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PART I 

Non- and Semi-Parametric Maximum Likelihood 

Estimators and the von Mises Method (Part I) 

Richard D. Gill 
Centrum voor Wiskunde en lnformatica, 

Kruis/aan 413, 1098 SJ Amsterdam 

Revised Version, January 1986 

After introducing the approach to von Mises derivatives based on compact differentiation due to REEDS 
(1976), we show how non-parametric maximum likelihood estimators can often be defined by solving 
infinite dimensional score equations. Each component of the score equation corresponds to the derivative 
of the log likelihood for a one-dimensional parametric submodel. By means of examples we show that it 
usually is not possible to base consistency and asymptotic normality theorems on the implicit function 
theorem. However (in Part II) we show for a particular class of models, that once consistency (in a rather 
strong sense) has been established by other means, asymptotic normality and efficiency of the non­
parametric maximum likelihood estimator can be established by the von Mises method. 

Key Words and Phrases: non-parametric maximum likelihood, von Mises method, compact differentiation, 
Hadamard differentiation, asymptotically efficient estimation. 
Mathematics classification: 
Primary: 62G05, 62G20. 
Secondary: 60B12, 60F17, 46A05. 

1. INTRODUCTION 
In a large number of practical situations one meets with the following phenomenon. Estimators are 
derived in a non- or semi-parametric problem by appealing to some generalization of the maximum 
likelihood principle. When centred and scaled by yn these estimators turn out to be asymptotically 
Gaussian (about the true parameter value) with a covariance structure which is of analogous form to 
the inverse Fisher information matrix in a parametric model. In fact the estimators are asymptotically 
efficient in the sense of achieving the asymptotic bounds of BEGUN et al. (1983); see also WELLNER 
(1985) or BICKEL et al. (1987). 

Our aim in these notes is to offer an explanation for these coincidences. Some particular cases in 
which they occur are the following: estimation of an unknown distribution function by the empirical 
distribution function (based on n independent and identically distributed observations); estimation of 
an unknown distribution function by the Kaplan-Meier or product-limit estimator based on n cen­
sored survival times; estimation of cumulative or integrated intensities (hazard rates) in Markov or 
semi-Markov processes by the Aalen-Nelson estimator (empirical cumulative hazard function) based 
on possibly censored observation of the process; estimation of regression coefficients and integrated 
base-line hazard in Cox's (1972) regression model by Cox's maximum partial likelihood estimator; 
estimation of an unknown distribution function in VARDI's (1985) selection bias models (see GILL & 
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WELLNER (1986)); and so on. Of course there are also well-known models where non-parametric max­

imum likelihood fails completely, and some very important models where the question is completely 

open. 
The above examples should make it clear that by a non-parametric model we really mean: a model 

with an infinite-dimensional parameter space, for example a space of distribution functions or cumu­

lative hazard functions. By a parametric model we mean a model with finite dimensional (Euclidean) 

parameter. A semi-parametric model has components of both types. In the examples there are even 

more parallels between non-parametric and parametric maximum likelihood estimation. For instance 

computation of the non-parametric maximum likelihood estimator (NPMLE) reduces to a formal 

parametric MLE problem, with as many parameters as observations. The inverse observed Fisher 

information for this pseudo-problem typically turns out to yield a consistent estimate of the covari­

ance structure of the NPMLE in the original problem. 
In attempting to explain these coincidences between non-parametric and parametric MLE we take a 

deliberately naieve approach. We shall only consider asymptotic results for situations with n indepen­

dent and identically distributed observations, letting n tend to oo (the i.i.d. case). We only consider 

maximum likelihood estimators which are solutions of the likelihood equations (or score equations): 

derivative of log likelihood equals zero. For our large sample results we rely on the 8-method, i.e. on 

first order Taylor expansion. We do need to apply this method in an infinite-dimensional context, i.e. 

as the von Mises method. Here we make use of REEDS' (1976) elegant theory of von Mises expansions 

and von Mises-differentiation based on the so-called compact or Hadamard derivative. However within 

this approach we make the naieve choise of topology on the space of distribution functions: namely 

that based on the supremum norm. Finally we make as many regularity assumptions - on existence 

of derivatives of various kinds, on the legitimacy of the interchange of differentiation and integration, 

etc. - as are needed to make the proofs work. 
Because of all these self-imposed restrictions it is not suprising that our final result is rather weak: 

we can only show (for a certain type of model, and under many regularity conditions) that if an 

NPMLE is consistent in a certain strong sense, then it is asymptotically Gaussian and in fact efficient: 

the limiting covariance structure can be interpreted as the inverse Fisher information, and no better 

limiting distribution is possible. Typical examples suggest that consistency has to be established by 

direct arguments specific for each particular case. However we do at least in general have a form of 

Fisher consistency, which makes proper consistency plausible. 
By restricting the tools we use and concentrating on special cases we only obtain weak results. 

Clearly a more powerful and abstract approach is needed to get a mathematically attractive theory. 

However our approach is at least fairly accessible and it does show that a general theory is worth 

establishing. Also it really does give an explanation for the coincidences we described right at the 

start. The explanation can be summarized as follows: a sensibly defined non-parametric maximum 

likelihood estimator will also be the maximum likelihood estimate in any parametric submodel which 

happens to include or pass through the point given by the NPMLE. For smooth parametric submo­

dels the NPMLE solves the likelihood equations. So even in non-parametric problems we can some­

times consider the NPMLE as a solution of the likelihood equations (score function equals zero) 

corresponding to every parametric submodel passing through it. In fact in many examples the 

NPMLE is uniquely determined by this property, even when attention is restricted to a (sufficiently 

large) subfamily of parametric submodels. Now, supposing the NPMLE to be consistent, we can hope 

to identify its limiting distribution by imitating the traditional proof of asymptotic normality of the 

MLE, which is based on a first order Taylor expansion of the score function. Key roles are played by 

the facts that, at the true parameter value, the score function has expectation zero while its variance 

equals minus the expectation of its derivative. All these properties have analogues in the infinite 

dimensional case, and indeed we can carry through (in Part II) an analogue of the traditional proof. 

In a number of problems the actual definition of the NPMLE has been the subject of much discus­

sion. In these problems we are given a model for continuously distributed observations which does 

not have a single obvious analogue for the discrete case, while in order to define the NPMLE a 
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discrete extension of the model seems to be required. Different discrete extensions sometimes lead to 
different NPMLE's. Our results suggest that, as far as large sample properties are concerned, one can 
better try to extend score functions in as smooth a way as possible than to try to extend the whole 
model is some natural way. 

2. VON MISES CALCULUS AND COMPACT DIFFERENTIABILITY 

2.1. Gateaux, Hadamard or Frechet? 
In these notes differentiation in infinite-dimensional spaces will tum up in various guises. We are 
going to consider estimates as functions of the empirical distribution of the data, and hence need in 
order to apply the 8-method, to differentiate with respect to distribution functions. This is the idea of 
the von Mises method. Also we need to take derivatives of log likelihood and of score functions with 
respect to the parameters of our models, themselves distribution functions or such like. In fact the 
NPMLE will be considered as an implicitly defined function of the empirical distribution function of 
the data, namely as the solution of the likelihood equation (itself depending on model parameter and 
on empirical distribution function). Finally the theory of asymptotic information inequalities for esti­
mation in semi-parametric models is based on differentiation in certain &-spaces of root densities. 

Here we follow REEDS (1976) and FERNHOLZ (1983) (unfortunately Reeds' work is not widely avail­
able) in using compact or Hadamard differentiability to get a really useful von Mises theory. Just as 
Reeds we introduce it in an abstract setting which allows comparison with the more familiar Gateaux 
and Frechet derivatives. Excellent surveys of the whole field are given by AVERBUKH & SMOLYANOV 
(1967, 1968). Especially appropriate is the quotation from Tolstoy which opens the first paper: "How 
simple and clear this is" thought Pierre, "How could I not have known this before". 

