Users may wish to modify only the pretty-printing of functions, or
to change both abstract syntax and pretty-printing, or to change only parsing rules. So, clearly the
definition should not be monolithic. We do not pretend to define here such a formalism, but to
separately enumerate the main problems raised by each one of these three points.

2.1. Abstract Syntax

Extending the abstract syntax of a formalism does not present intrinsic difficulties. It is only
necessary to check that new abstract constructs are consistent with the previous description of the
formalism. Problems arise with remanent storage. The brute force consists in a kind of dump on
external memory of the state of the editor. This solution leads to huge files, and is not acceptable.

When trees are saved on external memory, information on the language must be coded in an
appropriate manner. In the case of a formalism that has been fixed once and for all, this coding
mechanism takes advantage of the uniqueness of the description of that formalism to optimise code
generation. Furthermore, the description of the abstract syntax itself can be compiled into an
efficient manageable form. Such an optimisation and compilation are no longer feasible when the
formalism changes with the current state of the editor. Then new techniques will have to be
developed to save abstract trees without redundancy on remanent storage.

2.2. Pretty Printing

Pretty-printing of programs is merely a matter of style and it depends heavily on the
programmer's choices. This is more true with LISP than with other programming languages. It
requires to describe the pretty-printing of structured data with a formal language. Once more,
remark that this description has to be separated from the abstract syntax and parsing definitions.

The design of a pretty-printing language does not present difficulties. For example, with each
operator of an abstract syntax one associates instructions describing its concrete layout. These
instructions may be interpreted by a special purpose display processor. Then it is not difficult to
handle dynamic formatting descriptions of abstract syntax trees. Unfortunately, experiments carried
out in that area have shown that such a display interpreter is too slow to be useful.

In fact, to be of real use, a pretty-printing language has to be compiled. For example it is possible
to automatically translate pretty-printing instructions written in a pretty-printing language into a
LELISP program. Then this LELISP program may be compiled, as any other LELISP program. Of
course the resulting unparser of abstract trees is far more efficient than any interpreter of pretty
printing instructions.

As for remanent storage optimisation, this compilation takes advantage of the completeness of the
description of the formalism. We know all possible cases for every abstract operator, as well as
every operator in a phylum. This is no longer the case when the description of the formalism may
be updated by the user.

2.3. Parsing

In fact the most delicate point is parsing. Concrete description of programming languages are
usually expressed with BNF like rules. As it is, this formalism allows, with some care, to add new
rules or to modify old rules. We may design an interpreter of such a BNF like language able to
parse LISP programs containing new parsing rules for new constructs.

But we must keep in mind that the whole parsing process of a program depends heavily on the size
of that program and tends to be time consuming. On the other hand, in an interactive environment,
the parsing time of programs must be as short as possible. One more time we must compile the con
crete SYJl~ description. Usually, a parser generator compiles BNF like rules into an equivalent
automaton. This compilation may be time consuming but it is only done once and for all. And the

- 2 - Dl.A3

resulting automaton is usually quite efficient. When concrete rules are dynamically extended by the

user we cannot any longer generate such an automaton.

As a matter of conclusion, we must admit that while we know how to design a very flexible environ

ment generator, we do not know how to implement it efficiently, i.e. with compilers rather than

interpreters. Nevertheless we may also wonder whether such a programming tool is really desirable.

One of the aims of structured editors is to preserve programmers from syntax errors and to facilitate

the coding of programs. We are not convinced that all LISP programming practices mentioned above

are well in accordance with these basic software engineering rules. We rather like the idea of design

ing a syntax directed editor for a well defined LISP programming style. More practically, we will

assume for the moment that an abstract syntax definition of LELISP has been chosen. LISP constructs

that do not belong to that definition will not be associated to abstract operators.

3. Abstract Syntax Definition of U:LisP /CEYx

The Mentor system for generating syntax directed editors from BNF-like specifications was

used to develop a LELISP/CEYX environment. The User Manual of LELISP Version 15 was taken as a

reference. Then, both a concrete syntax and an abstract syntax for LELISP and CEYX were defined.

We will now take under consideration only the LELISP component. Problems with CEYX are very

similar.

3.1. Concrete Syntax

Before talking about abstract syntax, we must make some remarks on the concrete syntax

definition of LELISP. As indicated above, a concrete syntax of LELISP as atoms and lists of objects is

irrelevant iii the context of structural editing. In tools such as Mentor abstract trees are built during

the parsing of programs. Tree building instructions are associated, as actions, to concrete rules.

Hence, we need derivation rules describing how LISP primitives are built from subterms of the gram

mar.

For example, each one of the LELISP function definition primitives, de, df, dm have to be defined by

a production rule in the BNF-like description of LELISP:

<named_expr> · ·= (de <symbol> <obj_list>

<named_expr> (df <symbol> <obj_list>

<named_expr> (dm<symbol><obj_list>

For example, if a binary operator is associated to the de function, a tree building action may be

associated to the first rule as follows:

<named_expr>: :=(de <symbol> <obj_list>

de(<symbol>,<obj_list>)

Such rules turn identifiers de, df, dm into keywords, i.e. reserved identifiers: the user is no longer able

to redefine them. We know that such a constraint may be too restrictive*, and we provide an

escape mechanism (but not very elegant): if a keyword is preceded by a neutral character, for exam

ple a blank, it returns to the status of identifier.

* The identifier tag is the name of a LEL1sP primitive; as such, it plays the role of a keyword. Often, it is also used

as the name of the first parameter of error recovery functions (de catch (tag val) ..•), where it plays the role of an

identifier.

- 3 - Dl.A3

3.2. Abstract Syntax Operators

We have now to define an abstract syntax for LELISP/CEYX. There are about five hundred
functions in the LELISP manual. Some of these functions differ only by the value they return, for
example progn, progl, prog2. Some are special cases of a general construct, for example if, ifn, when,
unless. Then what should be the abstract syntax? We are faced with two delicate engineering deci
sions:

i) what LELISP primitives should be chosen as operators of the language?

ii) should the abstract syntax reflect the concrete layout of LISP functions or should it take more
semantic notions into account?

The first problem is motivated by the number of LELISP primitives, and by unusual constructs such
as the progns. In LELISP, sequential evaluation of expressions is done via a standard grouping primi
tive progn, merely a kind of begin end construct. Expressions inside the progn are evaluated sequen
tially and the whole construct, i.e. the progn function itself, returns the value of the last expression.
Similarly, the function progl, respectively prog2, results in sequential evaluation of expressions, but
returns the value of the first, respectively the second expression. Due to our LISP inexperience at the
time of this design and to reduce the number of LISP primitives associated to abstract trees, we have
retained only the progn construct.

Let us discuss the second point in the case of function definitions. In LELISP, functions are defined
using lambda,flambda, or mlambda. For example a function may be defined by:

Oambda <var_list> <s_exprl> <s_expm>)

and may be assigned to a symbol by a function definition:

(de <symbol> <var_list> <s_exprl> <s_expm>)

If we decide to stay close to the concrete form, these two expressions may be described by the fol- ·
lowing abstract syntax trees:

lambda: ARGS x BODY -> SEXPR

de: IDENT x ARGS x BODY -> SEXPR

On the other hand, the semantics of a de expression is to assign a lambda expression to an identifier,
the semantics of a df is to assign anjlambda expression to an identifier, and so on. We may decide
to use that fact in the abstract syntax description, and define the following abstract tree:

defun : IDENT FUNCilON -> SEXPR

where FUNCTION stands for all possible kinds of function definitions, i.e. lambda, flambda, and
mlambda.

It it clear that this kind of tuning may be done for many LELISP primitives. When designing an
abstract syntax for LEL1sP/CEYX we found this technique more satisfactory and providing a rather
elegant abstract syntax. But results are sometime rather surprising.

For example, the four conditional functions if, ifn, when, and unless may be represented by a unique
if abstract tree. In LELISP the conditional instruction if is not symmetrical. Its concrete form is:

(if <exprl><expr2> <expr3> <exprn>)

with the meaning: ..

- 4 - Dl.A3

if the value of <exprl> is true, i.e. not nil, then the if returns the value of <expr2>.

if the value of <exprl> is false, i.e. nil, then the remaining expressions <expr2> to
<expm> are evaluated sequentially and the if returns the value of the last evaluated
<expm>. Remark that this is nothing else than a progn like construct.

Three other conditional primitives are available in LELisP: ifn, when, and unless.

(ifn <exprl> <expr2> <expr3> <exprn>)
stands for if <exprl> then <expr3> ... <expm> else <expr2>.

(when <expr l> <expr2> <exprn>)
stands for if <exprl> then <expr2> ... <expm> else nothing.

(unless <exprl> <expr2> <exprn>)
stands for if <exprl> then nothing else <expr2> ... <expm>.

It is clear that we may define a unique ternary operator

if: SEXPR x SEXPR _ S x SEXPR _ S -> SEXPR

with the usual meaning:

if SEXPR then SEXPR_S else SEXPR_S

In this way, the four LELISP functions if, ifn, when, and unless are reduced to fictitious constructs:
they are just a different layout of the same operator according to the following unparsing rules:

1) if the second son is a list of at least two elements and if the third son is reduced to a single
element, then unparse the tree as a LELISP ifn.

2) if the third son is empty, then unparse the tree as a LELISP when.

3) if the second son is empty, then unparse the tree as a LELISP unless.

4) in all other cases, unparse the tree as a LELISP if, with eventually a progn surrounding the
expressions of the true case.

Some users may be surprised by such an optimisation of their if constructs: a deletion of the third
son of an if expression turns it into a when.

3.3. Conclusion

The design of a LELISP/CEYX syntax directed editor appears to be a rather delicate task. We
have seen that one of the main problems to deal with was in the area of concrete syntax (some
identifiers being used as keywords or as identifiers). We would like to mention an alternate
approach for this problem.

In the Mentor system, abstract syntax descriptions and parsing rules are well dissociated. But a
powerful tree-pattern-matching-based mechanism is provided to allow to build trees in accordance
with the desired abstract syntax. In the case of LELISP, this facility can be used to reduce the con
crete description to its basic form. Let us assume that the so-called LISP s expr is described by the
following concrete syntax: -

An s_expr is:

either an identifier

<s_expr> ::= <ident>

or a list of s _ exprs enclosed in parentheses

<s_expr> ::= (<s_expr_list>)

A list of s exprs is either an empty list or a list followed by an s expr. With that kind of concrete
syntax• definition we do not have any parsing problems! (The terminal <ident> stands for
identifiers.)

- 5 - Dl.A3

Let us see now how we may build abstract trees. Consider the following abstract syntax:

sorts

SEXPR, IDENT, SEXPRS, FUNCTION

subsorts

SEXPR > IDENT, FUNCTION

functions

ident -> IDENT

I i s t SEXPR* -> SEXPR
de fun IDENT x FUNCTION -> SEXPR

tag IDENT x SEXPR S -> SEXPR
lambda SEXPR x SEXPR S -> FUNCTION
sexpr_s SEXPR* -> SEXPR S

As noted in the footnote on page 3, the identifier tag may be used as the name of a LE...LISP primi

tive:

(tag <ident> <s_expr_list>)

or as the first parameter of so-called lock functions. A lock function must have two parameters and

must be either a lambda or a de:

Oambda (tag <ident>) < s _ expr _list>)

(de <ident> (tag <ident>) <s_expr_list>)

In Mentor, the following pattern-matching instructions may be associated to concrete rules:
case <s_expr_list>

when s exp r s [i dent ("I ambda") . s exp r s [s exp r s [i dent ("tag") , VJ . Y))

=> lambda(list[ident("tag"),V],Y)

when sexprs[ident("de").sexprs[X.sexprs[sexprs[ident("tag"),V).Y)))

=> de fun (X, I ambd a (I i s t [id en t (" tag") , V) , Y)

when sexprs[ident("tag").sexprs[X.Y]]
=> tag(X,Y)

It is clear that with this kind of mechanism we are able to catch tag identifiers that are parameters

of lock functions.

4. Perspectives

As indicated above, experiments have shown that the abstract syntax must be as complete as

possible. All LISP primitives must be, in one way or another associated to abstract operators. We

must admit that we left out a rather important aspect in the context of LISP editing: the level of

interaction between the editor and the LE...LISP environment. LISP programmers are used to check

functions quite often, and thus they switch frequently from the LISP top-level to the editor: this pro

cess must be as "user friendly" as possible. With the Pascal version of the Mentor system we cannot

satisfy such a constraint. In fact the interface between the LE...LISP environment and Mentor is quite

time consuming. As a consequence this environment has not been used as expected during the cod
ing of the Virtual Tree Processor.

We are convinced that the main reason for the failure of that first attempt of a LISP syntax directed

editor consists in the poor user interface. In the context of our project, experiments gained with the

Mentor LISP editor will be very useful to develop a more complete version with tools currently under

- 6 - Dl.A3

development. The kernel of the GIPE System is written in LE-LISP. Its interface is clear and
efficient. We believe that in this context, the interface difficulty will be resolved.

- 7 - Dl.A3

Appendix

Abstract Syntax of Le_Lisp and Ceyx

sorts
CEYX, SEXPR, MODE, FIELD, FIELDS, OGETQ, MODEL, NAME, DEFABBREV, SYMB, ASSIGN, SETQ,

STEP, ARGS, COND, CLAUSE, DEC-WITH, DECW, DEC..FLET, DECF, DEC.LET, DECL, FUNCTIONS,

LAMBDA...EXPR, ARG..LIST, SEXPRS, LL..LIST, ID

subsorts
CEYX>

OGETQ,DEFABBREV

SEXPR>
CEYX, SETQ, COND, SEXPRS, LAMBDA...EXPR, LL..LIST, SYMB

MODE>

SYMB
MODEL>

SYMB

NAME>
DEFABBREV, SYMB

SYMB>
ID

FUNCTIONS>

LAMBDA...EXPR

ARG..LIST>

LL..LIST, SYMB

functions
'Basic Lisp Objects'
id
number
string
II.list SEXPR*

vector SEXPR*

-+

-+

-+

-+

-+

'Evaluation Functions'

ID

SEXPR
SEXPR
LL..LIST

SEXPR

sexprs : SEXPR* -+ SEXPRS

quote : SEXPR -+ SEXPR

'Application Functions'
lambda ARG..LISTXSEXPRS
flambda ARG..LISTXSEXPRS

mlambda ARG..LISTXSEXPRS

dlambda SEXPR X SEXPRS
apply SEXPRXARG..LIST
fun call SEXPRXSEXPRS

-+ LAMBDA...EXPR
-+ LAMBDA...EXPR
-+ LAMBDA...EXPR
-+ FUNCTIONS
-+ SEXPR
-+ SEXPR

'Functions that modify the Environment'
HJ et DEC-LET X SEXPRS -+ SEXPR
slet DEC..LETX SEXPRS -+ SEXPR
letn SYMB XDEC..LETXSEXPRS -+ SEXPR
letv SEXPRXSEXPRXSEXPRS -+ SEXPR
letvq SEXPRXSEXPRXSEXPRS -+ SEXPR
dec_let DECL* -+ DEC-LET

decl SEXPRXSEXPR -+ DECL

'Definition Functions'

- 8 - D1.A3

defun SYMB XFUNCTIONS -+ SEXPR

flet DEC..FLET X SEXPRS -+ SEXPR

lLwith DEC-WITHXSEXPRS -+ SEXPR

dec_flet DECF* -+ DEC..FLET

decf SYMB XSEXPRXSEXPRS -+ DECF

dec_with DECW* -+ DEC_ WITH

de cw SYMBXSEXPRS -+ DECW

'Oontrol Functions'
if SEXPRX SEXPRS X SEXPRS -+ SEXPR

or SEXPR* -+ SEXPR

and SEXPR* -+ SEXPR

cond CLAUSE* -+ COND

selectq SEXPRXCOND -+ SEXPR

while SEXPRXSEXPRS -+ SEXPR

until SEXPRXSEXPRS -+ SEXPR

repeat SEXPRXSEXPRS -+ SEXPR

for ARGSXSEXPRS -+ SEXPR

clause SEXPRXSEXPRS -+ CLAUSE

args SYMB X STEP X SEXPRS -+ ARGS

step SEXPRXSEXPRXSEXPR -+ STEP

'Exception Functions'
tag SYMBXSEXPRS -+ SEXPR

untilexit SYMBXSEXPRS -+ SEXPR

lock SEXPRXSEXPRS -+ SEXPR

protect SEXPRXSEXPRS -+ SEXPR

'List Oonstructors'
mcons SEXPR* -+ SEXPR

mlist SEXPR* -+ SEXPR

append SEXPR* -+ SEXPR

'Assignment Functions'
setq ASSIGN* -+ SETQ

assign SEXPRXSEXPR -+ ASSIGN

synonymq SYMBXSYMB -+

'Oharacter Macros'
brace SYMB -+ SYMB

colon
sharp

SYMBXID -+ SYMB

SEXPR -+ SEXPR

'Oeyx Models'
defmodel NAMEXMODEL

defabbrev SYMBXSYMB

SEXPR

ceyx_field SYMBXMODELXSEXPR

ceyx_predicate SYMBXSEXPR

ceyx-list MODEL

ceyx_cons MODELXMODEL

ceyx_ vector MODEL*

'Oeyx Semantics'
omatchq SYMBXSEXPR -+

ogetq SYMB XSYMB XSEXPR -+

oputq OGETQXSEXPR -+

omakeq SYMBXSETQ -+

defaccess SYMBXSEXPRS -+

defmake SYMB X SYMB XLL..LIST -+

-+ CEYX

-+ DEFABBREV
-+ MODEL
-+ MODEL
-+ MODEL

-+ MODEL

-+ MODEL

CEYX

OGETQ

CEYX

CEYX

CEYX

CEYX

-9- D1.A3

'Oeyx Types'
deftype NAMEXMODEL - CEYX

tcons SYMBXSEXPR - CEYX
type SEXPR - CEYX
sendq SYMBXSEXPRS - CEYX

'Oeyx Structures'
defrecord NAMEXFIELDS - CEYX

deftrecord NAMEXFIELDS - CEYX
defclass NAMEXFIELDS - CEYX

deftclass NAMEXFIELDS - CEYX

deftree NAMEXFIELDS - CEYX

defcons NAMEXFIELDS - CEYX

fields FIELD+ - FIELDS

field MODEXSEXPR - FIELD
mode SYMBXMODEL - MODE

. 10. D1.A3

D2 - DEFINITION OF COMMON INTERFACES

1. INTRODUCTION 1

2. INTERFACES BETWEEN LISP AND PROLOG 2

3. INTERFACE BETWEEN LISP AND ASH 2

4. THE VIRTIJAL TREE PROCESSOR 2

5. REFERENCES 3

D2.Al - INTERFACES BETWEEN LISP AND PROLOG

1. INTRODUCTION 1

2. INTERFAONG LE.LISP WITH C 1

2. I. Calling C from within Le_Lisp 1

2.2. Calling Le_Lisp from within C 2

3. INTERFACING C-Prolog with Le_Lisp 6

3.I. Calling C-Prolog from within Le_Lisp 4

3.2. Calling Le_Lisp from within C-Prolog 4

4. REFERENCES 7

5. APPENDIX I: C-Le_Lisp structures 8

5.1. Type declarations 8

5.2. Symbolic types of parameters 9

5.3. Function declarations 9

6. APPENDIX II: AN EXAMPLE 10

6. I. Coercing Lisp trees to Prolog terms 10

6.2. Efficiency considerations 11

6.3. Coercion primitives for basic classes 13

D2.A2 - INTERFACES BETWEEN LISP AND ASH

1. INTRODUCTION 1

I. I. Selected examples 2

1.2. Pop-up menu implementation 3

1.2. Locator device 6

2. REFERENCES 6

3. APPENDIX: ASH 7

3.1. Ash constants 7

3.2. Ash <entry points 8

3.3. Ash demos JO

02

D2.A3 - THE vmTUAL TREE PROCESSOR

1. INTRODUCTION 1

1.1. Implementation techniques 2

1.2. Class schemata 3

1.3. Exceptions 3

1.4. Notations 4

1.5. Conversions 4

2. BASIC CLASSES 5

2.1. Class schema: universal 5

2.2. Class: class 6

2.3. Class: tagval 6

2.4. Class: any 7

2.5. Native Lisp classes 7

2.6. Other elementary classes 8

3. CONTEXTS 9

3.1. Class schema: context 9

3.2. Class: free context 11

4. TREE STRUCTURES 11

4.1. Class schema: arborescent 12

4.2. Class: tree 16

4.3. Class: subtree 17

4.4. Class: sublist 18

4.5. Class: gate 19

5. FORMALISMS AND ABSTRACT SYNTAX 20

5.1. Class: formalism 20

5.2. Class: operator 21

5.3. Class: phylum 22

5.4. Syntax checking 22

6. PATTERN MATCHING 22

7. ANNOTATIONS 22

8. INDEXES 23

8.1. Index of class schema functions 24

8.2. Index of class functions 25

8.3. General index of functions 28
~

8.4. Index of exceptions 29

9. TABLE OF CONTENTS 30

D2

GIPE: CEC 348/S/T2/l

version 2.1 December 1985

Definition of Common Interfaces

Deliverable D2 of Task T2

D. Clement (SEMA)
T. Despeyroux (INRIA)

M. Devin (INRIA)
L Ga/lot (JNRIA)
B. Lang (INRIA)

The present status of T2 is described in this document. It describes the interfaces for

each component of the Common Environment which have been listed in the Deliverable D 1.

The resulting Common Environment will integrate these tools.

This document is the final report for the Second Review of February 1986.

1. Introduction

To build the Common Environment we have not only to choose various software components

but also to define communication protocols between these components. Task T2 consists in design

ing the appropriate interfaces for each component.

In such a software design process, we could separate interfaces in at least two levels of dependen

cies:

the system level, describing how components are connected with the operating system in use.

the component level, describing how components are connected with other components.

The whole project being based on the use of the UNIX operating system, we are not concerned with

the first level. We are mostly concerned with the use in our interfaces of concepts provided by that

operating system. Hence, interfaces will be expressed in terms of how to use a given application or

how to make a more complete application from different parts.

The next aspect to deal with is whether or not we use an already existing component or a new one.

In the context of this project we have to consider both of these cases. Interface description will be of

two kinds:

a) Those involving existing software, such as LE.LISP, C-Prolog, and Ash, for which we emphasize

extensions made to their respective interfaces.

b) Those involving new components, such as the virtual tree processor, for which a more precise

description of the architecture will be given.

Some components, for example LE.LISP and C-Prolog, are already in wide use on a variety of

machines. On the other hand, we must pay more attention to window management, because there is

no well-accepted, portable window management subsystem. High resolution graphics devices are not

standardlsed in any way, so that we must insist on interfacing them through a virtual device

specification. The component that we have experimented with, ASH, which comes from Brown

University, is organised in that way. ASH per se knows only of a virtual device that has capabilities

- 1 - D2

such as clipping, line and polygon drawing etc ... An interface exists on the Sun workstation, on the

Apollo workstation. In spite of scarce documentation, it was possible to adapt it completely to the

SPS 7 bitmap device at INRIA. Clearly, these three bit-map displays have extremely different

hardware capabilities.

2. Interfaces between Lisp and Prolog

Experiments have shown that Prolog can be used as a target language for the compilation of

specifications. In the context of an interactive programming environment implemented in Lisp,

using Prolog as an inference system implies that Prolog may be used and accessed from within the

Lisp language, and in tum, that Lisp may be called from within the Prolog system. Furthermore, it

must be pointed out that one should be able to call both Lisp and Prolog recursively.

The description of an interface between LE-LISP [l] and C-Prolog [3), as well as some examples, may

be found in Annexe D2.A 1.

3. Interface between Lisp and Ash

Ash [2] is a low level screen handler for use by graphics applications. It provides facilities for

the user's programs to create and manipulate a number of virtual bitmaps on a raster display. It

provides a variety of operations on text or graphics by means of primitives: text output, drawing

lines and polygons (simple, dotted, dashed, ...), filling rectangles and so on. All these operations are

done with reasonable speed.

On the other hand LE....LISP provides both the interactive facilities of an interpreter and a device

independent input-output interface.

Ash is implemented in C. Once transported to any hardware running under UNIX, it is used as a

library of primitives to which user programs may be linked. Thus the simplest solution is to extend

the LE....LISP environment with Ash primitives. Then we obtain a new LE-LISP environment allowing

' the user to manipulate windows through Ash. The description of this environment may be found in

Annexe D2.A2.

4. The Virtual Tree Processor

The kernel of a modem Common Environment has to embody some fundamental principles.

It must be modular, extensible and portable. Furthermore it must be open to and from outer sys

tems, providing a uniform interface. In view of its use in a Programming Environment Generator it

must also be parameterised by the language to be manipulated and allow both concurrent manipula

tion of several languages and handling of multilingual documents.

The basic data structuring concepts to achieve these goals are:

Abstract tree representation of structured objects. All formalisms will be specified in terms of

their abstract syntax.

Annotations and gates. Two distinct mechanisms, respectively called annotations and gates will
allow mixing formalisms within a single document.

Metadescription of each formalism. The metalanguage for describing formalisms will be the

key to the modularity and extensibility of the system.

The detailed description of a virtual tree processor may be found in Annexe D2.A3.

- 2 - D2

5. References

[l] LEJJSP & CEYX

• J. Chailloux, "LE.Lisp de l'INRIA, Le Manuel de Reference" (version 15), INRIA Report (to
be published), February 1985.

• J.M. Hullot, "CEYX - Version 15, II: Programmer en CEYX," INRIA Technical Repor,t no. 45,
February 1985.

• G. Berry, B. Serlet, "CXYACC et LEX-KIT version 2.1," INRIA Report, March 1984.

[2] BWE

• J.N. Pato, S.P. Reiss, M.H. Brown, "The Brown workstation environment," Brown University
CS-84-03, October 1983.

[3] C-Prolog

• F. Pereira, D. Warren, D. Bowen, L. Byrd, L. Pereira, "C-Prolog User's Manual, Version 1.5,"
EdCAAD, Department of Architecture, University of Edinburgh, U.K.(1983).

[4] Mentor

• V. Donzeau-Gouge, B. Lang, B. Melese, "Practical Applications of a Syntax Directed Program
Manipulation Environment," Proceedings of the 7th Int. Conf. on Software Eng., Orlando
Florida, March 1984.

• B. Melese, V. Migot, D. Verove, "The Mentor - V5 Documentation," INRIA Technical Report
no. 43, January 1985.

. 3. D2

GIPE : CEC 348/S/1'2/2

version 2.1 December 1985

1. Introduction

Interfaces between LISP and Prolog

Deliverable D2.Al of Task T2

D. Clement (SEMA)
T. Despeyroux (INRIA)

This document describes the specification of an interface between LE....LisP and C-Prolog. The
proposal is based on understanding gained in experiments carried out with the Typol language on
Multics (HB68), interfacing Mentor [4] with Prolog/P, a Prolog system written in Pascal, then on
the SM90 (Bull SPS7), and interfacing Mentor with C-Prolog.

We will examine successively both sides of this interface.

2. Interfacing LE....Ll:sP with C

The need to call efficient C routines from LE....LISP is shared by many applications. Hence this
facility exists in LE....LISP and it is one of the attractive features of this system.

The need to invoke LE....LISP functions from C has been felt more recently, in particular within our
project. Close contact with the implementors of LE....LISP has allowed a common design to emerge
quickly.

2.1. Calling C from within LE__Usp

It is possible to import a C routine into the LE....LISP environment as a new LE....LISP function,
using the following syntax:

(DEFEXTERN <proc> (<types>) <result_ type>)

In this definition, the name <proc> of the C procedure must be prefixed by an underscore, due to
Unix conventions. Conversion between C objects and LE....LISP objects (and conversely) is t*en care
of automatically, so that portability is not impaired.

The types of the arguments, and the type of the result may be one of the following:

fix for integer.

float for reals.

string for strings.

vector for vectors of fix numbers.

eXtemal for external pointers.

pointer or t for LISP pointers.

- l - D2.Al

In general, the C routines that one may wish to call from LISP must be linked with the LE.LISP sys
tem. This may be done either statically or dynamically. When object modules produced by the C
compiler are linked statically with the LE.LISP system, the primitive defextern may be used for every
routine defined in these modules. This technique leads unfortunately to a plethora of specialised
instances of LE.LISP. So it it recommended to incorporate object modules dynamically with the
loader primitive:

(CLOAD <string>)

where the string argument contains names of object files. It is also possible to load a library, with
the convention of the C loader.

2.2. Calling LE.LISP from within C

To make it possible to call LE.LISP functions from within C, a group of three procedures was
designed and implemented. With the protocol adopted, recursive calls between the two systems,
LE...LISP and C, may be performed efficiently. Furthermore a C declaration of LE...LISP basic objects is
available. This provides a way to coerce LE...LISP objects into C objects.

2.2.1. Protocol description

To use the protocol, you must proceed as follows:

a) Get the symbolic address of a function with the

getsym(<string>);

primitive, where <string> is the LE...LISP name of the function. The same primitive may also be
used to get the address of a LE...LISP atom. The LISP function may or may not be compileq. i

b) Before calling the function its arguments must be pushed on top of the LE...LISP execution
stack. Arguments are pushed one at a time using:

pusharg(<type>, <val>);

where <val> is the value of an argument, and <type> its type.

c) Finally, the LE...LISP function may be called with the primitive

lispcall(<type>, <nargs>, <atom-addr>);

where <type> is the type of the resulting value, <nargs> is the number of arguments of the
LE...LISP function and <atom-addr> is a pointer to a LE...LISP atom. Typically, <atom-addr> is a
value returned by an earlier call to getsym.

As is the case with defextern, <type> may be one of the following basic types, for which automatic
conversions between C objects and LE.LISP objects are performed.

fix for fix numbers, 16-bits masked.

float for real numbers.

string for strings.

vector for vectors of fix numbers.

t for LE...LISP objects

2.2.2. Example

Th~ fibonacci function is a commonly used benchmark for LISP systems, and we give a
definition where computations alternate between a LE.LISP fibonacci function and a C fibonacci
function. The efficiency is reduced by a factor of 2, which seems quite reasonable.

- 2 - D2.Al

Definition of FIB (On the LE.LISP side)

(_cload "fib.o")
(defextern fib (fix) fix)

(de fib (number)
(if (eq 0 number)

;then return l

;else

the object module is dynamically linked
and defines the external fib function

(if (eq number)
;then call the external fib
(_fib 1)

;else alternating calls to fib and fib
(+ (fib (- number 1)) fib (- number 2)))

Definition of FIB (On the C side)

The types LL SYMBOL and LL OBJECT are defined in the include file lispcall.h, shown in
Appendix I. -

int fib(number)
int number;

LL SYMBOL I l f i b ;
LL OBJECT llres;

if (number~ 0) return l;
if (number~ l) return l;
!!fib= getsym("fib"); I* Get the address of the LLL1sP

fib function */

pusharg(LLT_FIX, number - I); /* Push an argument of type fix
number */

!Ires= lispcall(LLT_FIX, 1, !!fib);/* Call the LLL1sP fib
function with l parameter */

return ((int)llres + fib(number - 2));

Calls of getsym("fib") are not necessary, and a better solution would be to establish the link to the
LE....LisP function fib only once. Let us define an initialisation primitive:

lisp_ini t_fib(a)
LL_SYMBOL *a;

llfib =a;

Then we can use it inside the LE....LISP system to assign to "llfib" the current LE....LISP fibonacci func
tion. For example:

(defextern _lisp_init_fib (t) fix)
(_lisp_init_fib 'fib)

- 3 - 02.Al

3. Interfacing C-Prolog with LE.Lisp

The C-Prolog system was not designed to be used as a subroutine from other software, and we
had to modify it slightly. A careful study has confirmed that the implementation of C-Prolog can
be brought under control. It is clearly a well designed and flexible piece of software.

For our purposes, the main program of the C-Prolog system had to be modified:

I) to be able to ask for a clause resolution without going through the usual interactive top level
of C-Prolog.

2) to be able to define new special purpose predefined predicates

3.1. Calling C-Prolog from within LE.LISP

Prolog may be called from within LE-LISP like any other collection of C procedures. But at
this stage, we only require resolution of a clause in a somewhat "background-like" manner. But
inside a clause resolution it may be necessary to call a LE...LISP function that will in tum ask for a
Prolog resolution of another clause. To allow such a completely recursive mechanism, we use the
break level facility of the C-Prolog system. Each call of Prolog from LE...LISP increases tJ:iat level,
which is decreased upon returning to the caller.

When Prolog is called for the first time it builds its environment, reading a "startup" file, as usual.
Later calls will find Prolog exactly as it was left after returning from the previous call, so that C
Prolog and LE...LISP may be seen as two coroutines.

To communicate requests, we allow the C-Prolog top-level to look for messages in a memory
resident buffer, the so-called Prolog mailbox. Requests to Prolog may be sent to the mailbox, via
the primitive:

(mailtoprolog <string> <number>)

where the <string> argument contains the message, and the <number> is the length of the string.

Then an entry point in C-Prolog may be activated that:

fetches its goal from the Prolog mailbox rather than from some file.

silently resolves its goal, without a plethora of spurious messages.

then returns to its caller.

The full mechanism is encapsulated in one LE...LISP function:

({prolog}:send <string>)

The usual entry point, prolog, is still reachable and it will normally read its input from the standard
input, print the familiar messages on standard output etc. This "standard" mode may be very useful
for debugging. This mode may be obtained with the LE...LISP function:

(prolog)

which switches from LE-LISP to Prolog:
PROLOG PREDICATES. C-Prolog top-level
ha! t. We stop using Pro log, and return to LE_L1sr

3.2. Calling LE.Lisp from within C-Prolog

It is necessary to call LE-LISP from within Prolog, when evaluable predicates use functions
written in LE...LISP. These evaluable predicates call LE...LISP via a small collection of predefined predi
cates that give access to the LE-LISP interface. For efficiency reasons, we had to extend these general
purpose wedicates with more specialised predicates corresponding to functions of the Virtual Tree
Processor interface.

Large amounts of data may have to be transmitted between LISP and Prolog and this appears to be

- 4 - 02.Al

a rather common activity. One solution is to use the Prolog mailbox. Experience has shown this

method to be intolerably slow: the Prolog reader routine is not efficient enough. Instead, using a

collection of evaluable predicates, one improves transmission time by a factor of 100.

3.2.1. Basic predicates

The first collection of evaluable predicates corresponds to the standard interface between C

and LE-LISP.

1) getsym(arg1,arg2) < = > arg2 = getsym(argl)

argl must be an atom denoting a LE....LISP function, and arg2 a Prolog variable. In case of suc

cess arg2 will contain the same result as getsym(argl).

2) pusharg(type, val) < = > pusharg(type, val)

where val is a value of a type allowed by the C to LE-LISP interface, i.e. fix, float, string, vec

tor, and pointer.

3) lispcall(type, nargs, U _name, res) < = > res = lispcall(type, nargs, ll _name)

where res is a Prolog variable that will contain the result of the LE....LisP function.

3.2.2. Special purpose predicates

With the previous three predicates, it is possible to call any LE....LISP function from within C

Prolog. But as indicated before, we have implemented special purpose predicates for communication

between the Virtual Tree Processor and the C·Prolog system.

getvar(atom, value)

Gets the value of a LE....LISP variable atom. The result is in value.

Calling conditions: atom is a Prolog atom, value is a Prolog variable.

gettree(lang, tree, term)

Gets the V.T.P. tree denoted by tree, which is in language fang. The result will be the
corresponding Prolog term.

Calling conditions: fang is a Prolog atom, tree is the result of a previous call to getvar, and
term is a Prolog variable.

sendtree(lang, term, tree)

Builds the abstract tree corresponding to the Prolog term term, which is in language fang

within the LE....LISP environment. The resulting tree will be a reference to this abstract tree.

Calling conditions: fang is a Prolog atom, term is a Prolog term, and tree is a Prolog variable.

sendvar(lang, atom, tree)

Assigns the V.T.P. tree denoted by tree, which is in language fang, to the LE....LISP variable
named atom.

Calling conditions: fang and atom are Prolog atoms, and tree is the result of a previous call to
send tree.

3.2.3. Example

Let us assume that we have to define a new predicate to get information on all operators

belonging to a given language. This information is stored in a LE....LISP structure and is accessible via

a LE....LISP primitive {operators} :list-off, taking the name of the language as a parameter. The

correspopding C-Prolog predicate will be

operators-list-ojf(argl, arg2)

where argl is an atom and arg2 a Prolog variable that will receive the result of the call to
{operators} :list-off.

- 5 - D2.Al

In such a case there is only one way to exchange data between LF-L1sP and Prolog, by using the
mailbox. The LF...LISP function {operators} :list-off will send its result to the mailbox, using the mail
toprolog primitive.

We first define the auxiliary function call-lisp-list-off, using predefined predicates:

call-lisp-list-off(Lang) :
getsymb('#:operators:list-off', L1sPaddr),
type('LLT_STRING', S),
pusharg(S, Lang),
type('LLT_FIX', F),
lispcall(F, l, L1SPaddr, Res).

And now the definition of operators-list-off will be:

operators-list-off(Lang, Opers) :
atom(Lang),
var(Opers),
call-lisp-list-off(Lang),
see($mailbox),
read(Opers),
seen.

Puts messages in the mailbox

Checks on arguments types

send messages to the mailbox
that is read to get the
desired result

From the LF...LISP system one may invoke 'the Prolog resolution of the predicate by calling the
{prolog}:send function:

({prolog}:send ":-operators-list-off(pascal, Opers).")

- 6 - D2.Al

4. References

[1] LE.LISP & CEYX

• J. Chailloux, "LE-LISP de l'INRIA, Le Manuel de Reference" (version 15), INRIA Report,
February 1985.

• J.M. Hullot, "CEYX - Version 15, II: Programmer en CEYX," INRIA Technical Report no. 45,
February 1985.

• G. Berry, B. Serlet, "CXYACC et LEX-KIT version 2.1," INRIA Report, March 1984.

[2] C-Prolog

• F. Pereira, D. Warren, D. Bowen, L. Byrd, L. Pereira, "C-Prolog User's Manual, Version 1.5,"
EdCAAD, Department of Architecture, University of Edinburgh, U.K.(1983).

[3] Mentor

• V. Donzeau-Gouge, B. Lang, B. Melese, "Practical Applications of a Syntax Directed Program
Manipulation Environment," Proceedings of the 7th Int. Conf. on Software Eng., Orlando
Florida, March 1984.

• B. Melese, V. Migot, D. Verove, "The Mentor - V5 Documentation," INRIA Technical Report
no. 43, January 1985.

- 7 - D2.Al

5. APPENDIX I: C-LE...LlsP structures

We give below a complete listing of C declarations for every basic LE-LISP data type. These
declarations are included in the file lispcall.h which is provided with the C-LE..LISP interface.

5.1. TYPE DECLARATIONS

typedef int LL_FIX;

typedef double LL_FLOAT;

A LF-LisP object may be of type SYMBOL, CONS, STRING, VECTOR, FIX or FLOAT. We
would like to define the type of a LE..LISP object as a union of these types, but this is not possible in
the C language.

I*

typedef union
struct LL SYMBOL * 11 -
struct LL CXJNS * 11
struct LL STRING * 11 -
struct LL VECfOR * l l

LL FIX l I
LL FLOAT * l l

LL_OBJECT;
*I

typedef char *LL OBJECT;

struct LL_SYMBOL {
LL OBJECT II cval;
LL OBJECT ll_plist;
LL OBJECT ll_fval;
LL OBJECT ll_alink;
LL OBJECT ll_pkgc;
LL OBJECT ll_oval;

_symbol;
cons; -

_string;
vector; -
fix; -
float; -

char ll_ftype;
char ll_ptype;
short ll_pad;
LL OBJECT l l _pname;

} ;

s true t LL CXJNS

} ;

LL OBJECT ll car;
LL OBJECT ll_cdr;

struct LL_STRING {
struct {

struct LL STRING *ll_strarr;

} ;

in t
char
*ll_strobj;

struct LL VECfOR
struct{

strsize;
ll_strfil;

- 8 - D2.Al

} ;

struct LL_VECfOR *ll_vecarr;
int
LL OBJECT

} *ll_vecobj;

vecsize;
ll_vecfil;

5.2. SYMBOLIC TYPES OF PARAMETERS

#define LLT T 0 I* LE L1sr Object *I

#define LLT FIX I* Integer */

#define LLT FLOAT 2 I* Real *I

#define LLT STRING 3 I* String */

#define LLT VECTOR 4 I* Vector */

5.3. FUNCI10N DECLARATIONS

I* struct LL_SYMBOL *getsym (pname) char *pname; */

struct LL_SYMBOL *getsym();

I* void pusharg (ll_type, value) int ll_type; any value; */

void pusharg();

I* LL_OBJECT lispcall (ll_type, narg, symbol)
int ll_type, narg; struct LL SYMBOL *symbol; */

LL OBJECT lispcall();

- 9 - 02.Al

6. APPENDIX II: An example

We describe an example using the interface between C and LE.LISP to impl~ment a tree coer
cion primitive from LISP objects to Prolog terms. We use some primitives of the Virtual Tree Proces
sor described in Annexe D2.A3. We therefore also explain how to use some primitives of the Vir
tual Tree Processor interface.

6.1. Coercing LISP trees to Prolog tenns

At the present time, one of the most frequent operations in the environment we are building is
a coercion from Virtual Tree objects to Prolog terms. Basically this primitive does a tree traversal
and calls appropriate C-Prolog constructors on every node of the tree. A Prolog term being either an
atom or a functor, we use only two C-Prolog constructors:

({prolog}:lookup <string>) -> <entry>

returns the entry point associated with an atom. This entry point, external to the LE.LISP sys
tem, has the type t of the C-LILLisP interface.

({prolog}:apply <entry> <nargs> <entries>)-> <entry>

returns the entry point associated with a functor. The first parameter is the entry associated
with the name of the functor, the second one is the arity of the functor, and the last one is an
array or vector of entries associated to each sub-term.

Following the general principles of the Virtual Tree Processor, we defined the coercion primitive as
a new primitive, {tree} :prolog associated with class tree.

(de {tree}:prolog (tree)
(lets ((operator ({tree}:operator tree))

(node-name (catenate ({formalism}:name
({operator}:formalism operator))

"$"

({operator}:name operator)))
(vector (if (numberp ({operator}:arity operator))

(makearray ({operator}:arity operator) ())
(makearray 2 ())

)

)

) ; end if

(selectq ({operator}:arity operator)

)

(0 (classcall ({operator}:class operator) 'prolog tree)
) ; end of nullary operator
((+ *) ({tree}:list-prolog tree node-name vector)
) ; end of list+ or list* operator
(t ({tree}:node-prolog tree node-name vector)
) ; end of fixed arity operator

) ; end let
end of {tree}:prolog

- 10 - D2.Al

For trees of arbitrary arity, i.e. lists, we use an auxiliary primitive. The two functions {tree}:head

and {tree} :tail return respectively the first element of a list and the tail of a list.

(de {tree}:list-prolog (tree node-name vector)

(vset vector 0 ({tree}:prolog ({tree}:head tree)))

(if (eq 1 ({tree}:sons-number tree))

the list has only one element

(vset vector 1 ({prolog}:apply
({prolog}:lookup node-name) 1

(vector ({~rolog}:lookup "nil"))))

; else the list has more than one element

(vset vector 1 ({tree}:prolog ({tree}:tail tree)))

);endif
({prolog}:apply ({prolog}:lookup node-name) 2 vector)

);end {tree}:list-prolog

An auxiliary function for trees of fixed arity is :

(de {tree}:node-prolog (tree node-name vector)

(for (pos 0 1 (-1 ({tree}:arity tree)))

(vset vector pos ({tree}:prolog ({tree}:down tree pos)))

) ; end for
({prolog}:apply ({prolog}:lookup node-name)

({tree}:arity tree) vector)

);end {tree}:node-prolog

6.2. Efficiency considerations

Although the code for the {tree}:prolog function is transparent, some remarks are in order:

1) Using the LE.. . .LisP function catenate for building the name associated with an operator belong

ing to a formalism leads to the generation of strings in the LE-LISP string area. The garbage

collector will be called every time this area becomes full. This technique is undoubtedly waste

ful.

2) The use of the LE-LISP function makevector for getting a local vector leads also to frequent

calls of the garbage collector.

3) The use of primitives such as {tree}:down is not well suited to the writing of our coercion

function.

To obtain a faster version, we find a solution for each of the three previous problems.

1) Instead of using catenate, define an auxiliary C function which always uses the same string

area.

({prolog}:functor lang:<string> operator-name:<string>) -> <string>

2) Define a global vector of size N. N should correspond to the maximum arity of operators in a

formalism. All parameters to C functions are deposited in this global vector.

3) Use the general purpose {tree} :for-all-sons iterator.

Furthermore, the name of the formalism of a V.T.P tree obtained by ({tree}:formalism tree) is given

as a parameter to avoid recomputing it for each operator. If the type of a nullary operator is not a

symbol, string, integer, or singleton, the coercion function from objects of that type to Prolog terms

must be called (without the name of the current formalism, which may be different).

- 11 - D2.Al

(de {tree}:prolog (lang tree)
(let ((operator ({tree}:operator tree))

)

(selectq ({operator}:arity operator)

(0 (selectq ({operator}:class operator)
fast version of classcall

(symbol ({symbol}:prolog lang tree))

(string ({string}:prolog lang tree))

(integer ({integer}:prolog lang tree))

(singleton ({singleton}:prolog lang tree))

(t (classcall ({operator}:class operator)
'prolog tree))

);endselectq
) ; end of nullary operator

((+ *) ({tree}:list-prolog lang
tree
({prolog}:functor lang

({operator}:name operator)))

) ; end of list+ or list* operator

(t ({tree}:node-prolog lang ({operator}:arity operator)
tree
({prolog}:functor lang

({operator}:name operator))

end of fixed arity operator

) ; end I et
; end of {tree}:prolog

To build the Prolog term associated with a list, the list traversal has to be done backwards. The last

parameter of the general purpose function {tree} :for-all-sons is given as backward.

(de {tree}:list-prolog (lang tree node-name)

))

(let ((first 't)
(prev ())
(sl ())
(s2 ())

)

({tree}:for-all-sons tree
(lambda (son)

(setq sl ({tree}:prolog lang son))

(setq s2
(if first

({prolog}:apply node-name l {prolog}:nil)

prev))
(vset {prolog}:globalvector 0 sl)

(vset {prolog}:globalvector l s2)

(setq prev ({prolog}:apply node-name 2 {prolog}:globalvector))

(setq first nil)

backward)
prev

12 - D2.Al

For fixed arity trees, the size of the global vector must be greater than or equal to the arity of the
tree. Otherwise a local vector is used.

(de {tree}:node-prolog (lang arity tree node-name)
(let ((sO) (sl)

(count 0))
(if (le arity 3)

(progn
({tree}:for-all-sons tree

(lambda (son)
(selectq count

(0 (setq sO ({tree}:prolog lang son)))
(I (setq sl ({tree}:prolog lang son)))
(2 (vset {prolog}:globalvector 2 ({tree}:prolog lang son)))

)

(incr count)))
(vset {prolog}:globalvector 0 sO)
(vset {prolog}:globalvector I sl)
({prolog}:apply node-name arity {prolog}:globalvector)) ;end progn
else arity > 3
(setq sl (makevector arity ())) ; we use sl as local vector
({tree}:for-all-sons tree

(lambda (son)
(vset sl count ({tree}:prolog lang son))
(incr count)))

({prolog}:apply node-name arity sl)
);end if arity

);endlet
);end {tree}:node-prolog

6.3. Coercion primitives for basic classes

For every basic class of the Virtual Tree Processor, and ultimately for every user defined class, there
must exist a coercion primitive.

Oass Symbol

(de {symbol}:prolog (lang tree)
(ifn ({tree}:atom_value tree)

({prolog}:functor lang ({operator}:name ({tree}:operator tree)))
(vset {prolog}:globalvector 0 ({prolog}:lookup ({tree}:atom_value tree)))
({prolog}:apply ({prolog}:functor Jang

({operator}:name ({tree}:operator tree)))

{prolog}:globalvector)
);endifn

aass String

(de {string}:prolog (lang tree)
(if,(eq 0 (slength ({tree}:atom_value tree)))

({prolog}:functor lang ({operator}:name ({tree}:operator tree)))
(vset {prolog}:globalvector 0

({prolog}:lookup ({tree}:atom_value tree)))

13 - D2.Al

({prolog}:apply ({prolog}:functor lang
({operator}:name ({tree}:operator tree)))

{prolog}:globalvector)
);endif

aass Char

(de {char}:prolog (lang tree)
(if (eq 0 (slength ({tree}:atom_value tree)))

({prolog}:functor lang ({operator}:name ({tree}:operator tree)))
(vset {prolog}:globalvector 0

({prolog}:lookup ({tree}:atom_value tree)))
({prolog}:apply ({prolog}:functor lang

({operator}:name ({tree}:operator tree)))

{prolog}:globalvector)
);endif

aass Integer

(de {integer}:prolog (lang tree)
(vset {prolog}:globaJvector 0 ({proJog}:consint ({integer}:fix

({integer}:name ({tree}:atom_vaJue tree)))
))

({proJog}:appJy ({proJog}:functor lang
({operator}:name ({tree}:operator tree)))

{proJog}:gJobalvector)

Oass Fix

(de {fix}:proJog (Jang tree)
(vset {proJog}:gJobaJvector 0 ({proJog}:consint ({tree}:atom_vaJue tree)))
({proJog}:appJy ({proJog}:functor Jang

({operator}:name ({tree}:operator tree)))

{prolog}:globalvector)

aass Singleton

(de {singJeton}:proJog (Jang tree)
({proJog}:functor Jang ({operator}:name ({tree}:operator tree)))

14 . 02.Al

GIPE : CEC 348/S/1'2/3
version 2.1 December 1985

1. Introduction

Interfaces between LISP and Ash

Deliverable D2.A2 of Task T2

M. Devin (INRIA)

L Gallot (INRIA)

Ash provides its own interface [1], so that the situation is fairly typical. The first step is
accomplished by linking Ash and LE.LISP codes either with static linking or dynamic linking. Notice
that the use of static linking provides a less time consuming call of the whole system Ash-LE...LISP.
Then to realise an effective connection one has to map Ash entry points to LE...L1sP functions. This is
done with the DEF ASH primitive of LeL1sP (which uses a built-in primitive DEFEXTERN [2]).

Thus the DEFASH function is the essential part of our interface. Any call to DEFASH takes the
following form:

(DEFASH <name> (<typel> ... <typen>) <restype>)

where

<restype> is optional and should be omitted when the ASH primitive is a procedure.

<name> is the name of the entry point which is to be mapped. This entry point should not
begin with the four letters "_ASH". Those are provided automatically.

(<typl> ... <typn>) are N type descriptors, describing the type of the corresponding argu
ments of the primitive. If the primitive has no arguments this should be the empty list.

<restype> is the type of the result returned by the entry point.

The call returns the name of the LISP function mapping the C entry point. This name is a
symbol in the ash package. For example # :ash:create corresponds to the ASH entry point
ASH create.

Type descriptors can be chosen from among the following symbols:
- fix (for 16-bits fixnums)
- float (for reals)
- string
- vector (for vectors of fixnums)
- external (for external pointers)
- t (for LISP pointers).

- 1 - D2.A2

The correspondence between C-types and LISP descriptors is as follows:

LlsP descriptor
fix
float
string
vector
external
t

Ctype
int (but 16-bits masked)
double
char*
int * (elements are 16-bits masked)
char*, WINDOW*, (any pointer)
int *, (any pointer)

The external type descriptor will be used for objects that are outside the LISP world, such as WIN
DOW pointers returned by the ASHcreate primitive.

The t type descriptor will be used for LISP objects which must be given by reference to C routines
(see the ASHhit declaration below).

1.1. Selected examples

We explain below how to use DEFASH with the most important primitives. The complete list
of Ash primitives is given in the Appendix.

The windows are organised into a hierarchy, i.e. windows may have subwindows, and so forth.
Subwindows are displayed relative to their parents, but are otherwise independent.

To handle windows we have to create them. To represent the external view of a bitmap Ash defines
the data type ASH_ WINDOW and provides the routine to create such a window:

ASHcreate(parent_lx,parent_ by,lx,by,rx,ty ,border _id,flags) : <ASH_ WINDOW>

(DEFASH create (fix fix fix fix fix fix fix fix) external)

To place this window we have to give the location of its lower left-hand comer within its
parent window. This location will be at the point (parent lx,parent by) in the coordinate sys
tem of its parent window. The parameters lx, by, rx, and ty are the lower left-hand comer
and the upper right-hand comer coordinates in the coordinate system of the created window.

The border id parameter indicates what kind of border will be associated with the window.
(For example, a border of type BORDER NONE is an empty border.) Flags allow attaching
a given attribute to the window. (For example WINDOW VISIBLE will make the window
immediately visible.) The list of symbolic constants such as BORDER NONE and
WINDOW_ VISIBLE is given in the Appendix.

Once in the LE-LISP environment the following function call:

?{:create 10 500 0 400 400 0 :border none :window_visible)

={10 . 364)

will result in the display on the bitmap device of a window of 400*400 pixels located at the
point (10,500) of its parent (the previous current window). This new window becomes the
cummt window. The result (10 . 364) is just the LISP representation of an external pointer.

Many primitives use the notion of a current window. So another useful primitive makes the given
window the current window.

- 2 - D2.A2

ASHselect(window)

(DEFASH select (external))

This call defines the LISP function select which takes one external pointer as argument and
returns no significant result.

This function can be used in the following way:

?(setq f l
(:create 10 500 0 400 400 0 :border-none :window-visible))

=(10 . 364)

?(setq f2
(:create 100 100 0 50 400 0 :border-thin :window-visible))

=(10 . 452)

?(:select fl)

=1342

But we do not always know the top window on the screen at a given location. The routine ASHhit
returns the hittable top window at the coordinate (x,y) if such a window exists.

ASHhit(x,y,&window _ x,&window _y) : <ASH_ WINDOW>

(DEFASH bit (fix fix t t) external)

The parameters window_ x and window _y are pointers to locations. In case of success the
coordinates of the hit in the returned window are placed in the corresponding locations. The
LISP function needs quoted symbols here, whose value will be modified by the call.

For example:

?(:hit 100 200 'x 'y)

=(10 364)

?x

= 54

?y
= 62

Now we know how to create windows and select them. But we can also output something on them,

using for example ASHtext.

ASHtext(x,y ,text)

(DEFASH text (fix fix string))

The given text string will be output at the given coordinates (x,y) in the current window.

1.2. Pop-Up menu implementation

We give an example of an implementation in LE-LISP/CEYX of a Pop-Up menu with manipula
tion primitives.

- 3 - D2.A2

(defrecord button area action) a button is a sensitive area in a menu
an action is associated with it

(defrecord menu frame buttons-(List button)); a menu is a frame and a list
;of buttons

(defvar BUITON-HEIGHT 20)
(defvar MENU-WID1H 110)

button's height in a menu
button's width in a menu

(de {menu}:create (title button names button_actions)
(let((button_number (length button_names))) ; to compute the menu's height

(#:ash:push_window) push current window in the windows' stack
(#:ash:select(#:ash:inq_top)) select the screen
(let ((pop-up (omakeq menu))) create a new menu

({menu}:frame pop-up
(#:ash:create 0 0

0

new menu's frame
inmaterial position
left x

(* button number BUITON-HEIGHT)
MENU-WID1H

0

bottom y: menu's height
right x: menu's width
top y

#:ash:border window
logor

border style
attributes

))

#:ash:window invisible
#:ash:window_hit use)

keep the menu invisible
make the menu hi table

(#:ash:set window name title) title will appear in the band
at the top of the menu

(for (i 1 button number) create all buttons
a new button (let ((button (omakeq button)))

({button}:area button
(#:ash:sensitive area

1 (* i BUITON-HEIGHT)
(1- MENU-WID'IH)

a button is a
rectangle sensitive
area in the menu
bottom left

(* (- i 1) BUITON-HEIGHT)
1

))

right
top
invert when hit

({button}:action button (next! button actions))
({menu}:buttons pop-up ; add new button

(cons button ({menu}:buttons pop-up)) ; to list

(#:ash:center_text
(nextl button names) text string in button
I rectangle area
(I-(* i BUITON-HEIGHT)) to center
(I - MENU-WID'IH) butt on' s name
(+ I (* (- i I) BUITON-HEIGHT))

(#:ash:Iine 0 ; to separate the buttons

);endlet
) ; end for

(* BUITON-HEIGHT)
MENU-WIDIH
(* i BUITON-HEIGHT))

- 4 - D2.A2

(#:ash:pop_window)

pop-up)
) ; end let

get current window at the top of the
windows' stack
return the new menu

The "{menu}:create" function allows the user to create a pop-up menu. A menu is a window
and a set of buttons. Each button is associated with an action, which is invoked when the button is
selected. A pop-up menu is a menu that appears temporarily on the screen and then disappears.
The arguments of this function are:

the title string

the list of button names

the list of actions associated with the buttons.

The function creates a C£yx object, the type of which is "menu"; it is a record with two fields:

the frame field is an ASH WINDOW

the buttons field is the list of the created menu's buttons.

Each button consists of a rectangular area in the menu's window and an action. The function
returns the created menu, which remains invisible and will only appear when " {menu} :visible" is
called.

(de {menu}:visible (menu posx posy)
(let ((button_number

make menu visible at (posx, posy)

(length ({menu}:buttons menu))))
(#:ash:push_window)
(#:ash:select({menu}:frame menu))

how many buttons in the menu ?

push current window
select the menu's frame

(#:ash:view posx posy menu's position in the screen
0 (* button_number BUTTON-HEIGHf) MENU-WID111 0) ; menu's viewing area
(#:ash:visible l) to make the menu visible
(#:ash:pop_window)) ; get current window

); end

To make a pop-up menu visible on the screen one calls the function "{menu}:visible". Its
arguments are:

the menu one wants to make visible (it is the result of an earlier call of the {menu} :create
function).

the x and y coordinates on the screen for placing the menu's bottom left-hand point.

The menu will remain on the the screen until the user chooses a button in it or cancels the menu's
call. Suppose, for example, we are working on a system with a mouse. We can call the
{mouse}:visible function by pushing down the (a) button of the mouse in a given area of the
screen. The menu will appear at the location pointed to by the mouse. Then one can track the
mouse until its button is released and at that time call the {menu} :click function which detects
which (if any) button has been chosen and applies the action associated with it.

(de {menu}:click (menu posx posy) current menu and position on screen
(let ((hit_window

(#:ash:hit posx posy 0 0))) window hit at (posx,posy)
(if(equal hit_window ({menu}:frame menu)) the hit window is

the current menu ?

(let((hit button (#:ash:inq_sensitive)) which area is hit ?

- 5 - D2.A2

)

(I ({menu}:buttons menu))
(b I)

(while
(setq bi (nextl I))
(if(equal ({button}:area bi)

hi t_but ton)

menu' s but tons ' I is t

visit buttons' list
current button

is current button hit?

(funcall({button}:action bi)); if so: apply current
; buttons' action

); end

) ; end if
); endwhile

) ; end I et
); endif

) ; end I et
(#:ash:push_window)
(#:ash:select({menu}:frame menu))
(#:ash:visible 0)
(#:ash:pop_window)

The function {menu}:click is called with the following arguments

push current window
select current menu
make it invisible
pop current window

a menu (the latest pop-up menu appearing on the screen for example)

a location on the screen (the location of the mouse when its button has been released).

This function first decides if the given location lies inside the menu. If so, it then determines what
button is selected and applies the associated action. Finally, in all cases (whether the menu is
pointed to or not), the function makes the menu invisible.

1.3. Locator device

The locator device is managed by LE.LISP as a soft interrupt called each time the user clicks
the mouse, for example. In the present system this interrupt has to be raised by a physical action on
the locator device. This could be changed later on, however.

To handle the device the user has to define its own mouse function with two arguments: the location
pointed at and the button number. Here is a (strictly pedagogical) example:

(de mouse (location button)
(let ((x) (y))

(:select (:hit (car location) (cdr location) 'x 'y))

(:text x y "You hit me")))

2. References

[1] LRLISP & CEYX

• J. Chailloux, "LE....LISP de l'INRIA, Le Manuel de Reference" (version 15), INRIA Report (to
be published), February 1985.

• J.M. Hullot, "CEYX - Version 15, II: Programmer en CEYX," INRIA Technical Report no. 45,
February 1985.

[2] BWE

• J.N. Pato, S.P. Reiss, M.H. Brown, "The Brown workstation environment," Brown University
CS-84-03, October 1983.

- 6 - D2.A2

3. APPENDIX: ASH

We give below a complete listing of ASH constants and ASH entry points as declared in the
file defash.ll that is provided with the AshLE...L1sP system.

In order to use them one should only type
? (libload defash)
under the AshLE...L1sP top level.

We also provide some examples and demos that can be run with the function
? (ashdemo)

3.1. ASH CONSTANTS

3.1.1. WINDOW BORDERS

(defvar #:ash:border none -
(defvar #:ash:border thin -
(defvar #:ash:border window -
(defvar #:ash:border sensitive -
(defvar #:ash:border tab -
(defvar #:ash: border tabsense -
(defvar #:ash:border _flip

3.1.2. TYPES OF WINDOWS

(defvar #:ash:window visible

(defvar #:ash:window invisible

(defvar #:ash:window hit use -
(defvar #:ash:window hit _parent

(defvar #:ash:window frame

(defvar #:ash:window courteous

(defvar #:ash:window nosave

(defvar #:ash:window_dependent

(defvar #:ash:window_transparent

(defvar #:ash:window_independent

3.1.3. LINE STYLES

(defvar #:ash: sol idl 0)

(defvar #:ash:blank l)

(defvar #:ash: dotted 2)

(defvar #:ash:dashed 3)

(defvar #:ash:dotdash 4)

(defvar #:ash:double 5)

3.1.4. FILUNG MODES

(defva~ #:ash:solidO 10)

(defvar #:ash:patternO 20)

(defvar #:ash:patternl 21)

0)

I)

2)
3)

4)
5)

6)

#$1)
#$2)

#$4)

#$8)

#$10)

#$20)

#$40)
#$80)

#$100)

#$200)

- 7 - D2.A2

(defvar #:ash:pattern2 22)
(defvar #:ash:pattern3 23)
(defvar #:ash:pattern4 24)
(defvar #:ash:pattern5 25)
(defvar #:ash:pattern6 26)
(defvar #:ash:pattern7 27)
(defvar #:ash:pattern8 28)
(defvar #:ash:pattern9 29)
(defvar #:ash:hatchO 30)
(defvar #:ash:hatchl 31)
(defvar #:ash:hatch2 32)
(defvar #:ash:hatch3 33)
(defvar #:ash:hatch4 34)
(defvar #:ash:hatch5 35)
(defvar #:ash:hatch6 36)
(defvar #:ash:hatch7 37)
(defvar #:ash:hatch8 38)
(defvar #:ash:hatch9 39)

3.2. ASH ENTRY POINTS

All calls to DEFASH define functions in the ASH package. The definitions are in the same order as
in the ASH documentation.

(defash init (fix))
(defash trace (fix))
(defash push state ())
(defash pop_state ())
(defash create (fix fix fix fix fix fix fix fix) external)
(defash select (external))
(defash visible (fix))
(defash pop ())
(defash push ())
(defash uncover (fix fix))
(defash find_window (fix fix) external)
(defash inq_under (external fix fix) external)
(defash inq_rectangle (fix fix t t t t) external)
(defash inq_region_visible (external fix fix fix fix) fix)
(defash hitable (fix))
(defash hit (fix fix t t) external)
(defash hitwindow (external))
(defash map (external fix fix external t t))
(defash remove (external))
(defash view (fix fix fix fix fix fix))
(defash newview (external fix fix fix fix fix fix fix fix) external)
(defash newframe ())
(defash resize (fix fix fix fix))
(defash par_resize (fix fix fix fix fix fix))
(defash quickmove (fix))
(defash inq_size (fix t t t t))
(defash?inq_top () external)
(defash inq_window () external)
(defash inq_parent ())

- 8 - D2.A2

(defash inq_border size (fix t t t t))
(defash set_window_name (string))
(defash inq_window_name () string)
(defash set_user_data (t))
(defash inq_user_data () t)
(defash push_window ())
(defash pop_window ())
(defash line (fix fix fix fix))
(defash polyline (fix vector vector))
(defash point (fix fix))
(defash polypoint (fix vector vector))
(defash convex_polygon (fix vector vector))
(defash general_polygon (fix vector vector))
(defash rectangle (fix fix fix fix))
(defash round_rectangle (fix fix fix fix fix))
(defash box (fix fix fix fix))
(defash round_box (fix fix fix fix fix))
(defash circle (fix fix fix))
(defash filled_circle (fix fix fix))
(defash ellipse (fix fix fix fix))
(defash filled_ellipse (fix fix fix fix))
(defash clear ())
(defash text (fix fix string))
(defash center_text (string fix fix fix fix))
(defash fill (fix))
(defash line_style (fix))
(defash combination rule (fix))
(defash font (fix))
(defash clip (fix))
(defash clip_region (fix fix fix fix))
(defash inq_blt (fix fix fix fix fix fix) fix)
(defash bit (fix fix fix fix fix fix))
(defash zoom_blt (fix fix fix fix fix fix fix fix fix fix))

(defash read_pixels (fix fix fix fix external))
(defash write_pixels (fix fix fix fix external))
(defash save_bitmap (string))
(defash load_bitmap (string))
(defash source (external))
(defash loadfont (string) fix)
(defash inq_text_extent (string t t))
(defash inq_text_offset (string t t))
(defash inq_text_next (string t t))
(defash inq_font_info (string t t t string string string) fix)

(defash inq_font () fix)
(defash inq_fill () fix)
(defash inq_line_style () fix)
(defash inq_combination_rule (} fix)
(defash push drawinfo ())
(defash pop_draw_info ())
(defash copy_draw_info (external))
(defash cursor_move (fix fix))
(defaslr cursor (fix})
(defash cursor_load (fix))
(defash cursor restore ())
(defash inq_cursor (t) fix)

- 9 - D2.A2

(defash push_cursor (fix))
(defash pop_cursor ())
(defash cursor_define (fix fix fix fix fix fix))
(defash sensitive_area (fix fix fix fix fix) fix)
(defash sensitive_remove (fix))
(defash sensitive_remove_all ())
(defash inq_sensitive () fix)
(defash bell ())
(defash terminate ())

3.3. ASH DEMOS

Below we give the listing of some AshLE...LISP programs to show how to use ASH from within LISP.
Every identifier beginning with a colon is in the ASH package.