Nice applications of Reeds' approach, in proving asymptotic results for the jackknife and the 
bootstrap, are contained in REEDS (1978) and BICKEL & FREEDMAN (1981; Sections 3 and 8) respec­
tively.1 

Let B 1 and B 2 be two locally convex topological vector spaces. In the sequel these spaces will often 
be normed and complete, i.e. Banach spaces, but unfortunately will usually not be separable. Let 
c[>:B 1-'>B2 be some function. How should we define differentiability of cf> at some point x of B 1 ? 
Differentiability means that cf> can be well-approximated by a continuous, linear map near x. But the 
term "well-approximated" can be interpreted in many ways. Let us first define the "remainder" of 
such an approximation, and then give a whole class of ways of saying that this remainder is small 
close to x. 

DEFINITION 1. For given c[>, given x, and a given continuous linear function dc[>(x ):B 1-'>B2 we define 
the remainder of cf> at x + h, Rem(x + h ), by 

cf>(x + h) = cf>(x) + dcf>(x ).h + Rem(x + h) (1) 

Here h varies in B 1, though if cf> is only defined in some neighbourhood of x then Rem(x + h) is only 
defined for h in some neighbourhood of zero. Of course dcf>(x).h =O when h =O, and Rem(x +O)=O 
too. We will say that cf> is differentiable at x, with derivative dcf>(x) at that point, if Rem(x+h) is of 
smaller order than hash tends to 0: 

DEFINITION 2. Let ~ be a collection of subsets of B 1 , let t E Iii. 
Then cf> is ~-differentiable at x with derivative dcf>(x) if 'rt SE~ 

Rem(x+th) -'> 0 as t-'>0 uniformly in hES. 

1. See also PARR (1985a,b). 

(2) 



4 

Different choices of~ now correspond to requiring the linear approximation of cp to be more or less 
uniformly good as one moves away from x in different directions h. Three important and common 
choices are given in the next definition: 

DEFINITION 3. 
When ~ = all singletons of B 1, cp is called Gateaux or directionally differentiable. 
When ~ = all compact subsets of B 1, cp is called Hadamard or compactly differentiable. 
When ~ = all bounded subsets of B 1, cp is called Frechet or boundedly differentiable. 

(S<;;;,B 1 is called bounded if for any neighbourhood U of OEBi, A.U--;JS for all sufficiently large 
A.ER+.) Clearly bounded differentiability (of cp at x ) implies compact differentiabillity, and that 
implies directional differentiability. The derivative dcp(x) remains the same. In applications one often 
determines the form of the derivative by computing the Gateaux derivative acting on h, dcp(x ).h, for a 
collection of directions h which span B 1 • This in turn comes down to computing the ordinary deriva­
tive (with respect to tER) of the mapping t~cp(x+th), at the point t=O. 

When B 1 =R (with the usual topology) all three definitions of differentiability are equivalent. In 
Rk, k > 1, Hadamard en Frechet differentiability are equivalent and strictly stronger than Gateaux 
differentiability. More generally the three are all different. Note also that in Rk, k;;;;. l, Hadamard and 
Frechet differentiability are equivalent to ordinary differentiability. The continuous linear map dcp(x) 

can be identified with the vector of partial derivatives 
3
ocp (x), i = 1, ... , k; each an element of B 2 • 
X; 

Reeds' major point is that in statistical applications where B 1 contains empirical and underlying 
distribution functions and cp(Fn) is some statistical quantity of interest, Gateaux differentiability of cp 

at the underlying or true distribution function F is too weak to be of any use at all in theorem prov­
ing (it only supplies a heuristic tool for suggesting what theorem could be proved), while Frechet 
differentiability is so strong that hardly any interesting statistical functionals cp are differentiable at all. 
These limitations of Gateaux and Frechet differentiation are well illustrated by the results in SER­

FLING (1980; chapter 6).1 On the other hand Hadamard differentiability is exactly attuned to statisti­
cal applictions and nicely separates analytical considerations about cp from probabilistic considera­
tions about Fn. Consider the following theorem, in which Xn might play the role of an empirical dis­
tribution function, considered as a random element of some topological vector space, and p. would 
then be the true distribution function: 

THEOREM I. (THE o-METHOD.) Suppose cp:B 1 ~B2 is Hadamard differentiable at p.EB 1 and measurable 

with respect to the Borel <I-algebras on B 1 and B 2• Suppose Xn is a sequence of random elements of B 1 
~ ~ ~ 

such that n 2 (Xn - p.)~Z (in B 1) and such that n 2 (Xn - p.) is tight. Then 

~ 'il 
n 2 (cp(Xn)-cp(p.))~dcp(p.).Z (in Bz). (3) 

~ 

The theorem is also true when the sequence n 2 is replaced by a sequence of positive real constants 
an~oo as n~oo. In the usual spaces weak convergence implies tightness, but this is not generally 
true ! The proof of the theorem is left as an exercise for the reader. Use the definition of compact 

l. But see also B. R. CLARKE (1983), Uniqueness and Frechet differentiability of functional solutions to maximum likelihood 

type equations, Ann. Statis. 11, 1196-1205. 



differentiability, drawing the following correspondences: 

t ~~uvn x~~/L 

x+th ~~xn h~~vn(Xn-µ,) 

Rem(x + th) ~~vn(cj>(Xn)-cj>(µ,))-dcj>(µ,). yn(Xn -µ,) 
t 
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For reasons we come to later (measurability problems !) we shall hardly ever use exactly THEOREM 
1, but for the time being it should motivate our further exploration of Hadamard differentiability. 
Also it allows us to highlight an important point. In a typical statistical application we start with a 
statistical quantity Tn considered as a function of an empirical distribution function. Subject to their 
containing some representation of Fn and of Tn =cj>(Fn) for possible realizations of an empirical distri­
bution function Fn, the actual choice of the spaces B 1 and B 2 , and especially of their topologies, is up 
to us. Also the definition of cf> acting on elements of B 1 which are not empirical distribution functions 
is up to us. Making the topology on B 1 finer (more open sets, and thereby less compact sets) makes 
Hadamard difffrentiability and measurability of cp easier to verify, but makes weak convergence and 
tightness of n 2 (Xn - µ,) harder to verify. So a delicate trade-off can be made between establishing 
analytical properties of cp and probabilistic properties of Xn, leading perhaps to a different choice of 
topology for each different statistical functional one considers. Reeds is a master in these matters. We 
shall ignore these possibilities by making a naieve choice of topology (based on the supremum norm) 
in all the examples we look at. 

2.2. Properties of Hadamard differentiation 

Characterizations of differentiability. 
Always taking t EIR and hn, h EB 1, we have two very useful equivalent definitions of Hadamard 
differentiability. These are that cp is Hadamard differentiable at x with derivative dcj>(x) if and only if 

Rem(x+thn) 
-----~o 'V 1~0, V hn~hEB 1 t 

and if and only if (when B 1 is a metric space) 

(4) 

Rem(x+thn) 

1 
~o 'V 1~0, 'V compact K<;;;,B 1 and sequences hn with d(hn,K)~O. (5) 

One can also replace "t" by elements of a sequence tn. Also one can restrict attention to tn >0 in 
each case, taking limits as just n~oo. 

Differentiation tangentially to a subspace. 
We shall find it extremely useful to consider a weaker kind of Hadamard differentiability in which we 
only consider, in (4), sequences hnEB 1 with limits hEH where His a subspace of B 1• We say then 
that cp is Hadamard differentiable (at x) tangentially to the subspace H : taking again t EIR and 
hn EB 1, we require 

(6) 

This is stronger than supposing cp to be differentiable (at x) inside or along or restricted to hn in the 
subspace H. We will also apply definition (6) in the case when cp is defined on some subset E <;;;,B 1 
(generally not a subspace itself), but possessing a tangent space H at x: for all h EH there exist 
hn~h, tn( EIR + )~O, such that x + tnhn EE 'V n . When cp is differentiable tangentially to H, its 
derivative dcj>(x) is only defined as a continuous linear map from H to B 2 • However when B 1 is a 
Banach space, extensions from B 1 to B2 exist (Hahn-Banach theorem). 
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The chain rule. 
A most important property of Hadamard differentiation is that it satisfies the chain rule: if cp:B 1 ~B2 
and l{l:B 2~B3 are Hadamard differentiable at xEB 1 and c/>(x)EB2 respectively, then l{locp:B 1 ~B 3 is 
Hadamard differentiable at x with derivative dlf;( cp(x) ).dc/>(x) (a continuous linear map from B 1 to B 3 ). 

In fact Hadamard differentiability is the weakest form of differentiation which satisfies the chain rule, 
and yet another equivalent definition is: cp is differentiable at x if and only if for all lf; : ~~B 1 which 
are differentiable (in the ordinary sense) at 0 and satisfy lf;(O)=x, cp0 l{I : ~~B2 is also differentiable 
(in the ordinary sense) with derivative dc/>(x ).dl[;(O). 

The chain rule also holds for Hadamard differentiation tangentially to a subspace provided the sub­
spaces match up properly. 

Inverse and implicit function theorems. 
Since we are going to study estimators which are implicitly defined as solutions of an estimating equa­
tion, it is very natural to hope that an abstract version of the implicit function theorem will be appli­
cable. Supposing l{;:B 1 XB2~B2 to be a given function, the implicit function theorem gives condi­
tions for existence and differentiability of a mapping cp:B 1 ~B2 which supplies a solutionyEB2 to the 
equation l{l(x,y)=O, for any given xEB 1: so cp must satisfy l{;(x,c/>(x))=O (perhaps just in the neigh­
bourhood of a particular point x 0 EB 1 ). Such a theorem also identifies the derivative of cp in terms of 
the partial derivatives d1 l{I and d2lf; of o/ with respect to x and y : One expects 

dc/>(x) = -[d2o/(x, c/>(x))r 1 d1lf;(x, cp(x)). 

REEDS (1976) gives a version of such a theorem for Hadamard differentiation. He notably requires 
B 2 to be a Banach space and l{I to be continuously differentiable (with respect to both arguments 
jointly) in a neighbourhood of (x 0 ,y0 ) where l{l(x0 ,y0 )=0. Continuous differentiability means that the 
derivative dl{l(x,y) varies continuously (with respect to the topology of uniform convergence on com­
pact subsets of B 1 X B 2; see REEDS (1976) Appendix A) 1 as the point (x,y) varies at which the 
derivative is taken. By means of some examples we later show that such a theorem will not be appli­
cable to the NPMLE in the problems which motivated this study; at least not when the naieve choice 
of topology is made: continuous differentiability fails to hold.2 We did not succeed in getting around 
this problem by use of a more sophisticated topology. However Reeds makes impressive use of the 
implicit function theorem when studying (finite-dimensional) M-estimators. 

An alternative and far less deep type of implicit function theorem is used by FERNHOLZ (1983). By 
explicitly assuming existence and a kind of pre-differentiability of the solution cf>, she obtains 
differentiability and identifies the derivative as before under far weaker conditions on lf;. In particular 
l{I need only be differentiable at the point (x 0 ,y0 ). We essentially take this approach (the other having 
failed), though since pre-differentiability is really as hard to verify as differentiability itself, we prefer 
for simplicity to assume that too! 

Similar remarks to the above can be made on the subject of inverse function theorems, concerning 
the existence, differentiability, and identification of the derivative of an inverse cp=l[;- 1 :B 1 ~B2 of a 
given mapping o/: B2~B1. 

l. With continuous differentiability, Gateaux, Hadamard end Frechet theories more or less coincide; see REEDS (1976; Appen­

dix A). For bootstrap and jackknife applications it seems as though continuous differentiability is required and hence in effect 

Frechet differentiability; see REEDS (1978), BICKEL & FREEDMAN (1981) and PARR (1985a,b). However an important role is still 

played by choice of topology. 
2. This is a very delicate matter. There are errors is REID (1981) and in CROWLEY & TSAI (1985) concerning exactly this point. 
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2.3. Examples. 
The following simple examples illustrate the different kinds of problem which can arise when applying 
the previous theory, and in particular Theorem 1, to proving asymptotic normality of a statistical 
quantity, cons idered as a function of the empirical distribution function. Some of the problems are 
due to our naieve choice of topology on the space of distribution functions: namely the topology 
based on the supremum norm. 

The examples concern independent and identically distributed observations on the real line. For the 
sake of familiarity we assume in fact that the observations are in the interval [O, 1 ]; however this is just 
a question of notation. The restriction to the real line is crucial, and it is perhaps only for distribution 
functions on l!l 1 that the supremum norm is an appropriate metric at all. We make this restriction 
because in later application to non-parametric maximum likelihood estimation we work with parame­
ters which are distribution functions or cumulative hazard functions on the real line. The observa­
tions may be multivariate. 

The specific examples we consider here are the sample median or another sample quantile, and the 
two-sample Wilcoxon test. Thus if Fn and Gm are empirical distribution functions based on indepen­
dent random samples of size n and m from distributions F and G on [0,1] respectively, we look at 

I 
asymptotic normality of cf>(_Fn)=F;; 1(p), pE(O, 1) and of cf>(_Fn,Gm)= J, Fn<x)dGm(x). We want to 

0 -
obtain these results by using only the well-known weak convergence of n 2 (Fn -F) in D[O, 1] (and 
similarly for Gm) and differentiability of the function .c/> in each case. The first example is purely illus­
trative; however the second is relevant to non-parametric maximum likelihood estimation since the 

functional (F, G)~ J FdG plays an important role in very many of the examples from survival analysis, 

Markov processes, etc. 
To start with we consider a general one-sample functional cf>(_Fn) with Fn considered as an element 

of D[O, I]. It is well-known that yn(Fn - F) converges weakly to the process B 0°F, where B0 is a 
Brownian bridge on [O, l], and weak convergence holds with respect to the Skorohod topology on 
D[O, l] defined by one of the Skorohod metrics J. Unfortunately (D[O, l],J) is not a topological vector 
space: addition is not a continuous operation with this topology. So an immediate application of 
Theorem 1 is thwarted! We therefore work with (D[O, l], 11·11) where 11·11 denotes the supremum norm 
on D[O,l]:llxll=sup1e[O,IJlx(t)j. Now D[O,l] is a topological vector space, in fact it is

1
a Banach space, 

but non-separable. We must now investigate weak conyergence and tightness of n 2 (Fn -F) in this 

new space. However an immediate problem is that n 2 (Fn - F) is not even a random element of 
(D[O, 1 ], II· II): i.e. the mapping from the underlying probability space U (on which the random sample 
of size n is defined) to D[O, 1] is generally not measurable. Consider the case n = 1 and F = uniform 
distribution on [O, l]. So F 1(t)= 11u, 11(t) where u-uniform [O, I]. Let B C[O, I] be arbitrary, and let 

I 
0l,={xE[O,l]:llx-l[t,JJll<2}, 

Now 0l, is open so U 0l, = OB is open top. But the subsets of U { U EB} and { F 1 EOB} are identical. 
teB 

So if the mapping from wEU to F 1 ED[O,l] were measurable, {UEB} would be an event for every 
B c [O, 1 ]. In particular it would be possible to assign a probability to { U E B} for every B c [O, I]. But 
this is equivalent to extending Lebesgue-measure CJ-additively to all subsets of [O, l], which is impos­
sible. 