3.3.1. BITBLIT DEMO

(de :demo:blit ()
(let ((x 30) (y 30) (l 90) (pas 5) (maxpas 12))

(:demo:blit:init x y)
(repeat 4

(repeat 30 (:demo:blit:show x y (incr x pas) y))
(repeat 30 (:demo:blit:show x y x (i ncr y pas)))
(repeat 30 (:demo:blit:show x y (deer x pas) y))
(repeat 30 (:demo:blit:show x y x (deer y pas)))
(incr pas 2))))

(de :demo:bl it: ini t (x y)
(:combination_rule 0)
(:bit 0 (+ l maxpas maxpas) (+ 1 maxpas maxpas) 0

(- x maxpas) (+ y l maxpas))
(:fill 23)
(:combination_rule 3)
(:rectangle x y (+ x l) (+ y 1)))

(de :demo:blit:show (ox oy x y)
(:bit (-ox pas) (+ oy l pas) (+ox 1 pas) (- oy pas)

(- x pas) (+ y I pas)))

3.3.2. RECTANGLE FILLING DEMO

(de :demo:tunnel ()
(:combination_rule 3)
(let ((xl 210) (yl 175) (x2 750) (y2 525) (patt 20))

(:clear)
(wh i I e (and (< xl x2) (< yl y2))

(:fill (incr patt))
(:rectangle xl yl x2 y2)
(incr xl 20)

(incr yl 15)
(deer x2 20)
(deer y2 15))

- 10 - D2.A2

))

3.3.3. POLYUNES DEMO

(de :demo:lignes (s)
(:clear)
(:line_style s)
(let ((x (makevector 50 0))

(y (makevector 50 0))
(zx (makevector 3 0))
(zy (makevector 3 0)))

(vset x 0 0)
(vset y 0 350)
(for (i l l (subl (vlength x)))

(vset x (min (add (vref x (subl i)) (random 0 50))
I 024))

(vset y (rem (add (vref y 0) (random -50 51)) 789)))
(:polyline (vlength x) x y)
(repeat (quo (vlength x) 5)

(let ((i (mul 2 (random I (div (subl (vlength y)) 2)))))
(bltvector zx 0 x (subl i) 3)
(bltvector zy 0 y (subl i) 3)
(vset zy I

(rem (sub (vref zy I) (random 150 400)) 789))

(repeat 10
(vset zy I

(rem (add (vref zy I) (random 30 80)) 789))
(:polyline 3 zx zy))))))

3.3.4. RANDOM RECTANGLES AND BOXES DRAWING

(de :demo:rect (n type rule)
(repeat n

(:combination_rule rule)
(repeat 8

(let ((x (random -100 800))
(y (random 100 700)))

(repeat (random 3 7)
(let ((Ix (add x (random 0 50)))

(rx (add x (random 50 200)))
(ty (sub y (random 20 200))))

(cond ((eq type 'rectangle)
(:fill :patternO)
(:rectangle (sub Ix 5) (sub ty 5) (sub rx 5) y)
(:fill (random 21 38))
(:rectangle Ix ty rx y))

((eq type 'box)
(:box (add Ix 5) y (add rx 5) (sub ty 5))
(:box Ix y rx ty))))

(incr x (random 50 100)))))
(repeat 2 (repeat 32767))

(tycls)
(:combination_rule 3)))

- 11 • D2.A2

3.3.5. POLYLINES DRAWING

(de :demo:traits ()
(:push_window)

(let ((fl (progn (:select (:inq_top))
(:create 90 600 0 0 400 400 I I)))

(f2 (progn (:select (:inq_top))

(:create 440 650 0 0 400 400 2 1))))
(protect

(progn
(for (i 0 l 60)

(:select fl)
(:line 0 (* i 10) 400 (- 400 (* i 10)))
(:select f2)
(:line(* i 10) 0 (- 400 (* i 10)) 400))

(:center_text "Que Le ASH soit avec vous!"
50 200 350 220)

(repeat 6
(repeat 10000)
(:select fl)

(:pop)
(repeat 10000)
(:select f2)

(:pop)))
(:remove fl)
(:remove f2)
(:pop_ window))))

3.3.6. DEPENDENT WINDOWS, MOVING WINDOWS

(de :demo:coeur (pas)
(unless (fixp pas)

(syserror ':demo:coeur 'errnia pas))
(:push_window)
(let ((w (progn (:select (:inq_top))

(:create 100 600 0 0 400 400 2 1))))

(protect
(progn
(:set_ window_ name "LE-LtsP + ASH")

(for (i 30 30 400)
(: I i ne 0 i 400 i)
(:line i 0 i 400))

(:center text ''Matthieu +Laurence" 100 180 300 220)
(let ((x (:create 100 100 0 0 200 200 0 1)))

(protect
(progn
(for (i 0 5 205)

(:line 0 i 200 (+ 200 i))
(:line 0 i 200 (- 200 i)))

(let ((boutx 300) (bouty 300))

(let ((dx)(dy)(x IOO)(y 100))
(while t

(setq dx (random (- pas) (l+ pas))
dy (random (- pas) (I+ pas)))

- 12 - D2.A2

(while (<(add (abs dx) (abs dy)) pas)
(setq dx (random (- pas) (I+ pas))

dy (random (- pas) (I+ pas))))
(untilexit bump

(setq x (+ x dx)
y (+ y dy))

(cond
((<= x -50)
(setq x -50)
(exit bump))

((>= x (add boutx 50))
(setq x (add boutx 50))
(exit bump))

((<= y 0)

(setq y 0)

(exit bump))
((>= y bouty)
(setq y bouty)
(ex i t bump)))

(:view x y 50 50 150 150))))))
(:remove x))))

(:remove w)
(: pop_window))))

. 13 . D2.A2

preliminary

GIPE: CEC 348/R/1'2/2

version 2.1 February 1986

The Virtual Tree Processor

Deliverable D2.A3 of Task T2

B. Lang (INRJA)

1. INTRODUCTION

The organization of the Virtual Tree Processor (VTP) is object oriented, i.e. it is structured as
a collection of classes (in the Simula-67 or Smalltalk sense).

Each class is characterized by:

- an abstract domain of values (either pure values or modifiable objects).

- a collection of primitive functions and procedures operating on the values of the class, either
alone or in conjunction with values of other classes.

- a specification of an internal representation (in remanent or persistant memory) of the
values belonging to the class.

- a unique class name.

The internal representation in central memory of the values belonging to the class is not part
of the specification, and it may change from implementation to implementation. However, the exist
ing implementation in LE...LISP and CEYX will be sometimes mentioned since it shares some of the
abstract concepts and notations on which the specification was built (and remains very close to the
specification), and also as a basis for efficiency considerations.

The remanent representations of the values belonging to a class have to be part of the
specification of that class in order to preserve compatibility between distinct implementations of the
VTP. However, knowledge of these representations is needed only by implementors of a new VTP
implementation, and by users of the VTP who define new classes with remanent values. The
remanent representations for existing classes in the VTP will be described in a separate document,
together with the techniques to be used to define consistently the remanent representations for new
classes.

A class could be specified formally by any appropriate mathematical technique (e.g. abstract
algebras), but we have not attempted to do this here. Only an informal description in English is
given for each class (completed by its actual implementation in LE...LisP and CEYX).

The existence of two representations (central and remanent) of the values of a class implies the
implementation of two functions that perform the translation between these two representations (see
functions save and restore).

Although a textual representation of the values of each class is usually provided (cf. the func
tions name and write in class schema universal), it is more regarded as a convenience for developers
than as a standard since we do not wish to make assumptions about the user interface.

Th(: primitive functions provided for each class are usually very redundant. This is intended
both as a convenience for the user of the VTP and as a simple means of achieving a better code
efficiency. For example the function {tree}:change son is redundant with the combination of
{tree}:down and {tree}:replace, but the use of the former function is faster than the use of the latter

- l - D2.A3

preliminary

two. We hope to be able to provide means to handle automatically these efficiency problems in the

future, but this will require much more complex developments.

1.1. Implementation techniques

A section like this should not appear in a specification. However, the present specification has

been expressed in a notation that is close to the language being used for the existing implementation

of the VTP. We hope that this will make the specification more readily usable, and also easier to

read because of the small amount of new notations and conventions. It is also true that the poten

tial practical uses of the VTP are more apparent with some knowledge of its implementation.

The implementation of the VTP has been done in LE.LISP and CEYX. Knowledge of these two

languages is not strictly necessary to read this document, but it is nevertheless helpful (and it cannot

be dispensed with if one intends to actually use the VTP). Explanations are provided below concern

ing the notations that are unusual with respect to classical Lisp's.

The classes of the VTP are untagged CEYX classes, i.e. essentially a structure definition (the

central memory representation) and a collection of primitive functions placed in a LE.LISP package.

· For each class, the name of the associated LE.LISP package is the name of the class. Thus, fol

lowing the syntax of LE.LISP and CEYX, a function Joo defined for the class myclass is actually desig

nated by {myclass}.foo. The syntax of a function call is the traditional sy~tax of Lisp, for example:

({my class} : foo arg 1 arg2 arg3)

if { myclass} :foo takes three arguments. In this case, the first argument, if it exists, is expected to

belong to the class myclass, but this is not compulsory.

Classes are themselves values belonging to the class called class. The class of the value of a

variable xx may be itself a run-time value contained in a variable cc. To apply the function Joo

(which may be defined for many classes) to the value of xx, one may use the special function

{class }:call as follows:

({class} :call cc 'foo xx arg2 arg3)

If the current value of cc is the class called myclass, then the above call is equivalent to

({myclass}:foo xx arg2 arg3)

We note that, when using {class} :call, the name of the primitive function could itself be a computed

value, since it has to be quoted when given explicitly.

The CEYX definition of the central memory representation of the values belonging to a class is

not given here since it may be changed without notice. Thus users of the VTP should rely

exclusively on the functions and other primitives entities given in the present specification, for which

upward compatibility will be guaranteed (unless the contrary is explicitly mentioned).

The knowledgeable reader will remark that very little is used of the existing object oriented

facilities available in CEYX. In particular we do not use tagged objects, i.e. objects that carry their

class with them at run-time. The reason is that, although the systematic use of tagged objects is con

siderably easier and safer, it entails a space overhead (and to a lesser extent a time overhead) that

has been considered unacceptable due to the very large size of the objects we intend to manipulate

(e.g. the text of a complete program).

The user of the VTP must be able to determine from the context of its use, or from the way it

was computed, the class of any value manipulated. Possibly the class itself is computed and stored

in some location. For circumstances where tagged values are necessary, a special class tagval is pro

vided. A value of class tagval is essentially a pair consisting of a value belonging to any class and a

value repr~senting that class. The function Joo of its class may be applied to the untagged v:alue con

tained in the tagval value of a variable xx with the following call :

({tagval}:call 'foo xx argl arg2)

- 2 - D2.A3

preliminary

Thus any value of any class may be used both in untagged and in tagged form (see section on
class tagval for more details). This combination is not permitted by the standard CEYX constructions
at the time of this writing.

It may also be noted that the inheritance mechanisms of CEYX are not used (except may be as
an implementation device). In the specification and the use of the VTP, inheritance and subclassing
appear only as abstract concepts with class schemata (see below), but not as actual operational dev
ices.

1.2. Oass Schemata

In the realization of the VTP, we have chosen not to use concepts such as subclassing and
inheritance which are not yet cleanly defined and implemented in available languages. They are,
however1 useful concepts for the specification of the VTP since they offer a means of factorizing
common aspects of differents classes (though the factorization cannot be carried trivially into the
implementation). Thus we introduce for the purpose of this specification the concept of a class
schema.

. A class schema is abstractedly similar to a class, the main difference being the absence of a
specific implementation model. In fact a class schema may have several implementation models
available at the same time, each corresponding to a different class. A class is said to be an instance
of a class schema if it is an implementation model of the class schema.

Since the present specification is rather informal, we only mean by an implementation model
of a class schema a class that has all the primitive operations of the class schema, with the same
properties (informally) defined in English. Following the usually accepted terminology, we shall say
that an instance of a class schema inherits all primitives and properties of the class schema. A more
formal approach would also associate more formally defined properties (axioms) to both classes and
class schemata, and require the preservation of the properties through some appropriately defined
homomorphisms between them.

A class schema SI is a subclass of a class schema S2 if and only if all instances of SI are
instances of S2. We also say that S2 is a superclass of SI. We will also say that a class is a subclass
of a class schema if and only if it is an instance of that class schema.

We will sometimes keep in a class schema a primitive that, under the same name, has a some
what different (though related) behaviour in the various instances of the class schema. This is
merely to have an opportunity to underline the differences.

For each class specified in this document, we indicate under the heading "Superclasses:" the
class schemata of which it is an instance. The primitives already described in the class schemata are
not described again in the instance class, unless additional information specific to the instance class
is to be supplied.

1.3. Exceptions

Calls to the functions of the VTP may fail, for example when requesting a computation that is
not meaningful with the supplied data (e.g. requesting the first son of an atomic node of a tree), or
when requesting a modification of the manipulated structures that would cause them to become
inconsistent (e.g. a tree transformation not consistent with the syntax of the represented language).

Signaling and handling such failures is done via the LE. . .LISP exception primitives such as tag,
exit, lock and others.

A failure tag is associated to each such failure of the VTP functions. These tags are specified
in the present document, with the following two restrictions:

- the choice of tag names may change in future versions,

- the type of the value associated with the tag when an exception is raised, is not yet
specified.

- 3 - D2.A3

preliminary

These restrictions are motivated by the fact that the impact of the organization of exception
names is not yet explored fully enough to make a final commitment.

1.4. Notations

Each class or class schema is specified in a separate section of this document, which is devoted
exclusively to this class or class schema. Each such section has the title Oass or Oass schema, fol
lowed by the name of the class (schema) it specifies. The contents of the section describes (in
English) the role of the class, i.e. the intended abstrad domain, and the primitive functions (also
called semantic functions) defined for the class, unless they have already been completely specified
for a superclass. The specification of the internal representations in remanent memory of values
belonging to the class will be specified in a future document.

Class names are often enclosed in angle brackets (e.g. <a class>) when used alone, but the
brackets may be omitted when there is no ambiguity. A semantic function called Joo defined for the
class <a class> is denoted by the name of the class in braces, followed by a colon, followed the
name of the function, as in the following example:

. {a_class}:foo

However, within this specification only, the class prefix of a function name may be (and will
usually be) omitted within the section devoted to that class. A function name without class prefix
may either mean that the function is a semantic function of the class described in the current sec
tion, or that the function is a general utility function not attached to any class. The distinction will
always be clear from the context. The class prefixes are required when the VTP functions are used
in actual Lisp code (unless they are used by means of the function {class} :call).

A function description such as:

(foo al:<classl> a2:<class2> [a3:<class3>]) --> <class4>

specifies a function named Joo, or {a class }.Joo when it occurs in a section devoted to the
specification of class a class. This function takes two arguments belonging to classes <classl> and
<class2>, a third optional argument belonging to class <class3> and returns a result that belongs
to <class4>. The identifiers al:, a2: and a3: are formal names for the arguments, and have no
other role than helping to improve the readability of the specification. Optional arguments may be
specified between square brackets, usually at the end of the argument list. In any other position, an
optional argument that is omitted in a function call must be replaced by Q.

If the last formal argument is followed by three dots " ... ", it will indicate that any non-null
number of such arguments may be supplied in an actual call (see for example the function
{class }:call).

If the above specification of the functionJoo appears in a section devoted to class <a_class>,
it actually specifies a semantic function {a class}.foo of that class. If it appears in a section devoted
to a class schema, it specifies the semantic function for all class instances of that class schema. In
any other case, it just specifies a normal Lisp function not attached to any class, and does not
require a class prefix when used.

1.5. Conversions

To keep down the size of the terminology in the VTP, a function that may be considered as a
conversion function from a class <classl> to a class <class2> is usually denoted by
{ classl}:class2. A common example is the function name defined for all classes, that returns a
name, i.e. a <name> value, associated with each object of any class. Such a conversion function
may take additional arguments, usually indicating the context in which the conversion is to be done.
For example, the function {name }:operator converts a name into the operator bearing that name in
the language supplied as second argument.

- 4 - D2.A3

preliminary

An obvious conversion function from class class] to class class2 is often simply specified by
mentioning class2 after the heading "Standard conversion to:" at the beginning of the section
devoted to the specification of class I.

2. BASIC CLASSES

This section contains all basic classes on top of which the VTP is constructed. The class
schema universal describes the properties common to all classes. The class class· allows manipulation
of classes themselves as objects. The class tagval is used for run-time manipulation of values tagged
with their class. All other classes defined here are the usual elementary classes of value, with some
consideration for implementation and portability problems.

2.1. Oass schema: universal

This class schema covers all classes. Thus the primitives defined in this class schema should
exist for all classes to be defined. This will not be strictly true. All those primitives will be meaning
ful and implementable for all classes, but this implementation will be available only when deemed
practically useful.

(equal ul:<universal> u2:<universal>) --> <boolean>

Tests if the two arguments are equal. Thus equality has to be explicitly defined for each class.
Note that equality does not have to mean that both arguments are the same object. In particular, in
classes of non pure values that may be modified, two equal objects may become unequal when one
of them is modified.

(copy u:<universal>) --> <universal>

This function returns a copy of its argument. This copy must be equal to the argument in the
sense of the primitive function equal. For classes of pure values, i.e. objects which cannot be
modified, the function copy is the identity. When objects may be modified, the function copy returns
an equal but different object.

(name u:<universal>) --> <name>

Returns the <name> of the arguments. This notion is class dependent. For classes with
complex values, the result is often a <name> giving an abbreviated (incomplete) information about
the argument value. In some cases it may even be just the name of the class to which the value
belongs.

(write u:<universal>) --> <universal>

As a function, it is the identity. However it has the important side-effect of printing the value
of its argument, in a class dependent format, on the current text output channel.

(save f:<file-name> u:<universal>) --> <universal>

As a function, it returns its second argument u:. However it has the important side-effect of
storing this argument (in remanent internal representation, not in textual format) in the file desig
nated by the first argument f:. This destroys any information that may have been previously in that
file.

(restore !:<file-name> [p:<search-path>]) --> <universal>

The result is a value read from the file named f:, if the class of this value agrees with the class
qualifying the function restore. For example, the call ({tree}:restore 'mytree) must find a <tree>
value in the file named 'mytree'. Values retrieved with the function restore must have been stored in

- 5 - D2.A3

preliminary

the file (in remanent internal representation) with the function save. The optional argument p:
denotes a search-path to be used when identifying the file named f:. Search-paths may not have

been defined for all implementations.

The functions save and restore allow only one (possibly very complex) value to be stored in a

file. Other primitives are intended to allow storing several values in succession on the same file.

Higher level primitives for remanent objects are still very much in the research and design phase.

2.2. Oass: class

Superclasses: universal.

This is the class of class values. Each class used in the system is itself (described by) an object

belonging to the class <class>. Such an object may be dynamically computed and used. Applica
tion of a function according to a run-time computed class value for one of its arguments is per

fo~ed by the function {class} :call.

({name}:class n:<name>) --> <class>

Each <class> has a unique name associated with it. This name is returned by the function

name, or printed by the function write. The function {name }:class returns the class denoted by the

name n: passed as argument.

(call c:<class> f:<symbol> [v:<any> ...]) --> <any>

The function {class }:call applies the function named by the Lisp symbol f:, as defined for the

<class> c: to the subsequent list of arguments. The function f: must be a function that evaluates

its arguments (i.e. not a fexpr nor a macro in Lisp terminology).

Two classes play a special role in the VTP:

- the class <tagval> : its values are pairs consisting of a class value and a value belonging to

that class.

- the class <any>: it is a pseudo-class used to indicate that a value may belong to any class.

2.3. Oass: tagval

Superclasses: universal.

The values contained in class tagval are pairs composed of a <class> value and another value

belonging to that class. It allows run-time manipulation of values whose type cannot be determined

statically or from the computational context. The <class> tag is never tagval.

This class is very similar to the class free context, the main difference being that one cannot

change the components of a <tagval> value. However, the value component of a <tagval> value

may itself have its components modified when allowed by its class.

(make c:<class> v:<any>) --> <tagval>

This function creates a <tagval> value from its constituents. It is the user's responsibility to
ensure that the class of the value of the second argument v: is the value of the first argument c:. If

the value of c: is <tagval> then the result of the function is the value of the argument v:, since the

value component is never a <tagval> value.

(class tv:<tagval>) --> <class>

This function returns the <class> component of the argument tv:. The result is never tagval.

- 6 - D2.A3

preliminary

(value tv:<tagval>) --> <any>

1bis function returns the value that is tagged with its class in the argument tv:.

(call tv:<tagval> f:<symbol> [v:<any> ...]) --> <any>

1bis function calls the semantic function f: defined for the class which is the class component
of the first argument tv:. 1bis semantic function must take the value component of tv: as its first
argument (cf. {class} :call). Undefined behaviour will result when the function f: has not been so
defined.

When applicable, this is equivalent to

({class}:call ({tagval}:tag tv:) f: ({tagval}:value tv:) ...)

2.4. Oass: any

The class <any> is mainly used in the specification of some functions to indicate that the
effective class of some argument, or of the result, is dependent on the context of its use. 1bis is typi
cally the case for the result of the function {class} :call and for several primitive functions in the
class <tagval>.

The class value <any> may also be used effectively, when developing an application with the
VTP, to indicate that a class is left unspecified. Whenever the pseudo-class <any> is used to type a
function or any other entity, it is the VTP user's responsibility to know the actual class of the values
manipulated by any appropriate means, and to process these values accordingly.

Thus any value of any class may be considered of class any. Conversely, any value specified
to be of class any may be used as a value of another class under the programmer's responsibility.

No semantic function is associated with the class any itself. As a consequence, the function
{class}:cal/ may not be called with <any> as its first argument.

2.5. Native Lisp classes

Several classes are defined here that correspond to standard LE. .. .LISP data types. The role of
these "native" classes is to define smoothly the correspondence between native Lisp types and the
classes of the VTP, in particular the conversion functions, and to allow a well defined use of Lisp
literals. The mixing of Lisp concrete structures with the abstract classes of the VTP is necessary due
to the lack of a sufficient abstraction mechanism in the Lisp language itself.

Naturally, all standard LE....LisP functions for Lisp types may be used with values taken in the
corresponding VTP classes, without any class prefix. Prefixes must be used only for functions
defined in the present document.

2.5.1. Oass: symbol

Superclasses: universal.

These are the standard Lisp symbols recognized by the LE......LISP predicate function symbolp (cf.
name).

2.5.2. Oass: string

Superclasses: universal.

Standard conversion to: symbol, name, integer, number . .
1bis class contains the Lisp string values, recognized by the LE......LISP predicate function stringp.

- 7 - D2.A3

2.5.3. Oass: integer

Superclasses: universal.

Standard conversion to: number, string.

preliminary

This class contains the Lisp fixed precision integer values, recognized by the LLLISP predicate
functionfixp (cf. number).

2.5.4. Oass: character

Superclasses: universal.

Standard conversion to: string, symbol, name.

This class contains the Lisp character code values, i.e. all one character symbols as produced
by the LLL1sP function ascii.

2.5.5. Oass: boolean

· Superclasses: universal.

This class contains the usual logical values true and false. Following the Lisp convention, the
literal () may be used for false, and any other Lisp object to represent true.

2.6. Other elementary classes

This is a collection of elementary classes completing the "native" classes of LLLISP. Some of
them seem redundant with native classes: they have been introduced mainly to ensure independence
from the Le. . .L1sP implementation and should be preferred to the corresponding native class.

2.6.1. Oass: name

Superclasses: universal .

.Standard conversion to: symbol, string.

This class is similar to the native Lisp class symbol.

In the current implementation, these classes are identical. The intent of this new class is to
prepare for an implementation of names independent of the native symbol implementation, thus
avoiding the space overhead due to the role of symbols as identifiers in Lisp.

Lisp symbol literals and values may be supplied in place of names to the functions of the VTP.
However users of the VTP should be careful to appropriately use conversion functions in their own
code, so as to remain compatible with future implementation changes.

2.6.2. Oass: number

Superclasses: universal.

Standard conversion to: integer, string.

This class contains values corresponding to all the non-negative integers. They are not
intended for computation, but only to provide a syntactic representation for all integers, indepen
dently of any implementation limitation. Thus no arithmetic primitive functions are supplied. In a
future version this class shall be implemented with the arbitrary precision rational package of
LLLISP, aJ\d will then be usable for arithmetic computations.

- 8 - D2.A3

2.6.3. Oass: singleton

Superc/asses: universal.

preliminary

This class contains only one value, which is represented by any Lisp value. Its role is to allow
a uniform definitions. For example, the definition of 0-ary operators of a formalism requires the
specification of a class for associated values. When there is no significant associated value, the class
singleton is specified.

3. CONTEXTS

In the VTP, a context is a place within an object that may hold a modifiable value. The
<context> value must not be confused with the value it contains. For example, when considering
a subtree TI of a tree T, we may be interested in TI as a <tree> value, i.e. a tree in its own right,
or as a <subtree> value, i.e. the place in T which holds TI. The class <subtree> is an example of
the class schema <context>.

As a standard rule, any function that changes a value within a context returns the value that
was. formerly in that context. This rule, chosen to minimise accesses that may sometimes be expen
sive, is contrary to the usual Lisp rule of returning always the new value.

The role of contexts is essential in the VTP since its purpose is to provide a basis for a docu
ment and structure manipulation system, and thus to deal primarily with means of modifying those
documents and structures, i.e. of changing subparts within their context.

Contexts are also a way to control substructure sharing. For example a <tree> value has a
unique main context, which is the larger tree of which it is a subpart. This enforced uniqueness of
the main context guarantees that we do not create dagst. Other references to the same <tree>
value may be stored in secondary contexts.

3.1. Oass schema: context

The general primitives and properties of contexts are described by the class schema context.
Instances of this class schema include:

- the class <subtree> of positions of subtrees in surrounding trees.

- the class <annotation> of annotation positions within a tree, i.e. places that may hold a
value annotating a node (a subtree) of a tree.

- the class <gate> of the place within each atom (i.e. a <tree> leaf) that holds the value
associated with the atom.

- the class <sublist> of values denoting the position of a sublist within the list of the sons of
a list-node of a tree.

- the class <free_ context> used to create artificially a context for some values.

3.1.1. Creation and destruction of context values

Context values may be created in a variety of ways, depending on the kind (class) of the
objects in which they denote a value holder. In some cases, these objects may be modified in such a
way that some contexts cease to have a meaning. For example, a context may be a place in a list of
values with variable length. A new context is created when a new value is inserted in the list.
Changing a value in one place of the list is understood as changing the value contained in the
corresponding context. Removing a value from the list is understood as deleting the context that

t dag: directed acyclic graph
(trees may have shared subtrees)

- 9 - D2.A3

preliminary

contains that value. Then any reference to that context is no longer meaningful.

Destruction of a <context> may be a side-effect of some primitive function operating on the
object in which it is defined, or it may be explicitly required by a delete function. To test whether a
<context> is meaningful, one uses the function valid.

There are also <context> values that are always valid, i.e. meaningful, though they have no
actual existence. This may be the case when a context is actually created only when there is a 'use
ful' value to place in it, although it may validly be referenced as a context before then. Such a
<context> may remain valid, though without actual existence, even after being given as an argu
ment to the function delete.

(delete c:<context>) --> <any>

The exact effect of this function varies for each class instance of the class schema <context>.
It may range between:

- actual destruction of the <context> c:, making it an invalid <context> in the sense of
the function valid (e.g. <subtree> context associated with a list element).

- destruction of the value contained in c:, making it uninitialized, or equivalently removing
the context from actual to virtual existence. The <context>, however, remains a valid one.
In addition to the semantic uses of undefined values, virtualization of a context may also be
useful to reclaim its storage when it no longer contains a useful value (e.g. <annotation>
contexts).

- no effect at all, except maybe the raising of an exception if requested by the VTP user (e.g.
<gate> context).

(valid c:<context>) --> <boolean>

The result of this function is true if and only if c: is a meaningful context as explained above.

(actual c:<context>) --> <boolean>

The result of this function is true if the <context> c: actually exists. This always implies
that the <context> c: is valid.
Note: this function is only included tentatively in this version of the VTP and may be removed in
the future.

Any function other than valid or delete applied to an invalid <context> will cause the raising
of the exception invalid_context.

3.1.2. Reading or writing in a context

The purpose of a <context> is to contain a value. To each <context> is associated a
<class> which is the class of values that are permitted in this context.

(class c: <context>) --> <class>

This function returns the <class> of values permitted in the <context> c:.

(value c:<context>) --> <any>

This function returns the value currently contained in the <context> c:. This value belongs
to the class required by the context c:. If the context c: is valid but not actually created or initial
ized, the exception uninitialized_ context is raised.

(tagval c:"'context>) --> <tagval>

This function returns a <tagval> value, which is either the value returned by the function
value if its class is <tagval>, or this value tagged with its class otherwise. If the context c: is valid
but not actually created or initialized, the exception uninitialized_ context is raised.

- 10 - D2.A3

preliminary

(replace c:<context> v:<any> [k:<class>]) -->. <any>

Like the function value, this function returns the value previously contained in the <context>
c:. The result is undefined when c: had no previous actual existence, or had not been properly ini
tialized.
The second argument v: becomes the new value contained in the context c:. Both values must
belong to the class required by the context c:. The optional third argument k:, when present, must
indicate the class of the supplied value v:, and thus may play two roles:

- it allows conversion between tagged and untagged values, depending on v: and on the class
required by the context k:.

- it allows run-time check of the class correctness of the arguments supplied with respect to
the type required by the context k:.

3.2. aass: free context

Superclasses: universal, context.

Standard conversion to: tagval.

A free context is a context that is not within a larger structure and is created for the only pur
pose of containing a value. One main use of free contexts is to share a changing value between
different structures by accessing the value through this context.

Another use of free contexts is to artificially create a context in some circumstances. For
example, most <tree> values have a context which is their place in a larger tree. Some trees, not
being part of a larger one, have no such context. For uniformity it is sometimes convenient to
create artificially a context for these trees by means of a free_ context.

The class of values that may be contained in a free context is fixed when the free context is
created. This class may be <any> or <tagval>. - -

The class free context is very similar to the class tagval, the main difference being that one can
change the value placed in a free_ context.

(make c:<class> v:<any>) --> <free context>

This function creates a <tagval> value from its constituents. It is the user's responsibility to
ensure that the class of the value of the second argument v: is the value of the first argument c:.

The function delete is ineffective for free_ contexts.

The functions valid and actual always return true for free_ contexts.

4. TREE STRUCTURES

The intent of the VTP is to provide a structured representation of documents as labelled trees.
The specification of these tree structures is the object of the present chapter. This chapter makes
few assumptions about the syntactic constraints that must be obeyed when building or modifying
trees (only the distinction between atomic nodes - leaves - and other nodes is essential). The
definition and enforcement of syntactic constraints on labelled trees (abstract syntax) is the object of
the next chapter.

The aim of this separation, reflected in the implementation, is to leave open the possibility of
experimenting with different definitions of abstract syntax. It is also to allow manipulation of the
tree structures independently of any syntactic check.

- 11 - D2.A3

preliminary

4.1. Oass schema: arborescent

This class schema covers (is a super-class of) several actual classes corresponding to tree
structured objects, including <tree> <subtree> and <sublist>.

The functions available in this class schema are divided into several categories:

- local navigation

- modification of non-atomic nodes

- modification of list nodes

- access to, and modification of atomic nodes

- pattern matching

- conversion functions

- miscellaneous primitives

Modification primitives are used to change tree structures by insertion, deletion or replace
ment of tree subparts. A general convention is that these functions return any <tree> value that
they remove from its context (usually a surrounding tree).

In the description of these functions, for every argument t:<arborescent>, we use the expres
sion "<tree> value corresponding tot:" with the following meaning:

- when t: is a <tree> value: it means t: itself;

- when t: is a <subtree> value: it means the conversion of t: to a <tree> value, i.e.
({ subtree }:tree t:);

- when t: is a <sublist> value: it means a virtual (not actually existing) tree tt constructed
as follows:

* the root of tt is labelled by the same operator as the list in which t: is defined;

* the list elements in t: are sons of this root;

* the tree tt is considered a son of the list in which t: is defined in place of the elements
selected by t:.

When the interpretation of a semantic function is not obvious for a specific class instance of
the class schema arborescent, this semantic function is covered again in the section devoted to that
class instance.

4.1.1. Local navigation primitives

These primitives are used for explicit local motions in the tree structure. They do not modify
the structure and have no side-effect.

Whenever the requested motion is not possible, the exception navigation is raised.

(up t:<arborescent> n:<integer>) --> <arborescent>

Returns the <arborescent> value that is n: levels higher in the tree structure than the argu
ment t:. If there are not that many levels above t:, then the exception navigation is raised. A nega
tive argument n: requests the highest <arborescent> value above t:.

(down t: <arborescent> n: <integer>) --> <arborescent>

Returns the <arborescent> value that is the n:-th son of the argument t:. It raises the excep
tion navigation if there is no such son. Sons are numbered from the left, the first one having rank 1.
When the argument n: is negative, the numbering is taken from right to left and the absolute value
of n: is used.

- 12 - D2.A3

preliminary

(left t: <arborescent> n: <integer>) --> <arborescent>

Returns the <arborescent> value that is the n:-th brother on the left of the argument t:.
When n: is 0, the argument t: itself is returned. When n: is less than 0, the result is the brother
whose rank, counted from left to right, is the absolute value of n:. The exception navigation is raised
when there is no applicable brother.

(right t:<arborescent> n:<integer>) --> <arborescent>

Returns the <arborescent> value that is the n:-th brother on the right of the argument t:.
When n: is 0, the argument t: itself is returned. When n: is less than 0, the result is the brother
whose rank, counted from right to left, is the absolute value of n:. The exception navigation is raised
when there is no applicable brother.

(next t:<arborescent>) --> <tree>

Returns the <arborescent> value that follows the argument t: in a preorder traversal of the
tree containing t:. The exception navigation is raised when the <tree> value associated with t: is
the rightmost leaf of a tree that is not a subtree of a larger one.

4.1.2. Modification of non-atomic nodes

(change_ son t:<arborescent> tl:<tree> n:<integer>) --> <tree>

Places the argument tl: as the n:-th son of the tree-structure designated by t:. The result is the
<tree> value that was formerly in that position. The argument n: must be interpreted in the same
way as in the function down.

(replace t:<arborescent> tl:<tree>) --> <tree>

Returns the <tree> value corresponding to t:, after replacing it by the <tree> tl: within its
context.

(erase t: <arborescent>) --> <tree>

The <tree> value corresponding to the argument t: is returned as a result. It is replaced in
the tree structure by an atomic tree with the operator 'metavariable', standing for an undefined sub
tree. The name of the metavariable is that of the phylum corresponding to the location where the
sub-tree is being replaced. This function should not be confused with the functions delete and nul
lify.

(nullify t:<arborescent>) --> <tree>

The <tree> value corresponding to the argument t: is returned as a result. It is replaced in
the tree structure by a "null" tree constructed in a standard way from an operator belonging to the
intersection of the phylum associated with the position of the argument t: and of a special phylum
of null-tree operators specially defined for each formalism (precisely the phylum returned by the call
({formalism }:null tree operator ff:), where ff: is the formalism of the argument t:). If there is more
than one such operator, one of them is chosen according to an unspecified algorithm. The semantic
intent is to perform a replacement by a tree representing a null object. (The realization of this func
tionality may change slightly in the future.) This function should not be confused with the func
tions delete and erase.

4.1.3. Modification of list nodes

The following primitive functions are used to create or delete sons in list nodes of a tree. They
change the number of sons of these list nodes. Any attempt to use them that would result in chang
ing the number of sons of a fixed-arity node results in raising the exception not _a _list_ node.

- 13 - D2.A3

preliminary

When the corresponding checks are enabled and meaningful for the formalism used, any
attempt to delete the last son of a list that may not be empty results in raising the exception
non_ empty _list.

(adopt t:<arborescent> tl:<tree> n:<integer>) --> <tree>

Insert a new son tl: in the <tree> value corresponding tot: after the n:-th existing son oft:.
The head operator of t: must be a list operator. The argument n: must be interpreted as in the
function down. When n: is 0, tree tl: is inserted as the first son. The result returned is tl: (cf. pre

cede and follow).

(disown t:<arborescent> n:<integer>) --> <tree>

The head operator of the <tree> value corresponding to t: must be a list operator. The
position of the n:-th son of the head node in the list is deleted, thereby reducing the number of sons
by one. The result is the <tree> value of the son that has been removed (cf. delete).

(precede t:<arborescent> tl:<tree>) --> <tree>

Inserts tl: as an adjacent left brother of the <tree> value corresponding tot:, which must be
a son of a list node. The result returned is t 1: (cf. adopt and follow).

(follow t:<arborescent> tl:<tree>) --> <tree>

Inserts tl: as an adjacent right brother of the <tree> value corresponding to t:, which must
be a son of a list node. The result returned is tl: (cf. adopt and precede).

(delete t: <arborescent>) --> <tree>

The <tree> value corresponding to the argument t: must be the son of a list node of a tree
structure. The effect of the call is to remove the position of this son from the list, thereby reducing
the number of sons by one. The result is the <tree> value of the son that has been removed. This
function should not be confused with the functions erase and nullify (cf. disown).

4.1.4. Atomic nodes access and modification primitives

Access to the internal structure of atoms is done by considering them as gates, i.e. the context

values that contain the values associated with atoms. However, some (redundant) primitive func
tions are provided to access directly this internal structure.

The exception non atomic is raised when one of these functions is applied to an <arbores
cent> value that does not correspond to an atomic tree.

(gate t:<arborescent>) --> <gate>

The <tree> value corresponding to t: must be atomic, i.e. have a 0-ary operator. The result
of this conversion function is the <gate> value associated with this leaf node.

(atom_ class t: <arborescent>) --> <class>

This function is equivalent to the application of {gate }:class to the result of the conversion of
t: into a <gate> value.

(atom_value t:<arborescent>) --> <any>

This function is equivalent to the application of {gate}:value to the result of the conversion of
t: into a <gate> value.

(atom_ tagval t:<arborescent>) --> <tagval>

This function is equivalent to the application of {gate}:tagval to the result of the conversion of
t: into a <gate> value.

- 14 - D2.A3

preliminary

(atom _replace t:<arborescent> v:<any> [k:<class>]) --> <any>

This function is equivalent to the application of {gate}:replace to the result of the conversion
oft: into a <gate> value.

4.1.5. Pattern matching based primitives

These primitives are a collection of functions based on the use of tree pattern matching. In
particular, they include simple pattern matching, global search of a tree pattern, and application of
a function to all occurrences of a pattern. See the chapter on pattern matching for details about the
construction of tree schemata (i.e. tree patterns) and the pattern matching process itself.

Essentially, tree patterns are normal trees where some subtrees have been replaced by a special
atomic node called a metavariable. Each metavariable has a name. A tree is an instance of a tree
pattern if they are equal except for occurrences of metavariables in the pattern.

(match t:<arborescent> s:<tree> [st:<store>]) --> <boolean>

This function returns true if and only if the <tree> value corresponding to t: is an instance
of the tree pattern s:. The optional argument st: is a store function, i.e. a function that takes three
arguments

- a <name> value,

- another value in any class,

- a <class> value which must be the class of the second argument.

One could define the functional class <store> as follows:

<store> = <name> X <any> X <class> ~ <any>

The result of the functional argument st: is immaterial here. The normal aim of such a store
function is to replace in some environment the value associated with name (first argument) by the
value specified by the second argument. The third argument is necessary to dynamically keep track
of classes.

When the match succeeds, the function st: (if provided) is called once for each metavariable of
the patterns:. For each such call, the first argument is the name of the metavariable and the second
is (in simple cases) the part of the tree t: that is replaced by the metavariable ins:.

(find t:<arborescent> s:<tree> [st:<store>] [l:<tree>]) --> <arborescent>

This function searches the <tree> value tt associated with t: to find a part of it which is an
instance of the tree pattern s:. If such an instance is found, the optional argument st: is applied in
the same manner as described above with the match function. The search proceeds in prefix order.
If tt is itself a part of a larger tree, and if no instance of s: is found in tt, then the search continues
in the right brothers and uncles of tt in this larger tree. The prefix search may be limited by an
optional last argument l: which must be a <tree> value encountered in the search. The search is
terminated as soon as it finishes exploring part or all of that tree. To limit the search to the tree tt,
if is sufficient to give it as last the argument. The exception no match is raised when no instance of
the pattern is found within the assigned limits. -

(for all instances t:<arborescent> s:<tree> foo:<tree~any> [st:<store>]
[l:<tree>]) --> <boolean>

This function searches the <tree> value tt associated with t: to find all parts of it that are
instances of the tree patterns:. For each such an instance that is found, the optional argument st:
is applied as in the semantic function match, and then the function foo: is called with the found
instance of s: as an argument. The search proceeds in prefix order. If tt is itself a part of a larger
tree, then the search continues in the right brothers and uncles of tt in this larger tree. This prefix
search may be limited by an optional last argument 1: which must be a <tree> value encountered
in the search. The search is terminated as soon as it finishes exploring part or all of that tree. The

- 15 - D2.A3

preliminary

result of the call is true when an instance of s: is encountered and false otherwise.

, 4.1.6. Miscellaneous primitives

This category includes in particular a collection of conversiOn primitives.

(operator t:<arborescent>) --> <operator>

It returns the <operator> of the head node of the <tree> value corresponding tot:.

(son_phylum t:<arborescent> n:<integer>) --> <phylum>

It returns the <phylum> of the n:-th son position of the head operator of the <tree> value
corresponding tot:. It raises the exception operator_structure when there cannot be an n:-th son.

(formalism t: <arborescent>) --> <formalism>

It returns the <formalism> to which the head operator of the <tree> value corresponding
to t : belongs.

(for_all_sons t:<arborescent> foo:<arborescent-'>any>) --> <any>

This function is an iterator that applies the function foo: successively from left to right, to
each <arborescent> value corresponding to a son oft:. The result is that of the last call to foo:.

(length t: <arborescent>) --> <integer>

It returns the number of sons of the head node of the <tree> value corresponding tot:. It is
equal to the arity of the operator of that node for non-list nodes.

(rank t:<arborescent>) --> <integer>

This function returns the position of the <tree> value associated with t: in the list of its
father's sons. The first son has rank 1. When it does not have a father, the exception navigation is
raised.

(slice il:<integer> i2:<integer> t:<arborescent>) --> <sublist>

If the <tree> value corresponding to the argument t: has a list operator labelling its root,
then the result is the <sublist> value referencing the sublist of this root starting at the il :-th son
and ending at the i2:-th son. The result is an empty list when i2: is equal to (il: - 1). The result is
an undefined <sublist> value when i2: is less than (il: - 1), but no exception is raised. The excep
tion not a list node is raised if the label of the root of t: is not a list operator. The son indexes il:
and i2: may have the values (n + 1) and 0 respectively, where n is the length oft:, so as to be able
to slice empty lists. Otherwise, any value of the indexes that is not the rank of a son of t: causes
the raising of the exception navigation.

4.2. Oass: tree

Superclasses: universal, arborescent.

A tree is a recursive structure composed of labelled nodes with sons that are themselves trees,
except for so-called atomic nodes or leaves that have no sons, but have an associated value. A tree
may not be shared by two larger tree (no <lags), nor be a son of one of its own nodes. Thus a tree tt
usually occurs at most once within the context of a larger tree of which it is a part. The place where
it so occurs is a <subtree> value which is by definition the main context of the tree tt. When a
<tree> value is not part of a larger tree, it may have no main context. However, any <context>
value that may hold a tree may be assigned to it as its main context with the function
{tree }:set_context.

- 16 - D2.A3

preliminary

A <tree> value may have at most one main context, which is returned by applying to it the

function {tree }:context. However, the same <tree> value may be stored in other contexts that are

considered as secondary.

(equal tl:<tree> t2:<tree>) --> <boolean>

Two <tree> values are equal if and only if they correspond to trees having the same struc

ture and labels, with the same values associated with each corresponding atomic node. They may
not be the same tree, i.e. they do not remain equal when one of them is modified.

(copy t:<tree>) --> <tree>

This function returns a new <tree> value that is equal to its argument t:.

(make o:<operator> [t:<tree> ...]) --> <tree>

This function returns a <tree> value. The head operator (i.e. the label of the root) is the first

argument o:. The sons of the root are the subsequent arguments in the given order.

(tree t:<tree>) --> <tree>

This is the identity in class tree.

(subtree t:<tree>) --> <subtree>

This function returns the <subtree> value which is the place occupied by the argument t:
within a larger tree. The exception arborescent_conversion is raised if t: is not part of a larger tree.

(context t:<tree>) --> <any>

This function returns the maincontext of the <tree> value t:.

(set_ context t:<tree> c:<any> cl:<class>) --> <any>

The argument c: must be a <context> value that may contain a <tree> value. The last

argument cl: is the class of that context. The <tree> value t: is stored in that context, as with the

function replace, and the result is the same as if replace had been called. The additional effect is to

assign the context c: as the main context of tree t:.

(sublist t:<tree>) --> <any>

When t: is a <tree> value that is the son of a list node, the result is the sublist of that node

that contains only that tree. Otherwise the exception arborescent _conversion is raised.

4.3. aass: subtree

Superclasses: universal, context, arborescent.

A <subtree> value is the place that holds a subtree within a larger tree. It is a context.

Since a tree may occur only once in a larger tree (no dags), there is a natural conversion

between <tree> and <subtree> values. The difference between a <tree> value tl and the

corresponding <subtree> value st becomes apparent when the larger tree is modified by replacing

tl by another <tree> value t2 at the place indicated by st. After such a modification, the tree tl
no longer has an associated subtree, while the tree associated with st is now t2.

The distinction between trees and subtrees is also apparent in the semantic functions equal and

copy.

A <:subtree> value may become undefined if it denotes a place in a list node which is later
destroyed with the function delete. An undefined subtree never becomes defined again.

- 17 - D2.A3

preliminary

(equal tl:<subtree> t2:<subtree>) --> <boolean>

The result is true when tl: and t2: are the same <subtree> values, i.e. the same place in the
same tree. Thus their equality is not affected by tree modifications.

(copy t:<subtree>) --> <subtree>

This is an identity function in the class subtree.

(tree t:<subtree>) --> <tree>

This function returns the <tree> value occurring as subpart of a larger tree at the place
which is the value of the argument t:.

(subtree t:<subtree>) --> <subtree>

This is an identity function in the class subtree.

(sublist t:<subtree>) --> <any>

When t: is the place of a tree as son of a list node, the result is the sub list of that node that
contains only that tree. Otherwise the exception arborescent _conversion is raised.

(valid st:<subtree>) --> <boolean>

The result is true if the sub list st: is not undefined according to the above definition.

(actual st:<subtree>) --> <boolean>

This function gives the same result as the function valid.

4.4. Class: sublist

Superclasses: universal, context, arborescent.

A <sublist> value denotes a sequence of adjacent sons of a same node within a tree. A sub
list may be empty, either because it is created empty or because all sons within the sublist have been
destroyed with the function sons of the same list-node.

If a new son is created for a list-node between two sons of that node, any empty sublist that
may have existed between these same two sons becomes undefined, because one does not know
whether it is placed before or after the new son. An undefined sublist is essentially an empty list
with an undefined position. An undefined sublist may be made defined again when sons are
removed from the list in which it occurs (cf. function slice).

(equal sll:<sublist> sl2:<sublist>) --> <boolean>

The result is true when sll: and sl2: are the same <sublist> value, i.e. they denote the same
son positions for the same list node of the same tree. Thus their equality is not affected by tree
modifications.

(copy sl:<sublist>) --> <sublist>

This is an identity function in the class sublist.

(tree sl:<sublist>) --> <tree>

If the argument sl: is a sublist that contains exactly one son of a list node, then the result is
that son. Otherwise, the exception arborescent conversion is raised. . -

(subtree sl:<sublist>) --> <subtree>

If the argument sl: is a sub list that contains exactly one son of a list node, then the result is
the <subtree> value which is the place where that son occurs. Otherwise, the exception arbores-

- 18 - D2.A3

preliminary

cent conversion is raised.

(sublist t:<sublist>) --> <any>

This is an identity function in the class sublist.

(delete sl:<sublist>) --> <any>

The effect of this function is the same as if the function {tree}:delete had been applied to each

tree in the sublist.

(valid sl: <sublist>) --> <boolean>

The result is true if the sub list sl: is not undefined according to the above definition.

(actual sl:<sublist>) --> <boolean>

This function gives the same result as the function valid.

All navigation functions, and all son indexing, must be understood as if the <sublist> value

were an actual node, having the trees it contains as sons, and being itself a son of the parent list

node in their place. When the result is specified as <arborescent> in the specification of class

schema arborescent, it must be here a <tree> value.

We detail a few of these functions as examples:

(up sl:<sublist> n:<integer>) --> <tree>

Returns the <tree> value that is n: lsevel higher in the tree structure than the argument sl:.

When n: is equal to 1, the result is the <tree> value having as root the list node in the sons of

which the sublist sl: occurs. If there are not that many levels above sl:, then the exception naviga

tion is raised. A negative argument n: requests the highest <tree> value above sl:.

(down sl:<sublist> n:<integer>) --> <tree>

Returns the <tree> value that is the n:-th son of the sublist sl:. It raises the exception navi

gation if there is no such son. Sons are numbered from left to right, starting at 1. When the argu
ment n: is negative, the numbering is taken from right to left and the absolute value of n: is used.

(left sl:<sublist> n:<integer>) --> <tree>

Returns the <tree> value that is the n:-th brother on the left of the leftmost element of the

sublist sl:. When n: is 0, this leftmost element itself is returned. When the list is empty, the adja

cent list son on the right of the sublist replaces the leftmost element of the sublist. When n: is less

than 0, the result is the brother whose rank, counted from left to right, is the absolute value of n:.

The exception navigation is raised when there is no such brother.

4.5. aass: gate

Superclasses: universal, context.

A value of class <gate> corresponds to the place in a tree atom that holds the value associ

ated with that atom. It is a context. New <gate> values may be obtained only by application of

the function gate to an <arborescent> value corresponding to a tree atom. The function delete is

without effect on gates. The function valid always returns the value true.

- 19 - D2.A3

preliminary

5. FORMALISMS AND ABSTRACT SYNTAX

A formalism is a structure that defines a set of trees. In its most elementary form, a formalism
only specifies a collection of operators, i.e. of labels, to be used on the nodes of trees belonging to
the formalism. A distinction is made at least between atomic operators (reserved for leaf nodes)
and non-atomic operators (reserved for non-leaf nodes).

The set of trees in a given formalism may be restricted by an abstract syntax, a collection of
rules specifying the number of sons permitted to each node according to its label, and the labels
permitted on these sons. Furthermore, a <class> value must be associated with each atomic opera
tor to specify the class of the values to be associated with leaf nodes labelled with this operator.

In the VTP, the abstract syntax of a formalism is characterized by the definition of its opera
tors and phyla. A phylum is a set of operators belonging to the formalism. Each operator is charac
terized by its arity, i.e. the number of sons permitted to a node it labels, and by the phyla to which
the operators of these sons must belong.

Tree construction or manipulation primitives provided by the VTP may or may not check
correctness with respect to the abstract syntax. This checking may be enabled or disabled by the
user of the VTP.

Creation of a formalism should be done by compilation of a specification of the formalism in
a special purpose language. One such language, Metal, is already implemented, and its use is
presented in a separate document. Here we assume that all formalisms already exist in the user
environment, and may be referenced as needed (in fact they are automatically loaded from remanent
storage when referenced).

Primitive functions for the creation of formalisms shall be provided, to be used only for the
implementation of formalism specification languages and compilers. The use of these primitives for
dynamic modification of an existing formalism should be avoided so as to maintain compatibility
between the structures created within this formalism.

5.1. aass: formalism

Superclasses: universal.

A formalism is characterized by a name, a dialect and a version number. This is necessary to
allow coexistence in the same environment of different dialects of the 'same' formalism, and to dis
tinguish the level of evolution of each dialect. Dialects and versions are common with programming
languages, whose manipulation is one of the aims of the VTP.

The exception remanent_store is raised when a needed formalism is not found in the user's
environment.

({name}:formalism n:<name> [d:<name>] [v:<integer>]) --> <formalism>

This function returns the version v: of dialect d: of the <formalism> with name n:. The
arguments d: and v: are optional. A default value is taken for them when necessary, i.e. when there
are several versions or dialects.

(name f:<formalism>) --> <name>

The result is the name of <formalism> f:, without any indication of the version number or
dialect used.

(dialect f:<formalism>) --> <name>

The result is the name of the dialect of <formalism> f:.

- 20 - D2.A3

preliminary

(version f:<formalism>) --> <integer>

The result is the version number of <formalism> f:.

(for_all_operators f:<formalism> foo:<operator~any>) --> <any>

This function is an iterator that applies the function foo: to each <operator> belonging to
the <formalism> f:. The result is that of the last call to foo:. The order in which the operators are
processed is undefined and may change from call to call.

(for_all_phyla f:<formalism> foo:<phylum~any>) --> <any>

This function is an iterator that applies the function foo: to each <phylum> belonging to the
<formalism> f:. The result is that of the last call to foo:. The order in which the phyla are pro
cessed is undefined and may change from call to call.

5.2. Oass: operator

Superclasses: universal.

An operator is characterized by its name and by the formalism it belongs to. Operators are
statically defined by the formalism they belong to, and they are available whenever their formalism
is. Thus no primitive is supplied for the creation of new operators independently of the creation of
new formalisms.

({name}:operator n:<name> f:<formalism>) --> <operator>

This function returns the <operator> named n: in the <formalism> f:. The exception
unknown _operator is raised when there is no such operator.

(formalism o:<operator>) --> <formalism>

This function returns the <formalism> the operator o: belongs to.

(atomic o:<operator>) --> <boolean>

This function returns true if and only if the operator o: is atomic.

(arity o:<operator>) --> <arity>

This function returns the <arity> of the operator o:. The arity of its operator defines the
number of sons permitted to a tree node. An <arity> value is either a non-negative integer or one
of the Lisp symbols '* and '+ t. An integer arity indicates that a node must have exactly that
number of sons. The other two arities are for so-called list nodes (or arbitrary nodes) that may have
any number of sons ('*), or at least one son (' +).

(phylum o:<operator> n:<integer>) --> <phylum>

The result is the <phylum> of the permitted operators on the n:-th son of a tree node
labelled with the operator o:. The exception operator structure is raised when n: is negative or
greater than the arity of o:, or when o: is an atomic operator (i.e. its arity is zero).

(class o:<operator>) --> <class>

When o: is an atomic operator (i.e. its arity is zero), this function returns the <class> of
values that may be associated with tree leaves labelled by o:. Otherwise, the exception
operator _structure is raised.

'

t (quote*) and (quote +).

- 21 - D2.A3

(belongs o: <operator> p: <phylum>) --> <boolean>

The result is true if and only if the operator o: belongs to the phylum p:.

5.3. Oass: phylum

Superc/asses: universal.

preliminary

A phylum is characterized by its name and the formalism it belongs to. New phyla may be
dynamically created in a formalism, but this has no effect on the set of trees defined by the formal
ism since this is entirely controlled by operators. However, new phyla are sometimes useful to define
special families of trees and/ or operators within a formalism.

({name}:phylum n:<name> f:<formalism>) --> <phylum>

The result is the <phylum> of name n: in the formalism f:. The exception unknown _phylum

is raised when there is no such phylum.

(formalism p:<phylum>) --> <formalism>

The result is the <formalism> the <phylum> p: belongs to.

(contains p: <phylum> o: <operator>) --> <boolean>

The result is true when the <phylum> p: contains the <operator> o:. This function is the
same as { operator}:belongs with an inversed order of arguments.

(make n:<name> f:<formalism> <operator>-list) --> <phylum>

This function creates a new phylum named n: in formalism f:, containing precisely the opera
tors given as arguments after f:. Empty phyla are permitted.

(for_all_operators p:<phylum> foo:<operator~any>) --> <any>

This function is an iterator that applies the function foo: to each <operator> belonging to
the <phylum> p:. The result is that of the last call to foo:. The order in which the operators are
processed is undefined and may change from call to call.

5.4. Syntax checking

Structure constructing or modifying primitives may be used with or without checking that the
abstract syntax is respected. Appropriate means shall be provided to enable or disable these checks.

Similarly, means shall be provided to enable or disable dynamic type checking in cir
cumstances where static type checking is not possible.

[to be completed]

6. PATIERN-MATCIIlNG

[to be completed]

7. ANNOTATIONS

[to be completed]

- 22 - D2.A3

preliminary

8. INDEXES

This section contains several distinct indexes for the various kinds of entities introduced in the
present document:

An index of functions defined for each class schema. The function name is prefixed with the
name of the class between braces, in the usual notation.

An index of the functions available in the actual classes implemented. These functions are
normally defined in the section of this document describing the corresponding class. However,
for each class we also include all the functions inherited from its superclasses. All function
names are prefixed with the name of the class. The page references are either real references
in sections dealing explicitly with the class, or inherited references from sections describing a
superclass.

An index of all functions, without any class prefix. These functions are either functions
belonging to classes and can only be used with a proper class prefix, or general utility func
tions (still?) independent of any class and are to be used without a prefix.

An index of the exceptions that may be raised by the functions of the VTP.

The following font conventions for page references are used within the indexes:

boldface:
used for definitional references, i.e. pages where the indexed entity is defined. Boldface refer
ences are also used for other important occurrences (in boldface) of the entity name in the
text.

Boldface is also used for inherited definitional or important references. Inherited references
denote occurrences of entities belonging to a subclass, when they appear in the text in connec
tion with a superclass of this subclass, rather than in connection with the subclass itself.

roman:
used for all other references.

- 23 - D2.A3

preliminary

8.1. Index of class schema functions

{ arborescent}: adopt 14
{ arborescent}: atom class 14
{ arborescent} :atom - replace 15
{arborescent}:atom-tagval 14
(arborescent}:atom-value 14
{ arborescent} :change son 13
(arborescent}:delete -:-: 13, 14
{ arborescent} :disown 14
{arborescent}:down 12, 13, 14
{ arborescent} :erase 13, 14
{ arborescent} :find ... 15
{ arborescent} :follow ... 14
{ arborescent} :for all instances 15
(arborescent}:for-all-sons 16
{ arborescent} :formalism 16
{ arborescent} :gate ... 14
{ arborescent} :left .. 13
{ arborescent}:length ... 16
{ arborescent} :match ... 15
{ arborescent} :next .. 13
{ arborescent} : nullify 13, 14
{ arborescent} :operator 16
{ arborescent} :precede 14
{ arborescent}: rank 16
{ arborescent} :replace 13
{arborescent}:right ... 13
{ arborescent}: slice .. 16
{ arborescent} :son _phylum 16
{ arborescent} :up ... 12
{context} : actual 10
{context} :class .. 10
{context} :delete .. 10
{context}:replace .. 11
{context}: tagval .. 10
{context}:valid .. 10
{context} :value ... 10, 11
{universal} :copy .. 5
{universal} :equal .. 5
{universal} :name .. 5
{universal} :restore .. 5, 6
{universal}: save 5, 6
{universal} :write ... 5

- 24 - D2.A3

preliminary

8.2. Index of class functions {gate}:tagval ... 10, 14
{gate} :valid ... 10, 19
{gate}:value .. 10, 11, 14

{boolean} :copy .. 5 {gate} :write ... 5
{boolean} :equal ... 5 {integer}:copy ... 5
{boolean} :name .. 5 {integer}:equal .. 5
{boolean} :restore .. 5, 6 {integer} :name .. 5
{boolean}:save .. 5, 6 {integer} :restore ... 5, 6
{boolean} :write ... 5 {integer} : save ... 5, 6
{character} :copy ... 5 {integer}:write .. 5
{character}:equal .. 5 {name}:class ... 6
{character} :name .. 5 {name} :formalism .. 20
{character} :restore ... 5, 6 {name} :operator ... 21
{character}: save ... 5, 6 {name} :phylum .. 22
{character} :write .. 5 {name} :class ... 6
{class} :call .. 2, 4, 6, 7 {name}:copy ... 5
{class} :copy .. 5 {name}:equal .. 5
{class} :equal ... 5 {name} :name .. 5
{class} :name ... 5, 6 {name} :operator ... 4
{class} :restore ... 5, 6 {name} :restore .. 5, 6
{class}:save ... 5, 6 {name}:save .. 5, 6
{class} :write .. 5, 6 {name} :write ... 5
(formalism}:copy .. 5 {number}:copy .. 5
(formalism} :dialect ... 20 {number} :equal ... 5
(formalism} :equal ... 5 {number}:name ... 5
(formalism} :for all operators 21
(formalism}:for= allyhyla 21

{number} :restore .. 5, 6
{number}:save .. 5, 6

fformalism}:name .. 5, 20 {number} :write ... 5
(formalism}:restore .. 5, 6 {operator}: arity ... 21
(formalism} :save .. 5, 6 {operator}:atomic ... 21
(formalism} :version .. 21 {operator} : belongs .. 22
(formalism} :write ... 5 {operator} :class ... 21
(free context}:actual 10, 11
(free-context}:class .. 10
(free-context}:copy .. 5
(free-context}:delete 10, 11
(free-context}:equal ... 5
(free-context}:make ... 11
(free-context}:name ... 5
(free-context}:replace 11
(free-context}:restore 5, 6
(free-context}:save ... 5, 6
(free-context}:tagval .. 10
(free-context}:valid 10, 11
(free-context}:value 10, 11
(free-context}:write .. 5
{gate}:actual ... 10

{operator}:copy ... 5
{operator} :equal ... 5
{operator}:formalism 21
{operator} :name ... 5
{operator} :phylum .. ,. 21
{operator} : restore ... 5, 6
{operator}:save ... 5, 6
{operator} :write .. 5
{phylum} :contains .. 22
{phylum} :copy .. 5
{phylum}:equal ... 5
{phylum}:for all operators 22
{phylum} :formalism ... 22
{phylum} :make ... 22
{phylum}:name ... 5

{gate}:class ... 10, 14 {phylum} :restore ... 5, 6
{gate}:copy ... 5 {phylum} :save ... 5, 6
{gate} :delete ... 10, 19 {phylum} :write .. 5
{gate}:equal .. 5 {singleton}:copy .. 5
{gate}:gate .. 19 {singleton} : equal ... 5
{gate} :name .. 5 {singleton}:name ... 5
{gate}:replace ... 11, 15 {singleton} :restore .. 5, 6
{gate} :restore .. 5, 6 {singleton} : save .. 5, 6
{gate}:save .. 5, 6 {singleton} :write ... 5

- 25 - D2.A3

preliminary

{string}:copy ... 5 {subtree}:class ... 10
{string}:equal .. 5 {subtree}:copy .. 5, 17, 18
{string}:name .. 5 {subtree}:delete 10, 13, 14, 17
{string} :restore ... 5, 6 { subtree}: disown ... 14
{string} : save ... 5, 6 {subtree}:down 12, 13, 14
{string}:write .. 5 {subtree}:equal 5, 17, 18
{sub/ist}:actual ... 10, 19 {subtree}:erase .. 13, 14
{sublist}:adopt .. 14 { subtree} :find .. 15
{ sublist} :atom class ... 14
{sub list}: atom - replace 15
{sub/ist}:atom-tagval 14
{ sublist}: atom - value .. 14
{sub/ist}:change son .. 13
{ sublist} :class .. ~ .. 10

{ subtree} :follow .. 14
{ subtree} :for all instances 15
{subtree}:for-alCsons 16
{subtree}:formalism ... 16
{subtree}:gate .. 14
{ subtree} :left ... 13

{sublist}:copy ... 5, 18 { subtree} :length .. 16
{ sublist} :delete 10, 13, 14, 19 { subtree} :match .. 15
{sublist}:disown .. 14 {subtree}:name ... 5
{sublist}:down 12, 13, 14, 19 { subtree} :next ... 13
{sub/ist}:equal .. 5, 18 { subtree} :nullify ... 13, 14
{sublist}:erase ... 13, 14 { subtree} :operator .. 16
{ sublist} :find ... 15 { subtree} :precede .. 14
{sublist}:follow ... 14 { subtree} :rank ... 16
{sublist}:for all instances 15
{sublist}:for-alCsons 16
{sublist}:formalism ... 16

{ subtree} :replace .. 11, 13
{ subtree} :restore ... 5, 6
{ subtree} :right ... 13

{ sublist} :gate ... 14 {subtree}:save ... 5, 6
{sublist}:left .. 13, 19 {subtree}:slice ... 16
{sub/ist}:length ... 16 { subtree} :son _phylum 16
{sublist}:match ... 15 { subtree}: sub list .. 18
{sublist}:name ... 5 { subtree} :subtree .. 18
{sublist}:next ... 13 {sub tree} : tagval 10
{sub list} : nullify 13, 14 {sub tree}: tree 18
{sublist}:operator ... 16 { subtree} :up .. 12
{sublist}:precede ... 14 { subtree} :valid .. 10, 18
{sublist}:rank .. 16 { subtree} :value ... 10, 11
{sub/ist}:replace .. 11, 13 { subtree} :write .. 5
{sublist}:restore .. 5, 6 {symbol} :copy ... , ... 5
{sublist}:right .. 13 {symbol}:equal .. 5
{sublist}:save .. 5, 6 {symbol}:name .. 5
{sublist}:slice .. 16, 18 {symbol} :restore ... 5, 6
{ sublist} :son _phylum 16 {symbo/}:save ... 5, 6
{ sublist} :sublist ... 19 {symbol}:write .. 5
{sublist}:subtree .. 18 {tagval}:call .. 7
{ sublist} :tagval .. 10 {tagval}:class .. 6
{sublist}:tree .. 18 { tagval} :copy .. 5
{ sublist} :up ... 12, 19 {tagval}:equal ... 5
{sublist}:valid ... 10, 19 {tagval}:make ... 6
{ sublist} :value ... 10, 11 {tagval}:name ... 5
{ sublist} :write ... 5 {tagval}:restore ... 5, 6
{ subtree} :actual .. 10, 18 {tagval}:save ... 5, 6
{subtree}:adopt ... 14 {tagval}:value ... 7
{ subtree} :~tom class .. 14
{ subtree} :atom - replace 15
{subtree}:atom-tagval 14
{ subtree} :atom - value 14
{subtree}:change_son 13

{ tagval} :write .. 5
{tree} :adopt .. 14
{tree} :atom class .. 14
{tree}:atom-replace ... 15
{tree} :atom= tagval ... 14

- 26 - D2.A3

preliminary

{tree}:atom value .. 14
{tree} :change son .. 13
{tree}:context .. 17
{tree}:copy .. 5, 17
{tree}:delete ... 13, 14, 19
{tree}:disown .. 14
{tree}:down .. 12, 13, 14
{tree}:equal ... 5, 17
{tree}:erase ... 13, 14
{tree} :find ... 15
{tree}:follow ... 14
{tree}:for all instances 15
{tree}:for-all-sons .. 16
{tree} :foriii.alism ... 16
{tree}:gate ... 14
{tree}:left ... 13
{tree}:length .. 16
{tree}:make ... 17
{tree}:match .. 15
{tree}:name ... 5
{tree} :next ... 13
{tree}:nullify ... 13, 14
{tree}:operator .. 16
{tree} :precede ... 14
{tree} :rank .. 16
{tree}:replace .. 13, 17
{tree} :restore .. 5, 6
{tree}:right .. 13
{tree}:save ... 5, 6
{tree}:set context 16, 17
{tree}:slice ... 16
{tree} :son _phylum ... 16
{tree} :sublist ... 17
{tree} :subtree .. 17
{tree}:tree .. 17
{tree}:up .. 12
{tree}:write .. 5

- 27 - D2.A3

preliminary

8.3. General index of functions subtree ... 17, 18
tagval ... 10, 14
tree ... 17, 18

class .. 6 up ... 12, 19

formalism .. 20 valid .. 10, 11, 18, 19

operator ... 21 value .. 7, 10, 11, 14

phylum ... 22 version ... 21

actual .. 10, 11, 18, 19 write .. I, 5, 6

adopt .. 14

arity ·· 21
atom class ... 14
atom-replace ... 15
atom-tagval ... 14
atom - value .. 14

atomic .. 21
belongs ... 22
call ... 2, 4, 6, 7
change son .. 13
class .. :-:-... 6, 10, 14, 21

contains ... 22
context ... 17

copy ... 5, 17, 18
delete 10, 11, 13, 14, 17, 19
dialect .. 20

disown .. 14
down ... 12, 13, 14, 19
equal .. 5, 17, 18
erase ... 13, 14
find ... 15
follow ... 14
foo .. 4
for all instances 15
for-alC operators .. 21, 22

for=allyhyla ... 21
for all sons ... 16
formalism .. 16, 21, 22

gate .. 14, 19
left .. 13, 19
length ... 16
make .. 6, 11, 17, 22
match ... 15
name ... I, 4, 5, 6, 20
next .. 13
nullify 13, 14
operator ... 4, 16
phylum ... 21
precede ... 14
rank .. 16
replace ... 11, 13, 15, 17
restore I, 5, 6
right .. 13

save ···········;:··· I, 5, 6
set context .. 16, 17
slice .. 16, 18

son _phylum ... 16
sub list .. 17, 18, 19

- 28 - D2.A3

preliminary

8.4. Index of exceptions

arborescent conversion 17, 18
invalid context ... 10
navigation 12, 13, 16, 19
no match ... 15
non atomic .. 14
non-empty list ... 14

not a list node ·· 13, 16
operator Structure 16, 21
remanent store ... 20
uninitialiZed context 10

unknown operator ... 21
unknownyhylum ... 22

- 29 - D2.A3

preliminary

9. TABLE OF CONTENTS

1 INTRODUCTION .. .

1.1 Implementation techniques ······················:·· 2

1.2 Class Schemata ···'························ 3
1.3 Exceptions ... 3

1.4 Notations ... 4

1.5 Conversions ... 4

2 BASIC CLASSES .. 5

2.1 Class schema: universal ... 5

2.2 Class : class 6

2.3 Class: tagval ... 6

2.4 Class: any ... 7

2.5 Native Lisp classes ... 7

2.5.1 Class: symbol .. 7

2.5.2 Class: string... 7

2.5.3 Class: integer ... 8

2.5.4 Class: character ... 8

2.5.5 Class: boolean ... 8

2.6 Other elementary classes 8

2.6.1 Class: name ... 8

2.6.2 Class: number ... 8

2.6.3 Class: singleton ... 9

3 CONTEXTS .. 9

3.1 Class schema: context ... 9

3.1.1 Creation and destruction of context values ... 9

3.1.2 Reading or writing in a context .. 10

3.2 Class: free context ... 11

4 TREE STRUCTURES ... 11

4.1 Class schema: arborescent .. 12

4.1.l Local navigation primitives .. 12

4.1.2 Modification of non-atomic nodes .. 13

4.1.3 Modification of list nodes .. 13

4.1.4 Atomic nodes access and modification primitives ... 14

4.1.5 Pattern matching based primitives .. 15

4.1.6 Miscellaneous primitives .. 16

4.2 Class: tree ... 16

4.3 Class: subtree ... 17

4.4 Class: sublist ... 18

4.5 Class: gate ... 19

5 FORMALISMS AND ABSTRACT SYNTAX .. 20

5.1 Class: formalism .. 20

5.2 Class: operator ... 21
" 5.3 Class: phylum ... 22

5.4 Syntax checking.. 22

6 PATTERN-MATCHING.. 22

- 30 - D2.A3

preliminary

7 ANNOTATIONS.. 22

8 INDEXES .. 23

8.1 Index of class schema functions .. 24

8.2 Index of class functions .. 25

8.3 General index of functions ... 28

8.4 Index of exceptions ... 29

9 TABLE OF CONTENTS .. 30

- 31 - D2.A3

D4 - PROPOSAL FOR A LANGUAGE DEFINITION FORMALISM AND

SELECTION OF TEST CASES

1. INTRODUCTION I

2. THE LANGUAGE DEFINITION FORMALISM - GENERAL CONSIDERATIONS 2

3. ASSESSMENT OF THE VARIOUS FORMALISMS - GENERAL CONSIDERATIONS 3

REFERENCES 4

D4.A1 - USER DEFINABLE SYNTAX FOR SPECIFICATION LANGUAGES

1. INTRODUCTION I

2. ExiSTING FORMALISMS FOR THE DEFINITION OF SYNTAX 3

2.1. General 3

2.2. LEX and Y ACC 3

2.3. METAL 4

3. INFORl\tlAL DEFINITION OF THE SYNTAX FORMALISM 6

4. THREE EXAMPLES 8

4.1. Expressions 8

4.2. Statements I 0

4.3. Lexical constants 11

5. FORMAL DEFINITION OF SDF 13

5.1. Preliminary definitions 13

5.2. Overview of the SDF-definition 14

5.3. SDF0 : basic syntax definitions 14

5.4. SDF1
: syntax definitions with layout 19

5.5. SDF2
: syntax definitions with priorities 22

5.6. SDF3
: syntax definitions with subsorts 25

5.7. SDF4
: syntax definitions with lists 27

5.8. The concrete representation of SDF 29

5.9. Construction of a syntax definition for a given grammar 30

6. RELATION WITH LOGIC SPECIFICATIONS 33

6.1. Combination of SDF with other formalisms 33

6.2. Additional requirements due to composition of definitions 33

6.3. Interaction between syntax and semantics 34

6.4. Limitations and further work 34

REFERENCES 34
,c

Appendix: Syntax definition of Pascal 36

D4

- 2 -

D4.A2 - SPECIFICATIONS IN NATURAL SEMANTICS

1. INTRODUCTION AND OVERVIEW 1

2. A STANDARD EXAMPLE: ASPLE 3

2.1. Static semantics 4

2.2. Translation to deep abstract syntax 7

2.3. Dynamic semantics of ASPLE 9

2.4. A Simple Machine Language: SML 11

2.5. Translations of ASPLE to SML 14

3. A SIMPLE APPUCA TIVE LANGUAGE: Mini-ML 17

3.1. Static semantics 18

3.2. Dynamic semantics of Mini-ML 25

3.3. Dynamic semantics of CAM 27

3.4. Translation from Mini-ML to CAM 29

3.5. Equivalent semantics of Mini-ML 31

4. INHERITANCE BY TYPE INCLUSION: Mini-AMBER 32

4.1. Overview of the language 32

4.2. Type inclusion 33

4.3. Inheritance 34

4.4. Improvements 36

5. DYNAMIC SEMANTICS OF STANDARD ML 38

5.1. Dynamic semantics of ML 41

5.2. Exceptions 46

5.3. Matching of values 47

6. THE LANGUAGE ESTEREL 49

6.1. The simple Esterel type checker 51

6.2. Type checking of declarations 53

6.3. Type checking of statements 56

6.4. Type checking of expressions 59

6.5. Auxiliary predicates 61

REFERENCES 64

D4.A3 - PROPOSAL FOR AN ALGEBRAIC SEMANTICS DEFINITION

FORMALISM

1. INTRODUCTION 1

1.1. General features of the formalism 1

1.2. Semantics 1

D4

- 3 -

1.3. Compilation of algebraic definitions to executable code 2

1.4. Integration of the syntax definition formalism 2

2. THE SPECIFICATION FORMALISM 3

2.1. Syntax of the specification formalism 3

2.2. Lexical conventions 4

2.3. Various aspects of the specification formalism 4

2.4. Structure diagrams 6

3. SELECTION OF TEST CASES 9

3.1. Basic data types 9

3.2. Definition of a simple language and language system 9

3.3. A language with jumps 9

3.4. Type inference and higher order functions JO

3.5. Parallelism JO

4. ALGEBRAIC DEFINITION OF A SIMPLE LANGUAGE SYSTEM 11

4.1. Introduction 11

4.2. Informal definition of the language PICO 13

4.3. Elementary data types 15

4.4. Context-free parsing 32

4.5. Algebraic specification of PICO 46

5. UTERA TURE 85

APPENDIX A.1. Dependency hierarchy of modules 87

APPENDIX A.2. Declaration of sorts per module 88

APPENDIX A.3. Declaration of functions per module 89

APPENDIX A.4. Modules in which each fwtction is declared 91

D4

GIPE: CEC 348/A/T4/1
version 2 November 1985

Proposal for a Language Definition Formalism and
Selection of Test Cases

Deliverable D4 ofTask T4 - Second Review -

J. Heering (CW/)
G. Kahn (INRIA)

P. Klint (CW/)

The goal of ESPRIT Project 348 is to generate interactive programming environments
from formal language definitions. An initial version of the language definition formalism
required has been developed as part of Task T4 of the project. The scope of this formalism
and its various subformalisms is defined, and criteria for selecting examples to be used as
test cases for them are identified. Proposals for specific (sub)formalisms to be investigated
together with specific test cases are given in Annexes 04.Al, D4.A2, and D4.A3.