This embarrassing but only technical problem can be avoided in several ways. Reeds takes an 
approach based on property (5) of Hadamard differentiation and inner probability arguments. He 
shows that for continuous F, V't:>O, 38n~O and a compact KC(D[O, l], ll·ll)=B 1 such that 

P.(dist( yn(Fn - F), A.}~8n) ~ 1-t: V'n 

(P. denotes inner probability). Then (5) shows that if c/>:B 1 ~B2 is Hadamard differentiable at F, and 

if 
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p 

is a random variable(!) then ynRem(Fn)-'>0 as n-'>oo. In each specific application easy direct argu-

ments show that d#._F). yn(Fn-F) is asymptotically normal (d#.,F) is a linear map so the central 
limit theorem can be applied) giving at last the required result. 

Here we use an alternative solution (mentioned by Reeds too) based on property (4) of Hadamard 
differentiation and the Skorohod-Dudley theorem. According to this theorem if Xn is a sequence of 

6j) 

random elements of a metric space such that Xn-'>X as n-'>oo, then there exists a probability space 
6D 6D a.s. 

with defined on it X' n = Xn and X' = X such that X' n--'> X'. This is known as a Skorohod-Dudley con-

struction. We also need the specific fact that if Xn-'>X in (D[O, l],J) and x is continuous then Xn-'>X in 
(D[O, l], IHI). These ingredients allow us to prove the following theorem, which replaces Theorem 1 in 
applying Hadamard differentiation to our examples: 

THEOREM 2. Suppose <J>:(D[O, l], 11·11)-'>R is Hadamard differentiable at F and suppose #..Fn) is a random 
variable, where Fn is the empirical distribution function based on n independent and identically distributed 
observations X 1, • • • , Xn from a continuous distribution F on [O, 1 ]. Then 

(7) 

where Z=B0oF and B0 is a Brownian bridge on [0,1]. In fact d<J>(F).Z is a normally distributed random 
variable with mean zero and (finite) variance that of 

d#._F).(F1 -F) = I C(<J>;F,X1), 

the influence curve of <P<..Fn) evaluated at x = X 1: 

,i..1(1-t)F+tl )-,i..1F) 
I C(<J>;F,x)=lim 'I'\ [x, I] 'I'\ 

1->0 t 

We sketch the main part of the proof of this theorem, ignoring measurability questions. Since 
6j) 

yn(Fn -F)-'>Z in (D[O, l],J) we are guaranteed the existence of a probability space with, defined on 
6D 6D a.s. 

it, random elements Z'n=yn(Fn-F), Z'=Z and Z'n-'>Z (J). From Z'n we can recover random 
-~ 6j) 

elements F'n =n 2 Z'n + F; this is an empirical distribution function and F'n =Fn (J). Since Z' has 
a.s. 

continuous sample paths when F is continuous, we have Z'n--'> Z' (IHI). Now Hadamard 

differentiability and ( 4) give immediately 
a.s. 

yn(#._F'n)-#._F))-'>d<J>(F).Z' 

By equality of distributions we conclude (7).1 

A few remarks on this theorem are in order. Firstly, note that in the proof we only actually needed 
that </> is differentiable tangentially to C[O, 1]; cf. definition (6). This fact is vital for our applications. 
Secondly, the theorem was stated and proved for the empirical distribution function in the i.i.d. case 
and for real-valued <J>, so that we could add the characterization of the limiting distribution in terms 
of the well-known influence curve, but the general idea of using a Skorohod-Dudley construction in 
order to switch from convergence (J) to convergence (11·11) has far wider applicability. Finally, return­
ing to the special i.i.d. case, we could also have given a version of Theorem 2 in which F is not 

I. For a recent survey of the influence curve, see HAMPEL et al. (1986). 
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required to be continuous, since a Skorohod-Dudley construction with sup-norm convergence is still 
possible by means of some extra tricks. Then of course we do need proper Hadamard differentiability 
of cf>. 

Now that we have a usable theorem we can tum to our specific examples. They illustrate a new 
collection of problems: how to extend a given cf> from { d.f.'s on [O, l]} to all of D[O, l]. They also 
demonstrate the usefulness of the concept of differentiability tangentially to a subspace. Reeds, 
Fernholz and more lately ESTY et al. (1985) and TAYLOR (1985) treat this and similar problems by 
constructing continuous modifications of empirical distribution functions and then working in C[O, 1 ], 
avoiding both measurability and differentiability difficulties. On the other hand this means that their 
theorems apply in the first place to approximations of the original statistics of interest, and are only 
applicable when the underlying distribution function F is continuous. Justification of all these ad hoe 
approximations distracts from the simplicity of the basic 8-method. 

Consider a statistic Tn which is a p'th quantile of an empirical distribution function Fn; i.e. 

(8) 

This inequality does not generally uniquely define Tn as a function of Fn but that will not be impor­
tant. We do suppose that Tn is a function of Fn (i.e. is a symmetric function of then observations). So 
we are given Tn =cf>(Fn) for some function cf> in the set of distribution functions, and (8) holds. Now 
we claim that we can extend cf> to all x in a neighbourhood in (D[O, l], 11·11) of the true distribution 
function Fin such a way that the analogue of (8) still holds: 

x(cf>(x)-)~p~x(cf>(x)) (9) 

for all x. For instance, for each x ED[O, l] which is not a distribution function, define cf>(x)=sup 
{t:x(t)"4J }. Now we show that such a function is Hadamard differentiable tangentially to C[O, l] at 
a point x = F which is a distibution function, differentiable at its p'th quantile with a positive deriva­
tive there. To make the notation lighter we shift p and the p'th quantile to the origin and work with 
D[-1, l] instead of with D[O, l]. 

LEMMA 1 Let xED[-1,l] be fixed and nondecreasing, and satisfy x(O)=O, x is differentiable at 0 with 

positive derivation x'(O). Let hn be a sequence of elements of D[-1, l] and tn a sequence of elements of 
1\-11 

IR+ such that that hn'°"'hEC[-1,l] and tn'°"'O as n'°"'oo. Define xn=x+tnhn and suppose OnE[-1,1] 

satisfies 

(10) 

Then 

lf;n = t;; 10n'°"'-h(O)lx'(O) as n'°"'oo. 
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Before proving the Lemma, we illustrate the result by a sketch of the behaviour of Xn and x near the 

origin. Each coordinate axis has been rescaled by a factor 1 I tn. 

FIGURE 1 : Derivative of <P(x)=x- 1(0) 

PROOF OF LEMMA 1. Suppose that we have already established that the rescaling in Figure 1 is legiti­

mate; i.e. lim suplif.tnl<M for some M<oo. Consider t;;'xn(tnu) for uE[-M,M]; so if.tnE[-M,M] 

too for all large enough n. We have for u E[-M,M] 

Xn(tnU) = X(tnu)+tnhn(tnU) (11) 

x(tnu) = tnu.x'(O)+o(tn) uniformly in u. (12) 

So substituting (12) in (11) and (11) in (10) with u =if.in, On =tnif.tn, we obtain 

tnif.tn .x'(O)+o(tn)+tnhn(tnif.tn-) .;;;;Q.;;;; (13) 

.;;;;tnif.tn.X'(O)+ o(tn) + tnhn(tni/Jn) 

As n~oo, tno/n~o, so by uniform convergence of hn to hand continuity of hat 0 we obtain on divid­

ing (13) throughout by tn (lim sup o/n).x'(O)+h(O).;;;;O.;;;;(lim inf o/n).x'(O)+h(O) or 

lim o/n = -h(O)!x'(O). 
It remains to establish that lim sup lo/nl<oo. Now because x'(O)>O and x is nondecreasing 3a>O 

and c>O such that 

x(u);;;;.,cu O.;;;;u.;;;;a 

x(u);;;;.,ca a.;;;;u.;;;;l 

Let A <oo be an upper bound to lhnl on [-1, l] for all n. Then 

{

cu-tnA o.;;;;u.;;;;a 
Xn(u) = x(u)+tnhn(u);;;;., -t A ,,;:::: ,,:::::1 ea n a'-""u~ 

Thus if n is sufficiently large that ea - tnA >0, we have Xn ( u) >0 for u > tnA I c (see Figure 2). Similarly 
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Xn(u)<O for u<-tnAlc for large enough n. Since Xn((Jn-):s;;;,O:s;;;,xn(On) we must have IOnl.;;;;;,tnAlc for 

large enough n and hence lim sup llfinl:s;;;,A/c<oo. D 

FIGURE 2: Proof of lim supll/Jnl<oo. 

Taking the remarks after (4) and (5) in subsection 2.2. into account, we obtain the following corol­

lary: 

COROLLARY 1. Let x in D[O, I] be such t~at x is nondecreasing, differentiable at the point OE(O, 1), and 

x(O)=p, x'(O)>O. Suppose <1>:D[O, l]'°"'[O, l] satisfies 

y(</>(y )- ).;;;;;,p :s;;;,y(<l>(y)) 

for ally in some neighbourhood of x. Then</> is Hadamard differentiable at x tangentially to C[O, l] with 

derivative 

d</>(x).h = -h(O)/x'(O). 

Note that the derivative is indeed a continuous linear map from (D[O, l], 11·11) to ~. Combining this 

with Theorem 2 gives : 

COROLLARY 2. If Tn is a p'th quantile of an empirical distribution function Fn based on a random sam­

ple of size n from a continuous distribution F with F(O)=p, F differentiable at 0 with F'(O)>O, then 

n + (T. -o)-!- Bo(F(O)) ::,N [o p(l -p) l · 
n F'(O) ' F'(F- 1 (p ))2 

We have actually shown that</> is Hadamard differentiable tangentially to {h ED[O, l]:h is continuous 

at 8}. This enables one with a little extra effort to drop the restriction in Theorem 2 that Fis con­

tinuous (though the conditions on Fat (J are still needed !). 

Though we have restricted attention to a quantile of an empirical distribution function based on a 

random sample, the method of proof applies to obtaining the limiting distribution of an inverse of 

any one-dimensional empirical process: we just need continuous sample paths of the limiting process. 

Also the method can be extended to give, via differentiability of a suitably defined extension of the 
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mapping F ~p- I, weak convergence of the whole quantile process. For a similar approach see VER­
VAAT (1972). 

In our second example we are again confronted with the problem of extending a functional of 
empirical distribution functions to D[O, 1]. We omit the details of the application to the Wilcoxon 

statistic, but just recall that this can be contructed from the mapping (F,G)~ J_00 

FdG for two distri­
bution functions F and G. We shall investigate the differentiability of this rat'Ber simple mapping. 
Surprisingly this is not a trivial matter. 

I 
Consider a mapping <f>:(D[O, 1 ])2 ~R which is such that </>(x,y) = J, xdy for x,y ED[O, 1] which are 

both non-decreasing. How can we define </>(x,y) for other x and y, wfuch may for instance both be of 
unbounded variation ? One possible definition is 

I 
<f>(x,y) = lo xdyi 

where y i is the smallest non-decreasing function which is larger than or equal toy itself. We shall 
later show this (arbitrary) choice of extension is not crucial; for the time being we just take this par­
ticular choice for the sake of convenience. 

I 
LEMMA 2. The mapping <f>:(x,y)~ J, xdyi from (D[O, 1])2 to R is Hadamard differentiable with respect 
to the supremum norm tangentialiy

0 
to D[O, 1] X C[O, 1] at a point (x,y) which is such that x is non­

decreasing and y is strictly increasing. The derivative is given by 

I I 
d</>(x,y).(h,k) = lo xdk +lo hdy 

where the first integral (with respect to k) is defined by formal integration by parts. 

Before proving the Lemma we note that the form of the derivative is easily established by computing 
the partial derivatives of </> with respect to x and y separately. Also we have not specified whether the 
integration from 0 to 1 is over the interval (0, 1] or [O, 1] (in the latter case one usually adds the con­
vention y(O-) = 0.) The result is true in both cases as long as the same convention is used throughout. 

PROOF. Suppose the sequences tn ER+, hn ED[O, l] and kn ED[O, l] satisfy tn~o, hn~h ED[O, l] and 
kn ~k E C[O, 1 ]. Let (x,y) be as described. We must establish that 

t;; 1 Rem(x+tnhnoy+tnkn) 

=t;; 1(j(x+tn hn)d(Y+tnkn)i- J xdy-tnJ xdkn 

-tnfhndy)~O as n~oo, 

where the integrals are taken over (0, l] or [O, l] as appropriate. We must also verify that 

(j xdkn ,fhndy)~(j xdk ,jhdy) as n~oo, 

(14) 

i.e. that the derivative is a continuous linear map, but this is easy. Now the expression on the right 
hand side of (14) can be rewritten as the sum of two terms: 

t;; 1 (jxd(Y+tnkn)i- Jxdyi-tn/xdkn) (15) 

+ (jhnd(Y+tnkn)f- fhndyi). 

To show the first term converges to zero, by integrating by parts it suffices to show that 

t;; 1((Y+tnkn)i -yf)-kn~o as n~oo (16) 

i.e. differentiability of the mapping "i ", tangentially to C[O, 1 ], at a pointy which is strictly increasing. 
For the second term of (15), it suffices to show that 
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(17) 

if (hn,Yn)~(h,y) in (D[O, l],11-11) and satisfies furthermore 1irn sup fldYnl<oo, and hence also 

fldyl<1irn sup fldYnl<oo. 
To prove (16) we note that kn~k, with kEC[O, l], implies that 

V'e>O 3no,8:n;;;;.no ,lu-vl<8~lkn(u)-kn(v)l<e. 

Suppose also llknll.;;;;c<ooV'n and 

inf(y(u+8)-y(u))='IJ>0 Oo;;;;;uo;;;;;l-8 

(here we use the assumption that y is strictly increasing). Now for tn <'1J/2c, n ;;;;.n0 we find for each 

VE[O,l] 

y(v)+ tnkn(v).;;;;sup (y(u)+tnkn(u)) = 
u.;;v 

= sup (y(u)+tnkn(u))o;;;;;y(v)+tnkn(v)+tn£ 
v-8.;;u.;;v 

because for u<v-8, we havey(u)<y(v)-'IJ and tnkn(u)<tnkn(v)+2tnc, hence 

y(u)+tnkn(u) <y(v)+tnkn(v)+2tnc-'lj< 

<y(v)+tnkn(v). 

But from (18) we find 

lt; 1 [(y+tnkn)'t(v)-y(v))-kn(v)lo;;;;;e 

Since e was arbitrary, this establishes (16). 