Actual specification of the selected examples falls outside the scope of Task T4 but will be
carried out under Task 17.

1. INTRODUCTION

The goal of ESPRIT Project 348 is to generate interactive programming environments from formal
language definitions. An initial version of the language definition formalism required has been
developed as part of Task T4 of the project. This formalism and its various subformalisms will be
tested and, if necessary, improved by applying them to a series of carefully selected examples. It is
expected that the outcome of this phase will be a satisfactory language definition formalism for
which a programming environment generator can be developed.

The purpose of this document and its aru:exes is twofold:

Definition of the scope of the language definition formalism and identification of the various
subformalisms required (§2). Proposals for specific (sub)formalisms to be investigated are
given in the annexes.

Identification of criteria for selecting examples that will be used as test cases for these
(sub)formalisms (§3). Proposals for specific test cases are given in the annexes.

Although the actual specification of the test cases is scheduled as Task T7 ("Specification of Selected
Examples") and falls outside the scope of this document, various examples will be given in the
annexes for the purpose of illustrating the formalisms proposed.

- I - D4

''

2. THE LANGUAGE DEFINTI10N FORMALISM - GENERAL CONSIDERATIONS

In principle, a formal language definition need only contain a specification of the syntax and seman
tics of the language to be defined. As far as the language proper is concerned this is sufficient. If,
however, a programming environment is to be derived from such a definition, it must contain addi
tional information so as to enable the environment generator to produce language-dependent pro
gramming tools like a syntax-directed editor, type-checker, evaluator, symbolic tracer, and file sys
tem.

We currently envisage language definitions consisting of three parts:

(A) A syntax section containing a definition of the abstract and concrete syntax (including lexical
syntax and pretty printing) of the language to be defined.
(From this part the programming environment generator has to derive a syntax-directed edi
tor.)

(B) A static constraints section containing a definition of the type constraints or static semantics of
the language.
(From this part the programming environment generator has to derive an incremental type
checker.)

(C) A definition of the (dynamic) semantics of the language.
(From this part the programming environment generator has to derive an incremental evalua
tor and, at a later stage, a compiler.)

Reflecting the above partitioning of language definitions, the overall language definition formalism
we currently have in mind has three well-defined subformalisms for describing respectively the syn
tax, static constraints, and semantics of a language. Preliminary proposals for three corresponding
subformalisms together with appropriate test cases are given respectively in Annexes D4.Al, D4.A2
and D4.A3. Of course, language definitions may require additional sections for other purposes, so
their partitioning into three sections and the corresponding partitioning of the overall formalism is
tentative at best.

The proposed subformalism for use in the syntax section of language definitions (Annexe D4.Al)
can be used for defining both the concrete and abstract syntax of a language. As for the other two
sections, INRIA is currently concentrating on the use of structural operational semantics (inference

rules) [PL081] for defining static constraints (Annexe D4.A2), while CWI is concentrating on alge
braic definition [KLA83, EM85] of semantics (Annexe D4.A3). It is not obvious, however, that
static constraints and s.emantics require different subformalisms, so INRIA will also investigate
definitions of semantics in terms of inference rules, while CWI will try its hand at algebraic
definition of static constraints. The theoretical relationship between inference rules and algebraic
semantics will be investigated as part of Task TI.

Language definitions can easily become quite large and will therefore have to be built from smaller
ones. A fourth subformalism will deal with composition of language definition modules and related
matters. A preliminary formalism for this purpose is proposed in Annexe D4.A3 as part of the
algebraic semantics definition subformalism. Because language definitions are composite objects
containing sections in at least two or three different subformalisms, combining them is difficult.
Work on composition of language definitions will be continued under Task TI.

The overall language definition formalism adopted must be such that a variety of programming and
application languages can be defined in it. It must also have good mathematical properties, i.e. its
semantics must be well understood and mathematically manageable. Perhaps the main question to
be answered is: Why not try denotational semantics for static constraints and/ or dynamic seman
tics? On the part of INRIA experience with denotational semantics has led to its rejection on the

following grounds:

For static semantics, denotational semantics equations are clumsy and the ways to specify tree
traversal are not very elegant.

It seems difficult to describe parallel constructs in the dynamic semantics of a language.

Use o(pure denotational semantics may lead to overspecification.

- 2 - D4

It must be noted that we are not yet convinced of the superiority of inference rules over denota
tional semantics in the case of dynamic semantics. The test cases will have to play a crucial role
here.

On the part of CWI modularisation of language definitions and reuse of language definition modules
have for some time been considered important issues. This has led to a "language definitions
viewed as abstract data types" viewpoint which in tum has led to the choice of algebraic semantics.
Although algebraic semantics may be viewed as a form of denotational semantics, for several rea
sons the associated style of specification is rather different from that used in ordinary denotational
semantics:

Much attention has been paid to the semantics of parameterised or otherwise incomplete alge
braic specification modules and to the composition of such modules into larger ones. Modular
specification is the rule rather than the exception. (This advantage is important but undoubt
edly only temporary, because the development of modular denotational semantics is only a
matter of time. Modular functional languages have recently started to appear.)

Algebraic semantics - at least in its present form - is a first-order formalism. Models of (com
plete) algebraic specifications are first-order algebras.

Apart from the fact that they have to be first-order, the equations allowed are more general
than those allowed in ordinary denotational semantics. (In principle this is an advantage, but
it may also lead to problems if the specifications have to be made executable.)

Whether algebraic semantics is powerful enough to satisfy our requirements remains to be seen.
The problems associated with making algebraic specifications operational will be circumvented by
imposing regularity restrictions on the (conditional) equations used [BK82]. If this is done, the
resulting specifications can very simply be transformed into confluent term rewriting systems. These
in tum can readily be compiled to PROLOG programs.

Our experiences with compiling general, i.e. unrestricted, algebraic specifications to term rewriting
systems by means of the Knuth-Bendix algorithm (see for instance [OH80]) have been largely nega
tive. The algorithm behaves unpredictably, often requires human intervention, and is totally unsuit
able for large scale applications. We believe this approach to compiling algebraic specifications to
be a dead end and do not intend to pursue it any further.

In its present state the overall formalism is not yet an integrated or homogeneous whole. Full
integration (Task T9) can only be attempted after more experience has been gained with the various
subformalisms by applying them to selected test cases (Task TI).

3. ASSESSMENT OF THE V AIDOUS FORMAIJSMS - GENERAL CONSIDERATIONS

The overall formalism and its subformalisms are not put to the test in isolation, but their behaviour
and performance will be compared informally with that of other formalisms with which we have
experience:

The syntax definition subformalism will be compared with the METAL language of the MEN
TOR system developed at INRIA [KLMM83], the LEX lexical scanner generator [JOH79] and
the Y ACC parser generator [LS79] (both of them widely used), and the syntax formalism used
in the OBJ2 system [FGJM85].

The merits of inference rules will be compared with those of algebraic semantics both in the
case of static constraints as well as dynamic semantics and the theoretical relationship between
both formalisms will be investigated.

Both inference rules and algebraic semantics will be compared with denotational semantics
and, in the case of static constraints, with attribute grammars.

The test cases selected must cover the range of language features we want to be able to model in
some reasonable way, which unfortunately is difficult to make precise. Special attention will be paid
to:

- 3 - D4

Syntax definition

Definition of lexical syntax and prettyprinting.

The acceptability of any limitations the syntax definition formalism may impose on the kind
of concrete to abstract syntax mappings that can be expressed in it.

Derivation of incremental parsers/prettyprinters from non-incremental definitions.

Static constraints

Definition of type constraints in case of overloading and/ or polymorphism.

Definition of type constraints in case of languages using declaration-less type-from-context
systems.

Derivation of incremental type checkers from non-incremental static constraints definitions.

Dynamic semantics

Modelling of error and exception handling.

Modelling of lazy evaluation.

Derivation of incremental evaluators from non-incremental dynamic semantics definitions.

Additional examples will have to test the modularisation component of the language definition for
malism. In this case the requirements to be met do not follow from language features to be
modelled, but from the flJlilctional requirements to be met by the environment generation system
itself.

Modularisation of language definitions

Control of exported names.

Parameterised modules.

Composition of modules containing sections in different formalisms.

See Annexe D4.A2 and Annexe D4.A3 for the test cases chosen. Many of the proposed test cases
not only test the semantics definition formalism but also the syntax definition formalism of Annexe
D4.Al.

REFERENCES
[BK82]

[EM85]

[FGJM85]

[JOH79]

[KLA83]

[KLMM83]

[LS79]

[OH80]

[PL081]

J.A. Bergstra & J.W. Klop, "Conditional rewrite rules: confiuency and termina
tion", Report IW 198/82, CWI, 1982.

H. Ehrig & B. Mahr, Fundamentals of Algebraic Specification, Vol. I, Equations
and Initial Semantics, Springer-Verlag, 1985.

K. Futatsugi, J.A. Goguen, J.P. Jouannaud & J. Meseguer, "Principles of
OBJ2", Conj Record 12th Ann. ACM Symp. Principles of Programming
Languages, ACM, 1985, pp. 52-66.

S.C. Johnson, "Y ACC: yet another compiler-compiler'', in: UNIX
Programmer's Manual, Vol. 2B, Bell Laboratories, 1979.

Klaeren, H.A., Algebraische Spezifikation, Springer-Verlag, 1983.

G. Kahn, B. Lang, B. Melese & E. Morcos, "METAL: a formalism to specify
formalisms", Science of Computer Programming, 3(1983), pp. 151-188.

M.E. Lesk & E. Schmidt, "LEX - A lexical analyzer generator'', in: UNIX
Programmer's Manual, Vol. 2B, Bell Laboratories, 1979.

D.C. Oppen & G. Huet, "Equations and rewrite rules", in: R. Book (ed.), For
mal Languages: Perspectives and Open Problems, Academic Press, 1980.

G.D. Plotkin, "A structural approach to operational semantics", DAIMI FN-
19, Computer Science Department, Aarhus University, Aarhus, Denmark, Sep
tember 1981.

. 4. D4

GIPE: CEC 348/ A/T4/9

version 4 26-05-86

User Definable Syntax for Specification Languages

Annexe D4.A1 of Deliverable D4

J. Heering (CW!)
P. Klint (CW!)

A new formalism is introduced (both informally and formally) which allows concrete

and abstract syntax of specification (and other) languages to be defined simultaneously. The

new formalism can be combined with a variety of specification languages. By doing so these

obtain fully general user definable syntax. Examples of this are given in the context of alge

braic specifications.

1. INTRODUCTION

It is common practice to make a distinction between the parse tree of a text in a programming
or specification language L and its abstract syntax tree. The parse tree is the derivation showing
how the text in question can be derived from the start symbol of the grammar of L. Its interior
nodes are non-terminals of the grammar and its leaves are the lexical tokens, such as keywords,
operator symbols, identifiers, etc., making up the original text. The abstract syntax tree. only con
tains the essential information describing the text; its interior nodes are the constructors (also called
operators) of the language and the direct descendants of each node are its operands. The leaves of
the abstract syntax tree are identifiers, integer constants, etc.

Let us first of all summarize the arguments for using some structured representation of pro
grams or specifications instead of the text itself:

(l) By using a structured representation one may abstract from the details of the text. A single
structured representation may correspond to a whole class of variations of a text obtained by
using "abstractly equivalent" but textually different lexical conventions or syntactic variations.

(2) Using the textual representation makes it difficult to give a semantics based on equations or
rewrite rules, because in this case all semantic actions have to be expressed as string transfor
mations. Such transformations easily become ambiguous, however: combinations of strings
arising during processing may (erroneously) be interpreted as language constructs not occur
ring in the original text. These ambiguities are avoided by using a bracketed (and thus struc
tured) representation of the text.

(3) A structured representation allows more efficient processing and editing since repeated parsing
of source text can be avoided.

Which structured representation should one use? The main arguments in favour of using
abstract syntax trees rather than parse trees are:

(I) Parse trees may contain chains of non-terminals that describe the intermediate steps necessary
for deriving a string from a certain non-terminal. These derivation chains are mostly redun
dant and do not concisely express the essential structure of the string.

(2) The syntactic definition of (a) priority and associativity of operators, and (b) syntactic itera
tion, i.e. lists of items, introduce non-terminals which need not appear in the abstract syntax
tree.

(3) The use of parser generators accepting restricted classes of grammars (e.g. LR(k), LALR(k),

- I - 04.Al

preliminary

LL(k), etc.) may also lead to the introduction of "unnecessary" non-terminals.

(4) For different semantic purposes one may wish to associate different abstract syntax trees with
one parse tree.

The major part of the translation between parse trees and abstract syntax trees is typically devoted
to the elimination of non-terminals introduced in (1), (2) and (3). This is one of the areas where we
attempt to improve upon existing formalisms.

In most compiler generation systems a distinction is made between the definition of lexical
syntax and construction rules for lexical tokens, the definition of context-free syntax, and the trans
lation rules from parse trees to abstract syntax trees. The formalisms used for defining them are
different (e.g. regular expressions vs. BNP-notation).

In this paper we develop a syntax definition formalism - called SDF - allowing the simul-
taneous definition of concrete and abstract syntax. It has the following properties:

(1) Abstract syntax trees are described by (first-order) signatures.

(2) The formalism implicitly defines a translation from abstract syntax trees to parse trees.

(3) The need for introducing "unnecessary" non-terminals is eliminated. This is achieved (a) by
using subsorts to eliminate undesirable derivation chains; (b) by using a separate mechanism
for defining priority and associativity of operators; (c) by not restricting the class of accept
able grammars.

(4) The concrete (i.e. lexical as well as context-free) syntax is described by the same formalism.

(5) It can be used to add user definable syntax to any formalism based on first-order signatures.

In section 2 we discuss related work and describe two existing syntax definition formalisms:
LEX/YACC and METAL. In section 3 we give an informal description of SDF. Next, in section
4, three simple examples are given using LEX/YACC, METAL and SDF. In section 5 we give a
formal definition of SDF. The combination of SDF with various specification formalisms is dis
cussed in section 6. A syntax definition of Pascal has been added as an appendix.

- 2 - D4.Al

preliminary

2. EXISTING FORMALISMS FOR THE DEFINITION OF SYNTAX

2.1. General

There have been many attempts to introduce user-definable syntax in programming languages.
These ideas have led to user-definable syntax for operators in various programming languages
(SNOBOL4, ALGOL68, PROLOG), and to several styles of macro-definitions (PL/I, LISP).
Around 1970, there was much interest in so-called extensible langu,ages (see, for instance, [IR70],
[WE70], [ST75]). The aim of this line of research was to define a small base language in combina
tion with a syntax definition mechanism. New language constructs could then be added to the base
language by defining their syntax and by describing their semantics in terms of the base language.
For various reasons, however, the overall goal of full syntactic and semantic language extensibility
has never been completely achieved. Although it does not have a syntactic extension mechanism1,

SMALLTALK-80 may be viewed as the most successful extensible language in existence.

A successful method for defining language constructs is by means of syntax-directed transla
tions ([IR61], [AU72]). LEX/YACC and METAL (to be discussed in the next sections) fall into this
category. The LITHE system [SAN82] combines syntax-directed translation with classes. Apart
from the fact that its lexical syntax is fixed, LITHE has user-definable concrete syntax2 • Notational
specifications [OD085] constitute an alternative to syntax-directed translations.

In Annexe D4.A3 we give a complete algebraic specification of syntax and semantics of a
small programming language. We are, however, not satisfied with the algebraic specification of syn
tax as presented there; this has motivated the development of SDF. Most closely related to our
work are the user-definable dist.fix operators in HOPE [BMS80] and OBJ2 [FGJM85]. Our notion
of subsorts was inspired by the subsort mechanism of OBJ2, but we use only a very restricted form
of subsorts.

The main contributions of our formalism are:

(1) Uniform definition of lexical and context-free syntax in combination with first-order signa
tures, and

(2) the use of subsorts to describe (and eliminate) derivati.:m chains that can be part of a parse
tree but should not appear in the corresponding abstract syntax tree.

2.2. LEX and Y ACC

LEX and Y ACC are, respectively, the scanner generator and parser generator of the UNIX
system. We restrict our description of LEX and Y ACC to two small examples, since both systems
have been described extensively in the literature ([JOH79], [LS79], [ASU.85]).

LEX uses regular expressions to describe the syntax of lexical tokens. These are compiled to
tables for a deterministic finite automaton. A typical LEX definition for recognizing identifiers is:

[a-zJ[a-z0-9]* { idCyytext); }

The left-hand part of this rule describes the syntax of identifiers (i.e. a letter followed by zero or
more letters or digits) and the right-hand part describes the action to be performed when the rule
matches. Actions are written in the C programming language. In the above example the procedure
id is called. The global variable yytext is part of the LEX/C interface and has as value a charac
ter array containing the text of the current token.

Y ACC uses a BNF-like notation for defining grammars and compiles these definitions to

I. SMALLTALK-72 - a predecessor of SMALLTALK-80 - did support syntactic extensibility: each class had
to parse the messages sent to it explicitly. This feature has been replaced by a more limited scheme of keyword
parameters in SMALLTALK-80. This new scheme results in more readable programs and allows a more efficient
implementation.
2. The user-defined syntax must be LR(I).

- 3 - D4.Al

preliminary

tables for a shift/reduce parser. Input grammars have to satisfy the LALR(l) restriction. A part of
a typical Y ACC definition for defining a while-statement is:

%token WHILE, DO, ENDWHILE

.•• definitions for expr and series

while : WHILE expr DO series ENDWHILE
{ $$ = mk-whileC $2, $4 >; }

The rule starting with %token declares the lexical tokens of the language (defined separately by
means of LEX definitions). The second rule defines the syntax for a while-statement. Its left-hand
part gives the syntax definition, and its right-hand part the code to be executed when a while
statement is recognized. The value of variable $i is the value returned by the i-th component of the
rule after matching. The action associated with the rule returns a value in variable $$.

Syntax rules may contain alternatives (which are separated by the I -operator) but there is no
mechanism for expressing repetition.

2.3. METAL

MET AL ([KLMM83]) is the syntax-definition formalism of the MENTOR system. A
language definition in MET AL specifies:

(1) the lexical tokens of the language,

(2) its context-free syntax, and

(3) its abstract syntax.

The MET AL compiler translates MET AL specifications to specifications for an ex1stmg
scanner/parser generator. The UNIX implementation of MENTOR, for instance, compiles METAL
into input for LEX and Y ACC.

The actual form of lexical tokens is left unspecified in METAL definitions: these are specified
in the language of the host scanner generator.

BNP-notation is used to define context-free syntax. A typical rule in a MET AL definition is:

<while_stat> ::=while <exp> do <series> od ;
whileC<exp>, <series>>

Non-terminals are between angle brackets and terminals are just written as they are. Characters in
terminals that conflict with the syntax notation have to be escaped (using a sharp sign). The for
malism allows neither alternation nor repetition in syntax rules.

The part of the rule following the semicolon specifies the abstract syntax tree to be built for
the construct. In the above example a tree labeled with the operator "while" with the abstract
trees corresponding to <exp> and <series> as descendants. The abstract syntax of a language is
defined by means of functions and sorts (or operators and phyla in METAL terminology). Functions
are the constructors of abstract syntax trees. Functions with fixed arity are allowed to have descen
dants of different sorts. Functions with arity zero are the leaves of the abstract tree and represent
the atoms of the language. Varyadic functions (also called list functions) are only allowed to have
descendants of the same sort.

A typical definition of a function is:

while ->EXP SERIES;

- 4 - D4.Al

preliminary

which defines the function while with two arguments which are respectively of sorts EXP and
SERIES. The output sort of functions is specified in a separate definition (see below). The formal
ism allows the definition of list functions:

series -> STATEMENT + ••• ;

This defines the function series which may have one or more arguments, all of sort STATEMENT.
Constructors for the empty list (e.g. ·series-list) and for prepending (e.g. series-pre) and
appending (e.g. series-post) items to an existing list are implicitly defined.

The output sorts of functions are defined by enumerating all functions with a given output
sort. For instance,

STATEMENT ::=assign if while;

specifies that the functions assign, if and whi Le all have STATEMENT as output sort. Hence, the
complete specification of the input and output sorts of, for instance, the function while expressed
in METAL is

while ->EXP SERIES
STATEMENT ::=assign if while;

which is equivalent to

while: EXPXSERIES ~STATEMENT

using conventional mathematical notation. In the sequel we will use # instead of X to indicate the
Carthesian product.

- 5 - D4.Al

preliminary

3. INFORMAL DESCRIPTION OF THE SYNTAX DEFINITION FORMALISM

One may characterize SDF roughly as "signatures with an integrated concrete syntax
definition mechanism": we start with signatures - being a convenient formalism for expressing
abstract syntax - and add to them mechanisms for defining lexical and context-free syntax.

Signatures consist of definitions of sorts, subsorts and constants and functions over these sorts
and subsorts (see, for instance, [KLA83], [EM85] and [GM85]). For each (sub)sort s in the signa
ture, we define the derived sorts s* and s +, denoting lists with elements of sort s (containing
respectively zero or more and one or more elements).

Two examples will illustrate the flavour of the signatures we have in mind. First, we define
the signature of the Booleans, with one sort BOOL, the constants true and false and the functions
not, or and or l (the or-function on lists of Booleans of arbitrary length):

module Booleans
begin

sorts BOOL

functions
true
false
not
or
orl

end Booleans

BOOL
BOOL # BOOL
BOOL*

-> BOOL
-> BOOL
-> BOOL
-> BOOL
-> BOOL

As a second example, we define the signature describing a stack of Booleans, with sorts STACK
(representing both empty and non-empty stacks) and NESTACK (representing non-empty stacks),
with constant empty-stack and with functions push and pop. The subsort relation between NES
TACK and STACK (denoted by <)is used to express the fact that push is defined on both empty and
non-empty stacks (and has a non-empty stack as a result), but that pop is only defined on non
empty stacks. Note that module Booleans, defined above, is imported in module Stack-of
Booleans.

module Stack-of-Booleans
begin

sorts STACK, NESTACK
subsorts NESTACK < STACK

functions
empty-stack
push

-> STACK
BOOL # STACK -> NESTACK

pop NEST ACK -> BOOL

imports Booleans

end Stack-of-Booleans

Signatures are extended with a mechanism for the definition of concrete syntax: definitions of .
constants and functions will not only have to specify their input and output sorts but also their con
crete syntactic form. This syntactic information is mixed with the description of the input sorts. In
this manner, the function definitions

- 6 - D4.AI

preliminary

BOOL v BOOL -> BOOL
push BOOL on STACK -> NESTACK

introduce, for instance, new syntactic forms for, respectively, the functions or and push. Instead
of the prefix terms or(true,false) and push<true,empty-stack) one should now write true
v false and push true on empty-stack, respectively. The complete syntax definition for
Stack-of-Booleans ~:

module Stack-of-Booleans
begin

sorts STACK, NESTACK
subsorts NESTACK < STACK

functions
empty-stack
push BOOL on STACK
pop NESTACK

imports Booleans

end Stack-of-Booleans

For derived sorts two forms are available:

-> STACK
-> NESTACK
-> BOOL

(I) s* (ors+) stands for zero or more (one or more) repetitions of s.

(2) {s t}* (or {s t}+) stands for zero or more (one or more) repetitions of s separated by the
symbol t.

Several other aspects of the concrete syntactic form of functions may be defined:

(1) The priority of a function relative to other functions. The usual priorities of the arithmetic
functions + (addition), - (subtraction), * (multiplication), I (division) and exp (exponentia
tion) can, for instance, be defined by the following priority declaration:

priority (+, -> < <*, /) < exp

(2) If the syntactic representation of a function may be surrounded by parentheses (in order to
change its priority), the attribute par is added to its definition.

(3) If a function is associative the attribute assoc is added to its definition.

(4) If the syntactic form of a function is part of the lexical syntax, the attribute Lex is added to
its definition. In this case, no layout symbols are allowed between the constituents of its syn
tactic representation.

In sections 4 and 5 we give more examples of the syntax definition formalism.

- 7 - D4.Al

preliminary

4. THREE EXAMPLES

Three examples are now given to illustrate the descriptive power of our formalism. They

demonstrate the syntax definition of expressions, statements and lexical constants. For each exam

ple we give

(1) the desired concrete and abstract syntax,

(2) a definition in LEX/Y ACC,

(3) a definition in METAL, and

(4) a definition in SDF.

4.1. Expressions

This example consists of a grammar for simple arithmetic expressions. It illustrates the

definition of operator priorities in the various formalisms.

4.1.1. Concrete and abstract syntax

The concrete syntax for arithmetic expressions is:

::= term I expr "+"term expr
term
factor

: := factor I term "*" factor
: := id I "(" expr ")"

The desired abstract syntax is:

add
mul
id

EXPR # EXPR -> EXPR
EXPR # EXPR -> EXPR
ID -> EXPR

4.1.2. Definition in YACC

%token ID
%left '+'
%left '*'
%%
expr expr '+' expr

expr '*' expr
I (I expr I) I

ID
;

{ $$
{ $$
{ $$
{ $$

=
=
=
=

addC$1,
mulC$1,
$2; }

id($1);

$3); }
$3); }

}

Y ACC allows the definition of priority and associativity of operators. The lines % left '+ •

and %left '*' define + and * as left-associative operators. Consecutive lines define operators

with increasing priority. Hence, * has higher precedence than +. The definitions of the functions

add, mu l and id are not shown; they are written in C and construct nodes of the abstract syntax

tree.

- 8 - D4.Al

4.1.3. Definition in Metal

definition of EXPRESSIONS is

chapter 'expr-rules'
rules

<exp>
<term>

::=<term>;

<exp> ::=<exp>#+ <term>;
plus(<exp>,<term>)

<term>
<factor>

: := <factor> ;

<term> ::=<term>#* <factor>;
mul<<term>,<factor>)

<factor> ::=<id>;
<id>

<factor> ::= #(<exp> #)
<exp>

<id> ::= %ID ;
id-atomC%ID)

abstract syntax
plus -> EXP EXP;
mul -> EXP EXP;
id -> implemented

EXP
ID

end chapter;
end definition

4.1.4. Definition in SDF

sorts EXPR, ID
subsorts ID < EXPR
priority + < *
functions

EXPR + EXPR -> EXPR
EXPR * EXPR -> EXPR

: := plus
::= id;

{par, assoc}
{par, assoc}

- 9 -

mul;

;

as I DENT;

preliminary

D4.Al

preliminary

4.2. Statements

The following grammar for simple statements illustrates the treatment of syntactic iteration,
i.e. the description of lists of syntactic notions.

4.2.1. Concrete and abstract syntax

The concrete syntax for statements is:

if ::="if" expr "then" series "else" series "endif"
while ::= "while" expr "do" series "endwhile"
stat : := if I while
series ::= { stat ";" }*

The notation { <stat>
equivalent to

'.' , }* is used to indicate lists of <stat>s separated by

series ::= "" I series1
series1::= stat I stat " . " , series1

The desired abstract syntax for statements is:

if EXPR # SERIES # SERIES -> STAT
while
series

EXPR # SERIES
STAT*

4.2.2. Definition in YACC

-> STAT
-> SERIES

%token IF, THEN, ELSE, ENDIF, WHILE, DO, ENDWHILE
%%

stat

if

while

;

;

if
while

IF expr THEN

WHILE expr DO

series

series

{ $$ = $1; }
{ $$ = $1; }

ELSE series ENDIF
{ $$ = if($2, $4,

ENDWHILE

$6); }

{ $$ = whileCS2,$4);}
;

series { $$ = emptyseries; }

series1 { $$ = $1; }

;

series1: stat { $$ = seriesCS1, emptyseries);
I stat ' . ' series1 { $$ = series($1, $3); } ,
;

- 10 -

' . ' ,

}

and is

04.Al

4.2.3. Definition in Metal

definition of STATEMENTS is

chapter 'stat-rules'
rules

<stat>
<if>

<stat>
<while>

<if>

::=<if>;

::=<while>;

::= if <exp> then <series>
else <series> endif ;

if(<exp>,<series>.1,<series>.2)

preliminary

<while> ::=while <exp> do <series> endwhile ;
whileC<exp>,<series>>

<series> ::= ;
series-list(())

<series> ::= <series1>;
<series1>

<series1> ::= <stat>;
series-list(<stat>)

<series1> ::= <stat> #; <series1>;
series-pre C<stat>,<series1>)

abstract syntax
if -> EXP SERIES SERIES;
while
series
series1

SERIES
STAT

end chapter;
end definition

4.2.4. Definition in SDF

sorts EXPR, STAT, SERIES
functions

-> EXP SERIES;
-> STAT * ;
-> STAT + ••• ;

::=series series1;
: := if while;

if EXPR then SERIES else SERIES endif
while EXPR do SERIES endwhile

-> STAT
-> STAT

{ STAT ; }* -> SERIES

4.3. Lexical constants

This example illustrates the definition of natural numbers and identifiers as lexical constants.

4.3.l. Concrete and abstract syntax

The concrete syntax for natural numbers and identifiers is:

int ::=digit+

- 11 - D4.Al

id : := letter id-tail*
id-tail ::= letter I digit
letter ::= "a" I I "z"
digit ::= "0" I ... I "9"

The desired abstract syntax is:

int DIGIT+ -> INT
id LETTER # ID-TAIL* -> ID
a -> LETTER

z -> LETTER
0 -> DIGIT

9 -> DIGIT
i1 LETTER -> ID-TAIL
i2 DIGIT -> ID-TAIL

4.3.2. Definition in LEX

Both YACC and METAL rely on LEX for the definition of lexical syntax:

%%
[a-z][a-z0-9]*
[Q-9]+
%%

{ idCyytext>; }
{ int(yytext); }

preliminary

id and i nt are C functions (not shown here) which construct lexical tokens on the basis of the
input text recognized.

4.3.3. Definition in SDF

sorts DIGIT, LETTER, INT, ID, ID-TAIL
subsorts (DIGIT, LETTER) < ID-TAIL
functions

a -> LETTER {Lex}

z -> LETTER Hex}
0 -> DIGIT Hex}

9 -> DIGIT Hex}
DIGIT+ -> INT Hex}
LETTER ID-TAIL* -> ID Hex}

The subsort mechanism is used to define a "union" of sorts, i.e. ID-TAIL represents both
DIGIT and LETTER.

- 12 - D4.Al

preliminary

5. FORMAL DEFINITION OF SDF

We will now give a formal definition of SDF. Section 5.1 contains some preliminary
definitions. Section 5.2 gives an overview of the definition and summarizes sections 5.3-5.9.

5.1. Preliminary definitions

First we introduce the notions of context-free grammar, parse tree, and reduced parse tree.

DEFINITION 5.1.1. A contextfree grammar is a 4-tuple (N, 0,PROD,R) where

(1) N is a finite set of non-terminal symbols.

(2) 0 is a finite set of terminal symbols, disjoint from N.

(3) PROD is a finite subset of NX(NU0)*. An element (a,{3) in PROD will be written a~/3 (or,
alternatively, a::= /3) and is called a production.

(4) R is a symbol in N called the root or start symbol.

DEFINITION 5.1.2. The language L(G) defined by a context-free grammar G=(N,0,PROD,R) is
defined as L(G) = {BEE>* I R~O}.
DEFINITION 5.1.3. A labeled ordered tree over an alphabet A is either

(1) REA, or

(2) <R Q 1 • • • Qn > with n ;;;.1, REA and Q; a labeled tree over A.

We define a function label on labeled ordered trees over an alphabet A as follows:

(l) label(R)=R, if REA, and

(2) label(<R Q1 · · · Qn>)=R.

DEFINITION 5.1.4. A parse tree P for a context-free grammar G=(N,0,PROD,R) is a labeled
ordered tree over the alphabet NU 0 U { t:} (t: denotes the empty string) such that

(l) label(P)=R.

(2) If P = <R t:> then R:: =t: should be a rule in G.

(3) If P=<R Q 1 · · · Qn> (n;;;.1) then R::=label(Q 1) · · · label(Qn) should be a rule in G
and either Q; EE> or Q; is a parse tree for the grammar (N,0,PROD,label(Q;)).

The set of all parse trees for a grammar G is denoted by PT(G). A grammar G=(N,0,PROD,R)
gives rise to grammars GQ =(N,0,PROD,Q) for each Q EN. We will always write PTQ(G) instead
of PT(GQ).

DEFINITION 5.1.5. The frontier relation <P <;:;; PT(G)XL(G) consists of the pairs (P,0) with
P EPT(G) and 0 the string consisting of all terminal symbols (leaves) encountered during a preorder
traversal of P.

Next, we introduce many-sorted signatures and abstract syntax trees over these signatures.

DEFINITION 5.1.6. A many-sorted signature with variables~ is a 4-tuple (S,OP,X,type) where

(I) S is a finite set of sorts.

(2) OP is a finite set of constant/function symbols.

(3) X is a finite set of variables, disjoint from OP.

(4) type is a pair of functions (type0 p,typex) which assign types to the elements of OP and X
respectively. The elements of OP are typed by type0 p : OP ~ S* XS. We will usually write
f:s 1 # · · · #sn~s instead of type0 p(j) = (s 1 • • • s11 ,s) (n ;;;.Q). Function symbols c with
c:~s for some s are called constant symbols of sort s. The elements of X are typed by
typex : X ~ S. We will usually write x:~s instead of typex(x)=s.

The fact that type0 p and typex are (single valued) functions and that OP n X = 0 means that we do
not allow overloaded function or variable symbols in signatures.

DEFINITION 5.1.7. An abstract syntax tree of sort s for a many-sorted signature with variables
~=(S,OP,X,type) is a labeled ordered tree over the alphabet OPUX such that

- 13 - D4.Al

preliminary

(l) t is a constant symbol or variable of sorts.

(2) t is of the form f(t 1, ••• ,tn) with f:s 1 # · · · #s11 -;.s for some s 1, ... ,s11 and with t; an
abstract syntax tree of sort s; over ~ for all l ~i ~n.

We further define A Ts(~) as the set of all abstract syntax trees of sort s over ~ and AT(~) as the set
of all abstract syntax trees over ~. i.e. AT(~) = U A Ts(~).

sES

5.2. Overview of the SDF-definition

To keep the size of the definition manageable, five (sub)formalisms SDF0 , .•• ,SDF4 are
introduced, each of which contains a new feature. SDF° is the simplest one and allows the basic
association of concrete representations with abstract syntax trees over a many-sorted signature (sec
tion 5.3). The formalisms SDF;,i>O, introduce the following features:

SDF1: lexical syntax (section 5.4)
SDF2 : priorities (section 5.5)
SDF3: subsorts (section 5.6)
SDF4 (= SDF): lists (section 5.7)

The relationships between the various levels are shown in figure 1. A basic syntax definition
D 0 gives rise to a signature on the one hand and a context-free grammar on the other hand. The
corresponding sets AT(D0) and PT(D0) of abstract syntax trees and parse trees are isomorphic. In
fact, a basic syntax definition is simply a context-free grammar (but with all rules written backward)
in which a distinction is made between rules defining constants and functions and rules defining
variables.

For each level i, i >0, we define a translation -I : SDF; ___,. SDF; -I. For each syntax
definition D; at level i, i ;;;.=O, we define the corresponding set of abstract syntax trees AT;, the
corresponding frontier relation cf/, and the corresponding language L;. Using -1, the abstract syntax
trees at all levels can ultimately be expressed as abstract syntax trees at level 0. A T 0 , AT 1 and A T 2

are equal; they are not shown in figure l.

5.3. SDF0 : basic syntax definitions

5.3.1. Definition of SDF0

DEFINITION 5.3.L A basic syntax definition D0 is a 4-tuple (S,0,0P,X) where

(I) Sis a finite set of sorts.

(2) 0 is a finite set of terminal symbols, disjoint from S.

(3) OP C (SU0)* XS is a finite set of constant/function declarations. We will usually write
aos 1a1 · · · sna11 -;.s instead of (aos 1a 1 · · · snan,s) for elements of OP (n ;;a.O, a; E0*, s; ES).
Function declarations of the form a-;.s (a E0*) are called constant declarations.

(4) X C 0* XS is a finite set of variable declarations, disjoint from OP. We will usually write
a-;.s instead of (a,s).

We will now define for each SDF°-definition D0 :

(a) The derived signature ~(D0) (defining a set of abstract syntax trees AT(D0)=AT(~(D0))).

(b) The derived context-free §rammar G(D0) (defining a set of parse trees PT(D0)=PT(G(D0)), a
language L(D0)=L(G(D)), and a frontier relation q,° C PT(D 0)XL(D0

)).

(c) A bijective derivation function 8 : AT(D0) ___,. PT(D0).

The relationships between these domains and functions are shown in figure 2.

DEFINITION 5.3.2. The derived signature ~(D0) of a basic syntax definition D 0 =(S,0,0P,X) is the
signature (S,OP',X',type) with

(I) OP''{;: (SU0)* such that a 0s 1a 1 · · · sna11 s E OP' if a 0s 1a 1 · · · sna11 -;.s E OP;

- 14 - D4.Al

AT4
q,4 = q,3

lists

T4

cp3 = q,2
sub sorts AT3

priorities

lexical syntax

basic definitions

Figure 1. Overview of the formal definition of SDF.

(2) X' C (SU 9)* such that as E X' if a-'>s E X;

(3) type = (type0r,typex·) such that

(a) type0r(aos 1a1 · · · snans) = s 1 # · · · #sn-'>S (n ;;;;.O),

(b) typeX'(as) = -'>S.

preliminary

L4

L3

We will usually write aos 1a 1 · · · snan-'>S instead of aos1a1 · · · sna11 s, i.e.
aos1a1 · · · snan-'>S E OP' corresponds to aos 1a1 · · · snan-'>S E OP.

Note that we generate somewhat bizarre names in the derived signature: a complete declaration as it
appears in the basic syntax definition is used as a name in the derived signature. These names are
only introduced in the definition and will not be visible to the user of SDF. A declaration occurring
more than once in OP corresponds to a single name in OP'.

DEFINITION 5.3.3. For a given basic syntax definition D 0 with derived signature ~(D0), we define
the set of abstract syntax trees of sort s AT5 (D

0) as AT5(~(D0)) and the set of all abstract syntax
trees AT(D0) as AT(~(D0)) (see section 5.1).

DEFINITION 5.3.4. The derived contextfree grammar G(D0
) of a basic syntax definition

D 0 =(S,9,0P,X) is the context-free grammar (SU{R},9,PROD,R) where ,,
(I) R is a new (start)symbol, i.e. R f£. S U 9.

- 15 - D4.Al

preliminary

G(D0
)

rT(D011~~~--.__~P-T(_D_0_)__,1-e-~~cf>-0 ~-;a.(. ___ L(_D_
0
)_

Figure 2. Relationships between the various domains and functions associated with an SDF°

definition D 0 •

(2) PROD consists of

(a) productions R:: =s for each sorts ES;

(b) productions s::=a0s 1a 1 · · · snan for each constant/function declaration

aos1a1 · · · snan-s in OP;

(c) productions s:: =a for each variable declaration a -s in X.

Essentially, G(D0) is obtained from D0 by "reversing all rules".

DEFINITION 5.3.5. For a basic syntax definition D0 =(S, 0, OP,X) the frontier relation

cp0 c; PT(D0)X0* is defined as q>0 =cf> (def. 5.1.5).

DEFINITION 5.3.6. The language L(D 0) of a basic syntax definition D0 with derived grammar G0 is

defined as L(D0)=L(G0) (def. 5.1.2.).

THEOREM 5.3.1. For a basic syntax definition D 0 :

0EL(D0)<o=> 4>o (p,O) for some p EPT(D0).

PROOF. Apply theorem 2.11 of [AU72] with G=G(D0).

DEFINITION 5.3.7. For a given basic syntax definition D 0 = (S,0,0P,X) with derived signature

~o = (S,OP',X',type) and derived grammar G0 = (SU{R},0,PROD,R) the derivation Junction

8s: ATs(~0) - PTs(G0
) (sES) is defined as follows

(1) For all xEX' with x=a-s define: 8s(x) = <s a>;

(2) For all JEOP' with J=a-s define: 8s(f) = <s a>;

(3) For allf(ti. ... ,tn) withf=aos1a1 · · · snan-s (n ;;;ai:l) define:

8s(j(ti. ... ,tn)) = <s ao 851 (/1) a1 · · · 8s.(tn) an>.

The derivation function 8 : AT(~0) - PT(G0) is defined by 8(t) = <R 8s(t)> fort EATs(~0).

THEOREM 5.3.2. The derivation function 8 corresponding to a basic syntax definition D0 is bijec

tive.

PROOF. Assume D0 = (S,0,0P,X) and let ~o = (S,OP',X',type) and

G0 = (SU{R},0,PROD,R) be respectively the derived signature and the derived grammar of D0
•

Construct Ys and y which are the inverse functions of 8s and 8 respectively.

If <s Q1 '. · · Qn> E PTs(G0) then

- 16 - D4.Al

preliminary

s::=label(Qi) · · · label(Qn) E G0
,

label(Qi) · · · label(Qn)~s E OP, and label(Q 1) • • • label(Qn)~s E OP'.

Define Ys : PTs(G0) ~ ATs(~0) (s ES) as follows

Ys(<s Qi · · · Qn>) =label(Qi) · · · label(Qn)~sfoabel<Q .. >(Q;.), · · · ,y/abel(Q;.J(Q;.))

with lo;;;;i 1 < · · · <iko;;;;n (k ;;;;.,O) such that label(Q;)ES (lo;;;;jo;;;;k) and label(Q;)EE> (i=l=ij).

(k is the arity of label(Qi) · · · label(Qn)~s.)

We now have l)s Ys = idpr,cG0
) and Ysl)s = idAT,(~·)·

For all parse trees of the form <R Q 1 • • • Qn> E PT(G0
) we have n = l and label(Q 1) E S

(this is due to the particular form of the derived grammar G0 in which all rules for the startsymbol
R have the form R:: = Q). Define y as follows: y(<R Q >) = Ylabel(QJ(Q) with
R :: =label(Q) E G0 and label(Q)ES. We now have Sy = idPT(G0) and y/) = idAT(~)· D

Our final concern is the expressive power of basic syntax definitions. For each basic syntax
definition we construct a translation to abstract syntax trees (this is achieved by s- 1). It is natural
to compare the translation s- 1 with syntax-directed translations as, for instance, defined in [AU72].
Syntax-directed translations are recipes for string-to-string translations. With each non-terminal in
the grammar two rules are associated: a recognition rule (consisting of a sequence of terminals and
non-terminals) and a translation rule (consisting of a sequence of arbitrary terminals and a permuta
tion of the non-terminals in the recognition rule). In simple syntax-directed translations, the non
terminals in recognition and translation rule occur in the same order. Without proof we state that
the translation s- 1 as generated for each basic syntax definition, is a simple syntax-directed transla
tion.

5.3.2. Concrete representation of basic syntax definitions

We will use a concrete representation for syntax definitions in accordance with the following rules:

(l) All names of sorts are listed after the keyword sorts. The names of sorts are in upper case
letters.

(2) The set 0 of terminals is not given explicitly, but can be derived from the function and vari
able declarations. In cases of ambiguity, terminals may be surrounded by double quotes.

(3) The set OP is given by listing all constant/function declarations after the keyword func
tions.

(4) The set X is given by listing all variable declarations after the keyword variables.

EXAMPLE 5.3.1. Consider the following basic syntax definition:

sorts BOOL, STACK
functions

true
false
BOOL v BOOL
- BOOL
empty
push BOOL on STACK

The derived signature is :

- 17 -

-> BOOL
-> BOOL
-> BOOL
-> BOOL
-> STACK
-> STACK

D4.Al

sorts BOOL, STACK
function

true -> BOOL -> BOOL
false -> BOOL -> BOOL
BOOL v BOOL -> BOOL BOOL # BOOL -> BOOL
- BOOL -> BOOL BOOL -> BOOL
empty -> STACK -> STACK
push BOOL on STACK -> STACK BOOL # STACK -> STACK

Some abstract syntax trees over the derived signature are:

true -> BOOL
BOOL v BOOL -> BOOL(BOOL -> BOOL(false -> BOOL),true -> BOOL)
push BOOL on STACK-> STACK(true -> BOOL,empty -> STACK).

The derived grammar is:

R ::= BOOL
R : : = STACK
BOOL ::= true
BOOL : := false
BOOL ::= BOOL v BOOL
BOOL : := - BOOL
STACK ::= empty
STACK ::= push BOOL on STACK

Examples of parse trees for this grammar are:

<R <BOOL true>>,

<R <BOOL <BOOL - <BOOL false» v <BOOL true>»

<R <STACK <push <BOOL true> on <STACK empty>>>>

These same parse trees are displayed graphically in figure 3. We also have, for instance,

and

8(BOOL v BOOL -> BOOL(BOOL -> BOOL(false -> BOOL),true -> BOOL))
= <R <BOOL <BOOL - <BOOL false» v <BOOL true»>

preliminary

q,0 (<R <BOOL <BOOL - <BOOL false>> v <BOOL true»>, - false v true).

Hence,

- 18 - D4.Al

preliminary

.p0 (8(BOOL v BOOL -> BOOL (BOOL -> BOOL (false -> BOOL), true -> BOOL)),

- false v true).

In this particular case, the concrete representation is ambiguous, because

- BOOL -> BOOL (BOOL v BOOL -> BOOL (false -> BOOL, true -> BOOL))

has the same concrete representation. This is due to c/>o because, according to theorem 5.3.2, 8 is a
bijection.

5.4. SDF1: syntax definitions with layout

In this section we add a lexical syntax definition facility to SDF° by allowing an additional
alphabet A of layout symbols and an attribute lex to all declara!ions in the syntax definition that
correspond to lexical tokens. In the textual representation of these functions no layout symbols may
occur, while these are allowed in the textual representation of all other functions.

DEFINITION 5.4.1. A syntax definition with layout D 1 is a 6-tuple (S,0,0P,X,A,II) such that
(S,0,0P,X) is a basic syntax definition, A is a finite set of layout symbols (disjoint from 0 and S),
and II : OP U X ~ 2{lex} is a function that may associate the attribute Jex with each element of OP
andX.

Note that we use the powerset notation 2{lex) to indicate either {lex} or the empty set. This antici
pates the introduction of several other attributes in the subformalism SDF2

•

DEFINITION 5.4.2. The translation T1 : SDF1 ~ SDF0 is defined as follows: let
D 1 =(S,0,0P,X,A,II), then T1(D 1) = (S,0,0P,X).

DEFINITION 5.4.3. The abstract syntax trees and parse trees for an SDF1-definition D 1 are defined
as AT(D1) = AT(T1(D 1)), and PT(D 1) = PT(T1(D 1)).

DEFINITION 5.4.4. For an SDF1-definition D 1 = (S,0,0P,X,A,II) the layout relation
layouts C PT5(D 1)X(0UA)* is defined as follows. Letp = <s Q 1 • • • Qn> be some parse tree
in PTs(D 1) and let f = label(Q 1) • • • label(Qn)~sEOP be the corresponding declaration. Now
define layouts as follows:

(l) If lex EII(f) then layout8 (p, a 1 • • • an) where a;= Q; if Q; E0 and c/>o (Q;,a;) otherwise.

(2) If lexEt:II(f) then layout8 (p, Aoa1;\.1 • • • an;\.n) where A;EA* and a;=Q; if Q;E0 and
layout81 (Q;,a;) otherwise (where Q; = <s;Y1 • · • Yn,>).

DEFINITION 5.4.5. For an SDF1-definition D 1 = (S,0,0P,X,A,II), a parse treepEPT(D 1) and a
sub tree q E PT8 (D 1) of p, q is a maximal lexical subtree of p if and only if

(1) the function declaration corresponding to q has attribute lex;

(2) q is not a (direct or indirect) descendant of a subtree of p corresponding to a function declara-
tion with attribute lex.

DEFINITION 5.4.6. For an SDF1-definition D 1 = (S,0,0P,X,A,Il), a parse tree p EPT8 (D 1), and a
string 0E(0 U A)* with layout8 (p,O) we say that p represents a lexically longest match of 0 (llm(p,O))
if for each maximal lexical subtree q EPT1(D 1) of p the following holds:

(1) layout1(q,{J) and 0 = af3y, with a,{3,yE{0UA)*.

(2) no other parse tree q' E PTr(D 1) exists such tl_lat

{a) layoutt(q',{3/3'), with {3' E(0 U A)+;

(b) {3' is a prefix of y;

(c) q' corresponds to a function declaration with attribute lex.

DEFINITfON 5.4.7. For an SDF1-definition D 1 = (S,0,0P,X,A,11) the frontier relation

- 19 - D4.Al

true

false

(a) (b)

c~·;ooLvBOOL~BOO~~
··············-·····-

/ \

(a') (b')

preliminary

true empty

(c)

c··~~-shBOOLonSTACK~STACJ(.:>
.... ~ ····························· .. ························· ~·

I \
~~

(c')

Figure 3. Examples of parse trees and corresponding abstract syntax trees.

cp1 ~ PT(D 1)X(0UA)* is defined by

cp1 (p, fJ)~layouts(p,fJ)/\/lm(p,fJ)

for somepEPTs(D 1
) (sES) and fJE(0UA)*.

DEFINITIO~ 5.4.8. The language L(D 1) of an SDF1-definition D 1 = (S,0,0P,X,A,Il) is the subset
of (0UA)* such that

- 20 - D4.Al

preliminary

0EL{D 1
) tj q>1 (p,0) for somepEPT(D 1

).

ExAMPLE 5.4.1. See section 4.3.3. for an SDF1-definition that defines identifiers and integer con
stants.

EXAMPLE 5.4.2. The following SDF1-definition specifies two-bit binary numbers:

sorts BIT, BNUM
layout 11 11

functions
0
1
BIT
BIT BIT
BNUM + BNUM
BNUM BNUM

-> BIT <Lex}
-> BIT <Lex}
-> BNUM <Lex}
-> BNUM <Lex}
-> BNUM
-> BNUM

Binary numbers consist of one or two bits; two operations are defined: addition (denoted by +)and
multiplication (denoted by the juxtaposition of two binary numbers). The layout alphabet A con
sists of the space character. A legal abstract syntax tree over the derived signature of this syntax
definition is, for instance,

BNUM + BNUM -> BNUM(BIT BIT -> BNUM(1 -> BIT,1 -> BIT),
BIT BIT -> BNUM(O -> BIT, 0 -> BIT)).

q>1 8 associates, among other ones, the following concrete representations with this abstract syntax
tree: 11 +00, 11 +00, 11 +00, 11 + 00, 11 + 00 or 11 + 00 but it will never associate strings
like 1 1 +00 or 11 +O 0 with it. Note that, for instance, 10 will always be interpreted as a two-bit,
binary number and not as a binary multiplication with operands 1 and 0. This is due to the
preference of a lexically longest match. Of course, 1 0 can only be interpreted as a binary multipli
cation.

EXAMPLE 5.4.3. The following syntax definition with layout illustrates that keywords and identifiers
may coincide:

sorts EXP, STAT, ID
layout " "
functions

if EXP then STAT -> STAT
ID := EXP -> STAT
x -> ID
y -> ID
if -> ID
then -> ID

If we assume that EXP represents arithmetic expressions, then the following strings are acceptable
and unambiguous:

- 21 - D4.Al

preliminary

x := 2 * y
if := then I 4
if if I then = 0 then then := 3 * if

This shows that we can express the use of keywords as identifiers as in, for instance, PL/I and
FORTRAN. This scheme was chosen to accommodate the composition of SDF-definitions (see sec
tion 6.3). We can express a reserved word strategy (i.e. certain identifiers may not be used, they are
reserved as keywords) as in, for instance, PASCAL and C, by using priority declarations (see section
5.5). We are not able to express concisely, identifiers and keywords with embedded layout charac
ters as in, for instance, FORTRAN and ALGOL68.

5.5. SDF2 : syntax definitions with priorities

In this section, we introduce priority relations between the declarations in a syntax definition.
These serve the purpose of resolving parsing conflicts (and thus ambiguities) between rules.

DEFINITION 5.5.1. A syntax definition with priorities D 2 is a syntax definition with layout
(S,0,0P,X,A,II) in which

(1) a partial order is defined on the declarations in OP (this ordering relation is denoted by <);
(2) 0 contains the distinguished symbols (and) denoting opening and closing parenthesis;

(3) II : OP U X - 2{lex,assoc.left-assoc,right-assoc.par) is a function that may associate the attributes lex

(lexical syntax), assoc (associative function), left-assoc (left-associative function), right-assoc
(right-associative function), and par (concrete representation of function may be surrounded
by parentheses) to elements of OP and X. The attributes assoc, left-assoc, and right-assoc
are mutually exclusive.

DEFINITION 5.5.2. The translation i2- : SDF2 - SDF1 is defined as follows: let
D 2 = (S,0,0P,X,A,II), then i2-(D 1) = (S,0,0P,X,A,II'), where II'(f) = II(/)n {lex},
f E OPUX.

DEFINITION 5.5.3. The abstract syntax trees and parse trees for an SDF2-definition D 2 are defined
by AT(D2) = AT(i2-(D 2)), and PT(D 2) = PT(i2-(D 2)).

DEFINITION 5.5.4. Given an SDF2-definition D 2 = (S,0,0P,X,A,II), two parse trees
p=<s u1 • • • uk>EPTs(D 2) and q=<s' v1 v1>EPTs·(D2

), and corresponding declara
tions f = label(u 1) • • • label(uk)-s EOP and g = label(vi) · · · label(v1)-s'EOP. Define the
extended priority relation = as follows

<s u I . . . Uk> - <s' v I . . . Vt > =
true if f = g and U; = V;, i = 1, ... ,k.

true if f = g, k = 2, assocEII(/), and there exist a,b,c such that either

u 1 =a, u2 = <s b c >,
v 1 = <s a b >, v2 = c, or

u 1 = <s a b>, u 2 = c,
v 1 - a, v 2 = <s b c >.

false otherwise.

DEFINITION 5.5.5. Given an SDF2-definition D2 = (S,0,0P,X,A,II), two parse trees
p=<s u 1 • • • uk>EPTs(D 2

) and q=<s' v 1 v1>EPTs.(D2
), and corresponding declara

tions f = /abel(u 1) • • • label(uk)-sEOP and g = label(v 1) • • • /abel(v1)-s'EOP. Define the
extended priority relation < as follows

<s u I . . . Uk> < <s' v I . . . V[> =
true • if there exists a parse tree r EPTs(D2

) such that p _rand r < q.

- 22 - D4.Al

preliminary

true if f = g, and there exist a j EI, ... , k such that uj < vj and for all i=/=j : U; = v;
or u; < v;.

true if f = g, k = 2, left-assocEil(/), and there exist a,b,c such that

u1 - a, u2 = <s b c>,
v 1 - <s a b>, v2 =c.

true if f = g, k = 2, right-assocEil(/), and there exist a,b,c such that

u 1 = <s a b>, u2 = c,
v 1 =a, v2 _ <s b c>.

true if g < f
false otherwise.

DEFINITION 5.5.6. For an SDF2-definition D 2 = (S,E>,OP,X,A,IT) the frontier relation
q,2 ~ PT(D2)X(0UA)* is defined as follows. Let p = <s Q 1 · · · Qn> be some parse tree in

PTs(D2) and let f = label(Qi) · · · label(Qn)~s EOP be the corresponding function declaration.
Now define q,2 as follows:

(I) For all cxE(E>UA)* with q,1 (p,cx) for which no p'EPTs(D2) exists with p < p' define:
q,2 (p,cx).

(2) If parEil(/) then for all cxE(0UA)* with <[>2 (p,cx) define: cp2 (p,(ex)).

DEFINITION 5.5.7. The language L(D2) of an SDF2-definition D 2 = (S,E>,OP,X,A,IT) is the subset
of (E>UA)* such that

OEL(D2) ~ cp2 (p,0) for some p EPT(D2).

The declaration of priority and associativity of rules in a syntax definition serves the purpose
of eliminating ambiguities from its derived grammar. If q,2 relates, for instance, two parse trees p 1
and p 2 with the same concrete representation, then the priority declarations may be used to elim
inate this ambiguity by selecting either p 1 or p 2 • Clearly this is not possible if the priority declara
tions are "incomplete". Continuing this same example, if p 1 and p 2 correspond to the same rule of
the grammar and this rule is associative, then we consider them to be equivalent, i.e. p 1 = p 2 • This
notion of disambiguation is expressed in the following definition.

DEFINITION 5.5.8. An SDF;-definition D; (i =0, I) is unambiguous iff

'VOEL(Di), "flp1,p2 EPT(D;): cp;(pi.0) /\ <tJ(p2,0) =? P1 =p2

An SDF;-definition D; (i ~2) is unambiguous iff

'VOEL(D;), 'Vpi.p2 EPT(D;): cp;(pi.0) /\ q/(pz,0) =? P1 = P2

Priorities are declared by stating a priority relation between two declarations in the syntax
definition. In principle, the complete function definition should be given in such a declaration. In
the concrete representation of syntax definitions we allow the use of abbreviated function definitions
in order to avoid unnecessary repetition. An abbreviated function definition contains as many ele
ments of the intended function definition as are needed to identify it uniquely. We will use the fol
lowing abbreviation rules:

(1) either the complete keyword skeleton (i.e. all terminals occurring in the function definition) is
given, or

(2) a (consecutive) substring of terminals and sorts of the function definition is given.

EXAMPLE 5.5.1. The syntax definition with priorities

- 23 - D4.Al

sorts BOOL
priorities v < & < -
functions

true -> BOOL
false -> BOOL
BOOL v BOOL -> BOOL {par,assoc}
BOOL & BOOL -> BOOL {par,assoc}
- BOOL -> BOOL {par}

defines, for instance, the following (unambiguous) strings

true v false v true
true & false v true
true & (false v true)

- true v false.

preliminary

Compare this with the ambiguities occurring in example 5 .3 .1. Note how "keyword skeletons" such
as, for instance, & are used to identify function declarations in the syntax definition.

EXAMPLE 5.5.2. Given the SDF2-definition

sorts N

priority + < *
functions

N + N -> N

N * N -> N
n -> N

we show how the extended priority relations resolve the ambiguity of the sentence n+n+n*n. This
sentence has the following five parses (using parentheses to distinguish the various parses)

pl C Cn+n>+n>*n
p2 C n+C n+n »*n
p3 n+((n+n)*n)
p4 Cn+n)+(n*n)
p5 n+C n+C n*n))

and we have the following priority relations between the parse trees corresponding to the above
parses:

p l,p2 < p3 ,p4 ,p5,
p3 < p5.

Hence, no choice can be made between p 4 and p 5. If, extending the above example, + and * have
the property assoc, then p 4 _ p 5 holds and p 4 and p 5 represent the same parse. If, on the other
hand, + and * have property left-assoc (or right-assoc) then p5 < p4 (respectively p4 < p5)
holds and p4 (respectively p 5) are the preferred parse.

ExAMPLE 5.5.3. The following syntax definition with priorities solves the "dangling else" problem
by giving a higher priority to the if-then-else-construct. Each else matches the nearest enclos
ing if.

- 24 - D4.Al

preliminary

sorts BOOL, STAT, EXPR
priority if then < if then else
functions

if BOOL then STAT -> STAT
if BOOL then STAT else STAT -> STAT

In this example essential use is made of the requirement that a keyword skeleton in an abbreviated
declaration should be complete.

5.6. SDF3: syntax definitions with subsorts

Now we introduce the notion of subsorts. These are mostly used to describe derivation chains
in parse trees and to eliminate these chains from the corresponding abstract syntax trees. Subsorts
define a partial order on the set of sorts. We define abstract syntax trees A T3 using subsorts in
such a way that at all argument positions in abstract syntax trees where a certain sorts is required
also abstract syntax trees of anl subsort of s are allowed. We also define a reduction ,.3 that
reduces these syntax trees to AT -syntax trees by inserting injection functions where a subsort rela
tion is used in an AT3-term.

DEFINITION 5.6.1. A syntax definition with subsorts D 3 is a syntax definition with priorities
(S,0,0P,X,A,II) in which a partial order is defined on the set of sorts S. This ordering relation is
denoted by C . If a syntax definition with subsorts contains two sorts s 1 and s 2 with s 1 C s 2 ,
then it may not also contain a function declaration of the form s 1 ~s2 •

Note that the restriction in definition 5.6.1 is necessary to ensure the correctness of the translation
function ,.3, which introduces an injection function s 1 ~s 2 •

DEFINITION 5.6.2. The translation ,.3 : SDF3 ~ SDF2 is defined as follows. Let
D 3 = (S,0,0P,X,A,II). For each sort add an injection function to all its enclosing sorts, i.e. add
an injection function s 1 ~s2 to OP for each pair of sorts s 1,s2 ES with s 1 C s2 • This gives a new
set of functions OP'. Now define 13(D 3)=(S,0,0P",X,A,II).
DEFINITION 5.6.3. Given a syntax definition with subsorts D 3 =(S, 0,0P,X,A,II). The abstract
syntax trees AT; of sort s are labeled ordered trees over the alphabet OP U X such that

(I) t EAT; if t is a variable of sort s;

(2) f(ti. ... ,tn)EAT; for all function declarations f = a0s 1a1 · · · snan~s in OP and all
abstract syntax trees t; EA 'I'l·, such that either s'; = s; ors'; C s;.