To prove (17) we note that for given e>O one can choose O=u0 <u 1 < · · · <um= 1 such that 

Now 

{

lhn(v)-hn(ui)l<e '1'n , 

VE[Ui>Ui+I)=/i~ lh(v)-h(ui)l<e 

= ~ [hn(ui) h, dyn-h(ui) l, dy] 
I 

+~ [£
1

(hn-hn(ui))dyn-J;
1

(h-h(ui))dy]. 
I 

(18) 

As n~oo the first sum converges to zero. The second sum, in absolute value, is less than or equal to 
I I 

e(lo ldYnl+ lo ldyi). So 
I I I 

lim sup 1£ hndyn- lo hdyl.;;;;2 dim sup lo ldYnl 

Since e was arbitrary, this gives the required result. D 

Careful inspection of this proof shows that one can actually prove differentiability tangentially to 

D[O, l]X {kED[O, l]: k is continuous where y is continuous, constant on intervals where y is constant } 

at a point (x,y) where x and y are both non-decreasing. Thus we can obtain a perfectly general result 

on asymptotic normality of the Wilcoxon two-sample test statistic (i.e. without any continuity or 

strict monotonicity restrictions on the underlying distribution functions F and G). Also, the result 

can easily be extended to prove differentiability tangentially to D[O, I] X C[O, I] of the mapping 
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<1>:(D[O, 1])2 ~D[O, l] defined by <l>(x,y)= {xdyf. This can be applied in the many examples from sur­

vival analysis (e.g. estimation of a cumtlative hazard rate, k-sample tests) which involve the func-

tional <1>:(x,y)~ {xdyf. 
However there0 is also a negative aspect to LEMMA 2. The functional <I> is only differentiable at a 

point in (D[O, 1))2 satisfying monotonicity properties, and is clearly not differentiable in a whole neigh­

bourhood of such a point, and certainly not continuously differentiable.1 So the implicit function 

theorem cannot be applied to proving existence and differentiability of solutions to equations involv­

ing this functional; at least not with the present choice of topology on D[O, l]. 

The proof of Lemma 2 appears quite complicated, and one may wonder whether or not a simpler 

proof is possible. In fact the last part of the proof is actually a standard result from analysis called 

Helly's theorem (see SMIRNOV 1972). One can see exactly the same proof being carried out in a statist­

ical context in BRESLOW & CROWLEY (1974) and in many other papers. Perhaps one can say that the 

contribution of Hadamard differentiability in such a context is simply to show that what is being 

done is just a verification of differentiability; for instance the whole proof of Breslow & Crowley truly 

is "just" an application of the ll-method.2 Also, these few examples may appear quite complicated, 

but once one has established differentiability of a few key functionals, the chain rule yields 

differentiability of a huge class of composite functionals and the elegance of the approach becomes 

apparent. 
We close this section with a discussion of the role of the particular extension (from distribution 

functions to D[O, l]) which has to be chosen for each functional before differentiability can be verified. 

The following Lemma shows that this choice is irrelevant. So our problem with verifying 

differentiability in the examples did not derive from an inappropriate extension. 

LEMMA 3. Suppose xEECBI> <t>:E~B 2, and Eis a neighbourhood of x. Suppose there exists a continu­

ous linear map d<t>(x):B 1 ~B2 such that for all tn~o (tnEIR) and hn~hEB 1 such that Xn=x+tnhnEE 

for all n, 

t;; 1 (<l>(x + tnhn)-<l>(x))~d<l>(x).h as n~oo . 

Then <I> can be extended to B 1 in such a way that it is differentiable at x, and any such extension has 

derivative dcp(x) at x. 

PROOF. The existence of an extension, differentiable at x, is easily established by the choice 

<l>(x+h)=<l>(x)+d<t>(x).h for x+hfl.E. The fact that for given O-=/=hEB 1 and for arbitrary t:>O and an 

arbitrary neighbourhood of h one can find t'EIR with O<Jt'j<t: and h' in the neighbourhood with 

s + t'h' EE shows that this extension is indeed differentiable with derivative d<l>(x). The same fact 

shows also that any differentiable extension has the same derivative. D 

A similar result can be given for differentiability tangentially to a subspace. For such functionals as 

(x,y)~ { xdy, naturally defined for x and y of bounded variation on [O, l], one can note that the set 

of functfhns of bounded variation in D[O, l] is dense in D[O, l] (under the supremum norm topology). 

I. One can easily exhibit sequences Xn-'>X, kn-'>k such that J Xndknf> J xdk. 

2. One can complete a von Mises treatment of the product-limit estimator by proving Hadamard differentiability of the func-

tional X-'> fl(l +dx); see JOHANSEN (1977), GILL & JOHANSEN (1987). 
0 
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3. NONPARAMETRIC MAXIMUM LIKELIHOOD ESTIMATION 
Much literature is devoted to discussions of how a nonparametric maximum likelihood estimator 

(NPMLE) should be defined; see especially KIEFER & WOLFOWITZ (1956), SCHOLZ (1980) and JOHAN­

SEN (1983).1 From the point of view of large sample theory these discussions have been, at least till 

now, irrelevant: there is also no theory of large sample properties of NPMLE's which is relevant to 

any interesting practical examples. 
Two points are central in these discussions. Firstly, since typically no dominating measure exists in 

such problems (think of the problem of estimating an arbitrary unknown distribution function F) one 

cannot define the NPMLE by just "maximizing a density". Kiefer & Wolfowitz's approach is to con­

sider pairwise comparisons only. So we say that a is an MLE based on data X from the model 

{Pa :aE<!e}, where a may be infinite-dimensional and Pa is the distribution of X on the sample space 

'!)(, under a, if 

dP· dP 
_a (X);;a.-a (X) 

dµ. dµ. 

for all aE<!e and µ.»P;., Pa; so we take a differentµ. - e.g. Pa+Pa' - when comparing each 

a, a' E<!e (Scholz addresses the problem that dP al dµ. is only defined a.e. -µ., so this definition depends 

on an arbitrary choice of versions of Radon-Nikodym derivatives). 

Secondly, even with this sensible definition, an MLE often just does not exist. Consider for example 

the model: X 1, ••• , Xn is a random sample from a continuous distribution F. The empirical distribu­

tion function Fn should be the NPMLE, but unfortunately it is discrete and hence not in the parame­

ter space. In such a simple example an obvious discrete extension of the original continuous model 

exists. However in more complicated models for an essentially continuous phenomenon - e.g. Cox's 

(1972) regression model - several different discrete extensions of the model can be constructed, each 

a natural extension from some point of view, but each leading to a different NPMLE. Typically, at an 

underlying "continuous" point in the model, the different estimators are asymptotically equivalent. 

See JOHANSEN (1983) and JACOBSEN (1984) for some examples of this. 

Our approach suggests that this search for "the correct discrete extension" of a given continuous 

model has been addressing the wrong criteria. If one is interested in NPMLE's because of their hope­

fully good asymptotic properties at a point in the original model, one should try to extend score func­

tions (or likelihood equations) from continuous to discrete points in the parameter space in as smooth 

a way as possible, in particular so as to obtain differentiability at an underlying continuous point in 

the model. One must be able to approximate a continuous point arbitrarily well with discrete ones, 

not vica-versa. The extended score function at a point a in the extended parameter space need not 

even correspond to an actual model - i.e. a distribution Pa - for the observations X. 

We shall return to this second point later. For the time being, we will follow the Kiefer-Wolfowitz 

definition of an MLE and suppose that our parameter space is large enough that it exists. By means 

of examples, we show that the NPMLE is often determined as the solution of the likelihood equations 

for a collection of smooth parametric ~ubmodels. These equations are in fact precisely the "self­

consistency" equations introduced by EFRON (1967) and more recently studied, using von Mises 

methods based on Frechet differentiability, by CROWLEY & TSAI (1985). 

Suppose we have data X coming from some model {P a:aE<!e} where the parameter space a is some 

large (i.e. infinite dimensional) collection of e.g. distribution functions, cumulative hazard functions, 

or pairs, each consisting of such an object together with a Euclidean parameter. Our claim is that in 

many such examples, one can construct mappings <P(_a,h,8)E&:aE@.,hEH,8EIR such that <P(_a,h,O)=a 

for all h. Thus for each aE<!e and hEH, the model {P<P(a,h,O):OEIR} is a one-dimensional parametric 

submodel of the original model, which passes (at 8=0) through the point Pa· Here H can sometimes 

I. Also JACOBSEN (1984) and WANG (1986). We do not discuss here the alternative ways of adapting the maximum likelihood 

principle employed in the method of sieves, GRENANDER (1981); or the method of penalized likelihood, see GEMAN & HWANG 

( 1982) for a comparison of these two principles. 
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be interpreted as a set of directions, or as indexing the possible directions with which such a 
parametric sub-model passes through the point Pa. Later (in Part II) we also consider two­
dimensional parametric submodels generated by mappings q,(a,h,k ;O,lf;) within which our one­
dimensional submodels are nested: cp(a,h,O)=cp(a;h,k;O,O)=q,(a;k,h;O,(}) for all a,h,k,O. 

Now if {P <P(a,h,O):OER} is a dominated family of probability measures for each a and h, if the 
corresponding density is a differentiable function of(} for all x E'X, and if an NPMLE a=a(X) exists, 
then we must have: 

(19) 

where 

Uh(a;X) = :(}log lik (O,X;a,h)lo=o (20) 

and 

1ik (O;x;a,h) = dP ~:h,8) (x) (21) 

for a suitably chosen dominating measure µ=µ{a,h). In many examples a(X) is actually uniquely 
determined by the equations (19). 

In other examples, modelling a continuous phenomenon, an NPMLE according to the Kiefer­
W olfowitz criterium may not exist and correspondingly (19) may not have a solution. Howev~r it 
often then happ~ns that the function Uh(a;X) can be extended in a natural way from aEct to aEct for 
some larger set@, on which (19) does have a solution. 

Let us illustrate these ideas by a series of examples. 

EXAMPLE 1. The empirical distribution function. 
Suppose X 1, ••• , Xn are a random sample from some distribution function F on Rd, which is com­
pletely unknown. So we identify the parameter a with F and the parameter space et with ~ the set of 
all d.f.'s on Rd. Let H be the space of all bounded measurable functions on Rd. For any d.f. F, any 
h EH, and for all (}ER 1 sufficiently close to 0, define a distibution function q,(F,h, 0) absolutely con­
tinuous with respect to F by 

.~ _ I+Oh 
dF(F,h,O) - -j-(I_+_O_h)-dF-

Then the distribution of X=(X1, ••• ,Xn) under cp(F,h,O) is dominated by its distribution under F 
itself, with Radon-Nikodym derivative 

So 

and 

n 1 +Oh(X) 
lik (O;X;F,h) = II I 

i=I j(l +Oh)dF 

log 1ik (O;X;F,h)= :Llog(l +Oh(X;)) - n logj(l +Oh)dF 

Uh(F;X) = :(} log 1ik (O;X;F,h)llJ=O 

= :Lh(X;)-n jhdF 

= n j hd(Fn - F)=n j (h - j hdF)dFn 

where Fn is the empirical distribution function based on X 1, ••• , Xn. So the likelihood equations 
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( 19) reduce to 

n j hd(Fn - £} = 0 'tfh EH (22) 
A 

which has the unique solution F=Fn. In fact H could have been reduced to the collection of qua-
drant indicator functions 1(-oo,xJ•xERd, in which case (19) becomes 

A 

n(Fn(x) - F(x))=O 'rfxERd (23) 

Typically we will find that the likelihood equations can be reduced to a collection "of the same 
dimension" as the parameter space te. In the i.i.d. case it is always so that the likelihood equations 
depend on the data through its empirical d.f., moreover the dependence is linear. Thus considering 
Uh for each h EH as the component of a vector (or evaluation of a function) U, we rewrite (19) as 

nU(an,Fn) = 0 (24) 

where U maps <'.eX {empirical d.f.'s } to a new space of similar structure to ~ and where U is linear in 
Fn. Under the usual interchange (if valid) of expectation and integration, the expected side of the left 
hand sides of (19) and (24) are zero and we have Fisher consistency of the NPMLE an: letting Fa 

denote the d.f. of one observation under Pa• we have U(a,Fa)=O. 

EXAMPLE 2 Grouped and censored data from an unknown distribution 

Continuing EXAMPLE l, suppose we do not actually observe the random sample XI> ... ,Xn itself, but 
only some many-to-one function of this sample. For instance, we might only observe for each i the 
pair (.Xj 18,(X;), 18 (X;)) where B; c;Rd are known (non-random) sets, e.g. intervals. Thus for each i the 

value of X; is observed if it falls in B;, otherwise one only observes the occurrence of the event 
"X;'iB;''. In the case d=l, if B;=(-oo,a;] for each i and some constants a;ER, this is the familiar 
model of (fixed) right censoring. More general specifications lead to general models for grouped or 
censored data. TuRNBULL (1976) discusses an estimator of the underlying d.f. F of the X;'s based on 
grouped or censored data which in the model with the B;'s is defined as the limit, if it exists, of the 
iterations: 

F<k+l>(x) - -~ 1 {1(-oo,xJ(Xi) if Xj is observed 

- n "f' Ep<•1 { 1(-oo,xJ(X*)IX* 'iB;} if X; is not observed 
(25) 

Here X* is drawn from the distribution Fck» the current estimate of F at the k'th iteration. This sim­
ple algorithm has great intuitive appeal and can be considered as the application of the EM-algorithm 
( DEMPSTER, LAIRD & RUBIN, 1977) to this problem. However almost nothing is known about large­
sample properties of the resulting estimator except in some very special situations (e.g. the d= 1, right 
censoring case, when we obtain the well-known product-limit estimator as limit provided a sensible 
initial choice p<0> is made). 

We can relate the algorithm directly· to the score equation (23) of EXAMPLE 1, and to EFRON's 
(1967) self-consistency principle, as follows. Let X=(X1> ... ,Xn) be the not completely observable 
underlying sample from F, and let Y = g(X) be the observable data where g is some many-to-one 
map. Consider a parametric submodel in which X has density fy(y ;IJ) too. Usually we will then have 

a a M log fy(y ;8) = E o( a
8 

log fx(X ;8)1 Y = y) . (26) 

To confirm this, note that for y = g(x) we have 

fx(x ;8) = fy(y ;8)fx1Y=y(x ;8). 

So taking logarithms, differentiating with respect to 8, substituting X for x, and finally taking expecta­
tions with respect to the conditional distribution of X given Y=y, we obtain (26) since if the usual 
interchange of iteration and differentiation is valid, 
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Eo [ :o logfxlY=/X;O) IY=y] = 0. 

Thus for the parametric submodel of ExAMPLE 1, 

aaO log lik(O; Y ;F,h )lo=o 

= Eo [ aao log lik(O;X;F,h) IYJ lo=O 

= EF [n jhd(Fn-F)JY] since </>(_F,h,O)=F 

= n [EF(Fn(x)IY)-F(x)] if h = 1(-oo,x]. 

Therefore the score equations (19) reduce in this case to the equations 

n [E£(Fn(x)!Y)-F(x)] =O 'v'xEIRd, (26) 

cf. (23). Since Fn(x)= ! ~1(-oo,xJ(Xi), it can be verified that when the function g has the special form 
I A 

described above, substituting p<k> = p<k + 1> = F in (25) gives exactly (26). Thus a limit of the iterations 
(25) is a solution of the score equations (19). 