(3) There are no further abstract syntax trees of sort s in AT;.
DEFINITION 5.6.4. The parse trees for an SDF3-definition D 3 are defined by PT(D 3)=PT(,.3(D 3

)).

DEFINITION 5.6.5. The translation ,.3 : AT3 ~ AT2 is defined as follows. Let
D 3 = (S,0,0P,X,A,II) and let t EAT;, then

(a) if t E Xs, ,.3(1) = t;
(b) if t = f(ti. ... ,tn) EOP and f = aos1a1 · · · snan~s, ,.3<J(ti. ... ,tn)) = /(u1, ... ,un)

such that for each t; EAT;,,: u; = ,J(t;) iff s/=s; or u; = s;'s;(,J(t;)) iff s/ Cs;.
DEFINITION 5.6.6. Given an SDF3-definition D 3 and two abstract syntax trees
f(ui. ... ,uk)EAT;(D3) and g(vi. ... , v1)EAT?(D 3

). Define the extended subsort relation C on
abstract syntax trees as follows: f(u i. ... , uk) < g(v i. ... , vi)=
true ifs C s'.

true ifj=g, k=l, and there exists ajEl, ... ,k such that uj C vj and for all i=foj: u;=v; or
U; !:; V;.

false otherwise.

DEFINITI@N 5.6.7. Given an SDF3-definition D 3 and two parse trees p 1 EPTs(D 3) and

- 25 - D4.Al

preliminary

p 2 EPTAD 3). Define the extended subsort relation C on parse trees as follows:

p1 C p2<F=>3t1 EAT;(D 3).ti EAT;,(D 3):t1 C t2,r3(ti)=p1>T\t2)=p2.

DEFINITION 5.6.8. Given an SDF3-definition D 3 =(S, 0,0P,X,A,II). The frontier relation
q,3 C PT(G3)X(0UA)* is then defined as follows. For all pEPTs(D 3

) and aE(0UA)* with
q,2 (p,a) for which no p' EPTAD 3

) exists with p' C p define q,3 (p,a).

DEFINITION 5.6.9. The language L(D 3
) of an SDF3-definition D 3 = (S,0,0P,X,A,II) is the subset

of (0UA)* such that

0EL(D 3) <F=> q,3 (p,O) for some p EPT(D 3).

EXAMPLE 5.6.1. Consider the following syntax definition with subsorts:

sorts BOOL, NESTACK, STACK
subsorts NESTACK < STACK
functions

true
false
BOOL & BOOL
empty
push BOOL on STACK
pop NESTACK

-> BOOL
-> BOOL
-> BOOL
-> STACK
-> NEST ACK
-> BOOL

The reduction -? will add the injection NESTACK -> STACK to OP.

EXAMPLE 5.6.2. Given the following definition:

sorts N, R, C
subsorts N < R < C
priorities + < *
functions

N + N -> N
R + R -> R
c + c -> c
N * N -> N
R * R -> R

c * c -> c
n -> N
r -> R
c -> c

{par, left-assoc}
{par, left-assoc}
{par, lef t-assoc}
{par, left-assoc}
{par, left-assoc}
{par, lef t-assoc}

The disambiguation rules always select a parse that is compatible with the priority and associativity
of operators and is "most precise", i.e. it leads to an abstract syntax tree of the smallest sort. This
can be seen by considering the selected parse, the sort of the corresponding abstract syntax tree and
the types selected for the various operators in the following sentences:

- 26 - D4.Al

preliminary

sentence parse sort op1 op2

n+n n+n N N+N->N
n+c n+c c C+C->C
r+n r+n R R+R->R
r+n+n Cr+n)+n R R+R->R R+R->R
r+n*n r+Cn*n) R R+R->R N*N->N
r+n+c C r+n>+c c R+R->R C+C->C
r+c*n r+c c*n) c C+C->C C*C->C
r*c+n C r*c>+n c C*C->C C+C->C

5.7. SDF4 : syntax definitions with lists

Syntactic iteration will now be introduced, i.e. a mechanism to describe the abstract and con
crete representation of lists of syntactic notions such as "lists of statements separated by semi
colons" or a "list of zero or more booleans", etc. This is achieved by introducing for each sort s the
derived sorts s* and s + standing for lists of zero (one) or more elements of sorts and by defining
A T 4 -syntax trees using these derived sorts. We also define a reduction T4 that reduces A T4-syntax
trees to AT3-syntax trees by replacing all occurrences of syntax trees of a derived sort by syntax
trees consisting of (explicitly generated) binary list constructors.

DEFINITION 5. 7 .1. A syntax definition with lists D4 is a syntax definition with subsorts
(S,0,0P,X,A,IT) in which

(1) OP (;; (S U0ULS)* XS, and

(2) X (;; 0* X(S ULS),

where LS= SX(0Uc::)X{+,*} is the domain of list sorts. We will respectively write {s a}*,
{ s a}+, s* or s + for the elements (s,a, *), (s,a, +), (s,t:, *) or (s,t:, +) of LS.

DEFINITION 5.7.2. The translation T4 : SDF4 ~ SDF3 is defined as follows. Let
D 4 = (S, 0,0P,X,A,IT).
For each sorts = (<J,a, *)ors = (<J,a, +)in LS that occurs in some definition fEOP or x EX add
the sorts LISTOa, LISTla, LISTOa,a and LISTla,a to S such that the following subsort relations
hold:

LISTla,a k L/STOa,a•
LISTla k L/STOa,
LIST00 (;; LISTOa,a and
LISTla k LISTla,a·

Also add the new functions

~ LISTOa,a
(] ~ LIST la.a
<Ja LISTla,a ~ LISTI0 .a

to OP. This gives a new set of function definitions OP'. Now we define
T4(D4)=(S, 0,0P',X,A,IT).

DEFINITION 5.7.3. The abstract syntax trees Ar: of sorts E SULS are labeled ordered trees over
the alphabet OP U X such that:

(1) t E Ar: if t is a variable of sorts;

(2) f(ti. ... ,tn)EAr: for all function definitions/= aos 1a 1 • • • snan~s in OP and all abstract
syntax trees t; EATL i= 1, ... ,n such that either s/ = s; ors;' (;; s;;

(3) listM(ti. ... ,t11) E Ar: for all <JES, a E0, t; EAT! and n;;;;.O (ifs = {<Ja}* ors = <J*) or
n;;;. I (ifs = {<Ja}+ ors = <J+).

- 27 - D4.Al

(4) There are no further abstract syntax trees of sorts in A~.

DEFINITION 5.7.4. The translation 74 : AT4 ~ AT3 is defined as follows.

(a) 74(x) = x for all x EX;

preliminary

(b) 74(j(ti. ... ,tn)) = f(ui. ... ,un) for all f = aos1a1 · · · snan~s in OP, t;ETI, and
U; =7

4 (t;);

(c) 74(/istu,aO) = lo, where lo = ~LISTOu,a;

(d) 74(/istu,a(ti)) = 11(74 (t1)), where 11 = a~LISTlu,a;
(e) 7

4(/istu,a(ti. · · · ,tn)) = l2(7\t1),/2(74(t2),/2(· · · ,l2(74 (tn-d,1(74{tn))) · · ·))),
where 11 = a~LISTla,a and 12 = a a LISTlu.a~LISTla,a·

DEFINITION 5.7.5. Let D 4 be an SDF4-definition D 4 = (S,0,0P,X,A,IT). The frontier relation
<P4 ~ PT(G4)X(0UA)* is then defined by <P4 = <f>3

•

DEFINITION 5.7.6. The language L(D4
) of an SDF4-definition D 4 = (S,0,0P,X,A,IT) is the subset

of (0 U A)* such that

0EL(D4) ~ <P4 (p,O) for some p EPT(D 4
).

EXAMPLE 5.7.1. Given the following syntax definition with lists:

sorts EXP, STAT, SERIES
if EXP then SERIES else SERIES endif -> STAT
while EXP do SERIES endwhile
{ STAT ; }*

This syntax definition will be reduced by 74 to

sorts EXP, STAT, SERIES,
LISTO-STAT, LIST1-STAT,
LISTO-STAT-SEMI, LIST1-STAT-SEMI

subsorts
LIST1-STAT-SEMI < LISTO-STAT-SEMI,
LIST1-STAT < LISTO-STAT,
LISTO-STAT < LISTO-STAT-SEMI,
LIST1-STAT < LIST1-STAT-SEMI

functions
if EXP then SERIES else SERIES endif
while EXP do SERIES endwhile
LISTO-STAT-SEMI

STAT
STAT ; LIST1-STAT-SEMI

-> STAT
-> SERIES

-> STAT
-> STAT
-> SERIES
-> LISTO-STAT-SEMI
-> LIST1-STAT-SEMI
-> LIST1-STAT-SEMI

EXAMPLE 5.7.2. Here we define lexical, concrete and abstract syntax of the simple programming
language PICO as defined in [Annexe D4.A3].

- 28 - D4.Al

sorts PICO-PROGRAM, DECLS, EXP, STAT, SERIES,
ID, ID-TYPE, PICO-TYPE,
NAT-CON, STR-CON,
CHAR, DIGIT, LETTER, LETTER-OR-DIGIT

subsorts
(DIGIT, LETTER) < LETTER-OR-DIGIT < CHAR,
ID < EXPR, NAT-CON < CEXP, NAT)

priorities
+ < II

functions
begin DECLS SERIES end
declare {ID-TYPE , }* ;
ID : PICO-TYPE

-> PICO-PROGRAM

{ STAT ; }*
ID := EXP
if EXP then SERIES else SERIES fi
while EXP do SERIES od
EXP + EXP
EXP 11 EXP
DIGIT+

LETTER LETTER-OR-DIGIT*

5.8. The concrete representation of SDF

The complete grammar for SDF is:

- 29 -

-> DEC LS
-> ID-TYPE
-> SERIES
-> STAT
-> STAT
-> STAT
-> EXP
-> EXP
-> NAT-CON <Lex}

-> ID <Lex}

preliminary

D4.Al

SDF-definition

sorts
sort

subsorts
subsort-def
sort-names

priorities
prio-def
rules

layout

functions
function-def
rule
rule-elem

replicator
attributes
attribute
empty

::= sorts subsorts priorities layout functions

::= "sorts" { sort "," }+
: := id

::= "subsorts" { subsort-def "," }+ I empty
::= {sort-names">"}+ I {sort-names"<"}+
::= id I "C" < id","}+">" •

::="priorities" { prio-def "," }+ I empty
::= { rules">"}+ I { rules"<"}+
::=rule I "(" {rule","}+")"

::= "layout" { literal "," }+ I empty

::= "functions" function-def+ I empty
: : = rule "->" sort attributes.
::= rule-elem*
: : = literal I sort I sort replicator

"{" sort literal "}" replicator
: := "+" I "*"
: : = "{" { attribute " " }+ "}" I empty ,
: := "Lex" I "par" I "assoc"
::= ""

The notions id and literal are defined as follows:

(1) an id consists of a letter followed by zero or more letters, digits and hyphens.

preliminary

(2) a l i te ra l consists of zero or more ASCII characters surrounded by double quote characters
". In a literal, the double quote character must be preceeded by a backslash \. In addition
to this, the following escape sequences may be used: \n (newline), \r (carriage return), \b
(backspace), \ t (horizontal tab) and \ \ (backslash). The double quotes that surround the
characters in the literal may be omitted if this does not introduce ambiguities in the parsing of
the SDF-definition.

5.9. Construction of a syntax definition for given a grammar

We intend to use SDF for the definition of existing and of newly designed formalisms and
languages. When defining an existing language, such as e.g. Pascal, one is faced with the problem of
constructing an SDF-definition from a given context-free grammar. Clearly, many equivalent SDF
definitions can be constructed for a given grammar. This poses the problem of constructing an
"optimal" SDF-definition for a given grammar, but it is not obvious how such a notion of optimal
ity should be formulated. In this section, we discuss some of the transformations one could apply,
during this construction.

First we show a trivial, but unsatisfactory, construction from context-free grammar to SDF
definition.

ALGORITHM 5.9.1.
Given a context-free grammar G=(N,0,PROD,R), we construct a basic syntax definition
D=(S,0,0P,0) as follows:

(l) [Define sorts]: For each non-terminal YEN add a sort Y to S.

(2) [Define functions]: For each rule Y:: =a0 Y1a 1 • • • Ynan in PROD, add a function definition
ao Yja 1 • • • Ynan~Y to OP.

- 30 - 04.Al

preliminary

We will now describe a series of possible transformation steps of a given grammar. The following
grammar will be used as a starting point:

EXP ::= EXP - TERM I TERM
TERM ::= TERM I FACTOR I FACTOR
FACTOR : : = (EXP) I ID I ID (EXPS
ID ::= a I b
EXPS : : = EXP I EXP , EXPS

Step 1. Apply algorithm 5.9.1. This leads to the construction of the following basic syntax
definition:

sorts EXP, EXPS, TERM, FACTOR, ID
functions

EXP - TERM -> EXP
TERM -> EXP
TERM I FACTOR -> TERM
FACTOR -> TERM
(EXP) -> FACTOR
ID -> FACTOR
ID (EXPS) -> FACTOR
a -> ID
b -> ID
EXP -> EXPS
EXP , EXPS -> EXPS

Step 2. Replace sorts and functions whose sole purpose is to define priorities between function
definitions by equivalent priority definitions. This gives:

sorts EXP, EXPS, ID
priorities - < I
functions

EXP - EXP -> EXP <Left-assoc}
EXP I EXP -> EXP <Left-assoc}
(EXP) -> EXP
ID -> EXP
ID (EXPS) -> EXP
a -> ID
b -> ID
EXP -> EXPS
EXP , EXPS -> EXPS

Step 3. Eliminate all functions of the form < s) for some sort s by equivalent par attributes.
This gives:

- 31 - D4.Al

sorts EXP, EXPS,
priorities - < I
functions

EXP - EXP
EXP
ID
ID
a
b
EXP

I EXP

(EXPS

ID

)

EXP , EXPS

preliminary

-> EXP {left-assoc,par}
-> EXP {left-assoc,par}
-> EXP {par}
-> EXP {par}
-> ID
-> ID
-> EXPS
-> EXPS

Step 4. Eliminate all sorts and functions which are used for defining lists and replace them by
equivalent list sorts. This gives:

sorts EXP, ID
priorities - < I
functions

EXP - EXP -> EXP {left-assoc,par}
EXP I EXP -> EXP {left-assoc,par}
ID -> EXP {par}
ID C { EXP , }+) -> EXP {par}
a -> ID
b -> ID

Step 5. Eliminate all injections of the form s -> T (which correspond to chain rules in the original
grammar) by equivalent subsort declarations. Note that chain rules can, in many cases, also be
eliminated by repeated substitutions in the given grammar. Introduction of subsorts in our example
syntax definition gives:

sorts EXP, ID
subsorts ID < EXP
priorities - < I
functions

EXP - EXP
EXP I EXP
ID C { EXP , }+)

a
b

->
->
->
->
->

EXP
EXP
EXP
ID
ID

Two comments can be made on the above construction:

{left-assoc,par}
{left-assoc,par}
{par}

(l) The constructed SDF-definition is "too large" in the sense that the original grammar had one
startsymbol (in the example: EXP), while the constructed SDF-definition defines the sorts EXP
and ID. One essentially needs a mechanism for name hiding (see section 6.) to obtain a syn
tax definition which is completely equivalent to the original grammar.

(2) Ambiguities in the original context-free grammar are carried over to the constructed SDF
definition. In the case of the given Pascal-grammar (see appendix) ambiguities exist which can
only be eliminated by type checking.

- 32 - D4.Al

preliminary

6. RELATION WITH LOGIC SPECIFICATIONS

6.1. Combination of SDF with other formalisms

In the previous sections we have only been concerned with mappings between concrete
representations and abstract syntax trees and have disregarded the semantics of these syntax trees.
Now we will address the question of assigning meanings to syntax trees, or in other words, of com
bining SDF with an arbitrary first-order formalism F. We will cio so only in a global and informal
way.

Two steps are necessary to combine SDF with a formalism F:
(l) The concrete representation of the well-formed formulae of F has to be defined. This amounts

to combining the concrete representations of terms (as defined by the syntax definition) with
the connectives that may further occur in the formulae of F. Choosing equational logic for F,
one may, for instance, write

x * succ (y) = x + x * y

instead of

mul(x, succ(y)) = add(x, mul(x, y)).

Or choosing first-order logic for F, one may write

'Vx: x>O ~ succ(x)>O

instead of

'Vx: greater(x, 0) ~ greater(succ(x), 0).

(2) The modularization constructs of F (if any) have to be extended to cover combination and
renaming of function definitions in syntax definitions. On import of one module in another
one, the underlying grammars of both modules have to be joined. On export of sorts and
functions from a module, the grammar of the "exported language" of that module is defined
by all exported sorts and by all definitions of exported functions with an exported sort as
result domain. When a parameterized module is bound to an actual parameter module, the
underlying grammars of both modules have to be renamed and combined.

6.2. Additional requirements due to composition of definitions

SDF has been designed from the point of view that only one language is being defined. When
combining SDF with modularization constructs several additional questions and constraints arize:

(I) When combining modules one can not use a reserved word strategy for identifiers and key
words, since identifiers in one module may conflict with keywords in another module. This
motivates the choice of some of our lexical conventions in section 5.4.

(2) How should the layout alphabets of two modules be combined? Choosing the union of these
alphabets may introduce undesirable ambiguities, but choosing one general layout alphabet
may be too restrictive.

(3) How should the comment conventions of two modules be combined? Typically, language L 1
serves as comment in the definition of language L 2 • Using parameterized modules, a language
definition could be parameterized with, for instance, a comment language.

(4) When two modules are combined the resulting language may be ambiguous. This can be seen
as incompleteness of the combined priority definitions of the two modules. This suggests that
the construct for module composition should allow for the definition of additional priorities.

(5) Modular language definitions may lead to completely different decompositions of a language
definition. For instance, instead of specifying one, monolithic, syntax, separate modules can
specify different syntactical categories such as expressions, statements, declarations, etc.

(6) Current parser generator technology uses extensive preprocessing of a given grammar to

- 33 - 04.Al

preliminary

produce an efficient parser. The implementation of modular language definitions requires
techniques that preserve the compositionality of preprocessed modules at the implementation
level.

6.3. Interaction between syntax and semantics

Syntax definitions, as developed in this paper, do not depend on semantics. They only define
a concrete representation of abstract syntax trees over some signature. However, once syntax
definitions have been combined with a specific formalism, additional constraints can be imposed on
abstract syntax trees. In this manner, constraints can be expressed on abstract syntax trees that are
otherwise not expressible in SDF. In this way, the expressive power of SDF (which is equivalent to
simple syntax-directed translations, see section 5.3.3) can be increased.

6.4. Limitations and further work

Our syntax definition formalism allows the definition of arbitrary, context-free grammars. It
has, however, some restrictions:

(1) The par attribute, as defined, only allows a fixed pair of parentheses. It should be generalized
to allow arbitrary pairs of parentheses.

(2) In many languages, comment is defined at the lexical level and may even occur inside lexical
tokens. We are only capable of expressing comments as syntactic entities.

(3) SDF does not address the pretty printing of concrete representations.

These problems have to be solved, but we also envisage other subjects for further research:

(1) Formal definition of the combination of syntax definitions with algebraic specifications.

(2) Study the combination with other formalisms such as, for instance, TYPOL [Annexe D4.A2].

(3) Study techniques for implementing syntax definitions. A full implementation will require the
use of parsing techniques for arbitrary, context-free grammars. It may also be worthwhile to
investigate the possibility of applying restricted, but more efficient parsing techniques.

REFERENCES
[ASU85]

[AU72]

[BMS80]

[EM85]

[FGJM85]

[GM85]

[IR61]

[IR70]

[JOH79]

[JW]

A.V. Aho, R. Sethi & J.D. Ullman, Compilers. Principles, Techniques and Tools,
Addison-Wesley, 1985.

A.V. Aho & J.D. Ullman, The Theory of Parsing, Translation, and Compiling,
Volumes I and II, Prentice-Hall, 1972.

R.M. Burstall, D. MacQueen & D. Sanella, "HOPE: an experimental applica
tive language", Conf Record of the 1980 LISP Conference, Stanford University,
1980, pp. 136-143.

H. Ehrig & B. Mahr, Fundamentals of Algebraic Specifications I, EATCS Mono
graphs in Theoretical Computer Science, Springer-Verlag, 1985.

K. Futatsugi, J.A. Goguen, J.P. Jouannaud & J. Meseguer, "Principles of
OBJ2", Conf. Record 12th Ann. ACM Symp. Principles of Programming
Languages, ACM, 1985, pp. 52-66.

J.A. Goguen & J. Meseguer, "Order-Sorted Algebra I: Partial and Overloaded
Operators, Errors and Inheritance", (to appear).

E.T. Irons, " A syntax directed compiler for Algol 60" Communications of the
ACM 4 (1961) l, pp. 51-55.

E.T. Irons, "Experience with an Extensible Language", Communications of the
ACM 13 (1970) l, pp. 31-40.

S.C. Johnson, "YACC: yet another compiler-compiler", in: UNIX
Programmer's Manual, Vol. 2B, Bell Laboratories, 1979.

K. Jensen, N. Wirth, (revised by A.B. Mickel & J.F. Miner), PASCAL User

- 34 - D4.Al

[KLMM83]

[KLA83]

[LS79]

[OD085]

[SAN82]

[ST75]

[WE70]

preliminary

manual and Report, Third Edition, Springer-Verlag.

G. Kahn, B. Lang, B. Melese & E. Morcos, "METAL: a formalism to specify
formalisms", Science of Computer Programming, 3(1983), pp. 151-188.

Klaeren, H.A., Algebraische Spezifikation: Eine Einfahrung, Springer Verlag,
1983.

M.E. Lesk & E. Schmidt, "LEX - A lexic~ analyzer generator", in: UNIX
Programmer's Manual, Vol. 2B, Bell Laboratories, 1979.

M.J. O'Donnell, Equational Logic as a Programming Language, MIT Press,
1985.

D. Sandberg, "LITHE: A language combining a flexible syntax and classes'',
Conf Record 9th Ann. A CM Symp. Principles of Programming Languages,
ACM, 1982, pp. 142-145.

T.A. Standish, "Extensibility in Programming Language Design" SIGPLAN
Notices 10 (1975) 7, pp. 18-21.

B. Wegbreit, Studies in Extensible Programming Languages, dissertation, Har
vard, 1970 (reprinted by Garland Publishing, 1980).

- 35 - D4.Al

preliminary

Appendix: Syntax definition of Pascal

In this appendix we give a definition of the lexical and concrete syntax of Pascal as described
in [JW]. This definition also establishes an abstract syntax for that language.

sorts

ACTUAL-PARAMETER, ACTUAL-PARAMETER-LIST, ANY-CHAR-BUT-APOSTROPHE, ARRAY-TYPE,
BLOCK, BUFFER-VARIABLE, CASE, CHARACTER-STRING, COMPONENT-VARIABLE,
COMPOUND-STATEMENT, CONDITIONAL-STATEMENT, CONFORMANT-ARRAY-SCHEMA, CONSTANT,
CONSTANT-DEFINITION, CONSTANT-DEFINITION-PART, DIGIT, ELEMENT-DESCRIPTION,
ENUMERATED-TYPE, EXPRESSION, FIELD-DESIGNATOR, FIELD-LIST,
FILE-TYPE, FORMAL-PARAMETER-LIST, FORMAL-PARAMETER-SECTION,
FUNCTION-DECLARATION, FUNCTION-DESIGNATOR, FUNCTION-HEADING,
FUNCTION-IDENTIFICATION, IDENTIFIED-VARIABLE, IDENTIFIER, IDENTIFIER-LIST,
INDEX-TYPE-SPECIFICATION, INDEXED-VARIABLE, LABEL, LABEL-DECLARATION-PART,
LETTER, LETTER-OR-DIGIT, NIL, ORDINAL-TYPE, POINTER-TYPE,
PROCEDURE-AND-FUNCTION-DECLARATION-PART, PROCEDURE-DECLARATION,
PROCEDURE-HEADING, PROCEDURE-IDENTIFICATION, PROCEDURE-OR-FUNCTION-DECLARATION,
PROGRAM, PROGRAM-HEADING, RECORD-SECTION, RECORD-TYPE, REPETITIVE-STATEMENT,
SCALEFACTOR, SET-CONSTRUCTOR, SET-TYPE, SIMPLE-EXPRESSION, SIMPLE-STATEMENT,
SIMPLE-TYPE, STATEMENT, STRING-ELEMENT, STRUCTURED-STATEMENT, STRUCTURED-TYPE,
SUBRANGE-TYPE, TYPE, TYPE-DEFINITION, TYPE-DEFINITION-PART,
UNPACKED-STRUCTURED-TYPE, UNSIGNED-CONSTANT, UNSIGNED-INTEGER, UNSIGNED-NUMBER,
UNSIGNED-REAL, VALUE-PARAMETER-SPECIFICATION, VARIABLE, VARIABLE-DECLARATION,
VARIABLE-DECLARATION-PART, VARIABLE-PARAMETER-SPECIFICATION, VARIANT,
VARIANT-PART, VARIANT-SELECTOR, WITH-STATEMENT, WRITE-PARAMETER,
WRITE-PARAMETER-LIST

subsorts
LETTER-OR-DIGIT >

(LETTER, DIGIT)
UNSIGNED-NUMBER >

(UNSIGNED-INTEGER, UNSIGNED-REAL)
SCALEFACTOR >

UNSIGNED-INTEGER
STRING-ELEMENT >

ANY-CHAR-BUT-APOSTROPHE
UNSIGNED-CONSTANT >

(UNSIGNED-NUMBER, CHARACTER-STRING, IDENTIFIER, NIL)
VARIABLE >

(IDENTIFIER, COMPONENT-VARIABLE, IDENTIFIED-VARIABLE, BUFFER-VARIABLE)
COMPONENT-VARIABLE >

(INDEXED-VARIABLE, FIELD-DESIGNATOR)
EXPRESSION >

(SIMPLE-EXPRESSION, UNSIGNED-CONSTANT, IDENTIFIER, VARIABLE,
SET-CONSTRUCTOR, FUNCTION-DESIGNATOR)

FIELD-DESIGNATOR >
IDENTIFIER

ELEMENT-DESCRIPTION >
EXPRESSION

ACTUAL-PARAMETER >
(EXPRESSION, VARIABLE)

WRITE-PARAMETER >
f!XPRESSION

- 36 - D4.Al

preliminary

FORMAL-PARAMETER-SECTION >
(VALUE-PARAMETER-SPECIFICATION, VARIABLE-PARAMETER-SPECIFICATION,
PROCEDURE-HEADING, FUNCTION-HEADING)

FUNCTION-DESIGNATOR >
IDENTIFIER

PROCEDURE-OR-FUNCTION-DECLARATION >
{PROCEDURE-DECLARATION, FUNCTION-DECLARATION) .

ORDINAL-TYPE >
(ENUMERATED-TYPE, SUBRANGE-TYPE, IDENTIFIER)

TYPE >
(SIMPLE-TYPE, STRUCTURED-TYPE, POINTER-TYPE)

SIMPLE-TYPE >
{ORDINAL-TYPE, IDENTIFIER)

STRUCTURED-TYPE >
(UNPACKED-STRUCTURED-TYPE, IDENTIFIER)

UNPACKED-STRUCTURED-TYPE >
(ARRAY-TYPE, RECORD-TYPE, SET-TYPE, FILE-TYPE)

FIELD-LIST >
VARIANT-PART

VARIANT-SELECTOR >
IDENTIFIER

POINTER-TYPE >
IDENTIFIER

SIMPLE-STATEMENT >
IDENTIFIER

STRUCTURED-STATEMENT >
(COMPOUND-STATEMENT, CONDITIONAL-STATEMENT, REPETITIVE-STATEMENT,

WITH-STATEMENT)
STATEMENT >

(SIMPLE-STATEMENT, STRUCTURED-STATEMENT)

priorities

C- EXPRESSION, + EXPRESSION, not EXPRESSION) >
C*, I, div, mod, and) >
(EXPRESSION + EXPRESSION, EXPRESSION - EXPRESSION, or) >
C=, <>, <, <=, >, >=, in)

functions

a -> LETTER

z -> LETTER
0 -> DIGIT

9 -> DIGIT
LETTER LETTER-OR-DIGIT* -> IDENTIFIER
DIGIT+ -> UNSIGNED-INTEGER
UNSIGNED-INTEGER • DIGIT+ -> UNSIGNED-REAL
UNSIGNED-INTEGER • DIGIT+ e SCALEFACTOR -> UNSIGNED-REAL
UNSIGNED-INTEGER e SCALE FACTOR -> UNSIGNED-REAL
+ UNSIGNED-INTEGER -> SCALE FACTOR
- UNSIGNED-INTEGER -> SCALE FACTOR
I STRING-ELEMENT* I -> CHARACTER-STRING
I I -> STRING-ELEMENT

- 37 -

Hex}
Hex}
Hex}
Hex}
Hex}
Hex}
Hex}
Hex}
Hex}

D4.Al

nil
+ UNSIGNED-NUMBER
- IDENTIFIER
IDENTIFIER = CONSTANT
const { CONSTANT-DEFINITION ; }+ ;

VARIABLE A

VARIABLE A

{ IDENTIFIER , }+ : TYPE
var { VARIABLE-DECLARATION ; }+ ;

VARIABLE [{ EXPRESSION , }+]

VARIABLE • IDENTIFIER
[{ ELEMENT-DESCRIPTION , }*]

EXPRESSION •• EXPRESSION

SIMPLE-EXPRESSION * SIMPLE-EXPRESSION
SIMPLE-EXPRESSION I SIMPLE-EXPRESSION
SIMPLE-EXPRESSION div SIMPLE-EXPRESSION
SIMPLE-EXPRESSION mod SIMPLE-EXPRESSION
SIMPLE-EXPRESSION + SIMPLE-EXPRESSION
SIMPLE-EXPRESSION - SIMPLE-EXPRESSION
- SIMPLE-EXPRESSION
+ SIMPLE-EXPRESSION
not SIMPLE-EXPRESSION.

SIMPLE-EXPRESSION and SIMPLE-EXPRESSION
SIMPLE-EXPRESSION or SIMPLE-EXPRESSION
SIMPLE-EXPRESSION = SIMPLE-EXPRESSION
SIMPLE-EXPRESSION <> SIMPLE-EXPRESSION
SIMPLE-EXPRESSION < SIMPLE-EXPRESSION
SIMPLE-EXPRESSION <= SIMPLE-EXPRESSION
SIMPLE-EXPRESSION > SIMPLE-EXPRESSION
SIMPLE-EXPRESSION >= SIMPLE-EXPRESSION
SIMPLE-EXPRESSION in SIMPLE-EXPRESSION

EXPRESSION)

({ ACTUAL-PARAMETER , }*

EXPRESSION EXPRESSION
EXPRESSION EXPRESSION : EXPRESSION
(VARIABLE
(VARIABLE , { WRITE-PARAMETER , }+)

{ WRITE-PARAMETER , }+)

IDENTIFIER •• IDENTIFIER IDENTIFIER

preliminary

-> NIL
-> CONSTANT
-> CONSTANT
-> CONSTANT-DEFINITION
-> CONSTANT-DEFINITION-PART
-> CONSTANT-DEFINITION-PART
-> IDENTIFIED-VARIABLE
-> BUFFER-VARIABLE
-> VARIABLE-DECLARATION
-> VARIABLE-DECLARATION-PART
-> VARIABLE-DECLARATION-PART
-> INDEXED-VARIABLE
-> FIELD-DESIGNATOR
-> SET-CONSTRUCTOR
-> ELEMENT-DESCRIPTION

-> SIMPLE-EXPRESSION {par,left-assoc}
-> SIMPLE-EXPRESSION {par,left-assoc}
-> SIMPLE-EXPRESSION {par,left-assoc}
-> .SIMPLE-EXPRESSION {par,left-assoc}
-> SIMPLE-EXPRESSION {par,left-assoc}
-> SIMPLE-EXPRESSION {par,left-assoc}
-> SIMPLE-EXPRESSION {par}
-> SIMPLE-EXPRESSION {par}
-> SIMPLE-EXPRESSION {par}

-> EXPRESSION
-> EXPRESSION
-> EXPRESSION
-> EXPRESSION
-> EXPRESSION
-> EXPRESSION
-> EXPRESSION
-> EXPRESSION
-> EXPRESSION

-> SIMPLE-EXPRESSION

-> ACTUAL-PARAMETER-LIST

-> WRITE-PARAMETER
-> WRITE-PARAMETER
-> WRITE-PARAMETER-LIST
-> WRITE-PARAMETER-LIST
-> WRITE-PARAMETER-LIST

-> INDEX-TYPE-SPECIFICATION
packed array [INDEX-TYPE-SPECIFICATION] of IDENTIFIER

-> CONFORMANT-ARRAY-SCHEMA
array [{ INDEX-TYPE-SPECIFICATION ; }+] of IDENTIFIER

-> CONFORMANT-ARRAY-SCHEMA
array [{ INDEX-TYPE-SPECIFICATION ; }+] of CONFORMANT-ARRAY-SCHEMA

-> CONFORMANT-ARRAY-SCHEMA
-> FORMAL-PARAMETER-LIST ({ FORMAL-PARAMETER-SECTION ; }+)

IDENTIFIER-LIST : IDENTIFIER -> VALUE-PARAMETER-SPECIFICATION

- 38 - D4.Al

preliminary

IDENTIFIER-LIST : CONFORMANT-ARRAY-SCHEMA -> VALUE-PARAMETER-SPECIFICATION
var IDENTIFIER-LIST IDENTIFIER -> VARIABLE-PARAMETER-SPECIFICATION
var IDENTIFIER-LIST : CONFORMANT-ARRAY-SCHEMA

-> VARIABLE-PARAMETER-SPECIFICATION

function IDENTIFIER : IDENTIFIER -> FUNCTION-HEADING
function IDENTIFIER FORMAL-PARAMETER-LIST I DENTI.F I ER

FUNCTION-HEADING ; BLOCK
FUNCTION-HEADING ; IDENTIFIER
FUNCTION-IDENTIFICATION ; BLOCK
function IDENTIFIER
IDENTIFIER ACTUAL-PARAMETER-LIST

procedure IDENTIFIER FORMAL-PARAMETER-LIST
procedure IDENTIFIER
procedure IDENTIFIER
PROCEDURE-HEADING ; BLOCK
PROCEDURE-HEADING ; IDENTIFIER
PROCEDURE-IDENTIFICATION ; BLOCK

{PROCEDURE-OR-FUNCTION-DECLARATION ; }+ ;

PROGRAM-HEADING ; BLOCK
program IDENTIFIER
program IDENTIFIER ({ IDENTIFIER , }+)

(IDENTIFIER-LIST)
CONSTANT •• CONSTANT
packed UNPACKED-STRUCTURED-TYPE
array [{ ORDINAL-TYPE , }+] of TYPE
record FIELD-LIST end
IDENTIFIER-LIST : TYPE

FieldList:
{ RECORD-SECTION ;}+
{ RECORD-SECTION ;}+ ;
{ RECORD-SECTION ;}+ ; VARIANT-PART

case VARIANT-SELECTOR of { VARIANT ; }+
IDENTIFIER : IDENTIFIER
{ CONSTANT ,}+ : C FIELD-LIST)

set of ORDINAL-TYPE
file of TYPE

A IDENTIFIER

IDENTIFIER = TYPE
type { TYPE-DEFINITION ; }+ ;

VARIABLE := EXPRESSION
IDENTIFIER := EXPRESSION

- 39 -

-> FUNCTION-HEADING
-> FUNCTION-DECLARATION
-> FUNCTION-DECLARATION
-> FUNCTION-DECLARATION
-> FUNCTION-IDENTIFICATION
-> FUNCTION-DESIGNATOR

-> PROCEDURE-HEADING
-> PROCEDURE-HEADING
-> PROCEDURE-IDENTIFICATION
-> PROCEDURE-DECLARATION
-> PROCEDURE-DECLARATION
-> PROCEDURE-DECLARATION

-> PROCEDURE-AND-FUNCTION-DECLARATION-PART
-> PROCEDURE-AND-FUNCTION-DECLARATION-PART

-> PROGRAM
-> PROGRAM-HEADING
-> PROGRAM-HEADING

-> ENUMERATED-TYPE
-> SUBRANGE-TYPE
-> STRUCTURED-TYPE
-> ARRAY-TYPE
-> RECORD-TYPE
-> RECORD-SECTION

-> FIELD-LIST
-> FIELD-LIST
-> FIELD-LIST
-> FIELD-LIST

-> VARIANT-PART
-> VARIANT-SELECTOR
-> VARIANT

-> SET-TYPE
-> FILE-TYPE
-> POINTER-TYPE

-> TYPE-DEFINITION
-> TYPE-DEFINITION-PART
-> TYPE-DEFINITION-PART

-> SIMPLE-STATEMENT
-> SIMPLE-STATEMENT
-> SIMPLE-STATEMENT

D4.Al

IDENTIFIER ACTUAL-PARAMETER-LIST
IDENTIFIER WRITE-PARAMETER-LIST
goto LABEL

begin { STATEMENT ; }+ end

if EXPRESSION then STATEMENT
if EXPRESSION then STATEMENT else STATEMENT
{ CONSTANT , }+ : STATEMENT
case EXPRESSION of { CASE ; }+ end
case EXPRESSION of { CASE ; }+ end ;

while EXPRESSION do STATEMENT
repeat {STATEMENT ; }+until EXPRESSION
for VARIABLE := EXPRESSION to EXPRESSION

do STATEMENT
for VARIABLE := EXPRESSION downto EXPRESSION

do STATEMENT

with {VARIABLE , }+do STATEMENT

preliminary

-> SIMPLE-STATEMENT
-> SIMPLE-STATEMENT
-> SIMPLE-STATEMENT

-> COMPOUND-STATEMENT

-> CONDITIONAL-STATEMENT
-> CONDITIONAL-STATEMENT
-> CASE
-> CONDITIONAL-STATEMENT
-> CONDITIONAL-STATEMENT

-> REPETITIVE-STATEMENT
-> REPETITIVE-STATEMENT

-> REPETITIVE-STATEMENT

-> REPETITIVE-STATEMENT

-> WITH-STATEMENT

-> STATEMENT LABEL : STATEMENT
{ DIGIT }+ -> LABEL Hex}
label { LABEL , }+ ; -> LABEL-DECLARATION-PART

-> LABEL-DECLARATION-PART

LABEL-DECLARATION-PART CONSTANT-DEFINITION-PART
TYPE-DEFINITION-PART VARIABLE-DECLARATION-PART
PROCEDURE-AND-FUNCTION-DECLARATION-PART COMPOUND-STATEMENT

-> BLOCK

. 40. D4.Al

GIPE: CEC 348/S/T4/12
version 2 liD-12-85

Specifications in Natural Semantics

Deliverable D4 of task T4, Annex 2

D. Clement {SEMA}
J. Despeyrouz {INRIA}
T. Despeyrouz {INRIA}

L. Hascoet {INRIA}
G. Kahn {INRIA}

This Annex describes several experiments in describing programming languages car
ried out in the style of Natural Semantics. The examples are small but contain the typical
difficulties in programming language semantics.

1. Introduction and overview
Inspired by early work of Plotkin, we have developed a formalism called Natural Semantics

for describing the various aspects of programming language semantics(NS,JDJ. This work has
involved designing a prototype language, TYPOL and its compiler to Prolog. Specifications writ
ten in TYPOL can be executed, so that a higher degree of confidence in their validity can be
reached. In this paper, we assume general familiarity with Natural Semantics and TYPOL.

Sample specifications have been developed in three areas: static semantics, dynamic seman
tics and translation.

In the area of static semantics we discuss:
An Algol-68 like language, ASPLE. The significant point here is that type expressions are
constrained in a non trivial way (coercions).
A skeleton ML with polymorphic types and type inference. The main interest of this work is
to show that unification in the meta-system can advantageously replace explicit calls to
unification in the traditional polymorphic type-checking algorithm. This is a general fact
rather than a fortuitous one.
The AMBER language, designed by Cardelli. This language provides an opportunity to dis
cuss multiple inheritance in the context of a static type-checking system.
The ESTEREL language designed by Berry. It is used as an example of a non-toy language
to work with. This is also developed as a future context in which we could test ideas on
incremental type-checking.

In the area df translation, we elaborate two examples:
Translating ASPLE to a simple stack machine language. Translation seems very easy in this
context. The method allows generating code that contains free variables, a strategy to define
relocatable code. A simple form of optimisation is obtained as well.

- 1 - D4.A2

Translating a reduced version of ML to a clever machine code, called CAM, especially
designed for applicative languages. This translation serves as a base for a correctness proof
in a forthcoming paper [JO].

Another form of translation occurs, usually intimately connected to type-checking: translating
from surface abstract syntax to deep abstract syntax. This is done with ASPLE for example, to
solve overloading of operators. These translations are very simple, so that we do not need to dis
cuss them at length.
Finally, we also consider pretty-printing as a particular kind of translation. For example, we have
designed a pretty-printer of TYPOL that generates TeX input following this idea. General
pretty-printing is not discussed here, but it will be discussed in detail in future documents.

In Dynamic Semantics, we treat several examples:
Semantics of SML, a low level machine language. Of interest here is the treatment of jumps
and input/output.
Semantics of CAM, the above-mentioned abstract machine code for applicative languages.
Here, treatment of the environment as a datum is interesting.
Semantics of ASPLE. This is a rather trivial example, since difficulties have been dealt with
at type-checking time. But input/output has to be done carefully. Having both a semantics
for ASPLE and SML, we explain next how to execute partially compiled programs, i.e.
ASPLE programs in which some fragment may have been replaced by its compiled version.
Semantics of a reduced version of ML. The resulting specification is compact and particu
larly pleasing. The equations describing the Mini-ML language were studied from the angle
of mixing interpreted and compiled execution. Due to the presence of closures in Mini-ML,
the problem is particularly difficult and interesting.
Semantics of Standard ML. We have worked directly from a formal specification written by
Milner[STML]. Two traits of this language make it interesting for us: exceptions and pat
tern matching.

Experimenting with these semantic definitions has already led us to revise the TYPOL formalism
and its compiler to Prolog. The abstract syntax of TYPOL was extended to incorporate condi
tions and actions. The compiler was completed with a mode that is particularly suitable to tracing
inference steps, following work by A. Porto in Lisbon. A type-checker for TYPOL was designed
and implemented, but it is not in a sufficiently finished state to be presented here. It was felt that
substantial effort deserved to be put in the design and implementation of the TYPOL pretty
printer: formal specifications should be as close to conventional mathematical definitions as possi
ble.

In the future, it is believed that the examples shown below make a good collection of test cases
for the project. Of course, a few more examples might be needed as well; in particular TYPOL
itself, as a prototypical logic programming language.

- 2 - D4.A2

2. A standard example: ASPLE

This example is in the tradition of Algol-like languages, even with an Algol-68 B.avor [DKL]. As we
can see in the abstract syntax of this language, an Asple program consists of two parts. The first part is a
declarative part where all variables of the program must be declared. The second part is a list of statements.

Objects in Asple are constants (integer and boolean), and variables. These variables may have mode
int (for integer), bool (for boolean), or reference to an object.

Additional operators are used to describe the deep abstract syntax of Asple (i.e. the abstract syntax on
which semantics is defined). After type-checking, identifiers in expressions are prefixed by the proper number
of explicit dereferencing, and the mode of arguments in a read/write statement is also made explicit. This
introduces three more operators in the abstract syntax (deref, tinput, touput) and one extra sort (VAR).
Transforming the abstract tree during type-checking, keeping some type information in the abstract syntax
tree, will make the specification of dynamic semantics or translation easier.

Abstract Syntax of ASPLE

sorts

VAR, ID, OP, EXP, STM, IDLIST, MODE, DECL, PROGRAM, STMS, DECLS

subsorts

EXP> VAR> ID

operators

'Programs in ASPLE'
program DECLSXSTMS -+ PROGRAM
decls DECL"' -+ DECLS
stms STM* -+ STMS

'Declarations'
decl MODEXIDLIST -+ DECL
idlist ID+ -+ ID LIST
bool -+ MODE
int -+ MODE
ref MODE -+ MODE

'Statements'
assign IDXEXP -+ STM
if EXP XSTMSXSTMS -+ STM
while EXPXSTMS -+ STM
input ID -+ STM
output EXP -+ STM

'Expressions'
bop EXPXOPXEXP -+ EXP
plus -+ OP
times -+ OP
equal -+ OP
different' -+ OP
and -+ OP
or -+ OP

'Constants and Identifiers'

-3- D4.A2

id
number
boolean

- ID
- EXP
- EXP

'Additional Operators'
deref VAR - VAR
tin put
toutput

- STM VARXMODE

EXPXMODE - STM

2.1. Static semantics

Rules describing the static semantics of Asple are given in the ASPLE_TC program.

We use three main predicates. Predicate ":" may be read as "has type". Predicate "_,, may be read
as "produces". It is used while building environment. The third predicate is not named. It may be read as
"this piece of program is well typed".

The first rule explains that the declarative part of an Asple program is used to build an environment
which then allows to t)[pe-check the statement part. It can be paraphrased as follow: "An Asple program
is well types if, given the empty environment, the declarative part produces an environment in which the
statement part is well typed". The empty environment is noted Pr/>·

Rule number 2 expresses the fact that an empty list of declarations does not affect the environment.
Notice that to avoid any ambiguity, empty lists are not pretty-printed using concrete syntax.

In the third rule, we can see that the elaboration of declarations is linear. The first declaration produces
an environment which is used to elaborate the following declarations.

Identifiers declared with a certain mode are entered in the environment with a mode which is a reference
to the declared mode. This can be seen in rule number 4. So, a boolean (or an integer) will be assigned the
mode bool (or int) (see rules 15 & 16), and a variable declared as int will be assigned the mode ref(int).

Rule 6 uses the set of rules DECLARE to increment the environment with the couple (ID,µ), where
ID is an identifier, andµ its mode. In set DECLARE, rule 21 expresses the fact that an identifier can't be
declared twice.

In rule 8, we can remark that all statements are typed using the same environment.

Rules 9, 10 and 11 need constraints on modes. These constraints (in fact two predicates) are defined in
the set TYPE-COERCION which defines an order on type expressions. Predicate IS-BOOLEAN is defined
using this order (see rule 25).

Rule 14 finds the mode of an identifier in the environment, using the set TYPE-OF. Notice that because
an identifier may be introduced in the environment only once, (see condition on rule 21), no condition is
needed here before recursion in rule 22.

Rules 17 to 19 compute the mode of expression. The contraints on OP, in rule 19, make these three
rules exclusive. The set RESULT_TYPE computes the result type of an expression. It is an integer if both
subexpressions are basically integer, and boolean if both subexpressions are basically boolean. The result
type is ignored if the operator is a test operator.

program ASPLE_TC is

use ASPLE

p, P1, P2 : ENV

µ,µ1,µ2,µs: MODE

Pr/> I- DECLS - p p I- STMS

I- begin DECLS STMS end

-4-

(1)

D4.A2

p I- EXP:µ

p I- decls[J-+ p

p I- DECL -+ Pl Pl I- DECLS -+ P2
p I- DECLj DECLS-+ P2

p I- ID LIST' ref(MODE) -+ Pl
p I- MODE : IDLIST-+ Pl

p I- idlist[J, µ-+ p

declare
p I- ID,µ-+ Pl Pl I- IDLIST, µ-+ P2

p I- ID,IDLIST1 µ-+p2

p I- stms[J

p I- STM p I- STMS

p I- STMj STMS

p I- EXP :µ2
type...coercion

I- J.'1 :5 ref (µ2)
p I- ID:= EXP

type...coercion
I- IS .JJOOLEAN(µ) p I- STMS1

p I- if EXP then STMS1 else STMS2 fi

type...coercion

p I- STMS2

p I- EXP:µ I- IS ..BOOLEAN(µ) p I- STMS

p I- while EXP do STMS end

pi-ID:µ

p I- input ID

p I- EXP:µ

p I- output EXP

type..of
p I- idx:µ

pl-idx:µ

p I- boolean x : bool

p I- number x: int

result-type
p I- EXP1 :µ1 p I- EXP2: J.&2 I- /J1 1 /J2: /.&3

p I- EXP1 :f EXP2 : bool

-5-

(2)

(3)

{4}

(5)

(6)

(7)

(8)

(9)

(10)

(11}

{12)

(13)

(14}

(15)

(16)

(17)

D4.A2

set DECLARE is

µ.,µ':MODE

x,y: ID

p f- EXP1 :µ.1

result-type
p f- EXP2: µ.2 f- µ.1, µ.2: µ.3

p I- EXP1 = EXP:a: bool

result-type
p f- EXP2 :µ.2 I- µ.1,µ.2:µ

Pr;, I- x, µ-+ x : µ.

y : µ.1
• L f- x, µ-+ y : µ1 ·Li

(x =/; y)

end DECLARE;

set TYPE-OF is

µ.:MODE

x: ID

end TYPE_OF;

set TYPE-COERCION is

µ., µ.' : MODE

end TYPE-COERCION;

x:µ·Ll-x:µ

Lf-z:µ.
E·Lf-z:µ

I- µ. $ µ.

I-µ.$µ'
I- µ. $ref(µ.')

I- bool$ µ.
I- IS JJOOLEAN(µ.)

-6-

{18)

(OP =/; '=' 1 OP =/; '=j;')

{20)

(21)

(21)

(22)

(23)

(24)

(25)

D4.A2

set RESULT _TYPE is

µ., µ.', µ.i, P.2 : MODE

end RESULT _TYPE;

end ASPLE_TC

I-µ',µ.:µ
I- ref(µ'),µ:µ.

I-µ,µ':µ
I-µ, ref(µ'):µ

I- µ., µ.: µ.

2.2. Translation to deep abstract syntax

(26) .

(27)

(28)

(29)

Translation to deep abstract syntax is very similar to type-checking. But a new abstract tree is build,
in which all rereferencing is explicit. This translation is specified in the ASPLE-STAT program. In fact,
ASPLE-STAT can be seen as an other way to type-check Asple programs.

Sets TYPE-OF and TYPE_COERCION are imported from the ASPLE-TC program. We also import
the ASPLE-TC program itself.

ASPLE_STAT defined only one predicate ("--."). Its meaning is "can be rewritten as". In some places,
it involves an extra parameter which is the mode of the rebuilt tree.

The first rule explains how to rewrite a complete Asple program. The environment is built exactly as
it was in ASPLE-TC. So we make an explicit call to this set of rules. Rewriting the statement part is done
using the current (ASPLE..STAT) set of rules. Because the declarative part is not touched by the translation,
it is taken as it was before in the initial abstract tree.

Rules 2 and 3 are straight-forward. Rule 4 is the first rule of interest. It expresses that after rewriting,
the mode of the left side of the assignment must be exactly a reference to the mode of the right side. In fact,
the left side is not affected by the translation. Only the right hand side must be dereferenced the proper
number of times, if necessary (This is done in rule 11and12).

Rules 5 to 10 are not very difficult. The only important point is that constraints on modes are very strict.
After rewriting, the mode of the expression in an if statement must be exactly bool, and not greater than
bool as in ASPLE_TC. This remark holds for the while, input and output statements as well. Notice that
input and output nodes are translated in tinput and touput nodes, in which type information is recorded,
to allow easier dynamic semantics definition.

Rule 11 finds type information in the environment. Rule 12 expresses the fact that an identifier may be
dereferenced a certain number of times, depending on its declared mode.

The last rules are straight-forward.

program ASPLE...STAT is

use ASPLE

import TYPE-OF, TYPE-COERCION from ASPLE-TC

import ASPLE-TC

p, Pi, p2 : ENV

-7- D4.A2

µ,µ':MODE

asple-tc
pip I- DECLS -+ p p I- STMS -+ STMS'

(1) I- begin DECLS STMS end-+ begin DECLS STMS' end

p I- stms [] -+ stms [] {2)

p I- STM -+ STM' p f- STMS -+ STMS'
(3) p f- STMj STMS -+ STM' j STMS'

p I- ID-+ ref(µ), ID' p I- EXP -+µ,EXP'
(4) p I- ID := EXP -+ID' := EXP'

p I- EXP -+ bool, EXP' p I- STMS1 -+ STMS~ p I- STMS2 -+ STMs;
p I- if EXP then STMS1 else STMS2 :6.-+ if EXP' then STMS~ else STMs; :6.

(5)

p I- EXP -+ bool, EXP' p I- STMS -+ STMS'
(6) p I- while EXP do STMS end -+while EXP' do STMS' end

p I- ID -+ref(int), ID'
(7) p I- input ID -+ tinput ID' int

p I- ID-+ ref(bool), ID'
(8) p I- input ID -+ tinput ID' bool

p I- EXP -+ int, EXP'
(9) p I- output EXP -+ toutput EXP' int

p I- EXP -+ bool, EXP'
(10) p I- output EXP -+ toutput EXP' bool

type..of
p I- idx :µ

p I- id x-+ µ, id x
(11)

type..of type..coercion
p I- idx:µ' I- µ5,µ 1 pl-idx-+ref(µ),VAR

p I- idx-+ µ, deref VAR
(12)

p I- boolean x-+ bool, boolean x (13.)

p I- numberx-+int, numberx (14)

p I- EXP1-+ int, EXP~ p I- EXP2-+ int, EXP;
p I- EXP1 =F EXP2-+ bool, EXP~ =F EXP;

(15)

p I- EXP1 -+ int, EXP~ p I- EXP2 -+ int, EXP;
p I- EXP1 = EXP2-+ bool, EXP~ = EXP;

(16)

-8- D4.A2

p f- EXP i -+ int, EXP~ p f- EXP2 -+ int, EXP~
(OP =f. '=' , OP =f. '=f.') p f- EXP1 OP EXP2 -+ int, EXP~ OP EXP~

p I- EXP1-+ bool, EXP~ p I- EXP2-+ bool, EXP;
p I- EXP1 + EXP2 - bool, EXP~ and EXP; (18)

p I- EXP1-+ bool, EXP~ p I- EXP2 -+ bool, EXP;
(19) p I- EXP1 x EXP:i -+boo!, EXP~ or EXP;

p I- EXP1 -+ bool, EXP~ p I- EXP2-+ bool, EXP;
(OP =f. 'X' , OP =f. '+') p I- EXP1 OP EXP2 -+ bool, EXP~ OP EXP;

end ASPLE..STAT

2.3. Dynamic semantics of ASPLE

The dynamic semantics of our little imperative language is described by the following formal system
where sequents have three different forms:

- For a declaration d:
81-d:s'

may be read as "elaborating a declaration d in the store s produces a new store 8 1".

- For a statement 8tm:

81 i. I- 8tm: 81
1 o

means "the execution of a statement 8tm in a store s reads an input i and yields a new store 81 and an
output o". As there are no procedures in Asple, a store is directly a mapping from identifiers to values.

- For an expression e:
81-e:v

means "in store 8 expression e evaluates to v".
The semantic domain contains integers JN and truth values true, false. Constants Of6, Bf6, denote the

empty output, store, ...

program ASPLE...DS is

use ASPLE

use STORE

:c, z1 1 z2 1 v, t11 : VALUE;

8, 81, 82 : STORE;

i.,i.1: INPUT;

o, 01 : OUTPUT;

8f6 I- DECLS: 81 81, i I- STMS: 82, 0
i. I- begin DECLS STMS end : 0

8 I- decls[] : 8

8 f- DECL: 81 81 f- DECLS : 82

8 f- DECLj DECLS: 82

8 f- IDLIST: 81

8 f- MODE : IDLIST : 81

-9-

(1)

(2)

(3)

(4)

D4.A2

allocate
8 I- s.idID: 8i

8 I- idID :8i

allocate
8 I- s.idID: 8i

8 I- id ID, IDLIST: 82

8 1 if6 I- stms[]: 8 1 Of6

update
81-VAR:z 8 I- z,v:8i 8i,il-STMS:o

8," . i I- tinput VAR MODE; STMS: 8i, 0

81-EXP:v 8 1 i I- STMS: s, o
8, i I- toutput EXP MODEj STMS: 8, v . 0

s, i I- STM: si, O

8 1 i ·ii I- STMj STMS: 82 1 O • oi

update
8 I- ID : Z 8 I- EXP : tJ 8 I- z, tJ: si

s I- EXP : true

8 1 i I- ID := EXP : 81J O

8 I- EXP: true 8, i I- STMS1: 8i1 0

8, i I- if EXP then STMS1 else STMS2 fi: 8i, 0

8 I- EXP : false 8, i I- STMS2 : 81J 0

8, i I- if EXP then STMS1 else STMS2 fi: 8i, 0

s, i I- STMS: si, 0 si, ii I- while EXP doSTMS end: s2, oi

s, i. ii I- while EXP do STMS end: s2, 0. oi

s I- EXP : false
s,i I-while EXP doSTMSend: 8, Of6

s I- id x : s.id x

store
sl-EXP:z 8 I- Zl-ttJ

s I- deref EXP : v

s I- boolean x : x

s I- numberx: x

set ALLOCATE is

end ALLOCATE;

set UPDATE is

end UPDATE;

8 f- S...ID : S...ID 1-t ..l · 8

S...ID 1-t V · S f- S...ID, tJ1 : S...ID 1-t tJ1 • S

M • S f- s_icJ, V1: M · S1

-10-

(5)

(6)

(7)

(8)

(9)

(10)

(11)

{12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(1)

(1)

(2)

D4.A2

set STORE is

end STORE;

end ASPLE...DS

S-ID 1-+ V • S f- S-ID. 1-+ V

S f- s..i.d I-+ V1

M · s I- s..i.d1-+v1

Comments on the formal definition:

(1)

(2)

Points of interest here are the treatment of input and output. Rule (9) says - in short - that ifs produces
an output o, then write(v); s produces an output v · o. The execution of a program p corresponds to the
proof tree of i I- p : o where o is a variable, instantiating a little bit more each time a write executes. From
the implementation point of view, the idea is that a variable of type Output is treated in a special way: each
times there is a substitution on it, the corresponding write-action is done. This is not yet implemented.
Input is treated in the same way. As an input is an hypothesis of a sequent, it means that a program begins
to execute with an input variable, reads its input values one by one, and produces the (input) hypothesis it
needs to run.

To be consistent with the style adopted in the static semantics of Asple, rules (2) of the set update
might have been written:

S-ID 1-+ V • S f- s_id, V1 : S..ID 1-+ V • 81
(S-ID ~ s..i.d)

But, as there are no double declarations in Asple, this would just be an optimisation of our semantics.

2.4. A Simple Machine Language: SML

SML is a "P-Code-like" machine language, mainly consisting in load, store, and jump instructions:
Abstract Syntax of SML

sorts

SML~D,CONSTANT,PROGRAM,COMS,COM

subsorts

COM> COMS

operators

'program'
co ms COM"' - COMS
program COMS - PROGRAM
block COMS - COM
ldo SML~D - COM
sro SML~ - COM
lao SML~ - COM
ind - COM
sto - COM
op - COM
ujp - COM
fjp - COM
tjp - COM
lbl - COM
nop - COM
ldd CONSTANT - COM

-11- D4.A2

s...read - COM
s_write - COM

'atoms'
sml..number - CONSTANT
smLboolean - CONSTANT
smLid - SML-ID

2.4.1. Dynamic semantics of SML

The dynamic semantics of our Simple Machine Language is described by the following formal system
where sequents have two different forms:

- For a command c which may cause a jump or an input/ouput:

p,u,il- c:u',o

may be read as "executing a code c in the environment p and the state u takes the state to u', reads
the input i and produces an output o". An environment p is a mapping from labels to continuations, a
store u is a pair <s, k> of a store s and an evaluation stack k. A store is a mapping from addresses 1

to values.

- For other commands c:
ul-c:u'

means "executing a code c in the state u take it to u'".

The semantic domain cont a.ins integers 1N and truth values true, false.

program SML..DS is

use SML

use STORE

x, v, v1, v2 : VALUE;

u, u1, u2 : STATE;

s, s1, s2 : STORE;

k:STAOK;

p,p1: ENV;

c,c1: SML;

i,i1: INPUT;

0,01: OUTPUT;

P<J 1 <s, ktj>, i I- COMS: 0'1 1 o

s, i I- program(COMS) : o

p, u, i<J I- coms!J : u, Of6

cont...find
p I- lblL1-+c1 p,u,il-c1 :u1 1 0

p, u, i I- ujpL; c :u1, o

p, <s, k>,i I- c:u, o
p, <s, true· k>,i I- fjpL;c :u,o

(1)

(2)

(3)

(4)

1 For the sake of simplicity addresses are identifiers: the one-one mapping Crom Asple-identiflers to Sml-addresses will thus
be just the identity.

-12- D4.A2

cont..find
p I- lblL._.c1 p,<s,k>,il-c1:0",o

p, <s,false · k>, i I- fjpL; c: u, o
cont..find

p I- lb1L._.c1 p,<s,k>,il-c1:0",o
p, <s, true · k>, i I- tjp Lj c: 0'1 o

p, <s, k>, i I- c :q, o
p, <s,false ·k>,i I- tjpL;c:O", o

update
s I- :r:,t1:s1 p,<s1,k>,il-c:0"1,o

p, <s, :r: • k>, t1 • i I- s...read; c: u1, o

p, <s,k>,i I- c:0"1,o
p, <s, t1 • k>, i I- s_write; c :0"1, t1 • o

cona...env
I- COMS: Pl Plt O', i I- COMS: 0'1, o Plt 0'1 1 i1 I- c: 0'2, 01

p, q, i · i1 I- block(coMs); c :0"2, o · o1

O' I- COM : 0'1
p, 0'1 i I- COMj COMS: u2, 0

q I- nop :u

<s, k> I- ldci(smLnumber v) :<s, t1 • k>

<s, k> 1- ldci(smLboolean v) :<s, v · k>
get

s I- s..id ID_. t1

<s, k> 1- ldo(smlldm) :<s, t1 • k>
update

s I- s..idm, v: s1

<s,v · k> I- sro(smLidm) :<s1,k>

<s, k> 1- lao(smLidm) :<s, s..idro · k>

set CONT ...FIND is

end CONT...FIND;

set CONS..ENV is

get
s I- :r:._.v

<s, z · k> I- ind :<s, t1 • k>
update

8 I- :r:, tl: 81

<s, t1 • z · k> I- sto :<s1, k>

<s, t11 • "2 · k> I- op OP :<s, t1 • k>

O' I- lblL: O'

lblL_. CONT· p 1- lblL .,._.CONT

pi- L.,._.CONT
PAIR · p I- L H CONT

I- corns[] : Pt/J

-13-

(5)

(6)

(7)

(8)

(9)

(Hi)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(1)

(2)

(1)

D4.A2

end CONS..ENV;

set GET is

end GET;

set UPDATE is

end UPDATE;

end SML-1>S

I- COMS:p

I- lblL; COMS: lblL 1-+ COMS • p

I- COMS:p

I- COMj COMS : p

X 1-+ t1 • 8 I- XI-+ t1

x I-+ t11 • 8 I- x, t12 : x I-+ 1.12 • 8

81 I- x, ": 82

M • 81 I- X 1 t1: M • 82

Comments on the formal definition:

(2)

(3)

(1)

(2)

(1)

(2)

Points of interest here are the treatment of jump and input/output. Input/output are treated in the
same way as in the dynamic semantics of Asple, with the little improvement that instructions which do not
need input/output do not take them as parameter.

For jumps (ujp, tjp, ...),we follow the idea of the denotational continuations. The scope of a label is
a block, so each time one enters into a block a mapping from labels to continuations (an environment p) is
constructed (see the con8_env set). Then a jump searchs for the right continuation in this environment. To
that end, the environment is a parameter of each rule which eventually needs it.

2.5. Translation from ASPLE to SML

The translation from Asple to Sml is described by the following formal system where sequents mainly
have two different forms:

- For a declaration d:
8 I- d: 81

may be read as "the translation of an Asple-declaration d with the store 8 produces a new store 81".

The declaration part of an Asple program produces the initial store of the code.

- For statements 8:
l-8-+c

means "the translation of a statement 8 is the code c" •

program ASPLE..SML is

use ASPLE

.use SML

use STORE

c, c1, c21 Cs : SML;

8, 81, 82 : STORE;

-14- D4.A2

8j11 I- DECLS: 8 I- STMS-+ c
I- program(DECLS, STMS)-+ program(c), 8

8 I- deds(J : 8

8 I- DECL : 81 . 81 I- DECLS : 82
8 I- DECLj DECLS : 82

8 I- IDLIST: 81
8 I- MODE : IDLIST: 81

allocate
8 I- s.Jd1D: 81

8 I- id ID: 81

allocate
s I- s.Jdm: 81 81 I- IDLIST : 82

8 I- id ID, IDLIST: 82

I- stms[J -+corns[)

I- STM-+C1 I- STMS-+C2
I- STMj STMS-+ C1j C2

I- EXP-+c
I- id ID := EXP -+ c; sro(smLid ID)

I- EXP -+ C1 I- STMS -+ C2
I- if EXP then STMS fi-+ block(c1; fjp 1; C2j lbl 1)

I- EXP -+ C1 I- STMS1 -+ C2 I- STMS2 -+ C3
I- if EXP thenSTMS1 else STMS2 fi-+ block(c1;fjp 1; c2; ujp2; lbll; C3j lbl2)

I- EXP -+ c1 I- STMS -+ c2
I- while EXP do STMS end-+ block(lbll; C1j fjp 2; C2j ujp 1; lbl2)

I- VAR-+ C

I- tinput VAR MODE -+ c; s..read

I- EXP-+c
I- toutput EXP MODE -+ Cj s_write

I- id x-+ lao{sml..id x)

I- derefidx-+ldo(smlidx)

I- EXP-+C
I- deref EXP --+ c; ind

I- boolean v --+ldci(smLboolean v)

I- number N--+ ldci(sml..number N)

operator
I- OP-+OP1

set OPERATOR is
•·

I- plus --+op "adi"

I- times--+ op "mpi"

-15-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

{14)

(15)

(16)

(17)

(18)

(19)

(20)

(1)

(2)

D4.A2

end OPERATOR;

set ALLOCATE is

end ALLOCATE;

end ASPLE...SML

Comments on the formal system:

I-= - op "equi"

1-f - op "neqi"

I- and - op "land"

I- or - op "lor"

8 I- S...ID : S...ID 1-+ ..L • 8

(3)

(4)

{5)

(6)

(1)

This translation is rather straightforward. Let us just note that the translation of an if (or a while)
is a block of commands, whose purpose is just to provide a scope to labels. A part from that there are two
optimisations: the translation of an "if" with no "else" -part, and the translation of "deref id x", which is an
optimisation of the translation of "deref EXP".

-16- D4.A2

3. A Simple Applicative Language: Mini-ML

ML is a programming language with very interesting characteristics from the standpoint of static and
dynamic semantics. ML is a strongly typed language but there is no type declaration, i.e. expressions are
implicitly typed, and it allows polymorphism, i.e. to define functions which work uniformly on arguments of
many types. ML allows the definition of higher-order functions, i.e. a value of an ML expression may be a
closure.

ML typechecking is the object of numerous discussions in the literature, e.g. (DM], [Cardelli], [Reynolds),
(TD], and the use of an inference system to describe ML typing is now widely accepted. On the other hand
recent work of Curien and Cousineau (CAM] has shown how to compile ML into code for an abstract machine,
the Categorical Abstract Machine (CAM). Thus it is a natural challenge for TYPOL to specify typechecking,
dynamic semantics, and translation into CAM for a mini-ML language. The features of ML retained are
those of a simple typed A-calculus with constants, extended by products and recursive functions.

Outline: For the sake of clarity we first present the type inference system of Dama.s-:Milner for the
simple A-calculus part and then show how this system, which is non-deterministic, may be transformed
into a deterministic system. Then we show that the latter system may be written in Typol to produce
automatically a Mini-ML typechecker. Finally we give rules that must be included to that Typol system to
deal with product and letrec. The dynamic semantics for mini-ML is described by an inference system. The
nicier points of this system are recursive function specification and management of products. Translation
from mini-ML to CAM illustrates how scope rules of A-calculus may be described with an appropriate
environment definition. The CAM is a very simple abstract machine. Transitions of the machine are
described quite naturally by a formal system.