Our final example is a simple prototype of the problems which originally motivated this study: Cox's 
(1972) regression model for which the NPMLE does have all the nice large sample properties one 
could hope for (see ANDERSEN & GILL 1982; JOHANSEN, 1983; BEGUN et al, 1983; DZHAPARIDZE, 
1985); and CLAYTON & CuzICK's (1985a, 1985b) model for dependent survival data, for which almost 
nothing is known (see GILL 1985; BICKEL 1985).1 Both these semi-parametric models contain as a 
special case the non-parametric model of censored survival data with unknown cumulative hazard 
function. This problem is also a special case of EXAMPLE 2, with d = 1 and in which one parametrizes 
by the function A(t)= r (l-F(s-))- 1dF(s) instead of by F. 

110.1] 

EXAMPLE 3. Estimation _of the cumulative hazard r.ate with censored data. 
Suppose we have data (X;,~i), i = l, ... ,n, where (X;,~i)=(min(X;,ai), 1{ X;o;;;ai}) for some constants ai 
and i.i.d. X; with d.f. Fon IR + having density (with respect to Lebesque measure) f, and hazard rate 
A.=f!(l-F). Suppose in fact aio;;;l for all i so that we can work on the real interval [0,1]. The cumu­
lative hazard function A is defined (in this case) by 

A(t) = fo\(s)ds ; 

if F(l)< 1 then A(l)< oo. In fact A(t)= - log(l - F(t)) for such continuous F. 
We now have a dominated family of distributions of our data, with likelihood function (or Radon­

Nikodym derivative) 

IIf(Xd1' (l-F(Xi))1-ll, =II [ f(Xi! lll,(1-F(Xi)) 
i i 1-F(Xi) 

- ll -
= IlA.(Xi) 'exp(-A(Xi)). 

I. But see also BICKEL (1986). 
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Define empirical processes 

N(t) = # {i:X;:s;;;,t, ~;= l}, 
-

Y(t) = # {i:X;;;;;.t} ; 

observation of these is equivalent to observation of the empirical d.f. of the data. Then we have 

I I 
log lik = fo logA(t)N(dt) - fo Y(s)i\(s)ds . (27) 

In fact under many different probability mechanisms for censoring and also under left truncation; see 

WooDROOFE (1985), ANDERSEN et al (1988); the log likelihood is of precisely this form. (It is also 

obtained under censored observation of a renewal process). More generally still, we obtain this log 

likelihood for observation of a counting process Nin AALEN's (1978) multiplicative intensity model. 

This model arises in many situations, e.g. in censored observation of time inhomogeneous Markov 

processes. In some of these models an obvious "discrete" version of the originally "continuous" model 

does not exist, or several different ones are equally sensible. 
We can write the log likelihood ratio of one cumulative hazard function A with respect to another, 

Ao, as 

I [dA l I fo log d.Ao (t) N(dt) - fo Y(s)(A(ds)-A0(ds)) (28) 

(the difference between two versions of (27)). Parametrizing now by A instead of by i\, we shall main­

tain this expression as a log likelihood ratio for all finite positive measures A, Ao on [O, 1] such that 

A ~ Ao. In fact this usually only gives the proper answer when A and Ao are continuous and the 
wrong answer when they are discrete; however as far as constructing an estimator and deriving its 

large sample properties are concerned this should not matter as long as the "true model" has A con­

tinuous. 
Defining </>(,A,h, 8) as the cumulative hazard function which is absolutely continuous with respect to 

A with Radon-Nikodym derivative 

dcJ>(A,h, 8) = 1 +Oh 
dA ' 

for heH={ bounded measurable functions on [0,1]} and fJ in some interval around OeR 1, we can 

now obtain the likelihood equations 

a~ [fo1
Iog(l +fJh)dN - fo1 

YfJhdA] lo=o =O 

for this family: they are simply: 
I A fo h(dN-YdA)=O VheH; 

or equivalently just 

fo'<dN-YdA)=O Vte[O,l] 

This has as solution 

A - 11 N(ds) 
A(t) -

0 
Y(s) , te[O,l] 

which is the well known "empirical cumulative hazard function" or Nelson-Aalen estimator, and 

which turns up in all the previously mentioned counting process, Markov and semi Markov (Markov 

renewal) models (see ANDERSEN & BORGAN, 1985, GILL, 1983, ANDERSEN, BoRGAN, GILL & KEID­

ING, 1988, for reviews and further references). 
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It is especially important to notice in EXAMPLE 3 the appearance of integrals (over an interval in IR 1 ) 

of one empirical process with respect to another or with respect to the parameter A. This is the reason 

for our detailed look in Section 2.3. at the function cp(x,y)~ {xdyt mapping D[O, 1]2 to D[O, 1]. The 
fact that</> is not continuously differentiable (at least, under thg sup norm) rules out (in all interesting 
examples) the possibility of applying the implicit function theorem when deriving large-sample pro­

perties of the solution a of (19), considered as a function of a suitably chosen empirical process or 
distribution function; cf. TSAI & CROWLEY (1985). 

Returning briefly to the "extension problem" in EXAMPLE 3, we also could also have written the ori­
ginal continuous data likelihood function as 

lik = II { (i\(t)dN(t)(l - Y(t)i\(t)dt)l-dN(t)} 

using product integral notation, cf. JOHANSEN (1977), GILL & JOHANSEN (1987). Thus the log likeli­
hood ratio (28) can also be written as 

[ { [ 
dA l dN(t) [ 1- Y(t)dA(t) l l-c!N(t)}] 

log ~ dJ\o (t) 1 - Y(t)di\o(t) 
(29) 

Maintaining this expression for A «Ao which are not absolutely continuous with respect to Lebesgue 
measure gives a different discrete extension to the model (or rather, its score equaiions, which is all we 

are interested in). Coincidentally both (28) and (29) lead to the same NPMLE A. However in more 
complicated versions of these models - Cox's regression model and Clayton & Cuzick's dependent 
survival times model for instance - the two analoguous extensions lead to different NPMLE's. 
JOHANSEN (1983) essentially choose (28) which is analytically simpler, and that is what counts if one 
wants simple proofs of large sample properties. 

4. ASYMPTOTIC OPTIMALITY OF THE NPMLE 
(to be continued in Part II). 

In this section it will be shown that if an NPMLE is consistent, then it is asymptotically efficient: at 
least, under a suitable (large) collection of regularity conditions. We restrict attention to the estima­
tion of a cumulative hazard function A in an i.i.d. setup modelled after EXAMPLE 3 in Section 3; but 
this is not the only example convered by any means. 1 One of the regularity conditions will be the 
assumption that the NPMLE is a Hadamard differentiable function of the empirical d.f. of the data. 
Together with the consistency assumption this forces the functional concerned to yield the true 
parrupeter at the true d.f.; and von Mises theory then yields immediately asymptotic normality of 

yn(An - A). So the main task is to identify the limiting covariance structure and to show that it 
coincides with the "inverse Fisher information" as generalized to infinite-dimensional parameters by 
BEGUN et al. (1983). This is an annoyingly delicate affair; most of the difficulties and new regularity 
conditions are concerned with our choice of parametrization (A itself) and emphasis on log likelihood, 
while the &-based theory of Begun et al. looks at root densities, both of the data and as parametriza­

tion (i.e. y dA/ di\o for fixed Ao instead of A). However the main idea is simple and is modelled on 
the classical parametric-case proof of asymptotic efficiency of Vn-consistent solutions-of-likelihood­
equations, which goes back to FISHER ( 1927). 

I. One could also add a parametric component so as to cover the Cox regression model or the Clayton & Cuzick dependent 

survival times (frailty) model. 
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