Abstract Syntax of Mini-ML

The abstract syntax given bellow describes A-calculus extended by products , letrec, and if. Now in AP.e
P may be an identifier or a pattern. For example A(:z:, y).e is a valid expression. Notice that the function
mlpair stands for product of expressions. The nullpat function is used for the unit object () (which is both
a pattern and an expression).

sorts

EXP,IDENT,PAT,NULLPAT

subsorts

EXP>-

NULLPAT, IDENT

PAT>-

NULLPAT, IDENT

functions

'patterns'
pairpat PATXPAT -t PAT
nullpat -t NULLPAT

'expressions'
ident -t ID ENT
number -t EXP
false -t EXP
true '11 -t EXP
apply EXPXEXP -t EXP
lambda PATXEXP -t EXP
let PATXEXPXEXP -t EXP
letrec PATXEXPXEXP -t EXP

-17- D4.A2

if
ml pair

EXPXEXPXEXP -+ EXP
EXPXEXP -+ EXP

3.1. Static Semantics

To present typing as an inference system we start with the definition of the type language. In typed
A-calculus every object has a type. Thus the type language must be able to express ground types as well
as functions. For example, the type of the successor function).:z:.:z: + 1 is int -+ int. In the same way the
identity function).:z:.:z: for integers has type int -+ int, but for booleans it has type bool -+ bool. It is clear
that the identity function may be defined without taking into account the type of its present parameter.
The significant point is that the identity function has type a -+ a whatever the value of a is. To express this
abstraction on the type of the parameter the type flariable a is bounded by a quantifier. The polymorphic
identity function has type Va.a-+ a.

The Type Language

The type language is defined by the following syntax:

Types r

type variable a

ground types int, bool

functions r -+ r

Type Schemes u

type r

type..scheme Va.u

A type expression in this language may have both free and bound variables. Let us write FV(u) and
BV (a) for the sets of free and bound variables of a type expression a. Next we define relations between type
expressions that contain type variables.

Def. A type scheme u' is called an instance of a type scheme u if there exists a substitution S of types for
free type variables such that:

a'= Sa.

Instantiation acts on free variables: if S is written [ai +- ri] with ai E FV(u) then Su is obtained by
replacing each free occurrence of ai in a by Ti (renaming the bound variables of u if necessary). The domain
of Sis the set D(S) ={a E FV(a) I a is replaced by r}.

Def. A type scheme u = Va1 · · ·am.r has a generic instance u' = Vf31 · · ·f3n.r', and we shall write u !'.::a', if:
- there exists a substitution S such that

r' =Sr with D(S) ~ {a1 ···am}

- the /3; are not free in u, i.e.
/31 ~ FV(a)

Generic instantiation acts on bounded variables. Note that if a!'.:: u' then for every substitution S, Su!'.:: Sa'.

3.1.1. Damas-Milner Inference System

In progra:tnming languages the type of an expression depends upon the type of identifiers that occur
free in it. In other words an expression e has type a under a given set of assumptions A. In the following A
is a list of assumption :z: : a and Az stands for the result of removing any assumption about :z: from A. We
say that the expression e is typable if

At- e: a

-18- D4.A2

may be derived from the Damas-Milner inference system:
TAUT A I- :z;: u (:z:: u EA)

INST

GEN

APP

ABS

LET

Al-e:u
Al-e:u'

Al-e:u
A I- e: Va..u

(u ~ u')

(a. fj. FV(A))

Al-e:r'-+T Al-e1 :r'
Al-ee':T

A:i: U {:z:: r'} I- e: T

A I- A:z:.e : r' -+ T

Al-e:u A:i:U{:z::u}l-e':r'
A I- let :z: = e in e' : T'

Let us see now how this system may be used to show typings. For example, we can show that the identity
function A:z:.:z: has type Va.a.-+ a. by the following derivation tree:

{:z;: a.} I- :z;: a. (TAUTj
I- AZ.:Z: : a.-+ a. [ABSj

I-).:z:.:z:: Va.a.-+ a. (GENj
We can use that proof to get a specialized type for the identity function:

I-).:z:.:z: : Va.a.-+ a.
I- Az.:z: : int -+ int

More directly we have also the following proof tree:

[INST]

{:z:: int} I- :z:: int [TAUT]
I-).:z:.:z; : int -+ int [ABSj

Now to compute the type of an expression with such an inference system we must find the order in which to apply inference rules. With the exception of GEN and INST, all rules are exclusive: there is only one rule to express the typing of each syntactic construct. It is clear that the system is non-deterministic because of rules GEN and INST. The problem reduces to choosing when to use GEN and INST.

3.1.2. Deterministic Inference System

Consider the proof tree for the typing of let i = A:z:.:z: in ii:

{:z:: a.} I- :z:: a.
I-).:z:.:z: : a. -+ a

I-).:z:.:z: : Va.a.-+ a.

{i: Va.a.-+ a} I- i: Va.a.-+ a. {i: Va.a-+ a} I- i: Va.a-+ a.
{i: Va.a-+ a.} I- i: (P-+ P)-+ (P-+ P) {i: Va.a-+ a} I- i: p-+ P

{i: Va.a.-+ a} I-ii: p-+ P
I- let i =).:z:.:z: in i i : p -+ p

In this example we see that:

1) APP, ABS, and LET rules the variables T and r' cannot be quantified.
2) to derive A I- e : q in the LET rule we may have to apply the GEN rule. With the rule TAUT, an

identifier may be associated to a type scheme in the set A, the rule GEN is the only one that can introduce" a quantified type scheme.
3) to derive A:i: U {:z; : u} I- e' : r' in the LET rule we may have to use the INST rule after each use of TAUT for :z: and q is quantified. For example to apply the APP rule in the above proof tree.

Consider the following slightly different version of the Damas-Milner system:

-19- D4.A2

TAUT

APP

ABS

LET'
Al-e:r

inst gen

inst
I- u:r

Al-.z:T
(z: u e A)

Al-e:r-+r Al-e':r'
Al-ee':r

Az U { .z : r'} I- e : T

A I- A.z.e : r' -+ r

gen
A I- r:u Az U { .z : q} I- e' : r'
A I- let z = e in e' : r'

where the two sequents, I- and I- are defined by the following systems:

INST {
I- T : T if T is not quantified
I- Va1 · · · Otn.1': T' with T' = Sr and D(S) = { a1 ···an}

Notice that quantifiers are stripped: the substitution S acts on all the quantified variables °'i·

GEN {
A I- r: Va1 · · · °'n·T (FV(r) \ FV(A) = {a1 ···an})
A I- r: r (FV(r) \ FV(A) = 0)

In the same manner all generic variables are quantified.

This system is deterministic. It is clear that the order in which rules are applied is fully determined
by the syntactic structure of the expression. To each syntactic operator corresponds only one rule. Given
an expression this system describes all its possible typing. But we know that a lower unifier bound may
be found by unification (when unifiers exist). Milner,[Milner], has shown that unification may be used to
compute a principal type for every typable expression. Here unification is pushed in the meta level (i.e. in
the formal system).

3.1.3. Type Inference

We now describe how the above system may be used to find the typing of an expression, i.e. how it
works. The general idea consists in building a proof for A I- e : T with T not yet known. In case of success
the value of T is a principal type of the expression e. Due to the lack of type declarations in A-calculus the
set of assumptions on identifiers is unknown when we start the proof. We have to do type inference.

To deduce the type of an abstraction, A.z.e, we must find a proof for the sequent Az U {z: r'} I- e: r.
But we do not know what the value of r' should be. Thus a type variable is initially associated to the A
bound identifier z. The next rules to apply depend only on the structure of the expression e. Some of them
may require the types of two sub-expressions to be identical, for example the rule APP'. It is the unification
we are using to build a proof that checks if these types are equal or if there exists a most general unifier
that makes them equal. This results in a new instance of the proof tree we are building. Notice that this
unification acts only on valid proof trees: at each unification step we can obtain the same goal tree but
starting with the present instance of the list of assumptions. Typing succeeds if there exists a complete
proof tree in the system.

inst gen
What about polymorphism? With the exception of I- and I- , it is clear that every occurrence of a

A-bound identifier z in an expression e will have the same type. For example the typing of the expression
A.z. let i = .z iiti + i may be described by the following goal tree:

gen
{z:a}l-z:a I- a:a {i:a}l-i+i:r

{ .z : a} I- let i = z in i + i : T

I- Az. let i = z in i + i : a -+ T

-20- D4.A2

where a is a type variable and T is the type term to find. Assuming that the function + has type int * int -+
int, to apply the APP' rule both a and T must be equal to int. Notice that the type variable a was not
quantified because it belongs to the set FV({x: a}). The typing succeeds with the (incomplete) proof tree:

gen
{x: int} I- x: int I- int : int {i: int} I- i + i: int

{ x : int} I- let i = x in i + i : int
I- >.x. let i = x in i + i : int -+ int

Next consider what happends when the LET rule has to be applied. If there exists a proof tree for the
gen

sequent A I- e: r, with Ta type expression without quantifier, the sequent I- may transform this type into
a type scheme u which all generic variables are quantified (this corresponds to applying all the possible GEN
rules in the Damas-Milner system). Now during the proof of A:i: U {x: u} I- e': T' every time we use TAUT'
for x and u is quantified a general instance of u must be find. Assuming that all quantified variables are

inst
changed by new type variables, a first substitution S (second rule of I- definition) is obtained by unification
(this corresponds to applying an INST rule in the Damas-Milner system). To different occurrences of the
same identifier are associated different substitutions S: it is clear that these different occurrences may have
different typing. Later on in the proof building, unification will still act on these new variables, and at the

inst
end to every occurrence of I- in the proof tree correspond a precise generic instance u' of u. .
This computing mechanism may be illustrated with the let i = >.x.x in i i example. At some stage of the
inference, the current goal tree may be represented by the following diagram:

inst

I- a: a ['J ~~....,-~~- TAUT
{x:a}l-x:a
I- >.x.x : a -+ a [ABS'J

gen
I- a -+ a : Va.a -+ a {i: Va.a-+ a} I-ii: r
I- let i = .>.z.x in ii : r

To prove {i: Va.a-+ a} I- ii: T the APP' rule must be used. This rule expresses arrow elimination, i.e.
if the first occurrence of i has a type that matches T' --+ T then the second occurrence of i must have a type
that matches r', and the expression ii has type T. Here to show the rule TAUT' for the first occurrence of i
we have to find a general instance of Va.a-+ a that matches a type expression r'-+ r, with r' and T not yet
known. Once the type variable a has been changed by a new type variable a 1 the matching succeeds with
the following constraints:

r' = a1,

r=a1.

In the same manner, to use the rule TAUT' for the second occurrence of i we have to find a general instance
of Va.a-+ a that matches the type expression r'. Once the type variable a has been changed to a new type
variable a2 the matching succeeds with the following constraint:

Now rule APP' requires a1 to be equal to a2 -+ a2. This last constraint is consistent with the three previous
ones and the complete proof tree is:

inst inst
I- Va.a-+ a: a1 --+ ai I- Va.a-+ a : a2 -+ a2

{i: Va.a-+ a} I- i: (a2--+ a2)--+ (a2--+ a2) {i: Va.a--+ a} I- i: a2--+ a2
{i: Va.a--+ a} I-ii: a2 --+ a2

inst
I- a: a

{x: a} I- x: a
gen

I- >.x.x : a --+ a I- a -+ a : Vq.q --+ a

-21- D4.A2

3~1.4. Typol Specification

The Typol specification of the deterministic system is straightforward except for union and find opera-
gen inst

tions on sets of assumptions, and for the two sequents I- and I- . Consider first the so-called environment
manipulations. It is clear that they do not depend on any particular inference system. To emphasize this
fact they are described with two specialized Typol sets DECLARE and TYPEOF.
Now the formula A:i: U {z: q} is implemented by the set named DECLARE.

set DECLARE is

[] I- z, q : [z : qj

[z : q 1 ·A] I- z, q: [z : q ·A]

A I- z,q: A1

[y : u1
• Aj 1- z, q : [y : q 1 • A1J

end DECLARE;

To add a new assumption on an identifier z into a list of assumptions A we must consider two cases:
1) the list does not contain any assumption on z. This corresponds to adding an assumption into an empty

list (rule 1).

2) the list contains an assumption on z that has to be changed. This corresponds to a list starting by an
assumption on z (rule 2).

When the two previous statements are not directly satisfied we may have to iterate on the list. This is
expressed by the third rule.

In the rule TAUT' to show that the assumption z: q belongs to the current set of assumptions A we
use the Typol set TYPEOF.

set TYPEOF is

[z : q ·A] I- z : u

Al-z:q
y I- z [y : q 1 • A] I- z : u

end TYPEOF;

Then the deterministic system is written in Typol as follows:

set TYPE is

A I- true : bool

A I- false : bool

A I- number N : int
typeof inst

A I- ident x : u I- u : r

A 1-identx: r

-22- D4.A2

A I- E : r' -+ T A I- E' : r'
A I-EE' :r

declare
A I- x, r' : A' A' I- E : T

A 1- ..\x.E: r - r

Al-E:T
gen declare

A I- T : q A I- x, q : A' A' I- E': r'
A I- let x = E in E' : r'

end TYPE;

Remark: It is not clear that environment manipulations are best described by Typol sets. As noticed
above we tend to think that removal of an assumption about an identifier z, A:i:, and union of assumptions,
AU B, should be defined as constructs in the Typol language. For example, the TAUT' rule could be written
in Typol as:

inat
(- q: T

AU{z:q}f-z:r

gen
Next consider the two sequents that manipulate type schemes. The sequent I- may be described

with two specialized Typol sets FREEVARS and SETMINUS. The set FREEVARS builds the list of free
variables that occur in a term. To build FV(A) we use FREEVARS for each assumption: we build the local
list of free variables that occur in the type expression of that assumption. The whole list of free variables is
obtained as the exclusive union of all these local lists. Then we must implement the set difference operation
FV(q) \ FV(A). This is done with another specialized Typol set, SETMINUS. The resulting list contains
all the free variables that can be quantified.

set GEN is

freevars freevars set minus
I- A: l f- T : l' f- l', l : l11

A I- T: Vl".T

end GEN;

inst
The sequent I- describe how to find a generic instance T of a quantified type expression q. We replace

each occurrence of a type variable that belongs to the V-list by the same fresh type variable. Then we use
unification to match this type expression with T.

set INST is

rename
l I- r':r

I- Vl.r' : T

f- T: T

end INST;

gen inst
We may ilotice that the sequents I- and I- do not depend on the exact structure of type expressions.

They express generic operations that are often used in natural semantics. The former is used whenever a
term containing variables has to be generalized into a quantified term. The latter is used to obtain generic
instances of a quantified term. As for operations on sets of assumptions, we believe that they have to be
considered as predefined sequents in the TYPOL language. ·

-23- D4.A2

Static Semantics of Mini-ML

Now we are ready to specify the typechecker of our mini-ML language. We begin with a few remarks
about extensions to the simple .A-calculus.

To include products into expressions we must introduce patterns in place of an identifier. For example,
we may now define).(:z:, y).z + y. Although the typechecking is not modified by this new construct, we must
check that patterns are well formed, i.e. that they do not contain the same identifier twice. An expression
such that .A(z, z).z + z is not valid. This can be viewed as a declaration rule. The set MAKE-ENV builds
a local environment that contains assumptions about identifiers in a pattern. The whole list of assumptions
is the union of all these local lists of assumptions.

Recursion is included by adding the polymorphic fixed-point operator

fix: Ya.(a - a) - a

and the conditional expression if is introduced as usual in programming languages.

Finally consider the following example of optimisation. It is well known that the let construct is syntactic
sugar for).z.e' e. But we have seen how this construct allows the typing of polymorphic functions, such as
let i =).z.z in ii. Of course we would like to be able to typecheck its equivalent form (.Ai.ii)).z.z. To do
this we have only to add a more specialized form of the APP' rule.

The static semantics of mini-ML is described by the following TYPOL program:

program L_TC is

use L

p:PATTERN;

A,A': ENV;

r1r' : TYPES;

u : TYPE-SCHEMES;

set TYPE is

A I- true : bool

A I- false : bool

A I- number N : int

typeof inst
A I- ident x : u I- u : r

A I- identx: r
make...env union

!J I- P, r' : A' A I- A' : A" A" I- E : T
A I- AP.E: r' - T

gen make...env union
Al-E:T A I- r:u [] I- P, u : A' A I- A' : A"

A I- {.AP.E')E : r'

A I- E : r' - T A I- E' : r'
A I- EE': T

A I- (.AP.E')E : T

A 1- letP = EinE': T

-24-

A" I- E':r'

D4.A2

end TYPE;

A I- (AP.E')(.fiz AP.E): r
A I- letrec P = E in E' : r

Al-E:r-+r
A I- (.fizE): r

A I- E : bool A I- E' : r A I- E" : r
A I- if Ethen E' else E" : r

A I- E : r A I- E' : r'
A I- (E, E') : r x r'

3.2. Dynamic semantics of Mini-ML

As noticed before, functions in ML can be manipulated as any other object in the language. For example
a function may be the parameter of another function: it is possible to define higher-order functions. Thus
the semantic domain of ML values is slightly more complicated than for a less expressive language.

Mini-ML values
1

- integers: N

- boolean values : true, false

- closures: [AP.E1 pB 1 where Eis an expression and p is an environment. A closure is just a pair of a
A-expression and. an environment.

- identifiers for predefined operators: plus, •••

- pairs of semantic value: (a, fJ) (which may in turn be pairs, so lists of semantic values may be con-
structed)

As expected the semantic value of an expression e depends upon the values of the identifiers occurring
free within it. H p stands for a list of mappings z H a from identifiers to values, we shall say that the
expression e has value a if the theorem

pl-e:a

may be derived from the following formal system:

program L..DS is

use L

p,p1: ENV;

a,{J,-y: VALUE;

iniLenv I- L-EXP : a
f- L-EXP :a

p I- number N : N

p I- true : true

p I- false: false

val..of
p I- ident I 1-+ a

p I- ident I : a

p I- Ei: true p f- E2 :a
p I- if E1 then E:i else E3 : a

p I- E1 : false p I- Ea : a
p I- if Ei then E, else Ea : a

-25-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

D4.A2

p f- Ei : a p f- E:i : {3

p f- (E1,E2) :(a,{3)

p I- Ei: a P 1-+ a· p I- E2: f3
p 1- letP = E1 inE2 :{3

Pi= P 1-+ [E1,P1D · P Pi I- E:i :/3
p I- letrec P = E1 in E:i : f3

p I- AP.E:[AP.E,pD

p I- Ei: a P 1-+ a· p I- E:i: f3
p I- AP.E2 E1 :/3

eval
p I- E1 : ident OP p f- E:i :(a, /3) f- OP, a, {3: "'f

p f- E1 E:i: "'f

p f- E:i: a p I- E1 :[..\P.E, P1D P 1-+ a· Pi I- E: f3

set VAL_OF is

end VAL-OF;

end L-1)8

ident I 1-+ a · p I- ident I 1-+ a

P2 1-+ f3 · P1 1-+ a I- ident I 1-+ 'Y

(P1, P2) 1-+ (a, /3) · p I- ident I 1-+ 'Y

P2 1-+ [E2,P1B ·P11-+ [E1 1 PiD I- ident11-+7
(P1 1 P2) 1-+ [(E1,E2),P1B · p I- ident11-+7

p I- ident I 1-+ a

Pi · p I- ident I 1-+ a

Comments on the formal definition:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(1)

(2)

(3)

(4)

Rule 1 just says that the evaluation of an expression begins with an initial environment. This environ
ment is not given here. It simply says that the semantic value of the identifier "plus" is plus (and likewise
for all predefined operators). This enables us to treat in the same way the two expressions plus(2, 3) and
let x =plus inx(2, 3) in rule (13).

Rules 2, 3, 4, 5, and 11 are the axioms of the system. They give semantic values to "simple" expressions.
The rule 5 is subject to a condition: the environment p must associate a value to the identifier I.

The addition of new mapping x 1-+ a in the environment is performed directly in the rule, for identifiers
as well as for pairs (see the let rule (9) for example), while searching for the value corresponding to an
identifier is made in a separate set of rules (VAL_OF) (see rule 5). Let us examine this Typol set in greater
detail.

In the VAL_OF set, rules 1 and 4 describe how to find the value of an identifier (notice that they are
equivalent to the rules 1 and 2 of the TYPEOF set used in type checking). But in rule 9 of L..DS we have
allowed the addition of a mapping of pairs (lists) in p. So we have to say something like "a mapping of a
pair is a pair of mappings". That is the purpose of rule 2.

Rule 10 t>f L..DS uses the same sort of idea: we add in p a mapping of a pair of identifiers to one single
closure, which is a closure of a pair of ..\-expressions. Rule 3 says that "closure of a pair is a pair of closures".
This simple idea, together with the addition of mappings directly in the rule, and of course the possibility of
defining a graph in the environment enables us to give a very compact rule for the letrec. We go back now
to the main Typol set.

-26- D4.A2

The letrec rule (10) describes in an uniform way the "simple" recursive fonctions and the mutually
recursive one:

letrec(f, (g, h)) = (>.z. · · · f · · · g · · · h · · ·,
(.\y.···f···g···h···,
.\z.···f ···g···h···))

Rule 14 shows how to evaluate an application, when the operator of the application, E 1 , is a function.

Rule 13 is a special case of rule 14, in the case where E1 evaluates to a predefined operator.

Rule 12 is another special case which expresses the fact that .\p .E2 E 1 = (let P = E 1 in E2). This is
to be considered as an optimisation of the apply rule 14. Remark that this semantic definition specifies a
call-by-value mechanism.

3.3. Dynamic semantics of CAM

The Categorical Abstract Machine, [CAM 85J has its roots both in categories and in the De Bruijn's
notation for lambda calculus. It is a very simple machine where categorical terms can be considered as code
acting on a stack of values. Actions are essentially cons, car, push, ... , as well as a LISP's rplac to implement
recursion. To handle abstractions, values may be closures.

Abstract Syntax

The abstract syntax of CAM is given by the following specifications:

sorts

VALUE,COM,PROGRAM,COMS

subsorts

COM>-

COMS

functions

'program'
program COMS --+ PROGRAM
co ms COM* --+ COMS

'com'
quote VALUE --+ COM
op --+ COM
car --+ COM
cdr --+ COM
cons --+ COM
push --+ COM
swap --+ COM
app --+ COM
rplac --+ COM
cur COMS --+ COM
branch COMSXCOMS --+ COM

'value'
int --+ VALUE
bool --+ VALUE
null_value --+ VALUE

-27- D4.A2

The formal semantics of CAM:

The state of the CAM machine is a stack, whose top element may be thought of as a register. Elements
of this stack are semantic values :

- integers JN

- truth values: true, /alse

- closures of the form [c, PB, where c is a list of CAM-commands and p is a semantic value

- pairs of semantic values (which may in turn be pairs, so that lists may be constructed)

Except in the first rule, a.II sequents have the form

8 I- c : 81

where c is CAM-code and 8 and 8
1 are states of the CAM machine. The sequent 8 I- c : 8 1 may be read as

"executing code c when the machine is in state 8 takes it to final state 81".

program CAM..DS is

use CAM

8 1 81, 82 : STACK;

a, {3, 7, v : VALUE;

p,p1: ENV;

iniLstack I- COMS : tJ • s

I- program(co Ms) : v

sl-f/$:8

8 I- COM:s1 81 f- COMS : S2

8 I- COMj COMS : 82

a· s I- quote(x): x · s

a· s I- quote(intN) :N · s

a · s I- quote(boolT): T • s

(a, /3) · s I- car: a · s

(a, ,8) · s I- cdr: ,8 • s

a · ,8 · s I- cons :(,8, a) · s

eval
I- OP,a,,8:7

(a, ,8) · s I- op OP: 'Y • s

a · s I- push : a · a · s

a· ,8 · s I- swap:,8 ·a· s

p · s I- cur(c) :[c, PB· s

(p,a) ·SI- C:8

([c, PB, a)· s 1- app: 8

v =p1

(p, v) · Pl · s I- rplac :(p, P1) · s

-28-

(var(x))

(1)

(2)

(3)

(4)

(5)

{6}

(7)

(8)

(9)

(10)

(11)

(12}

(13)

(14)

(15)

D4.A2

end CAM..DS

"true" · s I- branch(c1, C2): 81

SI- C2: 81

{16)

(17)

Pattern maching suffices to explain simple instructions: quote(v), car, cdr, cons, push and swap. The
op instruction performs additions etc ...

Rule 2 and 3 deal with sequences of commands. Rule 1 says that the evaluation of a program begins
with an initial stack and ends with a value on top of the stack which is the semantic value of the program.
The initial stack is not given here; it contains the list of closures corresponding to the predefined operators:
for example, [cdr; op "plus" , O] is the closure corresponding to the operator "plus".

Rule 16 and 17 shows that the CAM contains a branch instruction which takes its (evaluated) condition
on top of the stack. The cur instruction is described in Rule 13 : cur(c) builds a closure with the code C
and the current environment (top of the stack) and puts it on top of the stack. Rule 14 says that the app
instruction takes a closure and an environment on top of the stack, and executes the code of the closure in
an environment containing the environment of the closure prefixing the current one.

The remaining rule, 15, is the less intuitive one. An rplac instruction takes a pair consisting of an
environment p and a variable v, followed by an environment P1 on the stack. It identifies v and p1 and
returns the pair (p, P1) on the stack. Notice that each (possibly) occurrence of v in p1 has been replaced by
p1. The use of this instruction will be explained by the translation of the letrec instruction (see rule 9 of
L_CAM]. We give two alternatives to the rplac instruction : the reef instruction, building a graph, used in
[Kahn et al. 85] (but it doesn't treat the case of mutually recursive functions), and the use of fixed point in
the environment (see Section 3.8).

3.4. Translation from mini-ML to CAM

Again, except for rule 1, all the sequents have the form :

pl-e-+c

where p is an environment, e an L_expression and c is it's translation. So, the sequent may be read as "given
a context p, expression e is compiled into code c"

program J._CAM is

use L

use CAM

c, c1, c2, c3 : OAM;

p,p1: ENV;

iniLpat I- L..EXP -+ c
I- L..EXP-+ program(c)

p I- numberN-+ quote(intN}

p I- true -+ quote(bool "true")

p I- false-+ quote(bool "false")

accesa
p I- ident I : c

p I- identI-+c

-29-

(1)

(2)

(3)

(4)

(5)

D4.A2

p I- ifE1 thenE, else Ea - push; c1; branch(c2, cs)

p I- (E1, Ea) - push; c1; swap; c2; cons

p I- let P = E1 inE2 - push; c1; cons; c2

(p,P)l-E1-C1 (p,P)l-E2-C2
p I- letrec P = E1 in Ea - push; quote(p1); cons; push; c1; swap; rplac; c2

(p,P) I- E-c
p I- AP.E-cur(c)

trans....const
I- E1 -c1

p I- AP.Ea E1 - push; c1; cons; c2

p I- E1 E, - push; c1; swap; c2; cons; app

set ACCESS is

end ACCESS;

set IS_CONST is

ident "plus"

ident "equal"

end IS_CONST;

set TRANS_CONST is

end TRANS_CONST;

ident x I- ident x : 9-1

P2 I- x: C2
(p1, P2) I- X: cdr; c2

P1 I- x:c1

ident "minus"

ident "fst"

I- ident "fst" - car

I- ident "snd" - cdr

I- identx-opx

-30-

ident "times"

ident "snd"

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(1)

(2)

(3)

(1)

(2)

(3)

D4.A2

end L_CAM

The environment use here is a list of L..identifiers (more exactly a tree) : ((P,Q),R). The initial envi
ronment is ((.. (-,ident "plus"),ident "minus") ..). The use of environment is illustrated by rule 5 and the set
ACCESS, which says that in a given environment p, an identifier is translated to a sequence of car and cdr
which realises the access to this identifier in p and will realise the access to the corresponding value in the
stack of the CAM.

Rules 2, 3 and 4 are straightforward, except they say that a result value is put in place of (and not on)
the top of the stack in CAM. It is the reason why almost all translations begin with push. The translation
of a pair (rule 7), for example, makes this point clear: the idea is that all CAM instructions will use an
environment on top of the stack and replace it by the final result.

Changing of environment of translation is made each time there is a declaration : see rules 8 and 9 for
let and Jetrec.

The translation of a .>.-expression uses naturally the cur instruction.

There are three rules for translating the apply, as it was the case in the dynamic semantics of L (rules
11, 12 & 13).

Finally, rule 9 is the less intuitive one:

p I- letrec P = E1 in E,-+ push; quote(p1); cons; push; c1; swap; rplac; c2

Pi is a free (new) variable of this rule. quote(pi) will result (in the CAM execution) in putting a free
variable on top of the stack. After a cons and a push, the top of the stack has the form (p, p1). Now, E 1 is
a .>.-exp. or a list of .>.-exp. So c1, its translation, will result in building a closure (or a list of closure) using
the current environment on the top of the stack: (p, pi). So this closure will contains "holes" of the form of
a variable (P1). rplac will feed holes with the desired graph, in saying that the variable p1 has the value of
the closure itself.

3.5. Equivalent semantics of mini-ML

We present here alternative semantics of L, where we use fix-points in the environment, instead of
graphs.

Changes in LJJS concern the letrec rule and the set vaL.of:

The letrec rule:

is changed to

p I- letrec P = E1 in E, : fJ

(fix .>.x.P 1-+ [E1, z) · r) I- E,: /3
r I- letrec P = E1 inE2: fJ

We need one more rule in the set vaLof, for explicitly enrooling the fix-point operator:

aubst
rl-ident11-+a a I- :i:,(fix,\:i:.r):a'

(fix).z.r) · r1 I- ident I 1-+ a'

,, subst
where a I- x, e: a' simply means that a' = a[e\xJ.

-31- D4.A2

4. Inheritance by Type Inclusion: Mini-Amber

New developments in programming language design have shown that the notion of type inclusion is
useful. In all generality type inclusion theory seems to provide a uniform view of type systems that includes
abstract data types, parametric polymorphism and multiple inheritance, (CW].

The type system retained in the current version of the Amber programming language (Amber] uses
type inclusion to provide multiple inheritance combined with higher-order functions. We consider in the
sequel only the kernel of this type system, i.e. the monomorphic typed ..\-calculus extended with unordered
cartesian products, called records, and unordered disjoint sums, called variants.

4.1. Overview of the Language

A complete description of Amber may be found in (Amber], but we would like to describe briefiy both
types and expressions we have retained for our Typol specifications. The abstract syntax of our Mini-Amber
is given by the following:

Abstract Syntax of Mini-Amber

sorts

IDENT,EXP,FIELD,SELECTORS,SELECT,TYPE,COLON

subsorts

EXP>

ID ENT

functions

'Types'
arrow TYPEXTYPE --+ TYPE
variant..type COLON* --+ TYPE
record-type COLON* --+ TYPE
colon IDENTXTYPE --+ COLON
int --+ TYPE
bool --+ TYPE

'Expressions'
apply EXPXEXP --+ EXP
dot EXPXIDENT --+ EXP
case EXPXSELECTORS --+ EXP
cases SELECT'" --+ SELECTORS
select IDENTXEXP --+ SELECT
fun IDENTXTYPE XEXP --+ EXP
variant IDENTXEXP --+ EXP
record FIELD'" --+ EXP
field IDENTXEXP --+ FIELD
true --+ EXP
false --+ EXP
number --+ EXP

'Identifiers'
ident --+ ID ENT

-32- D4.A2

For each kind of data type we give its corresponding constructor with some comments.

Ground Types

- int is the type of integer. Numerals are of that type.

- bool is the type of constants true and false.

~ctional Types

- r' -+ r where r' is the type of the function parameter. For example fun(z : int)z + 1 defines the
successor function which has type int -+ int.

Records

- {a : int, b : bool} is the type of the unordered, labeled sets of values {a= O, b = true}, called a record.
Access to a record field is provided by the notation r.a, which selects the a component of a record r.

Variants

- variant types are unordered, labeled set of types [a: int, b: bool]. A variant expression is a labeled value
[a= OJ. Variants are used in the case statement:

caseeofa1 =>Ji I··· I an=> In

where the /i's are functions and the Cli are tags (this concrete syntax is slightly different of the syntax
used in Amber). Although we are not concerned by evaluation let us remember the meaning of such a.
case statement: if the variant expression e has tag Cli then the function Ii is applied to the contents of
e.

4.2. Type Inclusion

Type inclusion must be defined with respect to some ordering relation. In Amber the type inclusion is
determined by the structure of type terms, and the ordering relation is that of subsets. A record type R
[a : int, b : boolJ is considered as the set of all records with at least the two components a : int a.nd b : bool.
Thus a record type with more fields, [a: int, b: bool, c: int], is included, as a set, in R.

This type inclusion mechanism is described with the following Typol system:

I- u -+ r ::5 u' -+ r'

I- {x: r', RECORD} ::5 {x: r}

I- RECORD ::5 {x: r}

I- {Y: a, RECORD} ::5 {x: r}
(v f x)

I- {COLON, RECORD'} ::5 {x: r} I- {coLON,RECORD'} ::5 {x': r',RECORD}
I- {coLON,RECORD'} ::5 {x: r,x': r',RECORD}

1-r'::Sr
I- [x: r'J ::5 [x: r, VARIANT]

1- [x: r'] ::5 VARIANT (vfx)
I- [x : r'] ::5 [Y : r, VARIANT]

I- [x: r] ::5 [coLoN, VARIANT'] I- [x': r', VARIANT] ::5 [coLoN, VARIANT']
I- [x: r, X': r', VARIANT] ::5 [COLON, VARIANT']

Rule 1 expresses that every type is included in itself.

-33-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

D4.A2

Rule 2 expresses that for functions the domain shrinks, while the codomain expands.

Rules 3, 4, and 5 express type inclusion on records. A record is included in a record type with only one
field provided that the label matches and the respective field types are included (Rules 3 and 4). Next to
prove that a record type with more fields is included in a record type with fewer fields we prove that the
former is included in all the one field records of the latter {Rule 5).

In a similar manner, rules 6, 7, and 8 express that a variant type with fewer fields is included in a
variant type with more fields, provided that the labels match and the respective fields types are included.

Consider the following example due to L. Cardelli:

type Point= {z: int, y: int}

type Frame= {hor: int, ver: int}

type Tile= {::r:: int, y: int, hor: int, ver: int} The two sequents

I- {z: int, y: int, hor: int, ver: int} ~ {z: int, y: int}

and
I- {::r:: int, y: int, hor: int, ver: int} ~ {hor: int, ver: int}

may be derived from the type inclusion system. Tile is a subtype of both Point and Frame, i.e. there is
multiple inheritance.

4.3. Inheritance

Now the typechecking of our Mini-Amber may be specified by the following Typol program, where A
stands for a list of assumptions z: r.

program AMBER_TC is

use AMBER

r, r', O', 0'
1

: TYPE;

set TYPE is

A I- true : bool

A I- false : bool

A I- number N : int

type of
A I- identx: r

A I- identx: r

declare
I- TYPE: r A I- IDENT, r: A1 A1 I- EXP : r'

A I- fun(IDENT: TYPE}EXP: r--+ r'

A I-EXP: O'--+ T A I- EXP': r'

A I- EXP: T

A I- EXP EXP' : T

A I- EXP: T

A f- {LAB = EXP} : {LAB : T}

union
A f- RECORD: O' O' f- LAB, T : 0'

1

A I- {LAB= EXP,RECOR.D}: q 1

-34-

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

D4.A2

end TYPE;

A I- EXP: CT I- a :5 [x : r]
A I- EXP.X: r

A I- EXP: r

A I- [LAB= EXP]: [LAB: rj

A I- EXP : a A I- SELECTORS : a' - r I- CT :5 u'

Al-EXP:r'-r

A I- case EXP of SELECTORS : r

Al-EXP:r'-r

A I- LAB ~ EXP : [LAB : r'] - r

A I- SELECTORS : a - r
union

a I- LAB, r' : u'
A I- LAB ~ EXP I SELECTORS : a' - r

(9)

(10)

(11)

(12)

(13)

Rules 1, 2, 3,and 4 are the axioms of the system. The rule 4 expresses the fact that the type of an
identifier has to be recorded in the list of assumptions A.

In rule 5 we have to check that the type expression TYPE of the parameter IDENT is a well formed type
term. For example a record type with the same label twice is not allowed. This is done by the sequent
I- TYPE: r.

Rule 6 is a very interesting one. It asserts that the argument of a function of type u - r must have a
type r' which is a subtype of the type a of the domain of the function. Thus the function

fun(p: {x: int, y: int}) p.x can be used with an argument of type Tile:

(fun(p: {x: int, y: int}) p.x){x = O, y = O, hor = 1, ver = 1}

Rules 7 and 8 express that the type of a record expression is a record type. As for function parameter
the record expression must have a valid record type. This is done by the Typol set UNION (that implements
an exclusive union).

Rule 9 expresses the selection of a record field by the type inclusion mechanism.

A variant expression has a variant type (Rule 10).

Rules 11, 12, and 13 handle the case expression. The type of the list of cases, SELECTORS, is expressed
as a function a' - r, where a' is the union of variant types [a; : r,], with a; the label of a function f• of type
1"i - r. The type a of the expression EXP must be a subtype of that variant type u'.

The following Typol rules insure that the type declaration of the parameter of a function is a well formed
type term (Notice that the I- operator is overloaded).

I- bool : bool

I- int: int

I- TYPE: r I- TYPE': r'
I- TYPE - TYPE' : r - r'
{}I- {FIELD, RECORD} : r

I- {FIELD, RECORD} : r

union
I- TYPE : r a I- LAB, r : a'

CT I- {LAB : TYPE} : a'

union
I- TYPE : r a I- LAB, r : u' a' I- RECORD : a"

a I- {LAB : TYPE, RECORD} : a"

-35-

(1)

(2)

(3)

(4)

(5)

(6)

D4.A2

{} f- [COLON, VARIANTj : T

f- (coLON, VARIANT] : T

union
f- TYPE : T O' f- LAB, T : er

O' f- [LAB : TYPE] : er
union

f- TYPE: T O' f- LAB, T: u' u' f- VARIANT: u"
O' f- (LAB: TYPE, VARIANT] : 0'11

(7)

(8)

(9)

Environment manipulations are implemented by the two Typol sets DECLARE and TYPEOF. Notice
that the set DECLARE ensures exclusive union of mappings of identifiers and type expressions.

set DECLARE is

end DECLARE ;

set TYPEOF is

end TYPEOF;

env[] f- IDENT, T: IDENT I-+ T

ENV f- IDENT1 T: e
IDENT' I-+ r' . ENV f- IDENT, T: IDENT' I-+ r' . e

IDENT' ::/; IDENT

IDENT I-+ T • ENV f- IDENT : T

ENV f- IDENT: T

IDENT' I-+ T1
• ENV f- IDENT : T

IDENT' ::/; IDENT

The Typol set UNION used for record types and variant types implements also an exclusive union
operation on elements. It is clear that the use of Typol sets to implement set union and set difference
operations leads to a plethora of such "specialized" Typol sets. We investigate now what could be done with
new Typol constructs A.., for set difference and U for set union.

4.4. Improvements

Consider first rules 4 and 5 of the Typol set TYPE. They could be expressed as:

A U {ident x : r} f- ident x : r

where the set A contains only one assumption upon the identifier X because of the declaration rule:

f- TYPE : r A.., U { X : T} f- EXP : r'
A f- fun(x: TYPE)ExP : r-+ r'

(5)

Mini-Amber gives us the opportunity to take profit of the strong analogy existing between record types
and environments (Both are unordered sets of mappings with the same kind of manipulation primitives). As
remarked above rules 7 and 8 of the Typol system TYPE both express that the type of a record expression
is a record type and that this record type is well formed, i.e. the same label identifier does not appear wice.
That could be expressed with the following rule:

A f- EXP : T A f- RECORD : O'

A f- {L: EXP, RECORD}: O'f U {L: r}

-36- D4.A2

where O't stands for removing any assumption on the label identifier L. Of course such a rule would have to
be compiled into at least two rules, one for a list of only one component and one for a list of more than one
component. The same remark holds for rules 12 and 13 of that Typol set TYPE.

Next consider the Typol rules describing the sequent I- TYPE: T. Rules 5 and 6, (and in the same way
rules 8 and 9) could be written as:

I- TYPE : T O't U {L: T} I- RECORD : 0'
1

O' I- {L : TYPE, RECORD} : u'

Now in the type inclusion system we may use the fact that record types and variant types are unordered
sets of components to write rules 3 and 4 as:

I- RECORD U {L: T1
} ~ {L: T}

-37- D4.A2

5. Dynamic Semantics of Standard ML

We present a first version of a Typol specification of the core language of Standard ML. This implemen
tation is based upon a private communication of R. Milner, [Milner], which describes the dynamic semantics
of Core ML in a structural axiomatic style. We found this situation very useful: it gives us the opportunity
to use Typol on a language currently in development.

As pointed out by Milner the Standard ML design is based upon simple and well understood ideas
that have been experimented with in previous versions of ML or in other functional languages (Hope in
particular). For example polymorphic references and assignment are omitted. On the other hand the ML
varstructs are extended to include Hope patterns and exceptions are now more general. Exceptions may carry
values of an arbitrary polymorphic type. Note that the present specification does not include input/output
and separate compilation.

Outline: we found that, in the context of formal specifications, exceptions and pattern matching are the
most difficult features of Standard ML to deal with. Although we have not yet solved them in a completely
satisfactory manner we indicate what has been done to get a first executable specification. Because of
exceptions, to every syntactic construct correspond two rules: one describing evaluations that "return" a
value, and one describing what has to be done when a subexpression leads to an exception. We describe
the mechanism retained in ML in the case of declarations, and point out that a "direct" compilation of
these rules leads to an inefficient implementation. For pattern matching the problem is closely related to
the notion off ailure in an inference system. In a first approach this difficulty is solved by the use of a difj
operator on identifiers. But we think that a better solution will be found.

Abstract Syntax Definitions

We present an abstract syntax which is very close to the syntax given by Milner. The principal syntax
classes are defined in terms of the following primitive classes:

VAR for value variables.

CON for value constructors.

TYV AR for type variables.

TYCON for type constructors.

LAB for record labels.

EXN for exception names.

module ML-8yntax

sorts

EXN, LAB, TYCON, TYVAR, CON, VAR, EXP, MATCH, FIELD...EXP, HRULE, HANDLER, MRULE, PAT,
FIELD..PAT, TY, FIELD-TYPE, TY -5EQ, EXCBIND, DATABIND, CONSTR, CONSTR-51 TYBIND, TYVAR-5EQ,
VALBIND, DEC

subsorts

EXP>

VAR,CON

PAT>

CON, VAR

TY>

TYVAR

EX CB IND>

EXN

-38- D4.A2

functions

'Declarations'
val VALBIND - DEC

type TYBIND - DEC

datatype DATABIND - DEC

abs type DATABINDXDEC - DEC

exception EXCBIND - DEC

local DECXDEC - DEC

dec..seq DEC+ - DEC

'Value Bindings'
siinple_value PATXEXP - VALBIND
valbind..s VALBIND+ -t VALBIND

rec .vALBIND - VALBIND

'Type Bindings'
siinple_type TYVAR...SEQXTYCONXTY -t TYBIND
tybind..s TYBIND+ -t TYBIND
tyvar ..seq TYVAR * -t TYVAR...SEQ

'Data type Bindings'
rec_datatype TYVAR...SEQXTYCONXCONSTR-S - DATABIND
databind..s DATABIND+ -t DATABIND
constr..s CONSTR+ -t CONSTR...S

constr CONXTY -t CONSTR

'Exception Bindings'
simple_excbind EXNXEXN - EXCBIND
excbind..s : EXCBIND+ - EXCBIND

'Types'
type_constr TY ...SEQXTYCON - TY
function_type TYXTY - TY
record_ type FIELD-TYPE+ - TY
field_type LABXTY - FIELD-TYPE
ty..seq TY* - TY...SEQ

'Patterns'
record_ pat FIELD.PAT+ - PAT
construction CONXPAT - PAT
layered VARXPAT - PAT
field_ pat LABXPAT - FIELD.PAT
wild card - PAT

'Expressions'
fun MATCH - EXP
let DECXEXP - EXP
raise EXNXEXP - EXP
handle EXPXHANDLER - EXP
application EXPXEXP - EXP

record-~xp FIELD-EXP+ - EXP
field_exp LABXEXP - FIELD-EXP
match MRULE+ - MATCH
mrule PATXEXP - MRULE
handler HRULE+ - HANDLER
with EXNXMATCH - HRULE

-39- D4.A2

trap EXP -+ BRULE

'Identifiers'
var -+ VAR

con -+ CON
number -+ CON
tyvar -+ TYVAR
tycon -+ TY CON

lab -+ LAB

exn -+ EXN

Environments and Values

As for other functional languages, a function value is a partial function represented as a closure. A
closure is a pair of a function body, i.e. a match, and of an environment. Thus we need to import the
abstract syntax of ML to define the abstract syntax of values.

An environment has two components: a value environment and an exception environment. An excep
tion is an object from which an exception identifier EXN may be recovered in the exception environment. A
packet is a pair of an exception and a value.

A store has two components: a memory component that associates values to addresses, and a component
that records exceptions. It is not clear now that such a component is necessary within a Typol specification.

module Value..Environments

sorts

VAL-PACK, VALENV ..FAIL, ENV -PACK, FAIL, EXC, PACK, STORE, EXCS, MEM, EXCS-PAIR, MEM...PAIR,
ENV, EXCENV, VALENV, EXCENV-PAIR, VALENV-PAIR, VAL, ADDR, FIELD-VAL

subsorts

VAL-PACK>

PACK, VAL

VALENV ..FAIL>

FAIL, VALENV

ENV-PACK>

PACK,ENV

VAL>

VAR, ADDR, CON

functions

'Values'
addr
record_val FIELD-VAL+
closure MATCHXENV
prod CONXVAL
field_vaf LABXVAL

'Environments'

-+

-+

-+

-+

-+

valenv VALENV _p AIR•
excenv EXCENV -PAIR*

ADDR
VAL
VAL
VAL
FIELD-VAL

-+ VALENV
-+ EXCENV

-40- D4.A2

valenv _pair VARXVAL -+ VALENV-PAIR

excenv _pair EXNXEXC -+ EXCENV -PAIR

env VALENVXEXCENV -+ ENV

'Stores'
mem MEM-PAIR'" -+ MEM

excs EXCS-PAIR* -+ EXCS

mem_pair ADDRXVAL -+ MEM-PAIR

excs_pair EXCXEXN -+ EXCS-PAIR

store MEMXEXCS -+ STORE

'Packets'
pack : EXCXVAL -+ PACK

'Other Classes'
exc -+ EXC

fail : -+ FAIL

imports ML..Syntax

5.1. Dynamic semantics of ML

The dynamic semantics of ML is described by the following Typol specification. An ML program
is a sequence of declarations that may be value declarations, exception declarations, abstract data type
declarations, and local declarations (other alternatives, type and data type declarations, are irrelevant in
dynamic semantics). Given an environment e and a stores a declaration evaluates to either an environment
or a packet if the sequent:

e, s I- DEC : e'

respectively the sequent:
e, s I- DEC : pack

may be derived in the formal system. Note that the I- operator is heavily overloaded in the present Typol
specification (as it is in the Milner operational system). Remark: the braces have no particular meaning.

program. ML.JJS is

use ML

e, s I- VALBIND : ve, s' is _valenv (ve)
e, s I- val VALBIND :(ve, []), s'

e, s I- VALBIND :pack, s'
e, 8 I- val VALBIND: pack, 8 1

e, 8 I- EXCBIND : ee, 8 1

e, s I- exceptionEXCBIND :([], ee), s'

e, 8 I- type TYBIND :([], []), 8

e, s I- datatypeDATABIND :([], !]), 8

e, 8 I- DEC : e_pack, 8 1

e, 8 I- abstype DATABIND with DEC end: e_pack, 8 1

(ve, ee), 8 I- DEC1 :(ve1, ee1) 1 81 (ve1 · ve, ee1 · ee), s1 I- DEC2: e_pack, 82
(ve, ee), s I- local DEC i in DEC2 end : e_pack, 82

e, 8 I- DEC1 :pack, 81

e, s I- local DEC i in DEC2 end : pack, 8 1

-41- D4.A2

l

l

e, s I- DEC :(ue', ee'), s'
e, s I- DEC :(ue', ee'), s'

(ue, ee), s I- DEC :(ue', ee'), s' (ue' · ue, ee' · ee), s' I- DEC-SEQ : (ue", ee"), s"
(ue, ee), s I- DEC ; DEC..SEQ : (ue" · ue', ee" · ee'), s11

e, s I- DEC : pack, s'
e, 8 I- DEC j DEC..SEQ : pack, s'

(ue, ee), s I- DEC:(ue', ee'), s' (ue' · ue, ee' · ee), s' I- DEC-SEQ: pack, s"
(ue, ee), s I- DEC; DEC..SEQ : pack, s"

e, s 1- EXP: ual, s' is _val (val) s' I- PAT, val: ue, s" is _valenv (ve)
e, 8 I- PAT = EXP : ue, 8 11

e, s I- EXP: val, s' is_val(val) s' I- PAT, val: fail, s"
e, 8 I- PAT = EXP :<ebind, ()>, 8 11

e, s I- EXP : pack, s'

e, s 1- PAT= EXP: pack, s'

{

(ue' · ve, ee), s I- VALBIND : ve', s' is _valenv (ve')

(ve, ee), s I- rec VALBIND: ve', s'

(ve' · ve, ee), s I- VALBIND : pack, s'
(ve, ee), s I- rec VALBIND : pack, s'

e, 8 I- VALBIND: ue, s' is_valenv(ve)
e, 8 I- VALBIND: ve, s'

e, s 1- VALBIND: ve, 8 1 is_valenv(ve) e, s' I- VALBIND..S: ve', 8 11 is_valenv(ve')
e, 8 I- VALBIND and VALBIND..S: ve'. ve, s11

e, s 1- VALBIND: ve, s' is_valenv(ve) e, s' I- VALBIND..S: pack, s"
e, 8 I- VALBIND and VALBIND..S: pack, 8 11

e, 8 I- VALBIND: pack, s'
e, 8 I- VALBIND and VALBIND..S: pack, 8 1

e, (mem, excs) I- exn x : exn x 1-+ exc, (mem, exc 1-+ exn x · excs)

exc..env
(ve, ee), s 1- exnx = exnx' :exnx 1-+ exc, s (ee I- exn x' 1-+ exc)

e, 8 I- EXCBIND : ee, s'
e, 8 I- EXCBIND : ee, s'

e, 8 I- EXCBIND: ee, s' e, s' I- EXCBIND-8: ee', s"

e, 8 I- EXCBIND and EXCBIND-8 : ee' . ee, 8 11

val..env
ve I- varx 1-+ val

(ve, ee), s 1- varx: val, s

e, s I- con x : con x, s

e, s I- number x: number x, s

-42- D4.A2

e, s I- EXP : val, s' is _val (val)

e, s I- {labx =EXP} :{labx = val}, s'

e, s I- EXP: val, s' is_val(val) e, s' I- FIELD..S :{FIELD, F ..s }, 8 11

e, s I- {labx =EXP, FIELD..S} :{labx = val, FIELD, F ..s}, s11

l
e, s I- EXP : val, s' is _val (val) e, s' I- FIELD..S : pack, s11

e, s I- {lab x = EXP' FIELD..S} : pack, s11

e, s I- EXP : pack, s'
e, s I- {lab x = EXP' FIELD..S} : pack, s'

e, s I- EXP : con x, s' e, s' I- EXP' : val', s" is _val (val')
e, s I- {EXP EXP'): con x x val', s11

e, s I- EXP : :=, s' e, s' I- EXP' : addr x, s11 e, s11 I- EXP" : val, (mem, ezcs) is _val (val}
e, s I- ((EXP EXP') EXP"):(), (addrx 1-t val · mem, ezcs)

e, s I- EXP : ref, s' e, s' I- EXP' : val, (mem, ezcs) is-val (val}
e, s I- {EXP EXP'): addrx, (addrx 1-t val · mem, ezcs)

e, s I- EXP: f, s' basfun(f) e, s' I- EXP': val, s11 is-val(val}
apply

I- f, val : val'
e, s I- {EXP EXP') : val', s11

e, s I- EXP: closure(match, e'), s' e, s' I- EXP': val', s" is_val(val') e', s" I- match, val' : vaLpack,
e, s I- (EXP EXP'): vaLpack, s"'

e, s I- EXP: val, s' is_val(val) e, s' I- EXP': pack, s"
e, s I- (EXP EXP'): pack, s"

e, s I- EXP : pack, s'
e, s I- (EXP EXP') : pack, s'

exc-env

(ve, ee), s I- raise exnx with EXP :<ezc, val>, s'

{

(ve, ee), s I- EXP : val, s1 is_val(val)
(ee I- exnx 1-t ezc)

e, s I- EXP : pack, s'
e, s I- raise exn x with EXP : pack, s'

{

(ve, ee), s I- DEC :(ve', ee'), s' (ve' · ve, ee' · ee), s' I- EXP: vaLpack, s11

(ve, ee), s I- let DEC in EXP end: vaLpack, s"

e, s I- DEC : pack, s'
e, s I- let DEC in EXP end : pack, s1

e, s I- fun MATCH: closure(MATCH, e), s

{

e, s I- EXP: val, s1 is_val(val)
e, s I- EXP handle HANDLER: val, s'

e, s I- EXP : pack, s' e, s' I- HANDLER, pack: vaLpack, s11

e, s I- EXP handle HANDLER: vaLpack, s"

(ve, ee), s I- MATCH, val: vaLpack, s'
(ve, ee), s I- exn x with MATCH, <ezc, val> : vaLpack, s'

e, s I- exn X with MATCH, pack: fail

e, s I- EXP : vaLpack, s'
e, s 1-ll EXP, pack: vaLpack, s'

-43-

exc-env
(ee I- exn x : ezc)

D4.A2

e, s I- HRULE, pack: vaLpack, s' is_vaLpack(vaLpack)

e, s I- HRULE II HRULE-51 pack: vaLpack, s'

e, s I- HRULE, pack: fail, s' e, s' I- HRULE-5, pack: vaLpack, s"

e, s I- HRULE II HRULE-5, pack: vaLpack, s"

e, s I- handler[], pack: pack, s

{

s I- PAT, val: ve', s1 is_valenv(ve') (ve' · ve, ee), s' I- EXP: vaLpack, s11

(ve, ee), s I- PAT=> EXP, val: vaLpack, s"

s I- PAT, val: fail, s'

e, s I- PAT=> EXP, val: fail, s'

e, s I- MRULE, val: vaLpack, s' is_vaLpack(vaLpack)

e, s I- MRULE I MRULE-5, val : vaLpack, s1

e, s I- MRULE, val: fail, s' e, s' I- MRULE-5, val: vaLpack, s"

e, s I- MRULE I MRULE-5, val: vaLpack, s11

e, s I- match[], val :<ematch, ()>, s

s I- _ , val: [], s

s I- varx, val :varx 1-4 val, s

s I- conx,conx:[],s

s I- numberx, numberx: [], s

{MEM, Excs) I- PAT, val: ve_f ail, s'

(MEM, Excs) I- con con con "ref' (PAT), addrx: ve_f ail, s'

s I- PAT, VAL: Ve-fail, s'

(MEM m~m addrx t--? 1Ja.l)

set EXC..ENV is

end EXC..ENV;

set VAL..ENV is

s I- con x(PAT), con x x VAL: Ve-fail, s1

s I- PAT,val:ve,s' is _valenv (ve)

s I- varx as PAT, val: ve · varx 1-4 val, s1

s I- pat, val: fail, s

exn x 1-4 exc · EXCENV I- exn x 1-4 exc

{

F I- exn x 1-4 exc

F · T I- exn x 1-4 exc

T I- exn x 1-4 exc

F · T I- exn x 1-4 exc

var x 1-4 val · VALENV I- var x 1-4 val

-44- 04.A2

end VAL..ENV;

set MEM is

endMEM;

set BASFUN is

end BASFUN;

set APPLY is

end APPLY;

TI- varx 1-+ val
F · T I- var x 1-+ ual

(isvar(F))

{

F I- var x 1-+ ual
F ·TI- varx 1-+ val

T I- var x 1-+ val
F • T I- varx 1-+ ual

{

F I- addr z 1-+ ual
F • T I- addr z 1-+ ual

T I- addr :z: 1-+ val
F • T I- addr z 1-+ ual

+

val
apply(val, ual')

plus(x, Y, z)
I- apply(+,numberx),numberY :numberz

minus(x, v,z)
I- apply(-, numberx), numberY: number z

product(x, Y, z)
I- apply(*, numberx),numberv: numberz

I- /, ual: apply(!, val)

-45-

(samevar{z, y))

D4.A2

set JS_VALENV is

[]

VE ·VALENV

end JS_VALENV;

set IS_VAL is

conx

numberx

CON X VAL

{FIELD, RECORD}

addrx

closure(MATCH, E)

.-
ref

basfun(f)

I

end JS_VAL;

set JS_VAL_pACK is

<exc,val>

is _val (val)

val

end IS_VAL_p ACK;

end ML...DS

5.2. Exceptions

The exception mechanism of ML is based upon textual scope of exception identifiers. After an exception
identifier have been declared, an exception raised by a raise expression

raise exn with exp

may be handled by a handler expression
"

exn with match

which lies in the textual scope of the declaration. Now for every expression, except for a. handler, whenever
the result of a subexpression is a packet then no further subevaluation occur, and the packet is also the

-46- D4.A2

result of the main evaluation. Thus, except for the rule that specify the evaluation of a handle expression,
rules are of two forms. Consider the case of ML dedarations.

As noticed above a declaration evaluates to a new environment. For example a value declaration is
specified by the following rule:

e, 8 I- VALBIND : ve, 81

(1)
e,s 1-valVALBIND: (ve,S!l),s'

where the variable ve is of type VALENV. But the evaluation of the value binding VALBIND may be a
packet < ebind, () >where ebind stands for the exception associated to the predefined identifier bind in the
exception environment. This is expressed by the second rule

e, 8 I- VALBIND : paclc, s'
e, 8 I- val VALBIND : paclc' 81

(2)

Declarations may be composed with a sequence operator ; and the resulting environment is the union of each
local environment:

e, s 1- jll: Sil, s

(ve, ee), s 1- DEC: (ve', ee'), s' (ve' · ve, ee' · ee), s' I- DEC..SEQ: (ve", ee"), s"
(ve, ee), s 1- DEC; DEC..SEQ : (ve" · ve', ee" · ee'), s"

Next we have to express what appends when a declaration returns a packet.

e, s I- DEC : paclc, s'
e, 8 I- DECj DEC..SEQ : paclc, 81

(ve, ee), s I- DEC : (ve', ee'), s' (ve' · ve, ee' · ee), s' I- DEC..SEQ : paclc, s"
(ve, ee), s I- DEC; DEC..SEQ : pack, s"

(3)

(4)

(5)

(6)

Although these six rules express the semantics of a part of ML declarations their compilation into an efficient
code is not so easy. Consider first the rules 1 and 2. They only differ by their premises, and more precisely
by the type of the variables ve and pack. Such rules are not directly executable: they must be distinguable
by a syntactic construct. This kind of rule selection is usually solved by pattern matching: we specialize a
variable with the help of a tree pattern.

For example we may replace paclc by the abstract tree paclc(Exc, VAL). But now the more precise rule
is rule 2: whenever a declaration has to be evaluated it is that rule which is used first. Now if there is no
exception raised during evaluation this proof fails and the whole process starts again.

To avoid such a time consuming evaluation we may render rule 1 more precise. In the present version
of Typol we cannot match a list pattern with only one rule: we must have a. rule for the empty list and a
rule for a list with at least one element. To avoid this useless repetition we prefer to use the auxiliary Typol
set IS-VALENV to clieck that the value of the variable ve is of type VALENV. Now we first try to prove
that the evaluation returns a value.

In fact the difficulty is not really solved and the situation is worse for a sequence of declarations. Rules
3 and 4 are used to prove that a sequence of declaration returns a new environment. But if one of them
gives a proof of pack then the whole sequence has to be reevaluated with rules 5 and 6 (rule 4 cannot be
used when a declaration returns a packet).

The difficulty we are faced with is not really a new one (for example it is already present with the if
statement in ASPLE). But it is more evident here. In fact this problem is due to "a one rule at a time" Typol
to Prolog compilation. We think that a better compilation strategy is possible, but we shall not discuss it
there.

5.3. Matching of Values

A conditionnal expression:

-47- D4.A2

is translated into the following core Ml expression:

(
fun true => e2) ei

false => es

the evaluation of which is described by the following rule:

e I- EXP : [MATCH, e'~ e I- EXP' : val' e' I- MATCH, val' : val
e I- EXP EXP' : val

(6)

The sequent e' I- MATCH, val' : val describes the application of a match (here the true and false branches of
the conditional) to a value (here the value of the boolean expression ei). The rules of this application are:

e, s I- MRULE, val: vaLpack, s1 is_vaLpack(vaLpack)
e, s I- MRULE I MRULE-S, val: vaLpack, s1

(7)

e, s I- MRULE, val: fail, s1 e, s' I- MRULE-8 1 val: vaLpack, s11

(8)
e, s I- MRULE I MRULE-8, val: vaLpack, s11

e, s I- match[], val :<ematch, ()>, s (9)

where the matching of a pattern to a value is described by the following rules (the rules for records are
omitted):

s I- _ , val: [], s

s I- varx, val: varx 1-+ val, s

s I- con x, con x : [], s

s I- numberx, numberx: [], s

(MEM, Excs) I- PAT, val: ve_f ail, s'
(MEM, Excs) I- con con con "ref" (PAT), addrx: ve-fail, s'

8 I- PAT, VAL: ve_fail, 8 1

s 1- conx(PAT), conx x VAL:ve-fail,s'

s I- PAT, val: ve, s1 is_valenv(ve)
s I- varx as PAT, val: ve · varx 1-+ val, s'

mem
(MEM I- addr x 1-+ val)

But what is the meaning of fair! In its specifications Milner says that matching a pattern to a value
evaluates either to a value environment or to fail. But the second case holds only when no evaluation can
be inferred for the pair (pat, val) from the former rules. It is well known that it is difficult to specify such a
:iiegation by failure in inference systems. If we assume that rules may be conditioned by a negation operator
":f (but this has to be proved) which is predefined in the Typol language, we may include in the previous
collection of rules the following rules:

s I- con x, con Y : fail, s (x ":f Y)

s I- numberx, numberY : fail, s (Y ":f x)

s I- PAT, val: fail, s'
s 1- varx as PAT, val: fail, s'

We are not convinced that such a solution is elegant, but at least it works. We should prefer to avoid the
use of such a failure value. But this implies that we are able to express rules th~t depend on the failure of
their premisses (see rules 7 and 8).

-48- D4.A2

6. The language ESTEREL

Esterel is a real time language developed at the "CMA-Ecole des Mines" in Sophia-Antipolis by G.
Berry and colleagues. It is aimed to specify the behaviour of automatic systems (such as electric toy cars,
video games, wrist watches and other reactive systems). One specifies in an imperative way what the system
must do in answer to such or such signal. Signals come both from the outside world and from other parts
of the system. Esterel includes most of the features of other Pascal-like languages, like case and conditional
statements, plus parallelism, and new statements dealing with signals. In its present state, the Esterel system
provides a type checker, controllers for certain static semantics properties, an interpreter and a compiler.
The compiler produces a finite automaton corresponding to the specification in Esterel, which in turn may
be compiled to run on computers or later "compiled" directly on chips.

Our interest for Esterel stems from several reasons: first, Esterel is not a toy-size language any more,
and it was a challenge to try and explain it completely. For instance, it was our first big type checker written
in Typol. Second some features like block structure or signals are interesting to type-check in Typol. So we
wrote a first type-checker which is nothing but the specification of what is a well typed Esterel program.
This is the one we present here.

Then we found other interests in Esterel. The Esterel type-checker directly derived from the specification
is a little too dumb, and we tried to improve it in various ways. First, it's a pity the type-checking process
should stop on the first error reached, so we tried to make it go on anyway. Second, since it went on, we had
to have it recover from these errors, and react as cleverly as possible. Third, we tried to make it incremental,
which was an easier thing to do as soon as we had a good error recovery mechanism. Incremental type
checking is only useful for real-size programs written in real-size languages. We are now trying to design
an automatic way of going from the "dumb" type-checker" to the clever one. Of course we would like this
automatic transformation to apply to any type-checker, not only Esterel any more. Esterel will only be the
leading example, because it includes the principal features of other real-size languages.

Abstract syntax of Esterel

We present in the following the abstract syntax of Esterel. Right now, we must point out that both the
concrete and abstract syntax of Esterel may change, for this language is still in its development phase. We
can already note the fairy large number of constructors. Features we want to insist on are:

- large number of declarations.

- block-structured instructions, like localvardecl, localsignaldecl, or tag

- exception handling instructions, like trapfailure.

Abstract Syntax of STRL

sorts

LFUNCTIONARG, COMP, EXPRESSION, SIGNALSUBST, LSIGNALSUBST, FAILUREHANDLER, LFAILURE
HANDLER, SELECTCASE, LSELECTCASE, LSIGNALDECL, VARIABLEINIT, LVARIABLEINIT, ONETYPE
VARDECLS, LVARIABLEDECL, LPROCEDUREARG, OPTIONALBINDING, OPTIONALNEXT, COMPTE, OC
CURENCE, OCCWITHOUTCOUNT, LIDENT, INSTRUCTION, LINCOMPATIBILITY, RELATIONDECL, SIG
NALDECL, LRELATIONDECL, LINPUTOUTPUTDECL, LOUTPUTDECL, LINPUTDECL, IDENT, TYPE, LTYPE,
PROCEDUREDECL,FUNCTIONDECL,LCONSTANTIDENT,ONETYPECSTDECL,TYPEDECL,LPROCEDURE
DECL,LFUNCTIONDECL,LCONSTANTDECL,LTYPEDECL,DECLARATION,LDECLARATION,MODULE

subsorts "

functions

'MODULE'

-49- D4.A2

module : IDENTXLDECLARATIONXINSTRUCTION --+ MODULE

'DECLARATIONS'
ldeclaration DECLARATION"' --+ LDEC~ARATION

typedecls LTYPEDECL - DECLARATION
constantdecls LCONSTANTDECL - DECLARATION
functiondecls LFUNCTIONDECL - DECLARATION
proceduredecls LPROCEDUREDECL - DECLARATION
inputdecls LINPUTDECL - DECLARATION
outputdecls LOUTPUTDECL - DECLARATION
inputoutputdecls LINPUTOUTPUTDECL - DECLARATION
relationdecls LRELATIONDECL - DECLARATION
ltypedecl TYPEDECL"' - LTYPEDECL
lconstantdecl ONETYPECSTDECL * - LCONSTANTDECL
lfunctiondecl FUNCTIONDECL * - LFUNCTIONDECL
lproceduredecl PROCEDUREDECL * - LPROCEDUREDECL
typed eel - TYPEDECL
onetypecstdecl LCONSTANTIDENTXTYPE - ONETYPECSTDECL
lconstantident ID ENT* - LCONSTANTIDENT
functiondecl IDENTXLTYPEXTYPE - FUNCTIONDECL
proceduredecl IDENTXLTYPEXLTYPE - PROCEDUREDECL
ltype TYPE* - LTYPE
type - TYPE
ident - ID ENT

'SIGNAUX'
linputdecl SIGNALDECL* - LINPUTDECL
loutputdecl SIGNALDECL * - LOUTPUTDECL
linputoutputdecl SIGNALDECL * --+ LINPUTOUTPUTDECL
Irelationdecl RELATIONDECL * - LRELATIONDECL
lsignaldecl SIGNALDECL* - LSIGNALDECL
puresignaldecl ID ENT - SIGNALDECL
singlesignaldecl IDENTXTYPE - SIGNALDECL
multiplesignaldecl IDENTXTYPEXIDENT --+ SIGNALDECL
causalitydecl IDENTXIDENT - RELATIONDECL
incompatibilitydecl LIN COMPATIBILITY - RELATIONDECL
!incompatibility ID ENT* - LIN COMPATIBILITY

'INSTRUCTIONS'
sequence INSTRUCTION* - INSTRUCTION
par allele INSTRUCTION* - INSTRUCTION
nothing - INSTRUCTION
halt - INSTRUCTION
assignment IDENTXEXPRESSION - INSTRUCTION
procedurecall IDENTXLIDENTXLPROCEDUREARG - INSTRUCTION
emit IDENTXEXPRESSION - INSTRUCTION
upto INSTRUCTION X OCCURENCE - INSTRUCTION
in presence OCCWITHOUTCOUNTXINSTRUCTION - INSTRUCTION
loop INSTRUCTION - INSTRUCTION
conditional EXPRESSIONXINSTRUCTIONXINSTRUCTION - INSTRUCTION
tag IDENTXINSTRUCTION - INSTRUCTION
exit ID ENT - INSTRUCTION
localvardecl LVARIABLEDECLXINSTRUCTION - INSTRUCTION
localsignaldecl LSIGNALDECLXINSTRUCTION - INSTRUCTION
repeat EXPRESSIONXINSTRUCTION - INSTRUCTION

-50- D4.A2

await OCCURENCE

on OCCURENCE XINSTRUCTION

select LSELECTCASE

uptoeach INSTRUCTIONXOCCURENCE

every OCCURENCE XINSTRUCTION

inabsence OCCURENCEXINSTRUCTION

watching INSTRUCTIONXOCCURENCEXINSTRUCTION

trapfailure LSIGNALDECLXINSTRUCTIONXLFAILUREHANDLER

failwith IDENTXEXPRESSION

copymodule IDENTXLSIGNALSUBST

nulLtree
lident IDENT*

occwithoutcount IDENTX OPTIONALBINDING

occurence COMPTEXIDENTXOPTIONALBINDING

compte OPTIONALNEXTXEXPRESSION

next
nulLtree
optional binding IDENT

nulLtree
lprocedurearg EXPRESSION"

lvariabledecl ONETYPEVARDECLS"

onetypevardecls LVARIABLEINITXTYPE
lvariableinit VARIABLEINIT*

variableinit IDENTXEXPRESSION

lselectcase SELECTCASE"

select case OCCURENCEXINSTRUCTION
lfailurehandler FAILUREHANDLER"

failurehandler OCCWITHOUTCOUNTXINSTRUCTION
lsignalsubst SIGNALSUBST*

nulLtree
signalsubst IDENTXIDENT

'EXPRESSIONS'
minus
puiss
mult
div
plus
moins
compar
not
or
and
ident

EXPRESSION
EXPRESSION XEXPRESSION
EXPRESSIONXEXPRESSION
EXPRESSION XEXPRESSION

EXPRESSION XEXPRESSION
EXPRESSION XEXPRESSION

EXPRESSION X COMP XEXPRESSION
EXPRESSION

EXPRESSIONXEXPRESSION
EXPRESSION XEXPRESSION

IDENTXLFUNCTIONARG

-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ EXPRESSION
-+ COMP

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

-+

string
natural
bool
functioncall
nulLtre.e
comp
lfunctionarg EXPRESSION" -+ LFUNCTIONARG

6.1. The simple Esterel type-checker

-51-

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION
INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION

INSTRUCTION
LIDENT

OCCWITHOUTCOUNT

OCCURENCE

COMP TE

OPTIONALNEXT
OPTIONALNEXT

OPTIONALBINDING

OPTIONALBINDING

LPROCEDUREARG

LVARIABLEDECL

ONETYPEVARDECLS
LVARIABLEINIT

VARIABLEINIT

LSELECTCASE

SELECTCASE

LFAILUREHANDLER
FAILUREHANDLER

LSIGNALSUBST

LSIGNALSUBST
SIGNALSUBST

D4.A2

The simple type-checker is nothing but the specification in Typo! of what is a well-typed Esterel program.
The conditions an Esterel program must fullfill are the same as for usual Pascal-like languages. Every
identifier used must be declared before it is used, and the scope rules are the usual ones. Esterel does not
support overloading, nor polymorphic types. Signal declarations are more complex. First, signals may be
of kind input or output or both. Then they may carry or not a value of a certain type. Finally, one may
specify the composition function to apply between two values emitted at the same time by two emissions of
the same signal.

The complete type-checker is listed below, but we will now give comments for a few rules.

initenvir tc
I- :p p I- ARBRE:

I- ARBRE:

This is the toplevel rule of the typechecking process. To typecheck any tree ARBRE, one must take an initial
environment p, then typecheck the tree in this environment.

p I- LDECL : p1 p1 I- INSTR
p I- module NOM : LDECL INSTR.

This is how to typecheck a complete Esterel program, which is called a module, in any environment p. First
the declaration part must typecheck well, yielding a new environment p', then the instruction part must
typecheck well in p'. Since instructions never change the environment, this gives no new environment.

declaretype
p I- typedecl TYPE : p1

p I- typedecl TYPE : p'

When the typechecker encounters a type declaration, it calls a special set which adds the declaration of
this new type in the environment. Therefore this gives a new environment p'. All declaration routines,
like declaretype, call the external "ajouter" routine, which checks for double declarations (warnings), or
redeclarations (errors).

is type
p I- type TYPE

p I- type TYPE : TYPE

When a program uses a type, one must check this type was declared before. This is the use of the istype
set, which gives back the name of the type, for later use.

p I- TYPE: T
isfunc declaresignal

p I- FUNC:TXT-+T p I- IDENT,[u;r]:p'
p I- multipleIDENT(TYPE, FUNC), O': p'

Before declaring a new signal, one must verify that the TYPE used is declared, that the fuction given is
declared of the correct type.

p I- INSTR1 p I- INSTR2

p I- INSTR1 II INSTR2

Typechecking a parallel instruction is much simple. Just typecheck both sons in the current environment p.

-52- D4.A2

iHignal
p I- ID:(<-,-+>; rj p I- EXPR: T

p I- emit ID(EXPR)

ff the program emits the signal ID along with a value EXPR, one must check first that the signal is at least
an "output" one -this is the meaning of the right arrow- and that the signal may carry a value, which must
be of the same type T as the expression EXPR.

blocvar
p I- : p1 p' I- LDCLVAR: p" p11 I- INSTR

p I- varLDCLVARinINSTRend

The instruction INSTR inside a local variable block must typecheck well in a new environment p11 which is
obtained from the old one p in the following way. First open a new block for variable declarations, giving
p'. This is to check correctly double declarations and redeclarations. Then add the declarations of the local
variables in the usual way, yielding p".

firstdecl
11" I- ID 1-+ r' eq(r, T')

-i 11"j ..; -i ..; - I- ident ID : T

The environment is made of six parts, the second one being for variables. Looking for a variable in this
environment 11" is looking for its latest declaration, if it exists, and only for it. This is done by the "firstdecl"
routine, which is written in Prolog, for the time being.

I- :[integer· boolean· string];[];[];[];[];[]

The initial environment is not completely empty, for integer, boolean and string types are predefined.

In the listing which follows, we have separated the rules into four groups. The first group is gathered in
the program TCl, and these rules deal mostly with the declaration part of an Esterel program. The second
group is in the program TC2, the rules of which deal with statements. Program TC3 contains rules about
expressions, which are few, and last program TC4 contains utility routines to modify the environment, or to
tell wether an identifier is declared or not.

We could have written TC4 in an alternate way, with one set for all declarations, one for ISVAR, ISTAG,
etc. For this, we should include in the calls to "declare", for instance, a new field telling if we want to declare
a type or a var or a signal,and so on. We should then get only one set "DECLARE", one set "IS", and one
set "BLOC".

6.2. Type checking of Declarations

program TCl is

use STRL

initenvir tc
I- :p p I- ARBRE:

I- ARBRE:

set TC is

p I- DECL : p' p' I- LDECL : p11

p I- DECL LDECL : p"

-53- D4.A2

p I- ldeclaration[J : p

p I- LDCLTYPE: p'
p I- typedecls(LDCLTYPE) :p'

p I- TYPE :p' p1 I- LTYPE : p11

p I- TYPE, LTYPE : p11

p I- ltypedecl[] : p

declaretype
p I- typedecl TYPE : p'

p I- typedecl TYPE : p'

p I- LDCLCNST: p'
p I- constant LDCLCNSTj : p'

p I- DCLCNST : p' p' I- LDCLCNST : p11

p I- DCLCNST, LDCLCNST: p''

p I- lconstantdecl[] : p

p I- TYPE: r p I- LNOMS, r :p'
p I- LNOMS : TYPE: p1

declarevar
p I- ID, r: p' p' I- LNOMS, r: p"

p I- lconstantident[m · LNOMs], r: p"

p I- lconstantident [J, r : p

p I- LDCLFUNC: p'
p I- functionLDCLFUNCj :p'

p I- DCLFUNC: p' p' I- LDCLFUNC: p11

p I- DCLFUNC, LDCLFUNC: p11

p I- lfunctiondecl[] : p

declarefunc
p I- TYPE :r1 p I- LTYPE: r2 p I- FUNC, r2 -+ r1: p'

p I- FUNC(LTYPE): TYPE: p1

p I- TYPE: r1 p I- LTYPE : r2

p I- TYPE, LTYPE: r1 I r2

p I- ltype[] :[]

-54- D4.A2

iatype
p I- type TYPE

p I- type TYPE : TYPE

p I- LD.CLPROC : p1

p I- procedure LDCLPROC;: p'

p I- DCLPROC : p' p' I- LDCLPROC : p11

p I- DCLPROC1 LDCLPROC: p''

p 1- lproceduredecl[]: p

declareproc
p I- LTYPE1 : 1"1 pl-LTYPE2:r2 p I- PROC,(r1)(r2):p'

p I- PROC(LTYPE1){LTYPE2) :p1

p I- LDCLINPUT: p1

p I- input LDCLINPUT; : p'

p I- DCLSIGNAL1 <+-, X>: p' p' I- LDCLINPUT: p11

p I- DCLSIGNAL1 LDCLINPUT: p11

p I- linptitdecl[] : p

p I- LDCLOUTPUT: p'
p I- output LDCLOUTPUTj : p'

p I- DCLSIGNAL, <X, --+> :p1 p' I- LDCLOUTPUT : p11

p I- DCLSIGNAL1 LDCLOUTPUT: p11

p I- loutputdecl[] : p

p I- LDCLIO: p'
p I- inputoutput LDCLIO; : p'

p I- DCLSIGNAL, <+-1 -+> :p' p' I- LDCLIO :p11

p I- DCLSIGNAL, LDCLIO: p11

p I- linputoutputdecl{] : p

declareaignal
p I- ID ENT, (u; void] : p'

p I- pure ID ENT, O': p'

declareaignal
p I- TYPE : r p I- ID ENT, [u; r] : p'

p I- singleIDENT(TYPE),u:p'

-55- D4.A2

p I- TYPE:T
isfunc declaresignal

p I- FUNC: T x T-+ T p I- IDENT, [er; rJ :p'

p I- multipleIDENT(TYPE, FUNc), er: p'

p I- relation x

end TC;

end TC1

6.3. Type checking of Statements

program TC2 is

use STRL

set TC is

p I- LDECL: p1 p1 I- INSTR

p I- module NOM : LDECL INSTR.

p I- nothing

p I- halt

p I- INSTR1 p I- INSTR2

p I- INSTR1 II INSTR2

p I- parallele[]

p I- INSTR1 p I- INSTR:i

p I- INSTR1j INSTR2

p I- sequence[J

isproc
p I- ID :(r1)(r2) p I- LARGS1: T1 p I- LARGS2: T2

p I- ID(LARGS1}(LARGS2)

is signal
p I- ID:[<-,-+>; voidJ

p I- emit ID

is signal
p I- ID :[<-1 -+>j rj p I- EXPR: T

p I- emitID{EXPR)

-56- D4.A2

p f- INSTR p f- OCCUR

p I- do INSTR upto OCCUR

p f- INSTR p f- OCCUR

p I- do INSTR uptoeach OCCUR

p f- OCCUR p f- INSTR

p I- in presence OCCUR do INSTR end

is signal
p f- ID:[<+-,->;-] p f- INSTR

p I- inabsence ID do INSTR end

p f- INSTR1 p f- OCCUR p f- INSTR2

p I- do INSTR1 watching OCCUR abnormal INSTR2 end

p f- OCCUR p f- INSTR

p I- every OCCUR do INSTR end

p f- OCCUR p f- INSTR

p I- on OCCUR do INSTR end

p f- OCCUR

p I- await OCCUR

p f- LSELECTCASE

p I- select LSELECTCASE end

p f- SELECTCASE p f- LSELECTCASE

p f- SELECTCASE LSELECTCASE

p I- lselectcase[]

p f- OCCUR p f- INSTR

p I- case OCCUR do INSTR

iscompte issignal
p f- EXPR p f- ID:(<+-,->;-]

p I- occurence(compte(x, EXPR), ID, nulLtree)

iscompte issignal
p f- EXPR p f- ID1 :[<+-, ->j rj p f- ID,: T

p I- occurence(compte(x, EXPR), ID1, optionalbinding(ID,))

iasignal
p f- ID:[<+-, ->;-J

p I- occwithoutcount(ID, null.tree)

issignal
p f- ID1 :[<+-1 ->j rj p f- ID,: T

p I- occwithoutcount(ID 11 optionalbinding(ID2))

-57- D4.A2

p I- INSTR

p I- loop INSTR end

p I- EXPR : boolean p I- INSTR1 p I- INSTR:i

p I- if EXPR then INSTR1 else INSTR:i

bloctag declare tag
p I- :p' p' I- TAG : p11 p11 I- INSTR

p I- tag TAG in INSTR end

is tag
p I- TAG

p I- exitTAG

blocvar
p I- : p1 p' I- LDCLVAR: p11 p11 I- INSTR

p I- varLDCLVARinINSTRend

p I- DCLVAR: p' p' I- LDCLVAR:p11

p I- DCLVAR, LDCLVAR: p11

p I- lvariabledecl[] : p

p I- TYPE: r p I- LVARINIT, r: p'
p I- onetypevardecls(LVARINIT, TYPE): p'

p I- VARIABLEINIT, r: p' p' I- LVARINIT, r: p"

p I- lvariableinit[VARIABLEINIT. LVARINIT], r: p"

p I- lvariableinit[], r : p

declarevar
p I- ID, r :p1

p I- ID, T: p1

declarevar
pl-EXPR:r p I- ID,r:p'

p I- ID := EXPR, type r : p'

p I- IDENT: r p I- EXPR:r

p I- IDENT := EXPR

blocsign
p I- : p' p1 I- LDCLSIGN : p11 p" I- INSTR

p I- signal LDCLSIGN in INSTR end

p I- DCLSIGNAL, <+-,-+> :p' p1 I- LDCLIO: p11

p I- DCLSIGNAL, LDCLIO: p"

p I- lsignaldecl[] : p

-58- D4.A2

end TC;

end TC2

p I- EXPR : "integer" p I- INSTR

p I- repeat EXPR times INSTR end

p I- SIGNDECL : p1 p1 I- INSTR p1 I- LFAIL

p I- trapfailureSIGNDECLinINSTRfailureLFAIL

issignal
p I- ID:[<+-,->; voidJ

p I- fail with ID

is signal
p I- m:[<+-,->;r] pl-EXPR:T

p I- failwithm(EXPR)

p I- FAILHAND p I- LFAILHAND

p I- FAILHAND LFAILHAND

p I- lfailurehandler[J

p I- OCCUR p I- INSTR

p I- failureOCCURdoINSTRend

p I- copymodulem[suBST]

6.4. Type checking of Expressions

program TC3 is

use STRL

set TC is

p I- EXPR1 : integer p I- EXPR2 : integer

p I- EXPR1 + EXPR2 : integer

p I- EXPR1 : integer p I- EXPR2 : integer

p I- EXPR1 - EXPR2 : integer

p I- EXPR1 : integer p I- EXPR2 : integer

p I- EXPR1 * EXPR2 : integer

p I- EXPR1 : integer p I- EXPR2 : integer

p I- EXPR1/EXPR2: integer

p I- EXPR1 : integer p I- EXPR2 : integer

p I- EXPR1 ** EXPR2 : integer

-59- D4.A2

end TC;

end TC3

p I- EXPR : integer
p f-...., EXPR : integer

p I- EXPR1 : boolean p I- EXPR2 : boolean

p I- EXPR1 or EXPR2 : boolean

p I- EXPR1 : boolean p I- EXPR2 : boolean
p I- EXPR1 and EXPR2 : boole(tn

p I- EXPR: boolean
p I- not EXPR : boolean

p I- EXPR1 : integer p I- EXPR2 : integer
p I- compar(EXPR1, COMP, EXPR2): boolean

p I- string STRING: string

p I- natural NATURAL: integer

p I- bool BOOL : boolean

isfunc
p I- ID : 1"2 - 1"1 p f- LARGS : r2

p I- ID(LARGS): T1

isvar
p I- ident ID : r

p I- ident ID : r

p J- EXPR : r1 p I- LEXPR : 1"2

p I- EXPR, LEXPR : 1"1 I r2

p I- lfunctionarg[] :[I

p f- EXPR : 1"1 p I- LEXPR : 1"2

p I- EXPR1 LEXPR : r1 I r2

p I- lprocedurearg [] :[] _

p f- ID : r1 p f- LID : 1"2

p I- ID, LID: 1"1 I 1"2

p I- lident[] :[]

-60- D4.A2

6.5. Auxiliary Predicates

program TC.£ is

use STRL

set DECLARETYPE is

end DECLARETYPE;

set DECLARETAG is

end DECLARETAG;

set DECLAREVAR is

end DECLAREVAR;

set DECLAREFUNC is

end DECLAREFUNC;

set DECLAREPROC is

end DECLAREPROC;

ajouter
'1f I- ID 1-+ void : 1r'

'1fj Bj Cj Dj E; FI- typedechD: 1r'; Bj c; Dj Ej F

ajouter
'1f I- ID 1-+ void : 1f'

AjBj C; DjEj '1f I- identID !AjB; CjDjEj 1f'

ajouter
'1f I- ID 1-+ r : 1f'

Aj 7rj CjDjEj FI- identID1 r: Aj r; CjDj EjF

ajouter
'If I- ID1-+r:r

AjBj'lfjDjEjF I- identID,r:AjBj1r'jDjEjF

ajouter
11" I- ID 1-+ r : r

Aj Bj Cj '1fj Ej F I- ident ID,.,: Aj Bj c; 1r'; Ej F

-61- D4.A2

set DECLARESIGNAL is

ajouter
1C' r ID I-+ T : 1f"

Aj Bj c; Dj 'll"j F ident ID, T: Aj Bj Cj Dj 'II"'; F

end DECLARESIGNAL;

set ISTYPE is

firatdeel
'll" TYPE I-+ void

'll"j ..; -i ..; ..; - r type TYPE

end ISTYPE;

set ISVAR is

firatdecl
11" r IDi-+T1

end ISVAR;

set ISFUNC is

firstdecl
'll" r ID 1-+ r' eq(r, r')

..; -i 'll"j -i ..; - r ident ID : r

end ISFUNC;

set ISPROC is

firstdecl
'll" r ID 1-+ r' eq(r, r')

..; -i ..; 'll"j ..; - r ident ID : r

end ISPROC;

set ISSIGNAL is

firatdecl
'll" r ID 1-+ r' eq(r, r')

..; -i..; -i 11"j - r ident ID : r

end ISSIGNAL;

-62- D4.A2

set ISTAG is

end ISTAG;

set ISCOMPTE is

end ISCOMPTE;

set INITENVm is

end INITENVm;

set BLOCVAR is

end BLOCVAR;

set BLOCSIGN is

end BLOCSIGN;

set BLOCTAG is

end BLOCTAG;

end TC4

firatdecl
1r ... TAG void

...; ...; -i ...; ...; 1r ... ident TAG

pt- nulLtree

tc
p t- EXPR : integer

p rEXPR

t- :[integer· boolean· string];[);[];[];[); [J

bloc
1r ... : 1f"

bloc
1r ... : 1f"

AjBjCjDj1rjF r :AjBjCjDjn'jF

bloc
r I- : 1f"

Aj Bj Cj Dj Ej 1r r : Aj Bj Cj Dj Ej 11"

-63- D4.A2

REFERENCES

[Amber] L. CARDELLI, "The AMBER Programming Language", AT&T Bell Laboratories, 1985

[Berry] G. BERRY, L. CoSSERAT, "The ESTEREL synchronous programming language and its
mathematical semantics", INRIA Research Report RR 327, September 1984

[CAM] G. COUSINEAU, P. L. CURIEN, M. MAUNY, "The Categorical Abstract Machine", in
Functional Languages and Computer Architecture, Lecture Notes in Computer Science, Vol.
201, September 1985

[Cardelli] L. CARDELLI, "Basic Polymorphic Type-checking", Polymorphism, January 1985

[CW] L. CARDELLI, P. WEGNER, "On Understanding Types, Data abstraction, and Polymor
phism", Draft, May 1985.

[DKL] V. DONZEAU-GOUGE, G. KAHN, B. LANG, "A complete machine checked definition of
a. simple programming language using denotational semantics", INRIA Research Report 330,
October 1978.

[DM] L. DAMAS, R. MILNER, "Principal type-schemes for functional programs", Proceedings
Principles of Programming Languages 1982, pp.207-212.

[DMQ] D. B. MACQUEEN, "Modules for standard ML", Private Communication, 1984

[JD] J. DESPEYROUX, "Proof of Translation in Natural Semanti~s", Submitted for publication

[Mentor] V. DONZEAU-GOUGE, G. HUET, G. KAHN, B. LANG, "Programming environments
based on structured editors: The Mentor experience" INRIA Research Report no. 26, July
1980

[ML] M. GORDON, R. MILNER, C. WADSWORTH, G. COUSINEAU, G.HUET, L. PAULSON,
"The ML Handbook, Version 5.1", INRIA, October 1984

[NS] D. CLEMENT, J. DESPEYROUX, T. DESPEYROUX, L. HASCOET, G. KAHN, "Natural
Semantics on the Computer", INRIA Research Report RR 416, June 1985

[Plotkin] PLOTKIN, G.D., "A Structural Approach to Operational Semantics", DAIMI FN-19, Com
puter Science Department, Aarhus University, Aarhus, Denmark, September 1981.

[Reynolds] J.C. REYNOLDS, "Three Approaches to Type Structure", Lecture Notes in Computer Sci
ence, Vol. 185, March 1985

[STML] R. MILNER, "The Dynamic Operational Semantics of Standard ML", University of Edin
burgh, April 1985

[TD] TH. DESPEYROUX, "Executable Specification of Static Semantics", in Semantics of Data
Types, Lecture Notes in Computer Science, Vol. 173, June 1984

-64- D4.A2

GIPE: CEC 348/ A/T4/8

version 2 November 1985

Proposal for an Algebraic Semantics Definition Formalism

Annexe D4.A3 of Deliverable D4 - Second Review -

J.A. Bergstra (University of Amsterdam)
N. W.P. van Diepen (CW!)

J. Heering (CW!)
P.RH. Hendriks (CW!)

P. Klint (CW!)
A. Verhoog (BSO)

An algebraic definition formalism to be used in the static constraints as well as

dynamic semantics sections of formal language definitions is proposed. Test cases are pro

posed for assessing its suitability for describing various key language features. A large exam

ple illustrating the style of specification in this formalism is given.

This annexe is an expanded version of J.A. Bergstra, J.Heering & P. Klint, "Algebraic

specification of a simple programming language", Report CS-R8504, CW!, 1985.

1. INTRODUCTION

1.1. General features of the formalism

An algebraic definition essentially consists of a signature (itself consisting of declarations of

sorts, constants and functions) and a set of positive conditional equations over that signature. 1bis

basic formalism has been extended in several ways:

Because initial algebra specification of arbitrary finitely generated semicomputable algebras

(data types) requires introduction of hidden or auxiliary sorts and functions [BT79], an export

mechanism has been added. Everything not exported is hidden, i.e. invisible from the outside.

The export construct constitutes the basic information hiding/ abstraction mechanism.

The formalism allows parameterized (generic) modules, binding of formal parameters to

modules (actual parameters), and import of modules into other modules. In general, the way a

module is built is given by a module expression describing its components as well as the way

they are bound to each other.

The modularization mechanisms used are similar or identical to the ones discussed in

[KLA83], [W83], [GAU84], [LOE84], or [EM85].

1.2. Semantics

We will always use the initial algebra semantics of (complete) algebraic specifications ([MG85],

[EM85]). There are essentially three different ways of defining the meaning of parameterized or oth- ·

erwise incomplete modules and module composition: In terms of the texts of the modules involved,

in terms of their theories or in terms of their (initial) models. The initial model viewpoint does not

seem to lend itself to generalization to other types of logic (such as first-order predicate logic). 1bis

is a disadvantage because we want to study modularization independently from the type of logic

used internally in the modules. The modularization scheme developed must also work for syntax

rules and :rYPOL (Annexe D4.A2), for instance. We will give an algebraic semantics of module

- l - D4.A3

expressions as part of Task T7.

1.3. Compilation of algebraic definitions to executable code

Algebraic definitions are declarative, i.e. non-operational. Automatically compiling them to

executable code is beyond the state of the art. These problems will be circumvented by imposing

certain regularity restrictions on the equations used [BK82]. If this is done, the resulting

specifications can simply be transformed into confluent term rewriting systems. These in turn can

readily be compiled to PROLOG programs (see [DE84] and also Deliverable DI).

Our experiences with compiling general, i.e. unrestricted, algebraic specifications to term

rewriting systems by means of the Knuth-Bendix algorithm (see for instance [OHSOD have been

largely negative. The algorithm behaves unpredictably, often requires human intervention, and is

totally unsuitable for large scale applications. We believe this approach to compiling algebraic

specifications to be a dead end and do not intend to pursue it any further.

1.4. Integration of the syntax definition formalism

The current formalism allows definition of infix operators in the signature section of a

specification and use of infix expressions in the equation section. This is more or less an add-on

feature, however, and the next version of the formalism will use a signature section written in the

syntax definition formalism proposed in Annexe D4.Al. The latter formalism allows definition of

very general expression syntax.

- 2 - D4.A3

2. THE SPECIFICATION FORMALISM

In this section we give a brief and informal description of the specification formalism. The
formalism is based on signatures consisting of a set of sorts and a set of functions over these sorts. A
signature combined with a set of equations over that signature and a set of variables occurring in
the equations forms a specification (see, for instance, [K.LA83]). We will always use the initial alge
bra semantics of these specifications.

2.1. Syntax of the specification formalism

<specification> ::=<module>+ •
<module> ::= 'module' <ident>

'begin'
<parameters>
<exports>
<imports>
<sorts>
<functions>
<variables>
<equations>

1end 1 <ident> •
<parameters> ::= ['parameters' {<parameter-module> 1

,
1 }+].

<parameter-module> ::=
<ident> ['begin'

<exports> ::=

<imports> ::=
<module-expression>

<sorts>
<functions>

'end' <ident> l •
['exports' 'begin'

<sorts> <functions> 'end'] •
['imports' { <module-expression> ','}+] •

::= <ident>
[•{•

<renames> ::=
<rename> ::=
<sorts> ::=
<ident-list> ::=
<fun-ident-list>::=
<functions> ::=
<function-list> ::=
<fun-ident> ::=
<fun-type> ::=
<type> : :=
<out-type> ::=
<type-ident> ::=
<variables> ::=
<variable-list> : :=
<equations> : :=
<cond-equation> : :=
<tag> ::=
<equation-List> ::=

['renamed' 'by' <renames>]
C <ident> 'bound' 'by' <renames>
'to' <ident>)*

1}1] •

'[' {<rename> 1
,

1 }* 'J' •
<fun-ident> [1 ->' <fun-ident> l.
['sorts' <ident-List> J •
{ <ident> ',' }+.
{ <fun-ident> 1

,
1 }+.

['functions' <function-list> J •
C <fun-ident-list> ':'<fun-type>)+.
<ident> I '-' <operator> ' ' I <operator>
[<type> J '->' <out-type> •
{ <type-ident> '# 1 }+ •
<type-ident> I 1

(
1 <type> ')' •

<ident> I ('*')+ •
['variables' <variable-list> l •
C <ident-List> 1

:
1 '->' <out-type>)+.

['equations' <cond-equation>+ l •
<tag> <equation> ['when' <equation-list>].
['[' <ident> ']' J.
{<equation> ',' }+.

- 3 -

••

D4.A3

<equation>
<term>

<primary>

<term-list>
<tuple>

::=<term> '=' <term>.
::=<operator> <term>

<primary> [<operator> <term> J •
::= <ident> ['(' <term-list> ')'J I

<tuple> I <string> I 'C' <term> ')' •
::= { <term> ',' }+.
: := '<' <term-list> '>'

2.2. Lexical conventions

The lexical conventions of the specification language are as follows:

1) Identifiers (i.e. <ident> in the grammar in the previous section) consist of a non-empty
sequence of letters and/or digits with embedded hyphens. For example, a, Z16, Very
Long-Identi fi er and 6 are legal identifiers, but -a, - or a- are illegal.

2) Strings (i.e. <string>) begin and end with a single quote(') and may contain letters, digits
and the punctuation marks: (space) "(double quote) C) * + , - • I : ; I = .

3) Operators (i.e. <operator>) are denoted by a sequences of one or more of the following char
acters: ! a, S, %, ~ &, + •, I, \, ;, ', • ? I .

4) Comments begin with two hyphens and end with either the end of the line or another pair of
hyphens.

2.3. Various aspects of the specification formalism

Our formalism extends the basic algebraic specification formalism based on signatures and sets
of equations in several ways. These extensions are discussed in the following subsections.

2.3.1. Prefix and infix operators

(User definable prefix and infix notation will be replaced by fully general user definable syntax
once the syntax definition formalism of Annexe D4.Al and the algebraic definition formalism have
been merged.)

Monadic or dyadic functions may be denoted by respectively prefix or infix operators. Opera
tors are denoted by operator-symbols consisting of one or more of the characters specified in the
previous paragraph. In the signature, the position of operands of operators is indicated by the
underline character (_). For instance,

+ : S1 # S2 -> S3

defines the infix operator + with argument sorts S1 and S2 and output sort S3. All infix and
prefix operators have the same priority. They are just an abbreviation device and can always be
replaced by ordinary functions.

2.3.2. Multiple output values

In the signature tuples are allowed as output sorts, i.e. the function

f : S1 # S2 -> CS3 # S4)

has S3 # S4 as output sort, this is an ordered sequence with first component of sort S3 and second
component of sort S4. In equations, tuples are written as a sequence of terms enclosed by angle
brackets, i.e. < and >. It is required that the sorts of the constituents of a tuple are equal to the
corresponding components of a tupled output sort in the signature. Tuples can be removed from
the specification by introducing new sorts and construction/projection functions for each tupled

-4- D4.A3

output sort in the signature. The above tupled output sort < S3 # S4) can, for instance, be
removed by introducing the additional sort SS and the functions make-SS, first-SS, second-SS,
as follows:

f
make-SS
first-SS

S1 # S2 -> SS
S3 # S4 -> SS
SS -> S3

second-SS SS -> S4

2.3.3. Polymorphism

Functions may be polymorphic, i.e. the same function name may be used to denote different

functions with different types, e.g. after defining

f S1 # S2 -> S3
f S2 -> S2

each occurrence of the function symbol f in a term will have to be disambiguated by considering

the number and sorts of its arguments.

Definitions of functions may also contain wild card sorts, denoted by one or more asterisk

characters(*). At the position of a wild card sort, a term of any legal sort is allowed. Wild card

sorts are identified by the number of asterisks by which they are denoted. In this way, one can

specify the multiple occurrence of the same, but arbitrary, sort. For instance,

g : * # S3 # ** # * -> *

specifies a function g with first and fourth argument of equal, but arbitrary sort, second argument

of sort S3 and third argument of another arbitrary sort which may differ from the sort of the first
and fourth argument. The output sort of g is the same as the sort of the first and fourth argument.

We impose some restrictions on polymorphic types which allow us to eliminate all polymor

phism from the specification by means of simple textual transformations. It is required that all wild

card sorts appearing in the output sorts of a function also appear among its input sorts. This res
triction excludes, for instance, polymorphic constants. We also impose the restriction that the sets

of input sorts of polymorphic functions are pairwise disjoint. This excludes, for instance,

f * # S2 -> S3
f S1 # * -> S3

since there is a unifying type S1 # S2 -> S3 in this case.

2.3.4. Module expressions

Module expressions serve the purpose to rename sorts and functions of an existing module or

to bind parameters of a module to actual values. The module described by the module expression

may then be imported by another module. These three aspects of module expressions are now

described in more detail:

• Exported names: Each module may contain an exports clause giving a list of all names of
sorts and functions which are exported from the module, i.e. which remain visible when the
module is combined with other modules (see below). External names of a module can be
renamed by means of the renamed by construct. Currently, all exported names are inherited,
i.e. they are also exported by the modules that (directly or indirectly) use the module from

- 5 - D4.A3

which the names were originally exported. This simple scheme has the undesirable property
that the number of exported names cannot be controlled. In future versions of the
specification formalism, a better mechanism offering more refined control over exported names
will be introduced.

• Parameterization: In order to make modules more generally usable in different contexts, a
form of parameterization is available in the specification language. Parameterization is

described by adding one or more parameters clauses to a module. Each (formal) parameter
is a (possibly incomplete) submodule and contains one or more names of sorts and functions.
All these names are formal names which -- in a later stage -- have to be bound to actual ones.
This is achieved by the bound by construct. Not all parameters of a module have to be
bound before it can be imported in another module. Such unbound parameters are inherited
by the importing module and are indistinguishable from parameters that are specified in the
importing module itself.

• Import of modules: Import of a module in another module is the fundamental composition
operation for modules. It is described by the imports clause. The import of module B in
module A is equivalent to constructing a new module A' that consists of the unions of the sig
natures and equations of A and B. Note that only the exported names of B are used for the
construction of this union. In the specifications that follow we will -- for reasons of clarity -
frequently import more modules than is strictly necessary.

• Name identification: When modules are combined the problem arises how multiple declara
tions of names should be interpreted. For identification of names we therefore adopt the ori
gin principle:

1) names with identical spelling and type, originating from the same module are equal,

2) names with identical spelling and type but different origin are forbidden.

This scheme allows the multiple inclusion of the same module (via different routes), but forbids col
lisions of names with identical spelling and type, originating from different modules.

2.4. Structure diagrams

The overall modular structure of specifications will be illustrated by structure diagrams. Each
module is represented by a rectangular box. The name of each module is shown at the bottom of
its box. For example, module Boo leans does not import any other modules and is represented by:

All modules imported by a module M are represented by structure diagrams inside the box
representing M. For nested structure diagrams levels of detail may be suppressed to gain space.
For example, Characters imports Boo leans and Integers (which in its turn also imports

Boo leans) and is represented by:

~II
~~

Integers

Characters

All parameters of a module are represented by ellipses carrying the name of the parameter.

- 6 - D4.A3

For example, Sequences, which has parameter Items and imports Boo leans, is represented by:

Sequences

The binding of a formal parameter is represented by a line joining the formal parameter and

the module to which it is bound For example, Strings are defined by binding the parameter

Items of Sequences to Characters. The corresponding structure diagram is:

Characters

Sequences

Strings

Unbound, inherited parameters are -- not yet very satisfactorily -- represented in structure diagrams

by repeating the inherited parameter as a parameter of the module that inherits it. For example,

Context-free-parser has formal parameters Scanner and Syntax and imports, among others,

BNF-patterns with unbound parameter Non-terminals and Atree-envi ronments with unbound

parameter Operators. This is represented by the following diagram:

- 7 - D4.A3

Scanner

Sequences Sequences

Strings Token-

sequences

Context-free-parser

BNF-patterns
A trees

Tables

Atree

envi ronments

All structure diagrams appearing in this paper have been generated automatically; they were derived
from the text of the specification.

- 8 - D4.A3

3. SELECilON OF TEST CASES

Many of the following test cases not only test the algebraic formalism but also the syntax

definition formalism proposed in Annexe D4.Al. We assume both formalisms will have been

integrated at the time work on the test cases starts.

3.1. Basic data types

Most problems (like error handling, definition of proper syntax and use of parameterized

modules) already manifest themselves in very simple settings, so the most frequently used data types

- although relatively simple - are not to be underestimated as test cases.

Examples of basic data types we will use as test cases are:

Boo leans

Integers

(Parameterized) sequences, multisets, and sets

(Parameterized) stacks, queues, lists, and tables

Labeled trees.

None of these data types is uniquely defined. Most of them have many variants. In specifying

them we will emphasize:

Proper error handling.

Introduction of proper notations for constants and functions by means of the syntax definition

formalism of Annexe D4.Al.

A library of basic data types which can be used by all language definitions will be constructed.

3.2. Definition of a simple language and language system

We propose two test cases involving a very simple programming language called PICO:

(1) Algebraic definition of a PICO system involving

lexical analysis

syntactic analysis

construction of abstract syntax trees

checking of static semantics

definition of dynamic semantics.
This test case has already been specified (4).

(2) Definition of PICO as it would be accepted by the kind of environment generator we have in

mind (Deliverable D5). This definition will consist of three sections and will use the syntax

definition formalism of Annexe D4.Al for defining the PICO concrete and abstract syntax and

a restricted algebraic formalism (1.3) for defining the PICO static and dynamic semantics.

3.3. A language with jumps

Jump statements are among the most difficult language constructs to specify and hence

description of a programming language containing them is a good test case for a specification for

malism. A simple example of such a language is the language SMALL extended with goto

statements. The SMALL family of languages has been used by Gordon [GOR79] to illustrate the

use of denotational semantics for describing various language features. Other members of the

SMALL family will allow us to study the algebraic specification of various restricted versions of the

jump construct.

Furthermore, since SMALL has already been specified using denotational semantics, it will

allow us to compare algebraic and denotational specifications. Of special interest will be the effects

of modules (not present in denotational semantics) and higher order functions (not present in

- 9 - D4.A3

algebraic semantics).

3.4. Type inference and higher order functions

The majority of the TYPOL test cases proposed in Annexe D4.A2 will also be tried algebrai
cally, so that the suitability of the algebraic formalism for defining static constraints and dynamic
semantics can be compared with that of TYPOL. In particular, we will specify the type checking
and the dynamic semantics of (a suitably chosen) subset of ML, and compare the resulting
specifications with the corresponding TYPOL versions (Annexe D4.A2). Because it has
polymorphic types and type from context inference, ML is currently perhaps the most challenging
language from the viewpoint of type checking. In defining ML type checking we will base ourselves
on the theory of polymorphic type checking in Damas & Milner [DM82] and the specification of a
typechecker for a part of ML written in Standard ML by Cardelli [CAR85]. ML is a fully high
order functional language and it will be interesting to see whether a satisfactory algebraic semantics
of it can be given.

3.5. Parallelism

The language POOL-T [AM85], a parallel object-oriented language allowing the dynamic crea
tion of processes (objects), will serve as a further test case for the algebraic formalism. An inference
rule semantics for (a subset of) POOL-T has recently been given by America, De Bakker, Kok &
Rutten [ABKR85].

- 10 - D4.A3

4. ALGEBRAIC DEFINITION OF A SIMPLE LANGUAGE SYSTEM

4.1. Introduction

4.1.1. General

The following specification describes in detail all necessary steps from entering a program in
the simple programming language PICO in its textual form to computing its value. The
specification has been made more general than strictly necessary. A major part of it does not
depend on any specific properties of PICO but is equally usable for definitions of other program
ming languages.

In this case study, we have not considered the specification of errors and exceptions~ for two
reasons:

(1) We want to concentrate first on the basic functionality and the alternatives for modularization
of the system to be designed; specifying error situations would obscure the design and would
probably double its size.

(2) Specification of errors within the algebraic framework has not yet been solved satisfactorily
and requires separate research.

The entire PICO system constitutes a semi-computable algebra in the sense of [BT79].

4.1.2. Relations with previous research

Many people have carried out similar exercises, for instance [GP81], the work of the PP pro
ject in Miinchen has been partly devoted to the topic of algebraic specifications of programming
languages. Further, several people have worked on the related topic of algebraic compiler
specification, for instance Bothe [B081], Ganzinger [GAN82] and Gaudel [GAU80].

4.1.3. Verification and validation

It is a major problem to get insight in the correctness of a given formal specification. The
algebraic specification method provides a relatively simple formalism with unambiguous semantics,
but constructing proofs of correctness remains as difficult as ever. We have the following opinion
on this matter:

(1) We consider algebraic specifications as the highest level of specification available, i.e. there is
no "super high level" specification against which the correctness of the algebraic specification
can be proved.

(2) Specifications can only be validated against informal requirements.

(3) A proof will be required that some program correctly implements a given algebraic
specification. This will involve verification of the translation steps between an algebraic
specification and its implementation.

4.1.4. Conclusions

Our conclusions can be summarized as follows:

(1) The specifications as presented in the body of this paper are in our opinion satisfactory. The
techniques developed for specifying various aspects of our toy programming language can also
be used in the specifications of other -- more realistic -- languages.

(2) Polymorphism was found to be convenient -- though not indispensable -- for shortening the
specifications and making them more readable. Conditional equations were essential for the
modeling of partial functions. They also tended to shorten several parts of the specification.
The primitive abbreviation scheme used for introducing infix operators was unsatisfactory.
The way in which we have to treat integer and string constants is also clumsy. The syntax
definition formalism of Annexe D4.Al has been developed to solve this problem but became
avail1J,ble only after this specification was finished.

- 11 - D4.A3

(3) The algebraic specification techniques have been of considerable heuristic value in understand
ing how the specification should (could) be modularized. However, the various modularization
techniques (such as import and parameteri.Zation) are not orthogonal. It will be important to
develop sound heuristics about which technique is to be used where.

(4) Structure diagrams (a high-level graphical notation described in section 2.4) are a considerable
aid in finding the proper modulari.Zation of a specification.

(5) In view of the size of the specification it was necessary to implement some simple tools for
consistency checking. We have implemented a checker for the syntax and type correctness of
specifications and generators for structure diagrams and cross reference tables. For the
development of larger specifications it will be necessary to have more sophisticated editing
facilities, such as a syntax-directed editor with incremental type checking. The question will

have to be addressed how user definable syntax can be handled by such an editor.

4.1.5. Perspectives for further research

During this exercise we have identified the following areas that need further clarification (Task ·
TI):

(1) Treatment of errors and exceptions.

(2) Multiple export signatures per module.

(3) More flexible export rules with which the number of exported names can be minimized.

(4) Parameteri.Zation of modules and formulation of constraints on parameters.

(5) More explicit specification of inherited parameters.

(6) Heuristic rules for proper modulari.Zation.

(7) Further development of structure diagrams.

(8) Techniques and tools for creating, modifying, maintaining and incremental checking of alge
braic specifications.

(9) Techniques and tools for transforming algebraic specifications into executable prototypes.

- 12 - D4.A3

4.2. Informal definition of the language PICO

The language PICO is extremely simple. It is essentially the language of while-programs. A
program consists of declarations followed by statements. All variables occurring in the statements
have to be declared to be either of type integer or of type string. Statements may be assignment
statements, if-statements and while-statements. Expressions may be a single identifier, integer addi
tion or string concatenation.

At the lexical level, PICO programs consist of a sequence of lexical items separated by layout.
Lexical items are keywords, identifiers, integer and string constants and punctuation marks. The
lexical grammar for PICO is:

<Lexical-stream>

<lexical-item>

<optional-layout>
<keyword-or-id>

<id>
<id-chars>
<id-char>

<integer-constant>
<digits>

<string-constant>
<string-tail>

<quote>

<any-char-but-quote>
<Literal>

<letter>

<digit>

<Layout>

::=<Lexical-item> <lexical-stream>
<lexical-item> •

::= <optional-layout>
<<keyword-or-id> I
<integer-constant>
<string-constant>
<literal» •

::=<layout> I <empty>.
::='begin' I 'end' I 'declare' I 'integer' I

'string' I 'if' I 'then' I 'else' I 'fi' I
'while' I 'do' I 'od' I
<id> •

··- <letter> <id-chars> .. - .
: := <id-char> <id-chars> I <empty> •
: := <letter> I <digit> .
::= <digit> <digits>
. ·- <digit> <digits> I <empty> .. - .
: := <quote> <string-tail> .
::= <any-char-but-quote> <string-tail> I <quote>

: := I fl I

::= <letter> I <digit> I <literal> I <Layout> .
::= I (I I I) I I •+• I ••• I I • I , ,

'I I' I I : I I ':=
: := •a• I 'b' IC I 'd' •e• 'f' 'g'

'h' I Ii I I j I 'k' • l' 'm' 'n'
•o• I 'p' 'q' I r' 's' It' 'u'
'v' I 'w' 'x' 'y' 'z'
'A' 'B' 'C' 'D' 'E' • F' 'G'
'H' • I I I JI 'K' 'L' 'N'
'O' 'P' 'Q' 'R' •s• 'T' 'U'
•v• •w• •x• •y·• 'Z' .

: := •o• '1 ' '2' '3' 141

'5' '6' '7' '8' '9' .
::= • I I <newline> I <tab> .

.

Here, <newline> and <tab> are assumed to be primitive notions corresponding to, respectively,
the newline character and the tabulation.

- 13 - D4.A3

The concrete syntax of PICO is:

<pico-program> ::=
<dee ls> : :=
<id-type-list> ::=
<type> ::=
<series> ::=
<stat> ::=
<assign> ::=
<if> ::=

<while> ::=
<exp> ::=

<plus> ::=
<cone> ::=
<empty> ::=

'begin' <decls> <series> 'end'
'declare' <id-type-list>';'
<id> ':' <type> <<empty> I ',' <id-type-list>>
'integer' I 'string' •
<empty> I <stat> <<empty> I ';' <series>>
<assign> I <if> I <while> •

<id> ':=' <exp>.
'if' <exp> 'then' <series>

'else' <series> 'fi'
'while' <exp> 'do' <series> 'od' •
<id> I <integer-constant> I <string-constant>
<plus> I <cone> I '(' <exp> ')' •
<exp> '+' <exp> •
<exp> 'II' <exp>.
11

The non-terminals <id>, <integer-constant> and <string-constant> are defined in the lexi
cal grammar given above and represent identifiers, integer constants and string constants respec
tively.

There are two overall static semantic constraints on programs:

1) All identifiers occurring in a program should have been declared and their use should be com
patible with their declaration. More precisely, this means that all <id>s occurring in an
<assign> or an <exp> should have been declared, i.e. should occur in some <id-type> in
the <id-type-list> of the <decls>-part of the PICO-program, and that the type of <id>s
should be compatible with the expressions in which they occur.

2) The <exp> occurring in an <if>- or <whi le>-statement should be of type integer.

A type can be given to <exp>s depending on their syntactic form:

• if an <exp> consists of an <id>, that <id> should have been declared and the type of the
<exp> is the same as the type of the <id> in its declaration;

• an <exp> consisting of an <integer-constant> has type integer;

• an <exp> consisting of a <string-constant> has type string;

• an <exp> consisting of a <plus> has type integer;

• an <exp> consisting of a <cone> has type string.

Given this notion of types of <exp>s, the static semantic constraints can be formulated in more
detail:

• The <exp>s occurring in a <plus> should be of type integer;

• The <exp>s occurring in a <cone> should be of type string;

• The <id> and <exp> that occur in an <assign> should have the same type.

• The <exp>s that occur in <if> and <while> should have type integer.

The dynamic semantics of PICO are straightforward except that

1) integer variables are initialized with value 0,

2) string variables are initialized with "" (empty string),

3) the <exp> in an <if> or <while> is assumed to be true if its value is unequal to 0.

- 14 - D4.A3

4.3. Elementary data types

As a prerequisite for the PICO specification some elementary data types are defined in this

chapter, specifications are given for:

• Booleans (4.3.1): truth values true and false with functions and, or, not and the

polymorphic function if.

• Integers (4.3.2): natural numbers with constants 0, 1 and 10 and functions succ (successor),

add (addition), mul (multiplication), eq (equality of integers), Less (less than), lesseq (less

than or equal), greater (greater than) and greatereq (greater than or equal).

• Characters (4.3.3): the alphabet consists of constants for letters, digits, and punctuation marks.

The functions eq (equality of characters), ord (ordinal number of character in the alphabet),

is-letter (is character a letter?), is-upper (is character an upper case letter?), is-lower

(is character a lower case letter?) and is-dig i t (is character a digit?) are defined on them.

• Sequences (4.3.4): linear lists of items. Sequences are parameterized with the data type of the

items. The only constant is null, the empty sequence. The following functions are defined: .

eq (equality of sequences), seq (combine item with sequence), cone (concatenate two

sequences) and conv-to-seq (convert an item to a sequence).

• Strings (4.3.5): sequences of characters, i.e. sequences with items bound by characters. The

only constant is null-string, the empty string. The following functions are defined: eq

(equality of strings), seq (combine character with a string), cone (concatenate two strings),

string (convert a character to a string) and str-to-int (convert a string to an integer).

• Tables (4.3.6): mapping from strings to entries, where entries are a parameter. The only con

stant is null-table, the empty table. The following functions are defined: table (add new

entry to table), lookup (searches for an entry in a table), delete (deletes an entry from a

table) and eq (equality of tables).

- 15 - D4.A3

4.3.1. Booleans

4.3.1.a. Gobal description

Booleans are truth values true and false with functions and, or, not and the polymorphic

function if (see section 2 for a discussion of polymorphism).

Apart from the if-function, this is the simplest initial algebra specification of the Booleans.

It contains only closed equations. Note that, for instance, the equation

not<not{x)) = x

is not derivable by equational logic from the axioms given, although it is valid in the initial model.

Adding this equation to Boo leans, does not affect the initial model, but only causes an increase in

the power of the specification in the sense that more of the (open) equations valid in the initial

model can be derived from the specification by equational logic. See Annexe D5.Al for a discussion

of this subject.

4.3.1.b. Structure diagram

4.3.1.c. Specification

module Booleans
begin

exports
begin

sorts BOOL
functions

true -> BOOL
false -> BOOL

end

or
and
not
if

variables
x, y -> *

equations

[1] or{ true, true)
[2] orCtrue, false>
[3] orCfalse, true)
[4] or< false, false)

[5] and{ true, true>
[6] and{ true, false)
[7] andCfalse, true)

BOOL # BOOL
BOOL # BOOL
BOOL
BOOL # * # *

= true
= true
= true
= false

= true
= false
= false

- 16 -

-> BOOL
-> BOOL
-> BOOL
-> *

D4.A3

[8]

[9]
[10]

[11]

[12]

andCfalse, false)

not(true)
not(false)

ifCtrue, x, y)

ifCfalse, x, y)

end Booleans

= false

= false
= true

= x
= y

- 17 - D4.A3

4.3.2. Integers

4.3.2.a. Global description

Integers as defined here are in fact natural numbers with constants 0, 1 and 10 and functions

succ (successor), add (addition), mul (multiplication), eq (equality), less (less than), lesseq (less

than or equal), greater (greater than) and greatereq (greater than or equal).

The equations for the constants 1 and 10 are not very satisfactory. Clearly, a mechanism is

needed for defining a shorthand notation for all integer constants. In section 4.3.5.a this subject is

discussed in connection with string constants.

4.3.2.b. Structure diagram

4.3.2.c. Specification

module Integers
begin

exports
begin

sorts

functions
0
1
10
succ
add
mul
eq
less
lesseq
greater

Integers

INTEGER

-> INTEGER
-> INTEGER
-> INTEGER

INTEGER -> INTEGER
INTEGER # INTEGER -> INTEGER
INTEGER # INTEGER -> INTEGER
INTEGER # INTEGER -> BOOL
INTEGER # INTEGER -> BOOL
INTEGER # INTEGER -> BOOL
INTEGER # INTEGER -> BOOL

greatereq: INTEGER # INTEGER -> BOOL
end

imports Booleans

variables
x, y, z

equations

[13] 1
[14] 10

-> INTEGER

= succCO>
= succCsuccCsuccCsuccCsucc(succC

succCsuccCsuccCsuccCO))))))))))

- 18 - D4.A3

[15] addCx, 0) = x
[16] addCx, succCy) > = succCaddCx, y))

[17] mulCx, 0) = 0
[18] . mulCx, succCy)) = addCx, mulCx, y))

[19] eqCx, x> = true
[20] eqCx, y) = eq(y, x>
[21] eqCsuccCx>, succ(y)) = eqCx, y)
·c22J eqCO, succ(x)) = false

[23] LessCx, 0) = false
[24] lessCO, succCx)) = true
[25] lessCsuccCx>, succ(y))= lessCx, y)

[26] lesseqCx, y) = orClessCx, y), eqCx, y))

[27] greaterCx, y) = notClesseqCx, y))

[28] greatereq(x, y) = or(greaterCx, y), eqCx, y))

end Integers

- 19 - D4.A3

4.3.3. Characters

4.3.3.a. Global description

The alphabet of characters consists of constants for letters, digits, and punctuation marks.

The functions eq (equality), ord (ordinal number of character in the alphabet), is-letter (is

character a letter?), is-upper (is character an upper case letter?), is-lower (is character a lower

case letter?) and is-digit (is character a digit?) are defined on them.

Two observations can be made about this specification. First, one may notice that the absence

of integer constants forces us two write equations of the form

ord(char-3) = succ(ord(char-2))

instead of the more natural form

ord(char-3) = 3.

Secondly, it is clear that some abbreviation mechanism is needed for specifications that contain

many constants as is the case here. At the expense of additional complexity of the specification, this

could have been achieved by defining characters in two stages: first, a basic alphabet is defined

which consists only of lower case letters and a hyphen; next, this basic alphabet is used to generate

all constants for the full alphabet. Names of constants are then only allowed to contain symbols

from the basic alphabet, i.e. char-upper-case-a instead of char-A.

4.3.3.b. Structure diagram

4.3.3.c. Specification

module Characters
begin

exports
begin

sorts CHAR
functions

eq
is-upper
is-lower
is-Letter
is-digit
ord

char-0

r--:=-1 II
~~

Integers

Characters

CHAR # CHAR
CHAR
CHAR
CHAR
CHAR
CHAR

- 20-

-> BOOL
-> BOOL
-> BOOL
-> BOOL
-> BOOL
-> INTEGER

-> CHAR

D4.A3

char-1 -> CHAR
char-2 -> CHAR
char-3 -> CHAR
char-4 -> CHAR
char-5 -> CHAR
char-6 -> CHAR
char-7 -> CHAR
char-8 -> CHAR
char-9 -> CHAR

char-ht -> CHAR tab --
char-nl -> CHAR new line
char-space -> CHAR space
char-quote -> CHAR ..
char-lpar -> CHAR (--
char-rpar -> CHAR) --
char-times -> CHAR * --
char-plus -> CHAR + --

char-comma -> CHAR ,
char-minus -> CHAR
char-point -> CHAR
char-slash -> CHAR I
char-bar -> CHAR I

char-equal -> CHAR =
char-colon -> CHAR
char-semi -> CHAR ;

char-A -> CHAR
char-a -> CHAR
char-C -> CHAR
char-D -> CHAR
char-E -> CHAR
char-F -> CHAR
char-G -> CHAR
char-H -> CHAR
char-I -> CHAR
char-J -> CHAR
char-K -> CHAR
char-L -> CHAR
char-M -> CHAR
char-N -> CHAR
char-0 -> CHAR
char-P -> CHAR
char-Q -> CHAR
char-R -> CHAR
char-S -> CHAR
char-T -> CHAR
char-U -> CHAR
char-V -> CHAR
char-W -> CHAR
char-X -> CHAR
char-Y -> CHAR
char-z -> CHAR

char-a -> CHAR

- 21 - D4.A3

end

char-b
char-c
char-d
char-e
char-f
char-g
char-h
char-i
char-j
char-k
char-l
char-m
char-n
char-o
char-p
char-q
char-r
char-s
char-t
char-u
char-v
char-w
char-x
char-y
char-z

imports Booleans, Integers

variables
c, c1, c2

equations

[29] ord(char-0)
[30] ord(char-1)
[31] ordCchar-2)
[32] ord(char-3)
[33] ordCchar-4)
[34] ord(char-5)
[35] ordCchar-6)
[36] ord(char-7)
[37] ordCchar-8)
[38] ord(char-9)

[39] ord(char-ht)
[40] ord(char-nl)
[41] ordCchar-space)
[42] ord(char-quote)
[43] ord(char-lpar)
[44] ord(char-rpar)
[45] ord(char-times)
[46] .ord(char-plus)
[47] ord(char-comma)

=
=
=
=
=
=
=
=
=
=

=
=
=
=
=
=
=
=
=

-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR
-> CHAR

-> CHAR

0
succ(ord(char-0))
succCordCchar-1))
succCord(char-2))
succ(ordCchar-3))
succ(ord(char-4))
succ(ord(char-5))
succ(ord(char-6))
succ(ordCchar-7))
succ(ord(char-8))

succ(ordCchar-9))
succ(ordCchar-ht))
succ(ordCchar-nl))
succCord(char-space))
succ(ord(char-quote))
succCordCchar-lpar))
succ(ord(char-rpar))
succ(ordCchar-times))
succ(ord<char-plus>>

- 22 - D4.A3

[48] ord(char-minus) = succCord(char-comma))
[49] ordCchar-point> = succ(ord(char-minus>>
[50] ordCchar-slash) = succCord(char-point))
[51] ordCchar-bar) = succCordCchar-slash>>
[52] ordCchar-equal> = succ(ordCchar-bar>>
[53] ordCchar-colon) = succ(ord(char-equal))
[54] ord(char-semi) = succ<ordCchar-colon))

[55] ord<char-A) = succ(ord(char-semi))
[56] ordCchar-B) = succ<ord(char-A))
[57] ord(char-C) = succ(ordCchar-B))
[58] ordCchar-D) = succ(ordCchar-C))
[59] ord(char-E) = succ(ordCchar-D>>
[60] ordCchar-F) = succ(ordCchar-E>>
[61] ordCchar-G> = succCordCchar-F))
[62] ordCchar-H) = succ(ordCchar-G))
[63] ordCchar-I) = succCordCchar-H))
[64] ordCchar-J) = succ(ord(char-I))
[65] ordCchar-K) = succCordCchar-J))
[66] ord(char-L) = succCord(char-K))
[67] ord< char-JO = succ(ordCchar-L))
[68] ordCchar-N) = succCord(char-M))
[69] ordCchar-0) = succCordCchar-N>>
[70] ordCchar-P) = succ<ordCchar-0))
[71] ordCchar-Q) = succCordCchar-P))
[72] ordCchar-R) = succ<ordCchar-Q))
[73] ordCchar-S) = succCordCchar-R))
[74] ordCchar-T) = succCordCchar-S))
[75] ordCchar-U) = succ(ordCchar-T))
[76] ord(char-V) = succCord(char-U))
[77] ord(char-W) = succCordCchar-V))
[78] ordCchar-X) = succCordCchar-W>>
[79] ordCchar-Y> = succCordCchar-X))
[80] ordCchar-Z> = succ(ordCchar-Y))

[81] ord(char-a> = succCordCchar-Z))
[82] ordCchar-b> = succCord(char-a))
[83] ord(char-c) = succCordCchar-b))
[84] ordCchar-d) = succ(ordCchar-c>>
[85] ordCchar-e> = succ(ordCchar-d))
[86] ordC char-f) = succ(ordCchar-e))
[87] ordCchar-g) = succCordCchar-f))
[88] ordCchar-h) = succCordCchar-g))
[89] ordCchar-i) = succCordCchar-h>>
[90] ordCchar-j) = succCordCchar-i))
[91] ordCchar-k) = succCordCchar-j))
[92] ordCchar-L> = succCordCchar-k))
[93] ordCchar-m) = succCordCchar-l))
[94] ordCchar-n) = succCordCchar-m))
[95] ordCchar-o) = succ(ordCchar-n>>
[96] ordCchar-p) = succCordCchar-o))
[97] ordCchar-q) = succCordCchar-p))
[98] ordCchar-r) = succCordCchar-q))
[99] ordCchar-s) = succ<ord(char-r))
[100] ordCchar-t> = succCordCchar-s>>

- 23 - D4A3

[101] ord(char-u) = succ(ord(char-t))
[102] ord(char-v> = succ<ord(char-u>>
[103] ord(char-w> = succ(ord(char-v>>
[104] ord(char-x> = succ(ord(char-w>>
[105] ord(char-y~ = succ(ord(char-x>>
[106] ord(char-z) = succ(ordCchar-y))

[107] eq(c1, c2> = eq(ord(c1>, ord(c2))
[108] is-upperCc) = and(greatereq(ord(c), ord(char-A>>,

lesseq(ord<c>, ord(char-z>>>
[109] is-lower(c) = and(greatereq(ord(c), ord(char-a>>,

lesseqCordCc>, ordCchar-z>>>
[110J is-digitCc) = andCgreatereq(ordCc>, ordCchar-0)),

lesseq(ordCc>, ordCchar-9)))
[111] is-letterCc> = orCis-upperCc>, is-lowerCc>>

end Characters

- 24 - D4.A3

4.3.4. Sequences

4.3.4.a. Global description

Sequences are linear lists of items; they are parameterized with the data type of the items.
The only constant is null, the empty sequence. The following functions are defined: eq (equality),
seq (combine item with sequence), cone (concatenate two sequences) and conv-to-seq (convert
an item to a sequence).

Note that the function eq in the above specification is polymorphic.

4.3.4.b. Structure diagram

4.3.4.c. Specification

module Sequences
begin

parameters Items
begin

sorts ITEM
functions

Sequences

eq ITEM # ITEM -> BOOL

end Items

exports
begin

sorts SEQ
functions

null
seq
cone
eq
conv-to-seq

end

imports Booleans

variables

"

s, s1, s2
it, i t1, i t2

equations

-> SEQ
-> ITEM

ITEM # SEQ
SEQ # SEQ
SEQ # SEQ
ITEM

- 25 -

-> SEQ
-> SEQ
-> SEQ
-> BOOL
-> SEQ

D4.A3

[112] concCs, null> = s
[113] concCnull, s> = s
[114] concCseqCit, s1 >, s2> = seqCit, concCs1, s2»

[115] eqCs, s> = true
[116] eqCs1, s2> = eqCs2, s1 >
[117] eqCnull, seqCit, s» = false
[118] eqCseqCit1,s1>, seq(it2,s2>> = andCeqCit1,it2>, eqCs1,s2»

[1191 conv-to-seqCit) = seq(it, null>

end Sequences

- 26 - D4.A3

4.3.5. Strings

4.3.5.a. Global description

Strings are sequences of characters, i.e. Sequences with Items bound to Characters. The

only constant is null-string, the empty string. The following functions are defined: eq (equal

ity), seq (combine character with a string), cone (concatenate two strings), string (cbnvert a

character to a string) and str-to-i nt (convert a string to an integer).

In the case of the data type string there is an urgent need for a short hand notation for string

constants. The PICO specification would become unreadable without it. We will therefore use an,

ad hoe, convenient notation for string constants to denote the terms generated by the module

Strings, e.g. the term

seqCchar-a, seqCchar-b, null-string))
will be written as

"ab".
The empty string, i.e. the constant null-string, will be written as '"'

4.3.5.b. Structure diagram

4.3.5.c. Specification

module Strings
begin

exports
begin

functions

Characters

Sequences

Strings

str-to-int STRING -> INTEGER
end

imperts Sequences

- 27 - D4.A3

variables

{ renamed by

}

[SEQ -> STRING,
null -> null-string,
conv-to-seq -> string]

Items bound by
[ITEM -> CHAR,

eq -> eq]
to Characters

c :-> CHAR
str :-> STRING

equations

[120] str-to-intCseqCc, str)) = ifCeqCstr, null-string),
ordCc>,
addCmulCordCc>, 10), str-to-intCstr)))

[121] str-to-intCnull-string) = 0

end Strings

- 28 - D4.A3

4.3.6. Tables

4.3.6.a. Global description

Tables are mappings from strings to entries, where entries are a parameter. The only constant

is null-table, the empty table. The following functions are defined: table (add new entry to

table), lookup (searches for an entry in a table), delete (deletes an entry from a table) and eq
(equality of tables).

Note that adding a pair (name, error-entry) to a table has the somewhat strange, but harm

less, effect that

lookupCname, tableCname, error-entry, tbl1)) =<true, error-entry>

and that

lookupCname, null-table> = <false, error-entry>.

Only in the first case name occurs in the table, but except for the true/false flag, the same value

is delivered.

4.3.6.b. Structure diagram

4.3.6.c. Specification

module Tables
begin

parameters Entries
begin

sorts ENTRY
functions

error-entry
eq

end Entries

Characters

Sequences

Strings

Tables

-> ENTRY
ENTRY # ENTRY -> BOOL

- 29 - D4.A3

exports
begin

sorts TABLE
functions

end

null-table
table
lookup
delete
eq

imports Booleans, Strings

variables
name, name1, name2
e, e1, e2
tbl, tbl1, tbl2
found

equations

-> TABLE
STRING # ENTRY # TABLE -> TABLE
STRING # TABLE -> CBOOL #

STRING # TABLE -> TABLE
TABLE # TABLE -> BOOL

-> STRING
-> ENTRY
-> TABLE
-> BOOL

[122] tableCname1, e1, tableCname2, e2, tbl))
= if(eqCname1,name2>,

tableCname1, e1, tbl>,

ENTRY)

tableCname2, e2, tableCname1, e1, tbl))) -

[123] lookupCname, null-table)
= <false, error-entry>

[124] lookupCname1, table(name2, e, tbl))
= ifCeqCname1, name2>,

<true, e>,
lookup(name1, tbl))

[125] deleteCname, null-table)
= null-table

[126] delete(name1, table(name2, e, tbl))

[127] eq(tbl1, tbl2)

= if(eqCname1, name2>,
deleteCname1, tbl),
table(name2, e, delete(name1, tbl)))

= eq(tbl2, tbl1)

[128] eqCnull-table, null-table)
= true

[129] eq(null-table, table(name, e, tbl))
= false

[130] eq(table(name, e1, tbl1), tbl2)
= if(and(found, eq(e1,e2>>,

eq(delete(name, tbl1>, delete(name, tbl2)),
false)

when <found, e2> = lookup(name, tbl2)

- 30 - D4.A3

end Tables

- 31 - D4.A3

4.4. Context-free parsing

In this chapter the problem will be addressed how a context-free grammar can be specified

within the algebraic framework and how the parsing process is to be described. A syntactic

definition of a language can globally be subdivided in definitions for:

lexical syntax:
which defines the tokens of the language, i.e., keywords, identifiers, punctuation marks, etc.

context-free syntax:
which defines the concrete form of programs, i.e. the sequences of tokens that constitute a

legal program.

abstract syntax:
which defines the abstract tree structure underlying the concrete (textual) form of programs.

All further operations on programs may be defined as operations on the abstract syntax tree

(see 4.5).

In this chapter, we will define a parser (Context-free-parser, see 4.4.4) which is parameter

ized with a lexical scanner and a grammar describing the concrete syntax and the construction rules

for abstract syntax trees. The parsing problem is decomposed as follows:

1) Lexical analysis is delegated to a Scanner (a parameter of Context-free-parser), which

transforms an input string into a sequence of lexical tokens (4.4.1). A token is a pair of

strings: the first describes the lexical category of the token, the second gives the string value of

the token, e.g. tokenC"identifier", "xyz") or tokenC"integer-constant", "35").

2) Abstract syntax trees are represented by the data type Atrees. Rules for the construction of

abstract syntax trees are part of the grammar for a given language. The essential function is

build, which specifies for each non-terminal how certain (named) components of the syntax

rule have to be combined into an abstract syntax tree (4.4.2}.

3) BNF patterns (4.4.3) are introduced to allow the description of arbitrary context-free gram

mars. The main functions and operators introduced are t (indicates a terminal in the gram

mar), n (indicates a non-terminal), + (sequential composition of components of a grammar

rule), and I (alternation). A grammar constructed by means of these operators can later be

bound to the parameter Syntax of Context-free-parser.

4) Actual parsing is described in Context-free-parser (4.4.4). This module has four parame

ters of which two are inherited from imported modules. The parameters Scanner and Syn

tax define the interface with the lexical scanner and with the concrete syntax and abstract

syntax. Context-free-parser imports BNF-patterns (inheriting the unbound parameter

Non-terminals) and Atree-envi ronments (inheriting the unbound parameter Operators).

Context-free-parser describes a parser which is driven by the BNF operators occurring in

Syntax. Currently, we require that Syntax satisfies the LL(l) restrictions.

- 32 - D4.A3

4.4.1. Interface with lexical scanner

4.4.1.a. Global description

Lexical analysis transforms an input string into a sequence of lexical tokens. A token is a pair
of strings: the first describes the lexical category of the token, the second gives the string value of
the token, e.g. token("identifier", "xyz") or token("integer-constant", "35"). In this
section, the data types Tokens and Token-sequences are defined.

4.4.1.b. Structure diagrams

Characters

Sequences

Strings

Tokens

Tokens

Sequences

Token-

sequences

- 33 - D4.A3

4.4.1.c. Specification

module Tokens
begin

exports
begin

end

sorts TOKEN
functions

token
eq

STRING # STRING
TOKEN # TOKEN

imports Booleans, Strings

variables
s1, s2, s3, s4 -> STRING

equations

-> TOKEN
-> BOOL

[131J eqCtokenCs1, s2), tokenCs3, s4)) = andCeq(s1, s3), eq(s2, s4))

end Tokens

module Token-sequences
begin

imports Sequences
{ renamed by

}

[SEQ -> TOKEN-SEQUENCE,
null -> null-token-sequence J

Items bound by
[ITEM -> TOKEN,

eq -> eq J
to Tokens

end Token-sequences

- 34 - D4.A3

4.4.2. Interface with. abstract syntax tree constructor

4.4.2.a. Global description

Abstract syntax trees are defined by the data type Atrees. Abstract syntax trees are essen
tially labelled trees whose nodes consist of an operator, indicating the construction operator of the
node, and zero or more abstract syntax trees as sons. Atrees has one parameter Operators,

which defines the interface to the set of operators for constructing abstract syntax trees. Conversion
functions are defined for the common cases that the leaves of the abstract syntax tree consist of
Strings, Integers or Tokens.

The construction process for abstract syntax trees as described in 4.4.4 uses the notion of
environments of abstract syntax trees, i.e. tables which map strings onto abstract syntax trees. This

notion is realized by the data type Atree-envi ronments. Note that the parameter Operators of
A trees is inherited by Atree-envi ronments.

4.4.2.b. Structure diagrams

~II
~ L::_J

Integers

Operators

Characters

Tokens

Sequences

Strings

A trees

- 35 - D4.A3

4.4.2.c. Specification

module Atrees
begin

parameters
Operators

begin
sorts OPERATOR

functions

A trees

Tables

Atree-envi ronments

eq: OPERATOR # OPERATOR -> BOOL
end Operators

exports
begin

sorts ATREE

functions
error-a tree
null-a tree
atree OPERATOR

- 36 -

-> ATREE
-> ATREE
-> ATREE

D4.A3

atree OPERATOR # ATREE -> ATREE
atree OPERATOR # ATREE # ATREE -> ATREE
atree OPERATOR # ATREE # ATREE # ATREE -> ATREE
string-atree STRING -> ATREE
integer-a tree INTEGER -> ATREE
lexical-atree TOKEN -> ATREE
eq ATREE # ATREE -> BOOL

end

imports Booleans, Integers, Strings, Tokens

variables
c, c1, c2 :-> OPERATOR
a, a1, a2, a3, a4 :-> ATREE
b1, b2, b3, b4 :-> ATREE
s, s1, s2 :-> STRING
n, n1, n2 :-> INTEGER
t, t1, t2 :-> TOKEN

equations

[132] eq(a1, a2) = eq(a2, a1>

[133] eq(null-atree, null-a tree) = true
[134] eq(null-atree, error-atree) = false
[135] eq(null-atree, atree(c)) = false
[136] eq(null-atree, atree(c, a» = false
[137] eq(null-atree, atree(c, a1, a2)) = false
[138] eq(null-atree, atree(c, a1, a2, a3)) = false
[139] eq(null-atree, stri ng-atree(s)) = false
[140] eq(null-atree, integer-atree(n)) = false
[141] eq(null-atree, lexical-atree(t)) = false

[142] eq(error-atree, error-a tree) = true
[143] eq(error-atree, atree(c)) = false
[144] eq(error-atree, atree(c, a» = false
[145] eq(error-atree, atree(c, a1, a2)) = false
[146] eq(error-atree, atree(c, a1, a2, a3)) = false
[147] eq(error-atree, string-atree(s)) = false
[148] eqCerror-atree, integer-atreeCn>> = false
[149] eqCerror-atree, lexical-atree(t)) = false

[150] eq(atreeCc1>, atreeCc2)) = eqCc1, c2>
[151] eqCatreeCc1), atreeCc2, a1)) = false
[152] eqCatreeCc1), atreeCc2, a1, a2)) = false
[153] eqCatreeCc1), atreeCc2, a1, a2, a3)) = false
[154] eqCatree(c), string-atree(s)) = false
[155] eqCatree(c), integer-atree(n)) = false
[156] eq(atreeCc>, lexical-atree(t)) = false

[157] eq(atree(c1, a1>, atree(c2, b1)) = and(eq(c1, c2>, eq(a1, b1))
[158] eq(atree(c1, a1>, atree<c2, b1, b2)) = false
[159] eq(atree(c1, a1>, atreeCc2, b1, b2, b3))

' = false
[160] eq(atree<c1, a1 >, stri ng-atree(s)) = false

- 37 - D4.A3

[161]
[162]

[163]

[164]

[165]
[166]

eqCatreeCc1, a1), integer-atree<n>>
eq(atree(c1, a1>, lexical-atree(t))

= false
= false

eq(atreeCc1, a1, a2>, atree(c2, b1, b2))
= and(eq(c1, c2),

and(eq(a1, b1>,
eq(a2, b2)))

eq(atree<c1, a1, a2>, atree<c2, b1, b2, b3))
= false

eq(atree<c1, a1, a2), string-atree<s>>= false
eq(atree<c1, a1, a2>, integer-atree(n))

= false
[167] eq(atree(c1, a1, a2>, lexical-atree(t))

[168]

[169]

[170]

[171]

[172]
[173]
[174]

[175]

[176]

[177]

= false

eqCatreeCc1, a1, a2, a3>, atree<c2, b1, b2, b3))

eq(atree(c1, a1, a2,

eq(atree(c1, a1, a2,

eq(atree(c1, a1, a2,

a3>,

a3>,

a3>,

= and(eq(c1, c2),
and(eq(a1, b1),

and(eq(a2, b2),
eq(a3, b3))))

string-atree<s>>
= false

integer-atree(n))
= false

lexical-atree(t))
= false

eq(string-atree(s1), string-atree(s2>>= eq(s1, s2>
eq(string-atree<s>, integer-atree(n)) = false
eq(string-atree<s>, lexical-atree<t>> = false

eq(integer-atree(n1), integer-atree<n2))
= eqCn1, n2)

eq(integer-atreeCn>, lexical-atree<t»= false

eq(lexical-atree(t1), lexical-atree<t2))
= eq(t1, t2)

end Atrees

module Atree-environments
begin

exports
begin

functions
A STRING # ATREE-ENV -> ATREE

end

imports Tables
,,,{ renamed by

[TABLE -> ATREE-ENV,

- 38 - D4.A3

null-table -> null-atree-envJ
Entries bound by

[ENTRY -> ATREE,
eq -> eq,
error-entry -> error-atreeJ

to Atrees
}

variables
s :-> STRING
e :-> ATREE-ENV
f :-> BOOL
v :-> ATREE

equations

[178] SA e

end Atree-environments

= v
when <f, v> = lookupCs, e)

- 39 - D4.A3

4.4.3. BNF patterns

4.4.3.a. Global description

BNF patterns are introduced to allow the description of arbitrary context-free grammars. The

main functions and operators introduced are t (indicates a terminal in the grammar), n (indicates a

non-terminal), lexi ea l (indicates a lexical item), + (sequential composition of components of a

grammar rule), and I (alternation). The functions t, n and lexical have two variants: the vari

ant with one argument indicates respectively a terminal, non-terminal or lexical item; the variant

with two arguments also associates a name with the syntaxctic notion. These names can later be

used to refer to the abstract syntax tree which is the result of parsing the given syntactic notion. An
actual grammar constructed with these operators can be bound to the parameter Syntax of

Context-free-parser. Examples of grammars using this notation are the lexical syntax (4.5.2.2)

and concrete syntax (4.5.3.2) of PICO.

4.4.3.b. Structure diagram

4.4.3.c. Specification

module BNF-patterns
begin

parameters
Non-terminals

begin
sorts NON-TERMINAL

end Non-terminals

exports
begin

sorts PATTERN

functions

Non-terminals

Characters

Sequences

Strings

BNF-patterns

- 40 - D4.A3

end

t
t
n

+ PATTERN # PATTERN
PATTERN # PATTERN
STRING
STRING # STRING
NON-TERMINAL

-> PATTERN
-> PATTERN
-> PATTERN
-> PATTERN
-> PATTERN

n NON-TERMINAL # STRING -> PATTERN
lexical STRING -> PATTERN
lexical STRING # STRING
null-pattern :

-> PATTERN
-> PATTERN

imports Strings

end BNF-patterns

- 41 - D4.A3

4.4.4. Context-free parser

4.4.4.a. Global description

Context-free-parser describes the actual parsing process. It has four parameters of which
two are inherited from imported modules. Parameter Scanner defines the interface with the lexical
scanner, i.e. the function scan which converts input strings to Token-sequences. Parameter Syn
tax defines the interface with the rules of the syntax (function rule) and with the rules for con
structing abstract syntax trees (function build). Context-free-parser imports BNF-patterns
(inheriting the unbound parameter Non-terminals, which defines the interface with the set of
non-terminals of the syntax) and Atree-envi ronments (inheriting the unbound parameter Opera
tors, which defines the interface with the set of construction operators for the abstract syntax).

Context-free-parser describes a parser for the language described by the syntax rules. The
equations in Context-free-parser describe for each type of BNF operator the conditions under
which (a part of) the input Token-sequence is acceptable. The BNF operator n (non-terminal)
uses the function rule from parameter Syntax to associate a pattern with a non-terminal. Accep
tance of a part of the input is expressed by constructing an Atree-envi ronment consisting of
named A trees. Acceptance of a non-terminal is expressed by the function build from Syntax
for that non-terminal . '

Currently, we require that the syntax satisfies the LL(l) restrictions. This simplifies the
definition of Context-free-parser considerably: in the definition given below only one abstract
syntax tree has to be constructed instead of a set of abstract syntax trees as would be necessary in
thegtse of an ambiguous input string if the grammar were not LL(l).

4.4.4.b. Structure diagram

Scanner Syntax

Characters

Sequences

Strings

Non-terminals

Tokens

BNF-patterns

Sequences

Token-

sequences

Context-free-parser

- 42 -

Operators

Operators

A trees

Tables

Atree

envi ronments

D4.A3

4.4.4.c. Specification

module Context-free-parser
begin

parameters
Scanner

begin
functions

scan STRING -> TOKEN-SEQUENCE
end Scanner,

Syntax
begin

functions

rule
build

end Syntax

.exports
begin

functions
parse

end

NON-TERMINAL
NON-TERMINAL # ATREE-ENV

NON-TERMINAL # STRING

-> PATTERN
-> ATREE

-> ATREE

imports Booleans, Strings, Token-sequences, BNF-patterns, Atree-environments

functions

parse-rule: NON-TERMINAL # TOKEN-SEQUENCE
-> (BOOL # ATREE # TOKEN-SEQUENCE)

parse-pat : PATTERN # TOKEN-SEQUENCE # ATREE-ENV

variables
x
p, p1, p2
env, env1, env2
atree, atree1, atree2
s, tail, tail1, tail2
id, val, str, lextype
r, r1, r2

equations

[179] parse<x, str)

-> (BOOL # ATREE-ENV # TOKEN-SEQUENCE)

-> NON-TERMINAL
-> PATTERN
-> ATREE-ENV
-> ATREE
-> TOKEN-SEQUENCE
-> STRING
-> BOOL

= if(and(r, eq(tail, null-token-sequence)),
a tree,
error-a tree)

when <r, atree, tail>= parse-ruleCx, scan(str))

[18GJ parse-ruleCx, s) = if(r, < true, buildCx, env>, tail >,

- 43 - D4.A3

<false, error-atree, tail>>
when <r, env, tail>=

parse-pat(rule<x>, s, null-atree-env>

[181] parse-pat(null-pattern, s, env)
= <true, env, s>

[182] parse-pat(p1 + p2, s, env1)
= if(r, parse-patCp2, tail, env2>,

<false, env2, tail >>
when <r, env2, tail>= parse-pat(p1, s, env1>

[183] parse-pat(p1 I p2, s, env>
= if(not(r1),

< r2, env2, tail2 >,
if(not(r2>,

< r1, env1, tail1 >,
< false, env, s >>>

when <r1, env1, tail1> = parse-pat(p1, s, env>,
<r2, env2, tail2> = parse-pat(p2, s, env)

[184] parse-pat(n(x), s, env>
= <r, env, tail>

when <r, atree, tail>= parse-rule(x, s>

[185] parse-pat<nCx,id), s, env>
= if(r, < true, tableCid, atree, env>, tail>,

< false, env, tail >>
when <r, atree, tail>= parse-ruleCx, s)

[186] parse-pat(t(str), seq(token(lextype, val), s), env)
= ifCand(eqCstr, val),

or(eq(lextype, "keyword"),
eq(lextype, "Literal"))),

< true, env, s>,
< false, env, s>)

[187] parse-pat(t(str), null-token-sequence, env>
= if(eq(str, null-string),

<true, env, null-token-sequence>,
<false, env, null-token-sequence>>

[188] parse-pat(t(str, id), seq(token(lextype, val), s>, env)
= if(and(eq(str, val),

or(eq(lextype, "keyword"),
eq(lextype, "literal">>>,

< true,
table(id,

lexical-atree(token(lextype,str>>,
env),

s>,
< false, env, s>)

[1891 parse-pat(t(str, id), null-token-sequence, env>
= if(eq(str, null-string),

- 44 - D4.A3

< true,
tableCid,

lexi ea l-atreeC token<" literal",'"'>>,
env>,

null-token-sequence>,
<false, env, null-token-sequence>)

[190] parse-patClexicalCstr>, seqCtokenClextype, val), s), env)
= ifCeqClextype, str>,

< true, env, s >,
< false, env, s> >

[191] parse-patClexicalCstr>, null-token-sequence, env>
= <false, env, null-token-sequence>

[192] parse-pat(lexicaLCstr,id), seq(tokenClextype, val>, s>, env)
= ifCeqClextype, str>,

< true,
table(id,

lexical-atreeCtokenClextype,val>>,
env),

s >,
< false, env, s>)

[193] parse-pat(lexical(str,id), null-token-sequence, env)
= <false, env, null-token-sequence>

end Context-free-parser

- 45 - D4.A3

4.5. Algebraic specification of PICO

After the preparations in the previous chapters, the following steps are still needed to obtain a

complete specification of PICO:

1) The notions of types and values in PICO programs have to be formalized (4.5.1).

2) The lexical syntax of PICO has to be specified. This is done by constructing a lexical scanner

on the basis of Context-free-parser as defined in the previous chapter (4.5.2).

3) The concrete syntax of PICO and the rules for the construction of abstract syntax trees have

to be specified. This is accomplished by a second application of Context-free-parser

(4.5.3).

4) The static semantics of PICO has to be specified, defining certain constraints on programs, i.e.

constraints that do not depend on input data. For instance, in a "legal" program all variables

should have been declared, all expressions should be type consistent, etc. This is described in

4.5.4.

5) Dynamic semantics of PICO has to be specified, defining the meaning of a program, i.e. the

relation between its input and output data (4.5.5).

6) All the above components of the PICO specification have to be combined into one PICO .rys

tem (4.5.6).

- 46 - D4.A3

4.5.1. Types and values

4.5.1.1. Types

4.5.1.1.a. Global description

The data type PICO-types defines the allowed types in PICO programs, i.e. integers and
strings. An additional error-type is introduced for describing typing errors.

4.5.1.1.b. Structure diagram

4.5.1.1.c. Specification

module PICO-types
begin

exports
begin

sorts PICO-TYPE

PICO-types

-> PICO-TYPE
-> PICO-TYPE
-> PICO-TYPE

functions
integer-type
string-type
error-type
eq PICO-TYPE # PICO-TYPE -> BOOL

end

imports Booleans

variables
x, y -> PICO-TYPE

equations

[194] eqCx, x> = true
[195] eq(x, y) = eqCy, x>
[196] eq(integer-type, string-type) = false
[197] eqCinteger-type, error-type) = false
[198] eqCstring-type, error-type) = false

end PICO-types

- 47 - D4.A3

4.5.1.2. Values

4.5.1.2.a. Global description

The data type PICO-values defines the allowed values as they may occur during the execu

tion of PICO programs, i.e. integers and strings. An additional error-value is introduced for

describing values that are the result of evaluating erroneous programs. Note that there is no integer

or string corresponding to error-value. Two conversion functions are defined for converting

Integers and Strings into PICO-values.

4.5.1.2.b. Structure diagram

C=-1 r-1
L::_J L::::J

4.5.1.2.c. Specification

module PICO-values
begin

exports
begin

sorts PICO-VALUE

Integers

PICO-values

INTEGER
STRING

Characters

Sequences

Strings

functions
error-value
pico-value
pico-value
eq PICO-VALUE # PICO-VALUE

end

imports Booleans, Integers, Strings

variables
x, y
int, int1, int2
str, str1, str2

equations

" [199J eqCx, x)

-> PICO-VALUE
-> INTEGER
-> STRING

- 48 -

= true

-> PICO-VALUE
-> PICO-VALUE
-> PICO-VALUE
-> BOOL

D4.A3

[200] eqCx, y) = eq(y, x>
[201] eq(pico-valueCint1), pico-valueCint2>> = eqCint1, int2)

[202] eqCpico-valueCint>, pico-valueCstr>> = false
[203] eqCpico-valueCint), error-value) = false
[204] eqCpico-valueCstr1>, pico-valueCstr2>> = eq(str1, str2>

[205] eqCpico-valueCstr), error-value> = false

end PICO-values

- 49 - D4.A3

4.5.2. Lexical syntax

The lexical syntax describes the lexical tokens that may occur in a PICO program. We con

struct a lexical scanner for PICO by means of Context-free-parser:

1) A character-level scanner is defined (4.5.2.1). This character-level scanner distinguishes char

acters according to their character types, i.e. letter, digit, layout, etc.

2) The lexical syntax for PICO and the construction rules forlexical tokens are defined (4.5.2.2).

This amounts to defining the syntactic form of identifiers, strings, etc. and to defining the

result for each case, e.g. parsing the non-termil!al integer-constant of the lexical syntax

will have as result token("integer-constant", x>, where x is the string representation of

the integer constant.

3) A lexical scanner for PICO is obtained by combining the results of the previous two steps with

Context-free-parser. (4.5.2.3).

- 50 - D4.A3

4.5.2.1. Lexical character scanner

4.5.2.1.a. Global description

PICO-lexi ea l-character-scanner defines the character-level scanner char-scan which
distinguishes characters according to their character types, i.e. letter, digit, layout and literal, and
converts the input string into a Token-sequnece.

4.5.2.1.b. Structure diagram

Characters

Characters Tokens

Sequences Sequences

Strings Token-

sequences

PICO-lexical-

4.5.2.1.c. Specification

module PICO-lexical-character-scanner
begin

exports
begin

functions

character-

scanner

char-scan STRING -> TOKEN-SEQUENCE
end

imports Booleans, Characters, Strings, Token-sequences

functions
char-scan1
is-layout

variables
" c

CHAR -> TOKEN
CHAR -> BOOL

-> CHAR

- 51 - D4.A3

str -> STRING

equations

[206] char-scan(seq(c, str)) = seqCchar-scan1Cc>, char-scanCstr))

[207] char-scan("") = null-token-sequence

[208] char-scan1Cc) = ifCis-layoutCc>, tokenC"layout", stringCc»,
if(is-letter<c>,tokenC"letter", string<c>>,
if(is-digit<c>,tokenC"digit", stringCc>>,

token("literal", string(c)))))

[209] is-layout(c) = or(eq(c, char-space>,

end PICO-lexical-character-scanner

or(eqCc, char-ht),
eqCc, char-nl>>>

- 52 - D4.A3

4.5.2.2. Lexical syntax and rules for token construction

4.5.2.2.a. Global description

The lexical syntax for PICO and the construction rules for lexical tokens are defined in this
section. This amounts to defining the syntactic form of identifiers, strings, etc. and to defining the
result for each case, e.g. parsing the non-terminal integer-constant of the lexical syntax will have
as result tokenC"integer-constant", x), where x is the string representation of the integer con
stant.

The following data types are defined here:

PICO-non-terminals-of-lexical-syntax: defines the sort LEX-NON-TERMINAL and all non
terminals of the lexical syntax.

PICO-lex-BNF-patterns: defines a version of BNF-patterns with parameter Non-terminals
bound to PICO-non-terminals-of-lexical-syntax.

PICO-atree-operators-of-lexical-syntax: defines the sort LEX-OPERATOR and the operators
for constructing abstract syntax trees for the lexical syntax.

PICO-lex-atree-envi ronments: defines a version of Atree-envi ronments with parameter
Operators bound to PICO-atree-operators-of-lexical-syntax.

PICO-lexical-syntax: defines the lexical syntax for PICO and the rules for token construction.
Essentially the grammar contains for each non-terminal pairs of equations for the functions
rule (i.e. the actual syntax rule) and build (i.e. the construction procedure for abstract syn
tax trees). Note that all syntax rules with names starting with non-empty do not appear in
the original grammar. These rules are artefacts made necessary by limitations in the descrip
tive power of BNF-patterns; most notably, it is impossible to associate different build func
tions with the alternatives in one rule.

4.5.2.2.b. Structure diagrams

PICO-non-

terminals-of

lexical-syntax

PICO-non-

terminals-of

lexi ea L-syntax

Non-terminals

BNF-patterns

PICO-lex-BNF-

patterns

- 53 - D4.A3

[;;]
PICO-atree

operators-of

lexical-syntax

[;;]
PICO-atree

operators-of

lexical-syntax

Operators

A trees

Tables

Atree

envi ronments

PICO-lex

atree

envi ronments

- 54 - D4.A3

PICO-non- PICO-a tree-

terminals-of- operators-of-

lexical-syntax lexical-syntax

Non-terminals Operators

BNF-patterns A tree-

environments

PICO-lex-BNF-

patterns PICO-Lex-

a tree-

environments

PICO-lexical-syntax

4.5.2.2.c. Specification

module PICO-non-terminals-of-lexical-syntax
begin

exports
begin

sorts LEX-NON-TERMINAL

functions
lexical-stream
non-empty-lexical-stream:
empty-lexical-stream
lexical-item
optional-layout
keyword-or-ident
ident
ident-chars
non-empty-ident-chars
ident-char
integer-const
digits
non-empty-digits
digit
string-const
string-tail
non-empty-string-tail
quote
any-char-but-quote
letter
layout
literal
concat
assign-or-colon

- 55 -

Tokens

Sequences

Token-

sequences

-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL
-> LEX-NON-TERMINAL

D4.A3

empty
end

end PICO-non-terminals-of-lexical-syntax

module PICO-lex-BNF-patterns
begin

imports BNF-patterns
{ renamed by

}

[PATTERN -> LEX-PATTERN,
t -> l t]

Non-terminals bound by
[NON-TERMINAL -> LEX-NON-TERMINAL]
to PICO-non-terminals-of-lexical-syntax

end PICO-lex-BNF-patterns

module PICO-atree-operators-of-lexical-syntax
begin

exports
begin

sorts LEX-OPERATOR

functions

-> LEX-NON-TERMINAL

op-Lex-item -> LEX-OPERATOR
op-Lex-stream: -> LEX-OPERATOR
eq LEX-OPERATOR # LEX-OPERATOR -> BOOL

end

imports Booleans

variables
o1, o2 :-> LEX-OPERATOR

equations

[210] eqCo1, o2)
[211] eq(op-lex-item, op-Lex-item)
[212] eq(op-lex-item, op-Lex-stream)
[213] eq(op-lex-stream, op-Lex-stream)

end PICO-atree-operators-of-lexical-syntax

module PICO-lex-atree-environments
begin

imports Atree-environments
{ renamed by

[ATREE -> LEX-ATREE,
atree -> lex-atree,

=
=
=
=

null-atree -> null-Lex-atree,
error-atree -> error-lex-atree,

- 56 -

eqCo2, o1>
true
false
true

D4.A3

)

lexical-atree -> lexical-lex-atree,
ATREE-ENV -> LEX-ATREE-ENV,
null-atree-env -> null-lex-atree-env,
ATREE -> LEX-ATREE,
error-atree -> error-lex-atree J

Operators bound by
[OPERATOR -> LEX-OPERATOR,

eq -> eq J
to PICO-atree-operators-of-lexical-syntax

end PICO-lex-atree-environments

module PICO-lexical-syntax
begin

exports
begin

functions
rule LEX-NON-TERMINAL -> LEX-PATTERN

end

build
Lex-stream
Lex-item

LEX-NON-TERMINAL # LEX-ATREE-ENV -> LEX-ATREE
TOKEN-SEQUENCE -> LEX-ATREE
TOKEN -> LEX-ATREE

imports PICO-lex-BNF-patterns, PICO-lex-atree-environments, Token-sequences

variables
env :-> LEX-ATREE-ENV
l, L 1, l2 :-> TOKEN-SEQUENCE
t, t1, t2 :-> TOKEN
s, s1, s2 :-> STRING
d, d1, d2 :-> STRING

equations

[214J ruleClexical-stream) = n(non-empty-lexical-stream,"ls")
nCempty-lexical-stream,"ls")

[215J buildClexical-stream, env)
= "ls" A env

[216J rule(non-empty-lexical-stream)
= nClexical-item,"t") + nClexical-stream,"l")

[217J buildCnon-empty-lexical-stream, env>
= lex-atree(op-lex-stream, lex-streamCseqCt, L)))

when lex-atree(op-lex-item, lex-item(t))
= "t"Aenv,

lex-atreeCop-lex-stream, lex-streamCL>>

[218J rule(empty-lexical-stream)
= nCempty)

[219J buildCempty-lexical-stream, env>

= "l" A env

= lex-atreeCop-lex-stream,
lex-streamCnull-token-sequence))

- 57 - D4.A3

[220J

[221J

[222J
[223J

[224J
[225J

rule(lexical-item) = n(optional-layout) +
(nCkeyword-or-ident,"i")

nCinteger-const,"i") I
nCstring-const,"i") I
nCliteral,"i")

)

buildClexical-item, env)
= "i" A env

ruleCoptional-layout> = nClayout) I nCempty)
buildCoptional-layout, env)

= null-lex-atree

ruleCkeyword-or-ident>= nCident,"i")
buildCkeyword-or-ident, env>

= if(orCeqCs, "begin"),
orCeqCs, "end"),
orCeq(s, "declare"),
orCeqCs, "integer">,
or(eqCs, "string"),
orCeq(s, "if"),
or(eqCs, "then"),
orCeqCs, "else">,
o rC eq Cs, "f i ">,
or(eqCs, "while"),
orCeq(s, "do"),

eq(s, "od")))))))))))),
lex-atree(op-lex-item,

lex-item(tokenC"keyword", s>>>,
lex-atreeCop-lex-item,

lex-itemCtokenC"id", s))))

when lexical-lex-atreeCtokenC"id",s)) = "i" A env

[226J ruleCident) = n(letter,"s1") + nCident-chars,"s2")

[227J buildCident, env> = lexical-lex-atreeCtokenC"id", concCs1, s2)))
when string-atreeCs1 > = "s1" A env,

string-atreeCs2) = "s2" A env

[228J ruleCident-chars) = nCnon-empty-ident-chars,"s") I nCempty,"s")

[229J buildCident-chars, env)
= "s" A env

[230J ruleCnon-empty-ident-chars>
= nCident-char,"s1") + nCident-chars,"s2")

[231J buildCnon-empty-ident-chars, env)

[232J
[233J

[234J
[235'3

ruleCident-char)

= string-atreeCconcCs1, s2))
when stri ng-atree(s1) = "s1" A env,

string-atree<s2) = "s2" A env
= n(letter,"x") I n(digit,"x")

buildCident-char, env>= "x" A env

ruleCinteger-const) = nCdigit,"d1") + nCdigits,"d2")

buildCinteger-const, env)
= lex-atree(op-lex-item,

- 58 - D4.A3

[236]
[237l

[238]
[239]

[240]
[241]

[242]
[243]

rule(digits)
buildCdigits, env>

lex-itemCtokenC"integer-constant",
concCd1, d2))))

when string-atree(d1) = "d1"Aenv,
string-atree(d2) = "d2" A env

= nCnon-empty-digits,"d") I nCempty,"d")
= "d" A env

ruleCnon-empty-digits>= nCdigit,"d1'') + nCdigits,"d2")
buildCnon-empty-digits, env)

= string-atreeCconcCd1, d2))
when string-atreeCd1> = "d1"Aenv,

string-atreeCd2) = "d2" A env

rule(string-const) = n(quote) + nCstring-tail,"s")
buildCstring-const, env)

= lex-atreeCop-lex-item,
lex-itemCtokenC"string-constant", s)))

when string-atreeCs) = "s" A env

ruleCstring-taiL> = nCnon-empty-string-tail,"s") I nCquote,"s")
buildCstring-tail, env)

= "s" A env
[2441 ruleCnon-empty-string-tail)

= n(any-char-but-quote,"s1") + n(string-tail,"s2")
[245] build(non-empty-string-tail, env)

[246]
[247]

rule(quote>
buildCquote, env)

= string-atreeCconcCs1, s2))
when string-atree(s1> = "s1" A env,

string-atreeCs2> = "s2" A env

= ltCstringCchar-quote))
= string-atreeC"")

[248] rule(any-char-but-quote)
= nCletter,"c")

nCdigit,"c") I
nCliteral,"c")
nClayout,"c")

[249] build(any-char-but-quote, env)
= "c" A env

[250] rule(letter) = lexicalC"letter","s")
[251] build(letter, env) = string-atree(s)

when lexical-lex-atreeCtokenC"letter",s))

[252] ruleCdigit) = lexicalC"digit","d")
[253] buildCdigit, env) = string-atree(d)

when lexical-lex-atreeCtokenC"digit", d))
[254] rule(layout) = lexicalC"layout","s")
[255] build(layout, env) = string-atree(s)

when lexical-lex-atreeCtoken("layout", s))
[256] rule(l i teraL> = ltC"C","s") I

lt(")","s")
ltC"+","s")
ltC"-","s")

- 59 -

= "s" A env

= "d" A env

= "s" A env

D4.A3

[257] buildCliteral, env>

[258] ruleCconcat)
[259] buildCconcat, env)

ltC";","s"> I
ltC",","s"> I
n(concat, "s'.')
n(assign-or-colon,"s")

= "s" " env

= ltC"I"> + ltC"I")
= string-atreeC"I I")

[260]
[261]

ruleCassign-or-colon) = ltC":") + CltC"=","s") I nCempty,"s"))
buildCassign-or-colon, env)

[262]
[263]

rule< empty)
buildCempty, env)

end PICO-lexical-syntax

= ifCeqCs, "=">,
string-atreeC":=">,
string-atreeC":"))

when string-atree(s) = "s"" env

= Lt("")
= string-atreeC"")

- 60 - D4.A3

4.5.2.3. Lexical scanner

4.5.2.3.a. Global description

In this section a lexical scanner for PICO is obtained by combining PICO-lexical
character-scanner, PICO-lexi ea l-syntax, PICO-non-termi na ls-of-lexi ea l-syntax and
PICO-atree-operators-of-lexical-syntax with Context-free-parser.

4.5.2.3.b. Structure diagram

Characters PJCO-lex-BNF- PICO-Lex-

patterns atree

envi ronments

Token-

sequences

Token-

PICO-lexical- sequences

character-

scanner

Operators

A tree-

env i ronaen ts

4.5.2.3.c. Specification

module PICO-lexical-scanner
begin

exports
begin

PICO-lexi cat-syntax

Syntax

Token-

sequences

Context-free-parser

PICO-lexi cat-scanner

PlCO-non

terminals-of

lexi ea l-syntax

Operators

Non-terminals

BNF-patterns

functions
Lex-scan STRING -> TOKEN-SEQUENCE

end

imports Context-free-parser
{ Scanner bound by

[scan -> char-scan J
to PICO-lexical-character-scanner

Syntax bound by
[rule -> rule,

build-> build J

- 61 -

PICO-atree

operators-of

lexical-syntax

D4.A3

}

to PICO-lexical-syntax
Non-terminals bound by

[NON-TERMINAL -> LEX-NON-TERMINAL J
to PICO-non-terminals-of-lexical-syntax

Operators bound by
[OPERATOR -> LEX-OPERATOR,

eq -> eq J
to PICO-atree-operators-of-lexical-syntax

variables
l :-> TOKEN-SEQUENCE
s :-> STRING

equations

[264J lex-scan(s) = l
when lex-atree(op-lex-stream, lex-stream(l)) =

parse(lexical-stream, s)
end PICO-lexical-scanner

- 62 - D4.A3

4.5.3. Abstract and concrete syntax

In this section we specify the abstract and concrete syntax for PICO; this will result in a
specification for a parser that transforms PICO-programs from their textual form into abstract syn
tax trees. We proceed as follows:

1) The abstract syntax for PICO is defined (4.5.3.1).

2) The concrete syntax and the rules for constructing abstract syntax trees are defined (4.5.3.2).

3) The lexical scanner (as defined in the previous section), the concrete syntax and the rules for
the construction of abstract syntax trees (both defined in this section) are combined with
Context-free-parser. In this way we obtain a parser that transforms PICO programs into
abstract syntax trees (4.5.3.3).

- 63 - D4.A3

4.5.3.1. Abstract syntax

4.5.3.1.a. Global description

In this section the abstract syntax for PICO is defined. This involves the following data types:

PICO-atree-operators: the operators for constructing abstract syntax trees.

PICO-atree-envi ronments: a version of Atree-envi ronments with parameter Operators
bound to PICO-atree-operators.

PICO-abstract-syntax: defines the actual abstract syntax. Essentially, this module defines
higher-level constructor functions (e.g. abs-if, abs-while, etc.) which allow a natural
expression of the PICO abstract syntax tree. These constructor functions are defined in terms
of Atrees.

4.5.3.1.b. Structure diagrams

'==1 II
~~

Integers

PICO-a tree-

operators

- 64 - D4.A3

B
Integers

Characters

Sequences

Strings

PICO-atree

operators

A trees

Tables

Atree

envi ronments

PICO-atree

envi ronments

B
PICO-types

PICO-abstract-syntax

- 65 -

PICO-atree

operators

Atree

envi ronments

PICO-atree

envi ronments

D4.A3

4.5.3.1.c. Specification

module PICO-atree-operators
begin

exports
begin

sorts PICO-OPERATOR

functions

op-pico-program
op-dee ls
op-empty-dee ls
op-series
op-empty-series
op-assign
op-if
op-while
op-plus
op-cone
op-var
op-integer-constant
op-string-constant
op-id
op-integer-type
op-string-type

-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR
-> PICO-OPERATOR

ord
eq

PICO-OPERATOR -> INTEGER

end

imports Booleans, Integers

variables

c1, c2 :-> PICO-OPERATOR

equations

[265]
[266]
[267]
[268]
[269]
[270]
[271]
[272]
[273]
[274]
[275]
[276]
[277]
[278]

ord(op-pico-program)
ord(op-decls)
ord(op-empty-decls)
ord(op-series)
ord(op-empty-series)
ord(op-assign)
ord(op-if)
ord(op-while)
ord(op-plus)
ord(op-conc)
ord(op-var)
ord(op-integer-constant)
ord(op-string-constant)
ord(op-id)

PICO-OPERATOR # PICO-OPERATOR -> BOOL

= 0
= succ(ord(op-pico-program))
= succ(ord(op-decls))
= succ(ord(op-empty-decls))
= succCord(op-series))
= succ(ordCop-empty-series))
= succ(ord(op-assign))
= succ(ord(op-if))
= succ(ord(op-while))
= succ(ord(op-plus))
= succ(ord(op-conc))
= succ(ord(op-var))
= succ(ord(op-integer-constant))
= succ(ord(op-string-constant))

- 66 - D4.A3

[279]
[280]

[281]

ord(op-integer-type)
ord(op-string-type)

eq(c1, c2)

end PICO-atree-operators

module PICO-atree-environments
begin

imports Atree-environments
{ renamed by

[ATREE -> PICO-ATREE,
atree -> pico-atree,

= succCord(op-id))
= succ(ord(op-integer-type))

= eq(ordCc1), ord(c2))

null-atree -> null-pico-atree,
error-atree -> error-pico-atree,
string-atree -> string-pico-atree,
integer-atree -> integer-pico-atree,
lexical-atree -> lexical-pico-atree,
ATREE-ENV -> PICO-ATREE-ENV,
null-atree-env -> null-pico-atree-envJ

Operators bound by

}

variables

[OPERATOR -> PICO-OPERATOR,
eq -> eqJ

to PICO-atree-operators

s :-> STRING
e :-> PICO-ATREE-ENV
f :-> BOOL
v :-> PICO-ATREE

equations

[282] SA e = v
when <f, v> = lookupCs, e)

end PICO-atree-environments

module PICO-abstract-syntax
begin

exports
begin

sorts PICO-PROGRAM, DECLS, EXP, ID, SERIES, STATEMENT

functions

abs-pico-program
abs-decls
abs-empty-decls
abs-series
abs-empty-series
abs-assign

DECLS # SERIES -> PICO-PROGRAM
ID # PICO-TYPE # DECLS -> DECLS

-> DECLS
STATEMENT # SERIES -> SERIES

-> SERIES
ID # EXP -> STATEMENT

- 67 - D4.A3

abs-if EXP # SERIES # SERIES -> STATEMENT
abs-while EXP # SERIES -> STATEMENT
abs-plus EXP # EXP -> EXP
abs-cone EXP # EXP -> EXP
abs-var ID -> EXP
abs-inte~er-constant INTEGER -> EXP
abs-string-constant STRING -> EXP
abs-id STRING -> ID

pico-program PICO-ATREE -> PICO-PROGRAM
dee ls PICO-ATREE -> DEC LS
series PICO-ATREE -> SERIES
statement PICO-ATREE -> STATEMENT
exp PICO-A TREE -> EXP
id PICO-ATREE -> ID

pico-type-atree PICO-TYPE -> PICO-A TREE

append-statement SERIES # STATEMENT -> SERIES
end

imports Integers, Strings, PICO-types, PICO-atree-environments

variables

ds
sr, sr1, sr2
St

t
x, x1, x2
str
n
stat, stat1,
ser

equations

:-> PICO-ATREE
:-> PICO-ATREE
:-> PICO-ATREE
:-> PICO-ATREE
:-> PICO-TYPE
:-> PICO-ATREE
:-> STRING
:-> INTEGER

stat2 :-> STATEMENT
:-> SERIES

[283] abs-pico-program(decls(ds), series(sr))
= pico-program(pico-atree(op-pico-program, ds, sr))

[284] abs-decls(id(i), t, decls(ds))
= decls(pico-atree(op-decls, i, pico-type-atree(t), ds))

[285] abs-empty-decls = decls(pico-atree(op-empty-decls))
[286] abs-series(statement(st), series(sr))

= series(pico-atree(op-series, st, sr))
[287] abs-empty-series = series(pico-atree(op-empty-series))
[288] abs-assign(id(i), exp(x))

= statement(pico-atree(op-assign, i, x))
[289] abs-if(exp(x), series(sr1), seriesCsr2))

= statementCpico-atree(op-if, x, sr1, sr2))
[290] abs-while(exp(x), series(sr))

= statement(pico-atree(op-while, x, sr))
[291] abs-plus(exp(x1), exp(x2))

= exp(pico-atree(op-plus, x1, x2))
[292] abs-conc(exp(x1), exp(x2))

- 68 - D4.A3

[293]
[294]

abs-va rC i dC i))
= exp(pico-atree(op-conc, x1, x2))
= expCpico-atree(op-var, i))

abs-integer-constant(n)
= expCpico-atreeCop-integer-constant,

integer-pico-atree(n)))
[295] abs-string-constant(str)

= expCpico-atreeCop-string-constant,
string-pico-atreeCstr)))

[296] abs-idCstr) = idCpico-atreeCop-id, string-pico-atreeCstr)))

[297] append-statementCabs-empty-series, stat>
= abs-seriesCstat, abs-empty-series>

[298] append-statement(abs-seriesCstat1, ser>, stat2)
= abs-seriesCstat1, append-statementCser, stat2>>

end PICO-abstract-syntax

- 69 - D4.A3

4.5.3.2. Concrete syntax and rules for abstract syntax tree construction

4.5.3.2.a. Global description

In this section the concrete syntax and the rules for abstract syntax tree construction for PICO
are defined. This involves the following modules:

PICO-non-terminals-of-concrete-synyax: defines the sort PICO-NON-TERMINAL and all non
terminals of the concrete syntax.

PICO-BNF-patterns: defines a version of BNF-patterns with parameter Non-terminals bound
to PICO-non-terminals-of-concrete-syntax.

PICO-concrete-syntax: defines the concrete syntax for PICO and the rules for abstract syntax
tree construction. Essentially the grammar contains for each non-terminal in the concrete syn
tax pairs of equations for the functions rule (i.e. the actual syntax rule) and build (i.e. the
construction procedure for abstract syntax trees).

4.5.3.2.b. Structure diagrams

PICO-non-

terminals-of-

concrete-

syntax

PICO-non

terminals-of-

concrete-

syntax

Non-terminals

BNF-patterns

PICO-BNF-

patterns

- 70 - D4.A3

PICO-non

termi na ls-of-

concrete-

syntax

BNF-patterns

PICO-BNF-

patterns

PICO-concrete-syntax

4.5.3.2.c. Specification

module PICO-non-terminals-of-concrete-syntax

begin
exports

begin

end

sorts PICO-NON-TERMINAL

functions
pico-program
dee ls
empty-dee ls
id-type-list
type
type-integer
type-string
series
empty-series
non-empty-series:
stat
assign
if
while
exp
plus
cone
var
id
integer-constant:
string-constant :

end PICO-non-terminals-of-concrete-syntax

- 71 -

PICO-a tree-

operators

Operators

Atree-

environments

PICO-a tree-

environments

-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL
-> PICO-NON-TERMINAL

D4.A3

module PICO-BNF-patterns
begin

imports BNF-patterns
{ renamed by

}

[PATTERN -> PICO-PATTERN,
t -> pt,
lexical -> plexical l

Non-terminals bound by
[NON-TERMINAL -> PICO-NON-TERMINAL]
to PICO-non-terminals-of-concrete-syntax

end PICO-BNF-patterns

module PICO-concrete-syntax
begin

exports
begin

functions
rule PICO-NON-TERMINAL -> PICO-PATTERN
build: PICO-NON-TERMINAL# PICO-ATREE-ENV -> PICO-ATREE

end

imports PICO-BNF-patterns, PICO-atree-environments

variables
env :-> PICO-ATREE-ENV
str :-> STRING

equations

[299] rule(pico-program)

[300l build(pico-program,

[301] ruleCdecls)
[302] buildCdecls, env)

[303] ruleCempty-decls)
[304] buildCempty-decls,

[305] ruleCid-type-list)

= pt("begin") + nCdecls,"d")
+ n(series,"s") + ptC"end")

env)
= pico-atreeCop-pico-program, "d" "env,

= ptC"declare") + nCid-type-list,"l") +
= "l" " env

= pt('"')
env>= pico-atree(op-empty-decls)

= nCid,"i") + pt(":") + n(type,"t") +
(n(empty-decls,"l") I

pt(",") + nCid-type-list,"l")
)

[306] buildCid-type-list, env)
= pico-atreeCop-decls,

"i"" env,
"t"" env,
"l"" env)

"s"" env>

pt(";")

[307] rule(type) = nCtype-integer,"t") I n(type-string,"t"),

- 72 - D4.A3

[308] buildCtype, env)

[309] rule(type-integer)
[310] build(type-integer,

[311] rule(type-string)
[312] buildCtype-string,

[313] ruleCseries)
[314] build(series, env)

= "t"" env

= pt("integer")
env)

env)

= pico-atree(op-integer-type)

= pt("string")

= pico-atree(op-string-type)

= n(empty-series,"s") I nCnon-empty-series,"s")

= "s"" env

[315] ruleCempty-series) = pt("")

[316] buildCempty-series, env)
= pico-atree(op-empty-series>

[317] rule(non-empty-series) = n(stat,''st") + C nCempty-series,"s")
ptC";") + n<series,"s")

)

[318] build(non-empty-series, env)

[319] rule(stat)
[320] buildCstat, env)

[321] rule(assign)
[322] buildCassign,env)

[323] rule(if)

[324] build(if, env)

[325] ruleCwhile)

[326] buildCwhile, env)

[327] rule(exp)

[328] buildCexp, env)

[329] rule(plus)
[330] buildCplus, env>

[331] ruleCconc)
[332] buildCconc, env)
[333] rule(var)

" [334] buildCvar, env)

= pico-atree(op-series, "st"" env, "s" "env)

= nCassign,"st") I nCif,"st") I nCwhile,"st")

= "st" " env

= n(id,"i") + pt(":="> + nCexp,"e")

= pico-atree(op-assign, "i"" env, "e"" env)

= pt("if") + nCexp,"e")
+ pt("then") + n(series,"s1")
+ pt("else") + n(series,"s2"> + pt("fi")

= pico-atreeCop-if,
"e"" env,
"s1" "env,
"s2" " env)

= pt("while") + n(exp,"e")
+ pt("do") + n(series,"s") + pt("od")

= pi co-atree(op-whi le, "e"" env, "s" "env)

= n(var,"e") I
nCinteger-constant,"e") I
n(string-constant,"e") I
n(plus,"e") I
n(conc,"e")
C pt("(") + n(exp,"e") + pt(")"))

= "e" "env

= n(exp,"e1") + pt("+") + nCexp,"e2")

= pico-atree(op-plus, "e1" "env, "e2"" env)

= nCexp,"e1") + pt("! I") + nCexp,"e2")

= pico-atree(op-conc, "e1"" env, "e2" "env)

= n(id,"i")
= pico-atreeCop-var, "i"" env)

- 73 - D4.A3

[335] ruleCid) = plexicalC"id","i")
[336] buildCid, env) = pico-atree(op-id, string-pico-atree(str))

when lexical-pico-atree(tokenC"id", str» = "i" A env

[337] ruleCinteger-constant) = plexicalC"integer-constant","i")

[338] buildCinteger-constant, env)
= pico-atree(op-integer-constant,

integer-pico-atree(str-to-int(str)))
when lexical-pico-atreeCtokenC"integer-constant", str))

= "i" A env

[339] ruleCstring-constant) = plexicalC"string-constant","s")
[340] buildCstring-constant, env)

end PICO-concrete-syntax

= pico-atree(op-string-constant, string-pico-atree(str))
when lexical-pico-atreeCtokenC"string-constant", str))

= "s" A env

- 74 - D4.A3

4.5.3.3. Parser

4.5.3.3.a. Global description

In this section a parser for PICO is obtained by combining PICO-lexical-scanner, PICO

concrete-syntax, PICO-non-terminals-of-concrete-syntax and PICO-atree-operators

of-concrete-syntax with Context-free-parser.

4.5.3.3.b. Structure diagram

Context-freo
pars•r

PICO- Lexical-scanner

4.5.3.3.c. Specification

module PICO-parser
begin

exports
begin

Sc•nner

Atreo
envtromumts

Context-free-parser

PICO-parser

P1CO-non

tera1nals-of-

functions
parse-and-construct STRING -> PICO-ATREE

end

imports Context-free-parser
{ Scanner bound by

[scan -> Lex-scan J
to PICO-lexical-scanner

Syntax bound by
[rule -> rule,

build-> build]
to PICO-concrete-syntax

Non-terminals bound by
[NON-TERMINAL -> PICO-NON-TERMINAL]
to PICO-non-terminals-of-concrete-syntax

Operators bound by
[OPERATOR -> PICO-OPERATOR,

- 75 -

I Inteam I I wina• I I PICO-types I
PlCO-atree

envfron11ents

D4.A3

eq -> eq J
to PICO-abstract-syntax

}

variables
str :-> STRING

equations

[341] parse-and-construct(str) = parse(pico-program, str)

end PICO-parser

- 76 - D4.A3

4.5.4. Static semantics

4.5.4.a. Global description

In this section we specify the checking of static semantic constraints on PICO programs as

defined informally in section 4.2. The principal function is check which operates on an abstract

PICO program and checks whether this program is in accordance with the static semantic con

straints. For each construct in the abstract syntax tree these constraints are expressed as transfor

mations on a type-environment. Type-environments are defined as a combination of Tables and

PICO-types. Checking the declaration section of a PICO program amounts to constructing a type

environment, and checking the statement section amounts to checking each statement for conformity

with a given type-environment.

4.5.4.b. Structure diagram

B B B [;]
PICO-types

4.5.4.c. Specification

module PICO-static-type-checker
begin

exports
begin

functions

PICO-atree-

environments

PICO-abstract-syntax

PICO-static-type-checker

PICO-types

check: PICO-PROGRAM -> BOOL

B
PICO-types

0
B
[;;]

Tables

check: DECLS # TYPE-ENV
check: SERIES # TYPE-ENV
check: STATEMENT # TYPE-ENV

-> (BOOL # TYPE-ENV)
-> CBOOL # TYPE-ENV)
-> (BOOL # TYPE-ENV)

end

imports Booleans, PICO-types, PICO-abstract-syntax,
Tables

{ renamed by
[TABLE -> TYPE-ENV,

- 77 - D4.A3

null-table -> null-type-env]
Entries bound by

[ENTRY -> PICO-TYPE,
eq -> eq,
error-entry -> error-type]

to PICO-types
}

functions
type-of-exp

variables
dee : -> DECLS

EXP # TYPE-ENV

ser, ser1, ser2 : -> SERIES
stat : -> STATEMENT
name : -> STRING
int -> INTEGER
typ : -> PICO-TYPE
str : -> STRING
x, x1, x2 : -> EXP
env, env1, env2 : -> TYPE-ENV
b, b1, b2, found : -> BOOL

equations

[342] checkCabs-pico-program(dec, ser))
= and(b1, b2)

-> PICO-TYPE

when <b1, env1> = check(dec, null-type-env>,
<b2, env2> = checkCser, env1)

[343] check(abs-decls(abs-id(name), typ, dee), env)
= check(dec, table(name, typ, env))

[344] check(abs-empty-decls, env)
= < true, env >

[345] check(abs-series(stat, ser), env)
= -< and(b1, b2>, env2 >

when <b1, env1> = check(stat, env),
<b2, env2> = check(ser, env1)

[346] check(abs-empty-series, env)
= < true, env >

[347] checkCabs-assign(abs-id(name), x), env)
= < and(found, eq(typ, type-of-exp(x, env))), env >

when <found, typ> = lookup(name, env)
[348] check(abs-if(x, ser1, ser2), env)

= < and(eq(type-of-expCx,env),integer-type), and<b1,b2)),
env2 >

when <b1, env1> = check<ser1, env>,
<b2, env2> = check(ser2, env1)

[349] check(abs-while<x, ser), env)
= < and(eq(type-of-exp(x, env>, integer-type), b),

env1 >
when <b, env1> = check<ser, env)

[350J type-of-exp(abs-plus<x1, x2>, env)
= ifCand(eq(type-of-expCx1, env>, integer-type),

- 78 - D4.A3

eq(type-of-exp(x2, env>, integer-type)),
integer-type,
error-type)

[351] type-of-exp(abs-conc(x1, x2), env>
= if(and(eq(type-of-exp(x1, env>, string-type),

eq(type-of-exp(x2, env>, string-type)),
string-type,
error-type)

[352] type-of-exp(abs-integer-constant(int), env>
= integer-type

[353] type-of-exp(abs-string-constant(str), env)
= string-type

[354] type-of-exp(abs-var(abs-id(name)), env)
= if(found, typ, error-type)

when <found, typ> = lookup(name, env>

end PICO-static-type-checker

- 79 - D4.A3

4.5.5. Dynamic semantics

4.5.5.a. Global description

In this section the evaluation of PICO programs is defined. To a first approximation, the

evaluation of programs is defined by defining the evaluation of each kind of construct that may

appear in the abstract syntax tree. Evaluation is expressed as transformation on value-envlljomnents

which describe the values of the variables in the program. V alue-enviromnents are defined as com

binations of Tables and PICO-values. However, since programs need not terminate this would

make the evaluation function a partial function. Therefore, we introduce the notion of a program

s ta te and define program evaluation as a function from program-states to program-states. This

transformation of program-states can be described by a total function. The cases in which programs

do not terminate are covered by conditional equations: conditions appearing in the when-parts of

equations which describe the evaluation of a certain language construct enforce the evaluation of

that construct to be only defined if the evaluation of all of its components terminates.

4.5.5.b. Structure diagram

I Booleans I [;;]
Integers

I Booleans I [;;]
[;]

PICO-values

e
[;;]
I Strings I

Tables

4.5.5.c. Specification

module PICO-evaluator
begin

expor,,ts

I Characters

-8-
Sequences

Strings

I [;;] [;;] [;;] [;] I PICO-types I
[;] PICO-a tree-

environments

PICO-values

PICO-abstract-syntax

PICO-evaluator

- 80 - D4.A3

begin
sorts PROGRAM-STATE

functions
program-state PICO-PROGRAM
program-state SERIES # VALUE-ENV
program-state STATEMENT # VALUE-ENV
program-state EXP # VALUE-ENV
program-state VALUE-ENV

eval PROGRAM-STATE
eval-decls DECLS # VALUE-ENV
eval-exp EXP # VALUE-ENV

end

-> PROGRAM-STATE
-> PROGRAM-STATE
-> PROGRAM-STATE
-> PROGRAM-STATE
-> PROGRAM-STATE

-> PROGRAM-STATE
-> VALUE-ENV
-> PICO-VALUE

imports Booleans, Integers, Strings, PICO-values, PICO-abstract-syntax,

Tables

variables

{ renamed by

}

[TABLE -> VALUE-ENV,
null-table -> null-value-envJ

Entries bound by
[ENTRY -> PICO-VALUE,

eq -> eq,
error-entry -> error-value]

to PICO-values

dee : -> DECLS
ser, ser1, ser2 : -> SERIES
stm : -> STATEMENT
name : -> STRING
int, int1, int2 -> INTEGER
val, val1, val2 : ->PICO-VALUE
str, str1, str2 : -> STRING
x, x1, x2 : -> EXP
env, env1, env2 :- -> VALUE-ENV
found : -> BOOL

equations

[355J evalCprogram-stateCabs-pico-programCdec, ser)))
= eval(program-state(ser, eval-declsCdec, null-value-env)))

[356] eval-decls(abs-declsCabs-idCname), integer-type, dee), env)

= eval-declsCdec, tableCname, pico-valueCO>, env))

[3571 eval-declsCabs-decls(abs-id(name), string-type, dee>, env>

= eval-declsCdec, tableCname, pico-value(null-string), env))

[358] eval-declsCabs-empty-decls, env>
= env

[359] evalCprogram-stateCabs-seriesCstm, ser), env))
= evalCprogram-stateCser, env1))

when eval(program-stateCstm, env)) = program-state(env1)

[360] evalCprogram-stateCabs-empty-series, env))

- 81 - D4.A3

= program-stateCenv>

[361J evalCprogram-stateCabs-assignCabs-idCname>, x>, env))
= program-stateCtableCname, eval-expCx, env>, env))

[362J evalCprogram-stateCabs-ifCx, ser1, ser2>, env>>
= ifCeqCeval-expCx,env>, pico-valueCO>>,

evalCprogram-stateCser2, env>>,
evalCprogram-stateCser1, env)))

[363J evalCprogram-stateCabs-whileCx, ser>, env>>
= ifCeqCeval-expCx,env), pico-valueCO>>,

program-stateCenv>,
evalCprogram-stateCappend-statementCser, abs-whileCx,ser)),

env)))

[364J eval-expCabs-plusCx1, x2>, env>
= pico-valueCaddCint1,int2>>

when pico-valueCint1) = eval-expCx1,env>,
pico-valueCint2) = eval-expCx2,env)

[365J eval-expCabs-concCx1, x2), env)
= pico-value(conc(str1, str2>>

when pico-valueCstr1) = eval-exp(x1, env),
pico-valueCstr2) = eval-expCx2, env>

[366J eval-expCabs-integer-constantCint), env>
= pico-valueCint)

[367J eval-expCabs-string-constantCstr>, env)
= pico-valueCstr)

[368J eval-expCabs-varCabs-idCname)), env>
= val

when <found, val> = lookupCname, env)

end PICO-evaluator

- 82 - D4.A3

4.5.6. The PICO system

4.5.6.a. Global description

In this final section we combine all previously defined modules to form a PICO system. The

top level function is run which converts, if this is possible, a string into a PICO-value. The follow

ing steps are necessary:

1)

2)

3)

The input string is parsed and converted into an abstract syntax tree using parse-and

construct as defined in PICO-parser.

The types of the, syntactically correct, program are checked using check as defined in PICO

stati c-type-checker.

The, statically correct, program is evaluated using eval as defined in PICO-evaluator. If

this evaluation terminates it produces a value-environment. The result of evaluating the origi

nal program is the final value of the variable output as extracted from this value

environment.

4.5.6.b. Structure diagram

Strings

PICO-non-

terainals-of-

concrete-
syntax

Hon-ter•ittala

Context-frea

parser

I Boolean• 11 lnteom 11 String• I ~•-•<O-_•_•<_••_• ~

Pito-abstnct

ayntax

PlCO-valuH

Tables

PICO-evaluator

4.5.6.c. Specification

module PICO-system
begin

exports
begin

functions

PICO-syat••

PIC0-11bstract

syntax

Opermtora

run: STRING -> PICO-VALUE
end

I Boolean• 11 PICO·tYPo•

TeblH

P1CO-at11tic

type-ch11ckor

PICO-abstract

syntax

imports Strings, PICO-parser, PICO-static-type-checker, PICO-evaluator
,,

- 83 - D4.A3

functions
run1: PICO-ATREE
run2: PICO-PROGRAM

-> PICO-VALUE
-> PICO-VALUE

variables
s
p

-> STRING
-> PICO-ATREE

abs-prog: -> PICO-PROGRAM
has-output: -> BOOL
v -> PICO-VALUE
env : -> VALUE-ENV

equations

[369]

[370]
[371]

[372]

run(s)

run1Cerror-pico-atree>
run1Cp)

run2Cabs-prog)

end PICO-system

= run1Cparse-and-construct<s>>

= error-value
= ifCcheckCpico-programCp)),

run2Cpico-program(p)),
error-value)

= ifChas-output, v, error-value)

when program-state(env> =
evalCprogram-stateCabs-prog>>,

<has-output, v> =
lookupC"output", env>

- 84 - D4.A3

I

5. LITERATURE

[AM85] America, P., "Definition of the programming language POOL-T", Report D 0091

85/09/09, Philips Research Laboratories, 9 September 1985.

[ABKR85]

[BHK84]

[BIE84]

[BK82]

[B081]

[BT79]

[CAR85]

[DE84]

[DM82]

[EM85]

[FGJM85]

[GAU80]

[GAU84]

[GAN82]

[GOR79]

[GP81]

[KLA83]

[LOE84]

[MG85]

America, P., De Bakker, J.W., Kok, J.N. & Rutten, J., "Operational semantics of a

parallel object-oriented language", Centre for Mathematics and Computer Science,

Report CS-R8515, 1985.

Bergstra, J.A., Heering, J. & Klop, J.W., "Object-oriented algebraic specifications:

proposal for a notation and 12 examples", Centre for Mathematics and Computer

Science, Report CS-R841 l, 1984.

Biebow, B., "Specification of a telephone subscriber connection unit using abstract

algebraic data types in the language PLUSS", Laboratoire de Marcoussi, Centre de

Recherche de la C.G.E., France, 1984.

Bergstra, J.A. & Klop, J.W., "Conditional rewrite rules", Centre for Mathematics

and Computer Science, Report IW198/82, 1982.

Bothe, K., "Restructuring a compiler by abstract data types - an experiment in

using abstractions for software modularization", Humboldt University Berlin, Sem

inar Bericht Nr. 40, 1981.

Bergstra, J.A. & Tucker, J.V., "Algebraic specifications of computable and semi

computable data structures", Centre for Mathematics and Computer Science,

Report IW 115179, 1979.

Cardelli, L., "Basic polymorphic typechecking", Polymorphism, January 1985.

Drosten, K. & Ehrich, H.-D., "Translating algebraic specifications to PROLOG

programs", Informatik Bericht Nr. 84-08, Technische Universitat Braunschweig,

1984.

Damas, L. & Milner, R., "Principal type-schemes for functional programs", 9th

Ann. ACM Syrop. on Principles of Programming Languages, ACM, 1982, 207-212.

Ehrig, H. & Mahr, B., Fundamentals of Algebraic Specification, Volume I, Equations

and Initial Semantics, Springer-Verlag, 1985.

Futatsugi, K., Goguen, J.A., Jouannaud, J.P. & Meseguer, J., "Principles of OBJ2",

Conf Record 12th Ann. ACM Symp. Principles of Programming Languages, ACM,

1985, pp. 52-66.

Gaudel, M.C.; "Specification of compilers as abstract data type representations",

in: Springer Lecture Notes in Computer Science, Volume 94, 1980.

Gaudel, M.C., "Introduction to PLUSS", draft document, Paris, 1984.

Ganzinger, H., "Denotational semantics for languages with modules", Proceedings

of IFIP Working Conference Formal Description of Programming Concepts, North

Holland, 1982.

Gordon, M.J.C., The Denotational Description of Programming Languages,

Springer-Verlag, 1979.

Goguen, J.A. & Parsaye-Ghomi, K., "Algebraic denotational semantics using

parameterized abstract modules", in: Diaz, J. & Ramos, I. (eds.), Formalizing Pro

gramming Concepts, Springer Lecture Notes in Computer Science, Volume 107,

1981, 292-309.

Klaeren, H.A., Algebraische Spezifikation: Eine Einfahrung, Springer-Verlag, 1983.

Loeckx, J., "Algorithmic specifications: a constructive method for abstract data

types", Report A84/03, Universitat des Saarlandes, 1984.

Meseguer, J. & Goguen, J.A., Initiality, induction, and computability, Preprint,

Computer Science Laboratory, SRI International, n.d.; to appear in: Nivat, M., &

Reynolds, J. (eds.), Algebraic Methods in Semantics (Cambridge University Press).

- 85 - D4.A3

[OH80]

[W83]

Oppen, D.C. & Huet, G., "Equations and rewrite rules", in: R. Book (ed.), Formal
Languages: Perspectives and Open Problems, Academic Press, 1980.

Wirsing, M., "A Specification Language", Dissertation, Miinich University, 1983.

- 86 - D4.A3

APPENDIX A.1. Dependency hierarchy of modules

Module

Atree-environments:

A trees:

BNF-patterns:

Boo leans:

Characters:

Context-free-parser:

Integers:

PICO-BNF-patterns:

imports the modules

Tables

Booleans, Integers, Strings, Tokens

Strings

Booleans, Integers

Atree-environments, BNF-patterns,
Strings, Token-sequences

Boo leans

BNF-patterns

Boo leans,

PICO-abstract-syntax: Integers, PICO-atree-envi ronments, PICO-types,
Strings

PICO-atree-environments: Atree-environments

PICO-atree-operators: Booleans, Integers

PICO-atree-operators-of-lexical-syntax:
Boo leans

PICO-concrete-syntax:

PICO-evaluator:

PICO-BNF-patterns, PICO-atree-environments

Booleans, Integers, PICO-abstract-syntax, PICO

values, Strings, Tables

PICO-lex-BNF-patterns: BNF-patterns

PICO-lex-atree-environments: Atree-environments

PICO-lexical-character-scanner: Booleans, Characters, Strings, Token-sequences

PICO-lexical-scanner: Context-free-parser

PICO-lexical-syntax: PICO-lex-BNF-patterns, PICO-lex-atree

environments, Token-sequences

PICO-non-terminals-of-concrete-syntax:

PICO-non-terminals-of-lexical-syntax:

PICO-parser:

PICO-static-type-checker:

PICO-system:

PICO-types:

PICO-values:

Sequences:

Strings:

Tables:

Token-sequences:

Tokens:

Context-free-parser

Boo leans,
Tables

PICO-abstract-syntax, PICO-types,

PICO-evaluator, PICO-parser, PICO-static-type

checker, Strings

Boo leans

Booleans, Integers, Strings

Boo leans

Sequences

Booleans, Strings

Sequences

Booleans, Strings

- 87 - D4.A3

APPENDIX A.2. Declaration of sorts per module

Module declares the sorts

Atree-environments:

A trees:

BNF-patterns:

Boo leans:

Characters:

Context-free-parser:

Integers:

PICO-BNF-patterns:

ATREE, OPERATOR

NON-TERMINAL, PATTERN

BOOL

CHAR

INTEGER

PICO-abstract-syntax: DECLS, EXP, ID, PICO-PROGRAM, SERIES, STATEMENT

PICO-atree-environments:

PI CO-a tree-operators: PICO-OPERATOR

PICO-atree-operators-of-lexical-syntax:
LEX-OPERATOR

PICO-concrete-syntax:

PICO-evaluator: PROGRAM-STATE

PICO-lex-BNF-patterns:

PICO-lex-atree-environments:

PICO-lexical-character-scanner:

PICO-lexical-scanner:

PICO-lexical-syntax:

PICO-non-terminals-of-concrete-syntax:
PICO-NON-TERMINAL

PICO-non-terminals-of-lexical-syntax:

PICO-parser:

PICO-static-type-checker:

PICO-system:

PICO-types:

PICO-values:

Sequences:

Strings:

Tables:

Token-sequences:

Tokens:

LEX-NON-TERMINAL

PICO-TYPE

PICO-VALUE

ITEM, SEQ

ENTRY, TABLE

TOKEN

- 88 - D4.A3

APPENDIX A.3. Declaration of functions per module

Module

Atree-environments:

A trees:

BNF-patterns:

Boo leans:

Characters:

Context-free-parser:

Integers:

PICO-BNF-patterns:

PICO-abstract-syntax:

PICO-atree-environments:

declares the functions

a tree, eq, error-a tree, i nteger-atree, lexi ea l
atree, null-atree, string-atree

+,_I_, lexical, n, null-pattern, t

and, false, if, not, or, true

char-0, char-1, char-2, char-3,
char-6, char-7, char-8, char-9,
char-C, char-D, char-E, char-F,
char-I, char-J, char-K, char-L,
char-0, char-P, char-Q, char-R,
char-U, char-V, char-W, char-X,

char-4,
char-A,
char-G,
char-M,
char-S,
char-Y,

char-5,
char-B,
char-H,
char-N,
char-T,
char-Z,

char-a, char-b, char-bar, char-c, char-colon,
char-comma, char-d, char-e, char-equal, char-f,
char-g, char-h, char-ht, char-i, char-j, char-k,

char-l, char-lpar, char-m, char-minus, char-n,
char-nl, char-o, char-p, char-plus, char-point,
char-q, char-quote, char-r, char-rpar, char-s,
char-semi, char-slash, char-space, char-t, char
times, char-u, char-v, char-w, char-x, char-y,
char-z, eq, is-digit, is-letter, is-lower, is
upper, ord

build, parse, parse-pat, parse-rule, rule, scan

0, 1, 10, add, eq, greater, greatereq, less, lesseq,

mul, succ

abs-assign, abs-cone, abs-decls, abs-empty-decls,
abs-empty-series, abs-id, abs-if, abs-integer
constant, abs-pico-program, abs-plus, abs-series,
abs-string-constant, abs-var, abs-while, append

statement, decls, exp, id, pico-program, pico

type-atree, series, statement

PICO-atree-operators: eq, op-assign, op-cone, op-decls, op-empty-decls,
op-empty-series, op-id, op-if, op-integer
constant, op-integer-type, op-pico-program, op
plus, op-series, op-string-constant, op-string
type, op-var, op-while, ord

PICO-atree-operators-of-lexical-syntax:
eq, op-Lex-item, op-Lex-stream

PICO-concrete-syntax: build, rule

PICO-evaluator: eval, eval-decls, eval-exp, program-state

PICO-lex-BNF-patterns:

PICO-lex-atree-environments:
~

PICO-lexical-character-scanner: char-scan, char-scan1, is-layout

- 89 - D4.A3

PICO-lexical-scanner: Lex-scan

PICO-lexical-syntax: build, lex-i tem, Lex-stream, rule

PICO-non-terminals-of-concrete-syntax:
assign, cone, decls, empty-decls, empty-series,
exp, id, id-type-list, if, integer-constant, non
empty-seri es, pi co-program, plus, series, stat,
string-constant, type, type-integer, type-string,
var, while

PICO-non-terminals-of-lexical-syntax:

PICO-parser:

PICO-static-type-checker:

PICO-system:

PICO-types:

PICO-values:

Sequences:

Strings:

Tables:

Token-sequences:

Tokens:

any-char-but-quot~ assign-or-co lo~ conca~

digit, digits, empty, empty-lexical-stream, ident,
ident-char, ident-chars, integer-const, keyword
or-ident, layout, letter, lexical-item, lexical
stream, literal, non-ampty-digi ts, non-empty-
ident-chars, non-empty-lexical-stream, non-
empty-string-tai l, optional-layout, quote,
string-const, string-tail

parse-and-construct

check, type-of-exp

run, run1, run2

e~ error-typ~ integer-typ~ string-type

eq, error-va Lue, pi co-va Lue

cone, conv-to-seq, eq, null, seq

str-to-int

delete, eq, error-entry, lookup, null-table, table

eq, token

- 90 - D4.A3

APPENDIX A.4. Modules in which each function is declared

Function

O:
1:

10:

+ :
A.

I :

abs-assign:

abs-cone:

abs-dee ls:

abs-empty-dee ls:

abs-empty-series:

abs-id:

abs-if:

abs-integer-constant:

abs-pico-program:

abs-plus:

abs-series:

abs-string-constant:

abs-var:

abs-while:

add:

and:

any-char-but-quote:

append-statement:

assign:

assign-or-colon:

a tree:

build:

char-0:

char-1:

char-2:

char-3:

char-4:

char-5:

char-6:

char-7:

char-8:

is declared in module

Integers

Integers

Integers

BNF-patterns

Atree-environments

BNF-patterns

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

PICO-abstract-syntax

Integers

Boo leans

PICO-non-terminals-of-lexical-syntax

PICO-abstract-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

A trees

Context-free-parser, PICO-concrete-syntax, PICO
lexi ca l-syntax

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

- 91 - D4.A3

char-9: Characters

char-A: Characters

char-8: Characters

char-C: Characters

char-D: Characters

char-E: Characters

char-F: Characters

char-G: Characters

char-H: Characters

char-I: Characters

char-J: Characters

char-K: Characters

char-L: Characters

char-M: Characters

char-N: Characters

char-0: Characters

char-P: Characters

char-Q: Characters

char-R: Characters

char-S: Characters

char-T: Characters

char-U: Characters

char-V: Characters

char-W: Characters

char-x: Characters

char-Y: Characters

char-Z: Characters

char-a: Characters

char-b: Characters

char-bar: Characters

char-c: Characters

char-colon: Characters

char-comma: Characters

char-d: Characters

char-e: Characters

char-equal: Characters

char-f: Characters

char-g: Characters

char-h: Characters

char-ht: Characters

char-i: Characters

char-j: ffe Characters

- 92 - D4.A3

char-k:

char-l:

char-lpar:

char-m:

char-minus:

char-n:

char-nl:

char-o:

char-p:

char-plus:

char-point:

char-q:

char-quote:

char-r:

char-rpar:

char-s:

char-scan:

char-scan1:

char-semi:

char-slash:

char-space:

char-t:

char-times:

char-u:

char-v:

char-w:

char-x:

char-y:

char-z:

check:

cone:

concat:

conv-to-seq:

dee ls:

delete:

digit:

digits:

empty:

empty-decls:

empty-lexical-stream:

empty-series:

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

PICO-lexical-character-scanner

PICO-lexical-character-scanner

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

Characters

PICO-static-type-checker

PICO-non-terminals-of-concrete-syntax, Sequences

PICO-non-terminals-of-lexical-syntax

Sequences

PICO-abstract-syntax,
concrete-syntax

PICO-non-terminals-of-

Tables

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

- 93 - D4.A3

eq:

error-atree:

error-entry:

error-type:

error-value:

eval:

eval-decls:

eval-exp:

exp:

false:

greater:

greatereq:

id:

id-type-list:

ident:

ident-char:

ident-chars:

if:

integer-atree:

integer-const:

integer-constant:

integer-type:

is-digit:

is-layout:

is-letter:

is-lower:

is-upper:

keyword-or-ident:

layout:

less:

lesseq:

letter:

lex-i tern:

Lex-scan:

Lex-stream:

lexical:

lexical-a tree:

lexi ca!-i tern:

A trees, Characters, Integers, PICO-atree
operators, PICO-atree-operators-of-lexical
syntax, PICO-types, PICO-values, Sequences,
Tables, Tokens

A trees

Tables

PICO-types

PICO-values

PICO-evaluator

PICO-evaluator

PICO-evaluator

PICO-abstract-syntax, PICO-non-terminals-of-
concrete-syntax

Boo leans

Integers

Integers

PICO-abstract-syntax,
concrete-syntax

PICO-non-terminals-of-

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

Booleans, PICO-non-terminals-of-concrete-syntax

A trees

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

PICO-types

Characters

PICO-lexical-character-scanner

Characters

Characters

Characters

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

Integers

Integers

PICO-non-terminals-of-lexical-syntax

PICO-lexical-syntax

PICO-lexical-scanner

PICO-lexical-syntax

Bl'ff-patterns

A trees

PICO-non-terminals-of-lexical-syntax

- 94 - D4.A3

lexical-stream:

literal:

lookup:

mul:

n:
non-empty-digits:

non-empty-ident-chars:

non-empty-lexical-stream:

non-empty-series:

non-empty-string-tail:

not:

null:

null-a tree:

null-pattern:

null-table:

op-assign:

op-cone:

op-dee ls:

op-empty-dee ls:

op-empty-series:

op-id:

op-if:

op-integer-constant:

op-integer-type:

op-Lex-item:

op-Lex-stream:

op-pico-program:

op-plus:

op-series:

op-string-constant:

op-string-type:

op-var:

op-while:

optional-layout:

or:

ord:

parse:

parse-and-construct:

parse-pat:

parse-rule:

pico-program:

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-Lexical-syntax

Tables

Integers

BNF-patterns

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

Boo leans

Sequences

A trees

BNF-patterns

Tables

PICO-atree-operators

PI CO-a tree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-a tree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators-of-lexical-syntax

PICO-atree-operators-of-lexical-syntax

PICO-a tree-operators

PICO-atree-operators

PICO-atree-operators

PICO-atree-operators

PICO-a tree-operators

PICO-a tree-operators

PICO-atree-operators

PICO-non-terminals-of-lexical-syntax

Boo leans

Characters, PICO-atree-operators

Context-free-parser

PICO-parser

Context-free-parser

Context-free-parser

PICO-abstract-syntax, PICO-non-terminals-of-

concrete-syntax

- 95 - D4.A3

pico-type-atree:

pico-value:

plus:

program-state:

quote:

rule:

run:

run1:

run2:

scan:

seq:

series:

stat:

statement:

str-to-int:

stri ng-atree:

stri ng-const:

string-constant:

string-tail:

string-type:

succ:

t:

table:

token:

true:

type:

type-integer:

type-of-exp:

type-string:

var:

while:

PICO-abstract-syntax

PICO-values

PICO-non-terminals-of-concrete-syntax

PICO-evaluator

PICO-non-terminals-of-lexical-syntax

Context-free-parser, PICO-concrete-syntax, PICO
lexi cal-syntax

PICO-system

PICO-system

PICO-system

Context-free-parser

Sequences

PICO-abstract-syntax, PICO-non-terminals-of-
concrete-syntax

PICO-non-terminals-of-concrete-syntax

PICO-abstract-syntax

Strings

A trees

PICO-non-terminals-of-lexical-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-lexical-syntax

PICO-types

Integers

BNF-patterns

Tables

Tokens

Boo leans

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-concrete-syntax

PICO-static-type-checker

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-concrete-syntax

PICO-non-terminals-of-concrete-syntax

. 96. D4.A3

D5 - GLOBAL OUTLINE OF AN ENVIRONMENT GENERATION SYSTEM

1. INTRODUCTION 1

2. FUNCTIONAL ASPECTS OF THE ENVIRONMENTS GENERATED BY THE SYSTEM 1

2.1. Editing tools 2

2.2. Checking tools 3

2.3. Analysis tools 3

2.4. Dynamic semantics tools 3

2.5. Filing tools 3

2.6. Functions available in the generated environments 3

3. DEFINITION OF A LANGUAGE IN LDF 5

4. FUNCTIONAL ASPECTS OF THE ENVIRONMENT GENERATION SYSTEM 6

4.1. Management of language definitions 6

4.2. Generation of environments 6

5. ORGANISATION OF THE ENVIRONMENT GENERATION SYSTEM 6

5.1. Management of language definitions 6

5.2. Generation of environments 6

6. THE ROLE OF PARTIAL EVALUATION IN THE ENVIRONMENT GENERATION SYSTEM 9

7. LITERATURE 9

D5.A1 - PARTIAL EVALUATION AND ~-COMPLETENESS OF ALGEBRAIC

SPECIFICATIONS

1. INTRODUCTION 1

1.1. Partial evaluation 1

1.2. Algebraic specification, equational logic, and initial algebra semantics - some basic facts 2

1.3. w-completeness of algebraic specifications 3

l .4. Related work 4

2. THE w-COMPLETENESS PROPERTY 4

3. EXAMPLES 6

3.1. The natural numbers with addition and multiplication 6

3.2. Boolean algebra 8

3.3. The conditional function 10

3.4. Combinatory logic 13

4. TOWARDS AUTOMATIC (PARTIAL) w-ENRICHMENT 14
"

REFERENCES 15

D5

GIPE: CEC 348/A/TS/1

version 6 January 1986

Global Outline of an Environment Generation System

Deliverable D5 of Task T5 - Second Review -

J. Heering (CW!)
P. Klint (CW/)

B. La.ng (JNRIA)
A. Verhoog (BSO)

An outline is given of an environment generator in which the results of Esprit Project

348 can be incorporated. The functional aspects of the generated environments, and the

functional aspects and organization of the environment generation system itself are dis

cussed.

]. INTRODUCTION

This note gives a rough outline of an "Environment Generator" in which the results of

ESPRIT project 348 could eventually be incorporated. The envisaged system is based on language

definitions. These are sufficiently detailed to enable the system to derive programming environments

from them permitting editing, analysis and execution of programs in the corresponding languages.

The word "language" should here be understood as meaning a language (for instance, for

expressing programs, specifications or database queries), characterized by an abstract syntax, i.e. a

standard syntactical representation of its programs by means of labelled trees. Each language may

possess a semantics and a variety of properties or representations that have to be specified to the

generator.

New languages can be defined by means of a Language Definition Formalism (LOF). See

deliverable 04 for a description of this formalism. A language definition in LOF should at least

define the abstract syntax of the language. Other aspects such as concrete syntax, rules for pretty

printing, static (type) constraints and dynamic semantics may be specified according to need or

feasibility.

2. FUNCTIONAL ASPECTS OF THE ENVIRONMENTS GENERATED BY THE SYSTEM

The functions of the environment generated for a language L depend on the nature, i.e.

semantic intent, of L. L may be an executable programming language or a language for defining

abstract data types, but it may also be a specification language with a purpose other than program

ming (e.g. specification of a production chain in a factory, or a VLSI circuit) or with a purely

descriptive purpose (e.g. a language for describing chemical formulae).

We should therefore not set a limit to the kind of facilities that should ultimately be made

available in a generated environment. However, within the current aims of the project, we shall

confine O.Jlrselves to the study of languages related to programming.

The backbone of the system is a collection of user-defined languages L 1, ••• ,Ln· For each L;

- 1 - 05

there exists an environment generated by the system for manipulating a (dynamically changing) col

lection P4 of programs in L;.

In the sequel, we will use the generic name program to mean a complete or incomplete Lr

program, i.e. whose text can potentially be derived from the start symbol of the L;-grammar, but

with some parts not yet filled in. We will reserve the word subprogramO) to mean a part of a pro

gram, i.e. whose text can potentially be derived from another nonterminal than the start symbol of

the L;-grammar. The notion of "data", i.e. values of certain types created and used during program

execution, is covered by this definition of subprogram. With both programs and subprograms cer

tain system-related information will be associated such as, for instance

The name under which this program will be stored.

The language L; in which it is written.

The L;-program itself (constructed via edit operations).

Cursor(s) pointing to subprogram(s) of the L;-program (used and set by all functions for

searching and editing).

Static semantic function check, a function derived from the definition of L; that incrementally

checks the static semantic constraints; check is invoked after each elementary editing opera

tion.

Evaluation function eval, a function derived from the definition of L; that incrementally evalu

ates L;-programs.

Other attributes such as creation date, owner, version, etc. (to be specified).

Many issues still have to be addressed. We now only discuss the editing model to be used in

the generated environment and the interactive operation of the various tools in the environment.

The two prevailing editing models are pure text editing and pure syntax-directed editing. The

former gives the user flexible editing operations but does not assist in constructing syntactically

correct programs. The latter supports the construction of syntactically correct programs, but this

often goes at the expense of the power of the editing operations. Experience shows that pure

syntax-directed editing is too restrictive. One should therefore strive for a compromise between the

two models by extending the text editing model with syntax-directed operations (e.g. positioning the

cursor on the enclosing construct, finding the next if-statement, etc.) while retaining the character

level positioning and editing operations.

The generated environments are interactive. This implies that all commands and tools avail

able should give the user as much feedback as possible about their progress and about the errors

encountered so far. Examples· are interactive checking of syntax and of type constraints. The

interactive operation of tools can be realized by using (or generating) incremental algorithms for

them. This issue is further discussed in sections 4 and S.

In the following subsections we briefly summarize the kind of tools that may (ultimately) be

incorporated in the generated environments. The aim of this summary is to make an inventory of

potentially useful tools and to anticipate their inclusion in the generated environments in a later

stage of the project.

2.1. Editing tools

The environment generated for language L supports syntax-directed editing of £-programs.

The editing primitives supplied are not only accessible through a standard user-interface but are also

callable from programming languages. <2> This allows the mechanization of repeatedly occurring

standard manipulations such as, e.g., adding standard comments to procedure headings. The editing

tools include:

(1) Not to be confused with the more conventional meaning ("procedure") of this word.

(2) Note that this is a requirement on the available operations in the programming languages to be used for the

implementation of the system.

- 2 - DS

navigation primitives for traversing the syntactic structure of a program;

addressing primitives for memorizing positions in this structure;

modification and construction primitives;

pattern-matching primitives for structural search or identification (this includes pattern

directed modification of programs).

help facilities.

2.2. Checking tools

These tools verify the internal or global consistency of programs. This includes checking of

syntactic correctness and of various static (type) constraints. Checks on adherence to a standard

programming style (such as style of comments, naming conventions for variables, etc.) also fall into

this category. Other tools may check the mutual consistency of several programs related to the

same project (including documentation and specification).

2.3. Analysis tools

The structure of programs may be analyzed and summarized in (machine-readable) tables or

diagrams. This includes structural information concerning:

data flow;

cross references;

aliases;

side-effects.

Other tools in this category may perform the quantitative measurement of the static complex

ity of programs ("software metrics").

2.4. Dynamic semantics tools

These tools are related to the actual execution of programs:

interpreters;

compilers;

optimizers;

symbolic debugging and tracing;

measurement of the dynamic behaviour of programs.

2.5. Filing tools

The current version of all programs and data created in the environment is automatically filed.

Optionally, older versions may be retained as well (version control).

2.6. Functions available m the generated environments

The realization of several of the functional aspects described in sections 2.1-2.5 requires a

mechanism for annotating programs with a variety of information such as assertions, cross

references or dynamic measurements of program execution. This annotation mechanism is not yet

reflected in the current outline.

We now give a -- very tentative -- list of functions that will be available in a generated system.

2.6.1. Management of programs

Create (name, language,nonterminal)
create a new (sub)program name, derivable from a given nonterminal in a given language.

Remove !name)
remove the (sub)program name.

- 3 - DS

Rename(name l,name2)
give name name2 to the (sub)program which currently has name name 1.

Print(name l,name2)
Print (sub)program name 1 on external text file name2.

Read(name l,name2)
Read from the text file name2 a (sub)program and give it name name 1.

Get-attribute (name, attribute)
get value of attribute of (sub)program name (see 2.1.).

Set-attribute (name,attribute, value)
set value of attribute of (sub)program name to value.

2.6.2. Cursor movement in programs

The following functions move the cursor in terms of the syntactic structure of a program. The

notion of "structure" is language dependent, i.e. Cursor-up may, for instance, either mean "go to the

parent node" (while editing a Pascal-program) or "go to the character on the previous line in the

current column" (while editing text). Issues to be resolved:

The editing model.

Does editing require more information than contained in the syntax section of the language

definition. For instance, should cursor movements be expressible in LDF?

Cursor-up (program)

Cursor-left (program)

Cursor-right(program)

Cursor-down (program)

2.6.3. Searching in programs

Search (program,nonterminal)
Search for the next occurrence of a nonterminal in program and place the cursor there.

Search (program, string)
Search for the next occurrence of string in (the printed image of) program and place the cursor

there. Note: the precise meaning of this function depends on the editing model.

Search (program,subprogram)
Search for the next occurrence of subprogram in program and place the cursor there.

2.6.4. Editing of programs

Insert (program,subprogram)
Insert subprogram in program at the current cursor position; subprogram should be a syntacti

cally legal insertion. After the insertion check (program) is evaluated, where check is the incre

mental type check function associated with program.

Insert-as-text (program, string)
Parse string and insert the resulting program in program at the current cursor position. After

the insertion check (program) is evaluated.

Copy (program, name)
Make a copy of the subprogram of program at the current cursor position and give this copy

the name name.

Cut (program)
Remove the subprogram of program at the current cursor position. After this check(program)

is evaluated.

- 4 - DS

2.6.5. Evaluation of programs

Evaluate (program)
Evaluates eval (program), where eval is the incremental evaluation function associated with pro

gram.

3. DEFINITION OF A LANGUAGE IN LDF

The definition of a language must always specify its abstract syntax. It defines a tree

structured representation for programs which is their standard representation within the environ

ment. All other aspects of the language are defined with respect to this standard representation.

The central component of the specification language LDF should therefore be the formalism

for defining the abstract syntax of new languages. Other sections in. a LDF-definition define other

aspects of languages and environments as sketched in the previous section.

Some of these sections can already be identified:

(1) A syntax section containing a definition of the abstract and concrete syntax (including lexical

syntax and pretty printing) of the language to be defined.
(From this part the programming environment generator has to derive a syntax-directed edi

tor.)

(2) A static constraints section containing a definition of the type constraints or static semantics of

the language. ·

(From this part the programming environment generator has to derive an incremental type

checker.)

(3) A definition of the (dynamic) semantics of the language.
(From this part the programming environment generator has to derive an incremental evalua

tor and, at a later stage, a compiler.)

The nature of other sections can not yet be made precise, since:

The project aims at exploring the potentials of a variety of specification formalisms and should

therefore provide a general framework in which these formalisms can be incorporated. Any

bias in the direction of a particular specification formalism is premature.

Different specification formalisms may be more appropriate for the definition of certain

aspects of a language than others, e.g. BNF notation is appropriate for describing concrete

syntax, while abstract algebra or denotational semantics are appropriate for describing seman

tics.

There is no a priori limit to the number and kind of properties (and associated processors) one

may want to specify for a given language.

Thus the specification language LDF must have an extensible structure and allow the simul

taneous use of different specification methods within one overall framework. The specification of a

language L then consists of the definition of its abstract syntax and specifications of particular

aspects of L each using an appropriate specification technique. All these specifications are organ

ized around the specification of the abstract syntax of L.

Some remaining issues to be resolved are:

How are the semantic relationships expressed between the various parts of a language

definition (each using its own specification method).

Which different "views" of language definitions should be made available in order to display

the semantic structure of the defined language. One can, for instance, imagine a "program

ming language manual" -view which collects all parts of the language definition related to the

sp.ecification of a particular language construct or a "structural" -view that gives high level

information on the modular structure of the language definition.

- 5 - DS

More detailed information on the language definition formalism is given in deliverable D4.

4. FUNCTIONAL ASPECTS OF THE ENVIRONMENT GENERATION SYSTEM

The system for the generation of environments supports:

(1) the management of language definitions (including creation, modification, filing and composi

tion of language definitions), and

(2) the generation of programming environments from these language definitions.

4.1. Management of language definitions

The environment generation system supports the creation, syntax-directed editing, filing and

composition of language definition modules written in the fixed language definition formalism LDF.

Note that when L; is modified the programs in P4 may become inconsistent, in other words,

modification of a language definition has repercussions for the programs that were filed in an

environment generated from an older version of that language definition.

4.2. Generation of environments

The environment generation system supports the compilation of language definitions into pro-

gramming environments. This consists of:

Generation of a syntax-directed editor on the basis of the information in a language definition.

Issues: (1) generation· of help and explain facilities; (2) error handling.

Generation of an incremental static constraints checker. The specification of static constraints

in the language definition is probably "batch-oriented", i.e. the constraints are specified for

complete programs but it is not specified how these constraints are affected after modification

of a program. If possible, an incremental checker for the static constraints has to be derived

from this non-incremental specification and its cooperation/ synchronization with the syntax

directed editor has to be realized.

Transformation of the definition of dynamic semantics into an incremental evaluator. Issues:

(1) impose restrictions on definitions to allow this transformation; (2) how is a non

incremental specification transformed into an incremental evaluator; (3) allow the implementa

tion of functions defined in a language definition by means of functions written in some pro

gramming language.

5. ORGANISATION OF THE ENVIRONMENT GENERATION SYSTEM

5.1. Management of language definitions

As stated in the previous section the environment generation system should allow editing,

composition and filing of language definitions. We do not make any assumptions about the way

this editing and filing facility is realized. An obvious approach is to bootstrap the system, i.e. to

generate the LDF-environment using the environment generation system itself.

5.2. Generation of environments

The environment generation system is organized around the notion of compiling the various

parts of an LDF-definition of language L into operational components of the L-environment.

Two major ways of compiling specifications can be distinguished:

(1) compile (part of) the specification into an executable program which is included in the gen

erated environment (see figure 1).

(2) compile (part of) the specification into tables and include these tables in the generated

environment together with interpreters for them (see figure 2).

Alternative (2) is a refinement of the (more general) alternative (1).

- 6 - D5

Definition of
language L
in LDF

LDF
compilers

Generated
programs

GENERATED ENVIRONMENT
···

Definition of
language L
in LDF

Figure 1. Alternative I -- generation of programs.

LDF
compilers

···

···

Tables

Interpreters
for tables

GENERATED ENVIRONMENT
···

Figure 2. Alternative 2 -- generation of tables.

- 7 - D5

Both the language definition and the tables/programs have a modular structure. Distinct

parts of the specification may be based on different specification techniques. Similarly the

tables/programs correspond to different operational aspects of the language specified.

Alternative (2) has the advantage that one physical copy of an interpreter can be shared by all

generated environments: the generated environment only has to contain the tables to be interpreted

by the shared interpreter. This alternative has the disadvantage of introducing an additional level of

interpretation. In alternative (1) specialized code is generated (eliminating interpretation overhead),

but no code can be shared by different generated environments.

Another advantage of alternative (2) is that different compilers may produce tables for the

same interpreter. Each table is produced by a compiler from one or several components of a

specification. There need not be a one to one relationship between the components of the

specification and the corresponding tables. One component may produce several tables through

different compilers, either alone or together with some other component. Similar (or even identical)

tables may be produced for the same interpreter, from different specification components with the

same semantical intent. Similarly there is no one to one relationship between tables and inter

preters, and several tables pertaining to distinct aspects of the formalism may be interpreted by the

same interpreter.

In general, no choice can be made between these two alternatives and the system will have to

provide facilities for both of them. In the sequel, we will refer to either of these alternatives,

without selecting one, as "tables/programs".

A minimal environment generation system consists of:

(1) An LDF-compiler which compiles an LDF-definition of language L into tables/programs.

Necessary components in the generated system are: ·

editor tables/programs (includes the syntax derived from L and constructor functions

for nodes in the abstract syntax tree);

unparser (the prettyprinter derived from L);

parser (the parser derived from the grammar of L);

type checker (operational version of static semantics of L);

evaluator (operational version of dynamic semantics of L).

(2) A file system for L-programs and L-data.

(3) A command interpreter/man-machine interface for accessing the generated environment.

To a first approximation? a generated environment for language L is composed of a set of

tools, plus a fixed man-machine interface. Part of this interface is derivable from the syntax section

of language definition (editing menus, pretty-printers, on-line help, etc.). However, additional

aspects of the man-machine interface (such as more advanced help or tracing facilities) could be

described in a separate section of the LDF-definition and the interface could then be derived from it

in a similar way as the other tools.

It was already stated in section 2 that the generated environments are interactive and the gen

erated tools should therefore operate incrementally. The tools therefore need information on incre

mental modifications due to, for instance, editing. An essential problem yet to be solved concerns

the communication of this information between the various tools.

- 8 - DS

6. THE ROLE OF PARTIAL EVALUATION IN THE ENVIRONMENT GENERATION SYS

TEM

Perhaps the biggest single problem confronting us in implementing an environment generation

system is compiling language definitions to reasonably efficient code. On the part of CWI it is felt

that partial evaluation or mixed computation [ER82, JSS85] is a potentially important optimization

technique which may help us in achieving this goal. Although rather vague in scope, partial evalua

tion is basically a form of constant propagation. Suppose P (x,y) is a program with two arguments,

whose first argument has a known value c, but whose second argument is still unknown. Partial

evaluation of P(c,y) with unboundy results (or rather: should result) in a specialized residual pro

gram Pc(y) in which "as much as possible" has been computed on the basis of c. For instance, if P

is a general context-free parser having as arguments a grammar and a string, partial evaluation of P

with known grammar G (which in the environment generation system would be part of a language

definition) and unknown string should lead to a specialized parser Pa by propagating Gin P.

Annexe DS.Al is a first theoretical study of partial evaluation in the context of initial algebra

specification and term rewriting systems. Automatic (partial) w-enrichment of algebraic

specifications (Annexe OS.Al) and the use of partial evaluation for generating compilers from alge-

braic specifications are currently being investigated. ·

7.LITERATURE

[ER82] A.P. Ershov, "Mixed computation: potential applications and problems for study",

Theoretical Computer Science, 18 (1982), pp. 41-67.

[FGJM85]

[GAN85]

[HEE83]

[JSS85]

[KL83]

[MMV85]

[RTD83]

[SN85]

K. Futatsugi, J.A. Goguen, J.P. Jouannaud & J. Meseguer, "Principles of OBJ2",

Conj Record 12th Ann. ACM Symp. Principles of Programming Languages, ACM,

1985, pp. 52-66.

Special issue devoted to the GANDALF system, The Journal of Systems and

Software, 5 (1985), 2.

J. Heering, "Taaldefinities als kem voor een programmeeromgeving" ("A program
ming environment based on language definitions") (in Dutch), in: J. Heering & P.

Klint (Eds.), Colloquium Programmeeromgevingen, CWI Syllabus 30, 1983.

N.D. Jones, P. Sestoft & H. S0ndergaard, An experiment in partial evaluation: the

generation of a compiler generator, Report 85/l, Institute of Datalogy, University

of Copenhagen, 1985.

P. Klint, A survey of three language independent programming environments,

Report IW 240/83, CWI, 1983.

B. Melese, V. Migot & D. Verove, The Mentor-VS documentation, Report No. 43,

INRIA Rocquencourt, 1985.

Th. Reps, T. Teitelbaum & A. Demers, "Incremental context-dependent analysis

for language-based editors", ACM Trans. Programming Languages and Systems, 5
(1983), 3, pp. 449-477.

G. Snelting, "Experiences with the PSG - Programming System Generator", in:

Formal Methods and Software Development, TAPSOFT Proceedings, Vol. 2, LNCS

186, Springer-Verlag, 1985, pp. 148-162 .

. 9. DS

GIPE: CEC 348/A/TS/2
November 1985

PARTIAL EVALUATION AND

w-COMPLETENESS OF ALGEBRAIC SPECIFICATIONS

Annexe D5.A1 of Deliverable D5 - Second Review -

Jan Hearing
Centre for Mathematics and Computer Science

Suppose P(x,y) is a program with two arguments, whose first argument has a known value c, but whose

second argument is not yet known. Partial evaluation of P(c,y) results (or rather: should result) in a spe

cialized residual program Pc(Y) in which "as much as possible" has been computed on the basis of c. In

the literature on partial evaluation this is often more or less loosely expressed by saying that partial evalua

tion amounts to "making maximal use of incomplete information.'.' In this paper a precise meaning is given

to this notion in the context of equational logic, initial algebra specification and term rewriting systems. If

maximal propagation of incomplete information is to be achieved within this context, as a first step it is

necessary to add equations to the algebraic specification in question until it is w-complete (if ever). The

basic properties of w-complete specifications are discussed, and some examples of w-complete

specifications as well as of specifications that do not have a finite w-complete enrichment are given.

Note: This is a revised version of report CS-R8501, Centre for Mathematics and Computer Science, 1985.

It will be published in Theoretical Computer Science, 43 (1986).

1. INTRODUCTION

I.I. Partial evaluation
The current investigation was inspired by the notion of partial evaluation or mixed computation as dis

cussed for instance by Ershov (6] (who gives many references), Komorowski (12], and Jones et al. (11].

Although rather vague in scope, partial evaluation is basically a form of constant propagation. Sup

pose P (x,y) is a program with two arguments, whose first argument has a known value c, but whose

second argument is still unknown. Partial evaluation of P(c,y) with unbound y results (or rather:

should result) in a specialized residual program Pc(y) in which "as much as possible" has been com

puted on the basis of c. For instance, if P is a general context-free parser having as arguments a

grammar and a string, partial evaluation of P with known grammar G and unknown string should

lead to a specialized parser PG by propagating Gin P.
Partial evaluation is first and foremost an important unifying concept, shedding light on the rela

tionship between interpretation and compilation, on the possible meaning of an ill-defined term like

compile-time, on program optimization and program generators in general, and on type checking.

Secondly, it is a useful technique in strictly limited and well-defined contexts in which the axioms and

rules required can be hand-tailored to the application at hand.
The notion of "computing as much as possible on the basis of incomplete information" is

widespread in the partial evaluation literature. As Ershov puts it ([6], p. 49): "A well-defined mixed

computation which in a sense makes a maximal use of the information contained in the bound argu

ment yields a rather efficient residual program." And Komorowski says ((12], p. 59): "Partial evalua

tion is a 9ase of program transformation. It attempts to improve efficiency of program execution by

eliminating run-time checks and performing as much computation in advance as possible. However, it

does not modify algorithms." (Emphasis added in both cases.)

- 1 - D5.Al

When experimenting with partial evaluation in the context of term rewriting systems (Huet &

Oppen [10]), one quickly discovers that making maximal use of incomplete information or computing

as much in advance as possible is very difficult or even impossible. The rewrite rules used to evaluate

closed (i.e. variable-free) terms are usually found to be inadequate when applied to open terms (i.e.

terms containing variables) and numerous new and more general rules have to be added if anything

like a canonical or in some sense simplest form is to be reached. Suppose, for example, that the fol

lowing simple term rewriting system R for a function max on the natural numbers with constant 0

and successor function S is given (with 1 = S (0)):

max(O,x) ~ x
max(x,O) ~ x
max(S(x),S(y)) ~ S(max(x,y)).

Partial evaluation of

max(max(l, l),x)

to

max(l,x)

requires no new rewrite rules, but for

max(max(l,x), 1)

the same result can only be obtained by applying the commutative and associative properties of max,

which are not needed for the evaluation of closed max-terms. Similarly, R is unable to reduce

max(x,x) to x or max(S(x),x) to S(x). In a larger context this implies that a term like

if max(x,x) = x then E else E' fi

cannot be reduced to E. This may block yet another reduction, and so on.

In general, the additional rewrite rules required correspond to valid equations from the viewpoint of

initial algebra semantics (Meseguer & Goguen [15]). In principle, new rules have to be added as long

as the term rewriting system is incomplete with respect to the equational theory of the initial algebra

in question. If, as a first step, ~ne considers equations instead of rewrite rules, this means that new

equations have to be added until the equational specification is complete with respect to the equa

tional theory of the initial algebra (if ever), i.e. until the equational specification is w-complete. As a

second step one then has to consider the compilation of w-complete specifications to term rewriting

systems. The latter step falls outside the scope of this paper.

1.2. Algebraic specification, equational logic, and initial algebra semantics - some basic facts

In this section I give a brief summary of some basic facts of algebraic specification theory which are

essential to an understanding of what follows. Good references are Burstall & Goguen's introductory

paper [2] and Meseguer & Goguen's survey [15].

An algebraic specification S consists of two parts:
(i) a many-sorted signature ~s, defining a language of strongly typed terms (expressions), and

(ii) a set Es of equations (identities) between ~s-terms, defining an equational theory consisting of

all eqflations provable from Es by means of many-sorted equational logic.

The rules of inference of equational logic are essentially the rules of reflexivity, symmetry, transitivity,

and substitution. Two more rules are needed if ~s has void sorts - see §4.3 of Meseguer & Goguen

[15].
Models of algebraic specifications are many-sorted algebras A such that (the interpretations of) all

equations in Es are valid in A. This is the well-known Tarski-semantics, but generalized to the

many-sor(ed case.
If a ~s-equation is valid in all models of S, it is provable from Es by means of equational logic.

- 2 - D5.Al

This is the completeness property of many-sorted equational logic. In general, however, one is not
interested in the full class of models of an algebraic specification, but only in a single model (or iso

morphism class of models) which is isomorphic to the algebra (the data type) one wishes to specify.

The model closest to ordinary programming practice is the initial algebra ls which is characterized by

the following two properties:
(i) Every element of ls corresponds to at least one closed ~s-term ("no junk").
(ii) ls is maximally free, which means that elements of ls are never equal unless the corresponding

closed terms can be proved equal from Es ("no confusion").
Every algebraic specification (without void sorts) has an initial algebra which is uniquely determined

up to isomorphism.

1. 3. w-completeness of algebraic specifications
Because of the "no junk" property, the initial algebra ls of an algebraic specification S almost always

has a much richer equational theory than can be derived from the equations Es of S by means of

equational logic alone, i.e. in general equational logic is not complete with respect to the initial alge

bra. Although the closed equations valid in ls can always be proved from Es using equational rea

soning, open equations valid in ls do not in general yield to such simple means of deduction, but
require stronger rules of inference (such as structural induction) for their proofs. For instance, con

sider the following specification:

module BOOL
begin

sort boo/

functions F,T: ~boo/
....,: boo/~ boo/
+ : boo/ X boo/ ~ boo/
. , V: boo/Xbool ~boo/

equations,F = T

endBOOL.

....,T=F

T+F=F+T=T
F+F=T+T=F

T.T=T
T.F=F.T=F.F=F

TVT=TVF=FVT=T
FVF=F

(false, true)
(not)
(exclusive-or)
(and, or)

The initial model lnooL is a Boolean algebra with two elements. Because every closed term over

"'2:.8ooL is equal to Tor F, proving the validity in 18ooL of the laws of Boolean algebra (such as De
Morgan's laws and the commutativity and associativity of +, . and V) amounts to checking a finite

number of closed instances for each law to be proved. These laws are not provable from EnooL by

means of equational reasoning, however, as can easily be seen by constructing a model of BOOL in

which they are false.
Completeness with respect to the equational theory of the initial algebra can be obtained in full

generality by adding the so-called w-rule to equational logic. This infinitary rule of inference allows

one to infer an open ~s-equation e from a (possibly infinite) set of premises consisting of the closed

~s-instances of e. Using this extended version of equational logic, the equations valid in the initial

algebra ls can always be proved from Es (even if they are not recursively enumerable!). Adding the
w-rule to equational logic has the general effect of making the class of models of a specification
smaller and of highlighting the role of the initial model.

The w-rule is rather unwieldy and the question arises whether it is possible to achieve completeness

- 3 - D5.Al

of a specification with respect to the equational theory of its initial algebra without transcending the
limits of purely equational reasoning. More specifically, given a specification S, is it possible to add

equations to it in such a way that (i) the initial algebra is not affected, and (ii) all open equations
valid in the initial algebra become provable by purely equational means?

I shall call a specification having property (ii) w-complete . . I shall discuss the basic properties of

non-parameterized w-complete specifications (§2), give some examples (§3), and, finally, sketch an

approach towards automatic addition of significant new equations valid in the initial algebra, i.e.

automatic (partial) w-enrichment (§4).

1.4. Related work
While revising this paper for publication, it was brought to my attention that the notion of w

completeness as discussed in this paper was investigated by Paul [17] in the context of "inductionless

induction" under the name inductive completeness.* Paul gives several examples of inductively com

plete algebraic specifications and their compilation to complete term rewriting systems (§§3.1-3.2 of

this paper). He also shows that some specifications do not have a finite inductive closure, i.e. no finite

w-complete enrichment.
Taylor's survey [19] gives pointers to relevant work on (non-)finitely based algebras done in the

context of universal algebra, while Davis et al. [5] and Henkin [7] discuss the equational theory of the

natural numbers with addition, multiplication, and various other functions (§3. l of this paper). Plot

kin [18] has shown that the MC,871-calculus is w-incomplete (§3.4 of this paper).
Because the terminology in this field is rather confusing a brief comparative list of terms used by

various authors may be helpful:

Inductive completeness (Paul [17])

Inductive closure (Paul [17])

Inductive closure (Paul [17])

= w-completeness (this paper)

= w-complete enrichment (this paper)

=/:=Inductive closure (Nourani [16])

Inductive completion (Huet & Hullot [9]) = Inductionless induction
(§6.7 of Meseguer & Goguen [15])

Inductive completion (Huet & Hullot [9]) =/:=Inductive closure (Paul [17])

Inductive completion (Huet & Hullot [9]) =/:=Inductive closure (Nourani [16])

2. THE w-COMPLETENESS PROPERTY
Provable will always mean provable by purely equational means unless otherwise noted. Only finite
specifications are considered. The semantics of a specification will always be the initial algebra

semantics.

DEFINITION 2.1: A finite algebraic specification S with signature :Ls and set of :Ls-equations Es is w

complete if every open equation all of whose closed :Ls-instances are provable from Es is itself prov

able from Es.

THEOREM 2.1: An algebraic specification S is w-complete if and only if all equations valid in its initial

algebra ls are provable from Es.

PROOF: For any S the closed equations valid in ls are precisely the closed equations provable from

Es. Hence, the open equations valid in ls are precisely the equations all of whose closed instances

are provable from Es. Hence, Sis w-complete if and only if not only every closed equation but also

every open equation valid in ls is provable from Es. D

THEOREM 2.2: The equations valid in the initial algebra ls of an w-complete specification Sare valid

in all other models of S as well.
"

* I am indebted to P. Lescanne for pointing this out to me.

- 4 - D5.Al

PROOF: According to theorem 2.1, the equations valid in ls are provable by purely equational means.

Hence, according to the soundness property of equational logic they are valid in all models of S. D

As explained in § 1.3, open equations valid in the initial algebra of a specification generally require

for their proofs rules of inference that are stronger than the simple rules of equational logic. Theorem

2.1 says that w-complete specifications do not need these stronger rules of inference, i.e. they trade

rules of inference for equational axioms. As far as their proofs are concerned, the open equations

valid in the initial algebra of an w-complete specification can be treated in the same way as their

closed counterparts.

THEOREM 2.3: If an algebraic specification S is w-complete, the set of equations valid in its initial

algebra ls is recursively enumerable.

PRooF: The set of equations valid in ls is equal to the set of consequences of Es according to

theorem 2.1. The latter set is recursively enumerable. D

THEOREM 2.4: If an algebraic specification S is w-complete and if validity of closed equations in the

initial algebra ls is decidable, validity of open equations in ls is decidable as well.

PROOF: On the one hand, the set of equations valid in ls is recursively enumerable according to

theorem 2.3. On the other hand, each invalid open equation in ls is finitely refutable because the set

of all of its closed instances is recursively enumerable and the validity of closed equations in ls is

decidable according to the second assumption of the theorem. D

Neither theorem 2.3 nor theorem 2.4 uses any specific properties of equational logic. In fact, their

truth depends solely on the existence of a complete - but not necessarily purely equational - theory of

the equations valid in the initial algebra.
Given a specification S, is there always a specification T such that

(i) ~r=~s. Er-:d.Es;
(ii) Ir=ls;
(iii) T is w-complete?
Even if ls is finite, the answer is no. Lyndon has given an example of a single-sorted algebra with

seven elements and one binary function, whose equational theory is not finitely based (not finitely

axiomatizable) [14]. With this result he settled the question "Does every finite algebra possess a finite

set of identities from which all others are derivable?" raised by him in [13]. Because it has a (straight

forward) initial algebra specification, this also means that Lyndon's algebra has no w-complete initial

algebra specification. Other examples are mentioned in §9 of Taylor [19].

From an abstract data type viewpoint (but not necessarily from a strictly logical viewpoint) it is

quite natural to allow extension of the signature with hidden sorts and functions. In that case w

completeness can be achieved for a wider class of specifications. For instance, Lyndon's above

mentioned algebra has an w-complete initial algebra specification with addition and multiplication

mod 7 as hidden functions (see §3.2 for details).
Unlike the set of closed equations, the set of open equations valid in the initial algebra of a (finite)

specification need not be recursively enumerable. For instance, the set of equations valid in the

natural numbers with addition, multiplication and a <-predicate is not recursively enumerable (see

§3. l). Such an algebra cannot have an w-complete specification according to theorem 2.3. Extension

of the signature does not help in such cases.
An obvious question is whether extension of the signature always helps if the equational theory of

the initial algebra is recursively enumerable:

OPEN QUESTION 2.1: Suppose the set of equations valid in the initial algebra ls of an algebraic

specification S is recursively enumerable. Does this imply the existence of a specification T such that

(i) ~r-:d.~s. Er-;;JEs;
(iia) T i.s conservative with respect to the closed theory of S, i.e. for all closed ~s-equations e

Er 1- e ==>Es 1- e;

- 5 - D5.Al

(iib) For every closed ~r-term t of a sort belonging to ~s there is a closed ~s-term t' such that

Er 1- t=t';

(iii) All equations valid in ls are provable from Er?

Note that T itself is not required to be w-complete. This would be an even stronger requirement.

Consider a finitely generated algebra whose equational theory is recursively enumerable. The sub

set of closed equations valid in such an algebra is a fortiori recursively enumerable, and hence, accord

ing to theorem 4.1 of Bergstra & Tucker [3], it has a (finite) initial algebra specification with hidden

sorts and functions. Hence, if the answer to question 2.1 is affirmative, every finitely generated alge

bra with a recursively enumerable equational theory has an w-complete initial algebra specification

with hidden sorts and functions.
If the answer to question 2.1 is affirmative, a further question is whether the hidden sorts can be

dispensed with, that is, whether every specification has an w-complete enrichment with hidden func

tions only. If the answer to this question is also affirmative, one would like to conclude that every

finitely generated algebra with a recursively enumerable equational theory has an w-complete initial

algebra specification with hidden functions only. But this depends on yet another open problem: It is

unknown whether every finitely generated algebra whose closed equational theory is recursively enu

merable has an initial algebra specification with hidden functions only (see Bergstra & Tucker [4]).

3. ExAMPLES

This section contains two examples of non-parameterized w-complete specifications (§§3.1-2), a discus

sion of the conditional function from the viewpoint of w-completeness (§3.3), and a brief discussion of

the w-incompleteness of strong combinatory logic and related questions (§3.4).

3.1. The natural numbers with addition and multiplication

A simple initial algebra specification of the natural numbers with addition and multiplication looks as

follows:

module NAT
begin

sort N

functions 0: ~ N
S:N~N

+,.: NXN ~ N

variables x,y: ~ N

equations x + 0 = x
x+S(y)=S(x +y)

x.O=O
x.S(y)=x +(x:Y)

end NAT.

(1)
(2)

(3)
(4)

By adding the commutative, associative and distributive laws for addition and multiplication an w

complete version of NAT is obtained:

- 6 - DS.Al

module N
begin

include NAT

variables x,y,z: -i> N

equations x +y=y+x
x+(y +z)=(x +y)+z

x~=y.x

x.(y .z) =(x~).z

x.(y + z)=(x~)+(x.z)
end N.

(5)
(6)

(7)
(8)

(9)

TuEOREM 3.1.1 (Henkin [7]): N has the same initial algebra as NAT and is w-complete.

SKETCH OF PROOF: (a) Ir..i =!NAT• because (1) ~N =~NAT• and (2) the commutative, associative and

distributive laws for addition and multiplication are valid in !NAT (proof by multiple structural induc-

tion). .
(b) For every open or closed ~N-term t there is a ~r..i-term Pin canonical polynomial form such that

Er..i 1- t=P. Canonical forms are generated by the grammar

P ::= 0 I sum
sum::= M I (sum+ sum)
M ::= S(O) I C I vars I (C.vars)
vars :: = var I (vars.vars)
var : : = x I y I · · ·
c ::= S(S(O)) I S(C),

with the additional condition that the number of monomials (maximal subterms produced by M) is

minimal. Canonical forms are unique modulo associativity and commutativity of addition and multi

plication. Two terms t 1 and t 2 are equal in IN if and only if the corresponding canonical forms P 1

and P 2 are syntactically identical modulo the associative and commutative laws. Otherwise there

would be a non-trivial polynomial with integer coefficients which would be identically equal to zero.

D

Paul [17] gives a proof of theorem 3.1.1 based on a complete term rewriting system for N.

If cut-off subtraction ..:. : N X N -i> N defined by the equations

x..:.o=x
o..:.x=O
S (x)..:. S (y) = x ..:. y

is added to NAT, the equations valid in the initial algebra of the resulting specification NAT' are not

recursively enumerable (§8 of Davis et al. [5]). Hence, according to proposition 2.3 no w-complete

specification of the natural numbers with addition, multiplication and cut-off subtraction is possible.

The same result holds if a <-predicate is added to NAT. (See also Paul [17]. The same argument was

used by Nourani [16] to show that equational reasoning + structural induction is not necessarily

complete with respect to the equational theory of the initial algebra.)

This shows that even in (seemingly) very simple cases complete partial evaluation is impossible.

- 7 - 05.Al

3.2. Boolean algebra
BOOL of §1.3 is an w-incomplete specification of Boolean algebra. An (almost) w-complete version of

BOOL is obtained by adding the equation S(S(x))=x to 1\1. This treatment of Boolean algebra is

very economical and leads to an interesting canonical form for Boolean terms which is a direct des

cendant of the polynomial form for ~N -terms defined in the previous paragraph. Consider

module B
begin

include 1\1 with renaming [N boo/, 0 F, S ---,]

functions T: ~ boo/
V: boo/ X boo/ ~ boo!

variables x,y: ~boo/

equations -,-,x=x
x.x=x

T=-,F
xVy=(x:Y)+(x+y)

end B.

(10)
(11)

(12)
(13)

The successor function of 1\1 becomes negation in B, addition becomes exclusive-or, multiplication

becomes conjunction, etc. Equation (10) corresponds to S(S(x))=x. Equation (11) has been added

for the sake of w-completeness.

THEOREM 3.2. l: B is an w-complete specification of Boolean algebra.

PROOF: (a) le =lnooL, because (1) ~e =~noOL• (2) if e EEnooL• then E 8 1- e and hence le I= e, and

(3) if e EE8 , then all closed ~8 -instances of e are provable from EnooL and hence lnooL 1= e.

(b) (See also part (b) of the proof of theorem 3.1.l.) For every open or closed ~e-term t there is a

~e-term Pin canonical form such that E 8 1- t=P. Canonical forms are generated by the grammar

P ::=FI sum
sum::= M I (sum+ sum)
M ::=TI vars
vars : : = var I (vars.vars)
var : : = x I y I · · · ,

with the additional condition that the number of monomials is minimal and that all monomials are

linear. Canonical forms are unique modulo the associative and commutative laws. Bringing a ~e

term into canonical form involves the following steps (the equations of 1\1 with renaming

[N boo/, 0 F, S ---,] are numbered (1)-(9) in the same order in which they occur in 1\1):

(Sl) Eliminate all occurrences of V and Tby means of (13) and (12).

(S2) Bring the resulting term into !\I-canonical form (§3.1) (taking the renaming into account) by

means of (1)-(9).

(S3a) Reduce all coefficients to For -,F by means of (10). Eliminate all coefficients of the form -,F

by means of the equation -,F.x=x (which is provable from E 8). Replace monomials consist

ing only of --.F by T by means of (12). Eliminate all monomials with coefficient F (except

perhaps one) by means of (7), (3), (5) and (I).

(S3b) Linearize all monomials by means of (7), (8) and (11).

(S3c) Eliminate all monomials occurring more than once by means of (5)-(8), the equation x + x = F

(which is provable from E 8), and (1).

Two tetms t 1 and t 2 are equal in l 8 if and only if the corresponding canonical forms P 1 and P 2

are syntactically identical modulo the associative and commutative laws. Otherwise there would be a

non-trivial P in canonical form such that l 8 1= P =F. But if P is of the form -,Q, it assumes the value

- 8 - D5.Al

T because either Q is F or it assumes the value F if all variables have the value F. If P is not of the

form -.Q, consider a monomial q of P containing the least number of variables. Because monomials

do not occur more than once, every other monomial contains at least one variable not occurring in q.
If the variables occurring in q are given the value T and all other variables the value F, P assumes the

value T. D

The canonical forms used in the above proof are Hsiang's "normal expressions" [8]. Besides being

the most natural ones from the present viewpoint, these canonical forms have the further merit of

being the normal forms of a complete term rewriting system which can be derived from B by a gen
eralized Knuth-Bendix completion procedure. Other known canonical forms, such as the complete dis

junctive normal form, do not have this property. Further details can be found in [8].
Paul [17] gives an w-complete specification of the integers mod p with addition and multiplication

(p prime) and proves theorem 3.2.1 by taking p = 2. (If p is not prime w-completeness is more difficult

to achieve because the equation xP = x which corresponds to equation (11) of B no longer holds and

the existence of zero-divisors gives rise to equations like 2x2 +2x=O (mod 4) and x 3 +5x=O (mod

6).) Paul's result can be applied as follows. Consider Lyndon's example of a seven element algebra

having no w-complete initial algebra specification without hidden sorts and functions (§2). It has a

straightforward initial algebra specification:

module L
begin

sort A

functions 0, 1, 2, 3, 4, 5, 6: ~ A
A.: AXA ~A

variable x: ~ A

equations A.(4, 1) = 4

end L.

A.(4,2)=A.(5, l)=A.(5,2)=A.(5,3)=5
A.(4,3)=A.(6, l)=A.(6,2)=A.(6,3)=6

A.(O,x)=A.(l,x)=A.(2,x)=A.(3,x)=O
A.(x, O)=A.(x, 4)=A.(x, 5)=A.(x, 6)=0

Every k-ary function on a set of p elements (p prime) corresponds to a polynomial in k variables over

the integers mod p. Take p =1 and let 71..7 be an w-complete specification of the integers mod 7 with

sort A, constants 0, ... , 6, and functions + and . , then L has the following w-complete hidden func

tion enrichment:

module l
begin

include 71..7

hidden functions + , .

function A.: AXA ~A

variables x,y: ~ A

equation A.(x,y) = 4.P 4, I (x,y) + 5.(P 4.2 (x,y) + P 5, 1 (x,y) + P 5,2 (x,y) + P 5,3 (x,y)) +
+6.(P 4,3(x,y)+ P6,1(x,y)+ P6,2(x,y)+ P6,3(x,y))

6 6

wherePm,n(x,y)= II (x+i). II (y+j)
i=O j=O

i +m=FO j +n=FO
endL

Pm,n(x,y) has the property

- 9 - D5.Al

Pm,n(m,n)= 1
Pm,n(x,y)=O x-=fom, y=fon.

The above method of obtaining an w-complete hidden function enrichment applies to all single-sorted

algebras with p elements (p prime).

3.3. The conditional function
The following module contains a simple definition of a polymorphic conditional function if:

module IF
begin

include IEB

variable a: ~ sorts

function if: boo/ X a X a ~ a

variables u, v : ~ a

equations if (F, u, v) = v
if(T,u,v)=u

end IF.

(I)
(2)

Sort variable a ranges over all sorts occurring in the specification, i.e. if IF is combined with a

specification S, if: boolXaXa ~a expands into a non-polymorphic ifs: boo/Xs Xs ~ s for every sort

sE~s+IF·
Let DIF be the union of IF and

module D
begin

sort data

functions di. d2 , ••• , dm: ~data (m>l)
end D.

In DIF the if-function has two non-polymorphic instances, namely ifi,001 :boo!Xboo!Xbool ~boo! and

ifdata :boo! X data X data ~ data. ·
D is trivially w-complete for m > l, but in the degenerate case m = 1 the equation u =d 1 (with u a

variable of sort data) is valid in Iv. From now on m > 1 is assumed.
DIF is not w-complete. The equation

if (X,u,u)=u (a)

is an example of an equation which is valid in Iv1F, but not provable from EvIF· In conventional

programming languages, for instance, equations (l) and (2) hold but (a) does not, because the evalua

tion of X may loop or have side-effects.
The following version of IF is better from the viewpoint of w-completeness:

- 10 - OS.Al

module !Fa
begin

include IF

variables o: ~sorts
u,v,w: ~ 0

X,Y,Z: ~boo!

equations if (X, u, v) =if (X, u, if (-,X, v, w))

end !Fa.

if (X,u,if (Y, v, w))=if (-,X.Y, v,if (X,u, w))
if (X,u,if (Y,u, v))=if (XV Y,u, v)
if (X,if (Y,u, v), w)=if (X. Y,u,if (X • ..,Y, v, w))

if(X, Y,Z)=(X.Y)+(-,X.Z)

(3)
(4)
(5)
(6)

(7)

THEOREM 3.3.1: DI Fa= D +!Fa has the same initial algebra as DIF and is w-complete.

PROOF: (a) IDIFa =IDJF, because "i:.DIFa ="2.DIF and all equations in EDIFa are valid in IDIF· (b) If t is a

"2.DIFa-term of sort boot it can be brought into 8-canonical form (§3.2) because all ifs can be elim

inated from t by means of (7). If t is a "2.DIFa-term of sort data containing distinct Boolean variables

X 1, ••• , Xk (k ;;;;.o) and distinct variables of sort data u 1, ••• , u1 (I ;;;;.O), it can be brought into the

canonical form

or

if (/;,nJ)n,iJ (/;,n -1.f>n -1' · · · , if (l;,i.81' V) ...)) (n ;;;;.2} .

The 8;'s are constants or variables of sort data (i.e. elements of {di. ... , dm,u 1' ... , u1 }), v is an arbi

trarily chosen variable of sort data, and the /;,/s are Boolean terms in B-canonical form, such that

(i) 8;=1=81 (i=l=j)
(ii) /;,; is not of the form F or T
(iiiH;.i;,1= 8 F (i=l=J)

n

(iv) V /;,; = 8 T.
i=I

Two canonical forms are equal in IDIFa if and only if they are syntactically identical modulo commu

tativity and associativity of. and +,modulo the shuffling of (/;,;,8;)-pairs, and modulo the choice of v.

It takes the following steps to bring a "2.DIFa-term of sort data into canonical form:

(SI) Eliminate all Boolean ifs by means of (7).

(S2) Eliminate all ifs from the second argument of other ifs by means of (6).

(S3) Expand the innermost if(l;,,8,8') (if it exists) into if(l;,,8,if(-,1;,,8',v)) by means of (3). The

resulting term satisfies (iv).

(S4) Merge all ifs whose second argument contains the same constant or variable by means of (4)

and (5). The resulting term satisfies (i).

(SS) If at this point the canonical form in statu nascendi is of the form

if(r1n,8n,iJ(T/n-i.8n-1' ... ,if(rii.8i.v) ...)) (n>l),

h · · "d · "b fn(n-l) Ii· f(4)" t en tum it ms1 e out, i.e. tum it y means o
2

app cations o mto

- 11 - DS.Al

The resulting term satisfies (iii).

(S6) Bring all ()/s into 8-canonical form~;.

(S7a) If~; is of the form F for some i, eliminate the corresponding if and 8; by means of (1).

(S7b) If~; is of the form T for some i, the term is of the form if(T,8,v) because of property (iii) and
(S7a). Reduce it to 8 by means of (2). The resulting term satisfies (ii) and is in canonical form.

D

Although, according to theorem 3.4.1, !Fa is w-complete when combined with the simplest possible

D, w-completeness is lost if Dis somewhat more complicated. For instance, the equations

S (if (X,x,y)) =if (X,S (x),S (y })
if(X,x,y).if (X,y,x)=x.y

are valid in IN+!Fa but not provable from EN+!Fa· This can be remedied by adding the distributive
property of if to !Fa:

module !Fb
begin

include !Fa

variables X: ~ boo/
a;r: ~ sorts
u,v: ~ C1

cl>: C1 ~ 'T

equation cl>(if (X,u, v))=if (X, cl>(u), cl>(v))

end !Fb.

(8)

Equation (8) is to be interpreted as follows. If !Fb is combined with a specification S, (8) expands

into n separate instances for every n-ary function fE"'i:.s+IFb by substitution of

("'Axk)f(x1> ... ,xk, ... ,xn) for cl> (l.;;;k.;;;n). For example, one of the instances of (8) is (j=if, k=2)

if (Y,if (X, u, v), w) =if (X,if (Y,u, w),if (Y, v, w)),

which is provable from E1Fa·

THEOREM 3.3.2: S + !Fb is w-complete for every w-complete specification S that does not contain
functions of one or more Boolean arguments or with a Boolean result.

PROOF: Use for every sort s E"'2.s a canonical form similar to the one used in the proof of theorem
3.3.1, but with 8; a term of sorts in S-canonical form. To bring a term into canonical form, follow
steps (Sl)-(S7b) of theorem 3.3.l with two additional steps between (Sl) and (S2), and a slightly

different step (S4):

(Sl.1) Move all ifs to outermost positions by means of (8).

(Sl.2) Bring all maximal if-free subterms (all of which are necessarily of the same sort) into S
canonical form.

(S4') Merge all ifs whose second argument contains syntactically identical S-canonical forms by
means of (4) and (5). The resulting term satisfies (i). D

If S contains functions of Boolean arguments or with a Boolean result (as indeed it will in all real

istic cases), the selective action of the first argument of the if-function gives rise to new equations and

theorem 3.3.2 fails. For instance, suppose an w-complete specification S containing 8 is sufficiently

complete with respect to 8, i.e. all closed "'2.5-terms of sort boo/ can be proved equal to Tor F. Sup

pose furt~er that "'2.s contains a sort data and functions f,g: boo/~ data and h,k: boo/Xboo/ ~data.

In that case some typical equations valid in ls+1Fb but not provable from Es+JFb are

- 12 - D5.Al

if (X,f (X),g(X)) =if (X,f (T),g(F))
if(X + Y,h(X, Y),k(X, Y))=if(X + Y,h(X,-,X),k(X,X))

if(X.Y,h(X, Y),k(X, Y))=if(X.Y,h(T,T),if(X + Y,k(X,-,X),k(F,F))).

(9)
(10)
(11)

Contrary to equations (1)-(8), which are valid in ls+IF for all S satisfying the sufficient

completeness requirement just mentioned, equations like (9)-(ll) are very much dependent on the par

ticular S involved.
If interpreted as a left-to-right rewrite rule, equation (11) is typical of a whole class of rules whose

right-hand sides contain more ifs then their left-hand sides. Application of such rules easily leads to

terms containing an enormous number of alternatives, because in general most of the new branches

only lead to further branches.

3. 4. Combinatory logic
Consider the following algebraic specification of strong combinatory logic:

module CLX
begin

sort F

functions K, S: ~ F
. : FXF ~ F (application)

Note. The infix dot is not written and application
associates to the left, i.e. (Kx):Y is written as Kxy, etc.

variables x,y,z: ~ F

equations Kxy = x

end CLX.

Sxyz=xz(Yz)

S(S(KS)(S(KK)(S(KS)K)))(KK) = S(KK)

S(KS)(S(KK)) = S(KK)(S(S(KS)(S(KK)(SKK)))(K(SKK)))

S(K(S(KS)))(S(KS)(S(KS))) =
= S(S(KS)(S(KK)(S(KS)(S(K(S(KS)))S))))(KS)

S(S(KS)K)(K(SKK)) = SKK

CLX is identical to CL+Ap11 in Barendregt [l]. Hence, according to [l], theorem 7.3.14, CLX is

equivalent to the AKP11-calculus. The last four closed equations (the so-called combinatory axioms)

give CLX the extensional property, i.e. if for two (possibly open) ~CLx-terms f and g not containing

the variable x

ECLx 1- Jx = gx,

then also

ECLx I- f=g.
I

Is CLX w-extensional? That is, does

ECLx 1- Ja= ga for all closed a

imply

ECLx I- f=g?

Plotkin has shown that the AKP11-calculus is not w-extensional (Plotkin [18] and Barendregt [l],

theorelll" 17 .3.30). Hence, CLX is not w-extensional either. Because

- 13 - D5.Al

w-completeness + extensionality => w-extensionality, (1)

CLX is not w-complete. In fact, as far as CLX is concerned the notions of w-extensionality and w

completeness are equivalent. This is not difficult to prove. In view of (1) plus the fact that CLX is
combinatorially complete, it is enough to show that

combinatorial completeness + w-extensionality => w-completeness. (2)

Consider a ~CLx-equation f=g all of whose closed instances are provable from ECLx· Assume
further that f and g contain the same variables x 1, ••• , xk (k ;;;;;=: 1). (If f contains a variable x not in
g, then replace some variable or constant v in g by Kvx, etc.) By combinatorial completeness of CLX
there exist closed terms </> and if; such that

ECLx I- f=<f>x1 · · · xk, g=iflx1 · · · xk

Applying w-extensionality k times gives

ECLx I- <f>=if;.

Hence

and

ECLx I- f=g.

This proves (2).

Two questions I have not succeeded in answering are:

OPEN QUESTION 3.4.1: Are the open equations valid in the initial algebra of CLX recursively enumer
able?

OPEN QUESTION 3.4.2: Does CLX have an w-complete enrichment in the sense of open question 2.1?

If - as would be my guess - the answer to the first question is no, the answer to the second question
must also be no according to theorem 2.3. If the answer to the first question is yes, the second ques
tion is a special case of open question 2.1.

4. TOWARDS AUTOMATIC (PARTIAL) w-ENRICHMENT
Describing semantics by means of term rewriting systems has the advantage of yielding evaluators
that work on both closed and open terms. Their performance on open terms (partial evaluation) is
often disappointing, however, as many more or less trivial simplifications of open terms are beyond
the power of the rewrite rules required for evaluating closed terms (§1.1). In such cases even rudi
mentary w-enrichment may be rewarding, and the question arises whether this can be done automati
cally. (Even if the answer to open question 2.1 is affirmative, partial w-enrichment is the best one can
hope for in many cases. See §3.1.)

While "inductionless induction" or "inductive completion" algorithms (§ 1.4) can sometimes help in
proving the validity of a given potential w-enrichment, they do not help in suggesting significant new
w-enrichments (or, for that matter, in giving w-completeness proofs).

An approach I am currently investigating is automatic partial w-enrichment by means of sets of
enrichment rules. This works roughly as follows. An enrichment rule

P(<Ji. • • • , <Jm, q,1' · · · , q,n) -'» E(<J1' · · · '<Jm, q,1' · · · 'q,n)

is a specification rewrite rule consisting of a specification pattern P and an enrichment scheme E. The
signatures,, of P and E contain sort variables <J; and function variables 4Pj. If P matches the
specification to be enriched S, i.e. if there is an instance of P which is a subspecification of S, the part
of S matched by P is replaced by the corresponding instance of the enrichment scheme E, possibly

- 14 - D5.Al

after renaming the hidden sorts and functions introduced by E to avoid name clashes with the hidden

items of S. Special care has to be taken to ensure that enrichment steps are correct.

This approach has the advantage of being rather natural. Its success depends on whether a large

enough number of generally applicable enrichment rules can be found and on whether the validity of

enrichment steps can be guaranteed.

ACKNOWLEDGEMENTS

While writing this paper I had helpful discussions with Jan Bergstra, Paul Klint, Jan Willem Klop,

and Ed Kuijpers.

REFERENCES

[l] H.P. Barendregt, The Lambda Calculus (North-Holland, 1981).

[2] R.M. Burstall & ~.A. Goguen, Algebras, theories and freeness: an introduction for computer

scientists, in: M. Broy & G. Schmidt, eds., Theoretical Foundations of Programming Methodology

(D. Reidel, 1982) 329-348.
[3] J.A. Bergstra & J.V. Tucker, Algebraic specifications of computable and semi-computable data

structures, Report IW 115179, Department of Computer Science, Centre for Mathematics and

Computer Science, Amsterdam, 1979; to appear in Theoretical Computer Science.

[4] J.A. Bergstra & J.V. Tucker, Initial and final algebra semantics for data type specifications: two

characterization theorems, SIAM Journal on Computing 12 (1983) 2 366-387.

[5] M. Davis, Y. Matijasevic & J. Robinson, Hilbert's tenth problem: positive aspects of a negative

solution, in: F.E. Browder, ed., Mathematical Developments Arising from Hilbert Problems (Ameri

can Mathematical Society, 1976) 323-378.

[6] A.P. Ershov, Mixed computation: potential applications and problems for study, Theoretical

Computer Science 18 (1982) 41-67.

[7] L. Henkin, The logic of equality, The American Mathematical Monthly, 84 (1977) 597-612.

[8] J. Hsiang, Topics in automated theorem proving and program generation, Report UIUCDCS-R-

82-1113, Department of Computer Science, University of Illinois at Urbana-Champaign, 1982.

[9] G. Huet, G. & J.M. Hullot, Proofs by induction in equational theories with constructors, Journal

of Computer and System Sciences, 25 (1982) 239-266.

[10] G. Huet & D.C. Oppen, -Equations and rewrite rules: a survey, in: R. Book, ed., Formal

Languages: Perspectives and Open Problems (Academic Press, 1980).

[ll] N.D. Jones, P. Sestoft & H. S0ndergaard, An experiment in partial evaluation: the generation of

a compiler generator, Report 8511, Institute of Datalogy, University of Copenhagen, 1985.

[12] H.J. Komorowski, A Specification of an Abstract PROLOG Machine and its Application to Partial

Evaluation, Dissertation No. 69, Linkoping University, 1981.

[13] R.C. Lyndon, Identities in two-valued calculi, Transactions of the American Mathematical Society,

71 (1951) 457-465.

[14] R.C. Lyndon, Identities in finite algebras, Proceedings of the American Mathematical Society, 5

(1954) 8-9.
[15] J. Meseguer & J.A. Goguen, Initiality, induction, and computability, Preprint, Computer Science

Laboratory, SRI International, n.d.; in: M. Nivat & J. Reynolds, eds., Algebraic Methods in

Semantics (Cambridge University Press, 1986).

[16] F. Nourani, On induction for programming logic: syntax, semantics, and inductive closure, Bul

letin of the European Association for Theoretical Computer Science, 13, February 1981, 51-64.

[17] E. Paul, Proof by induction in equational theories with relations between constructors, in: B.

Courcelle, ed., Ninth Colloquium on Trees in Algebra and Programming (Cambridge University

Press, 1984).
[18] G.D, Plotkin, The A-calculus is w-incomplete, Journal of Symbolic Logic, 39 (1974) 313-317.

[19] W. Taylor, Equational logic, Houston Journal of Mathematics, Survey 1979.

- 15 - D5.Al

