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1. INTRODUCTION 

In a number of papers (cf. e.g., [2] and [4]), it has been observed that many initial-boundary value 

problems for partial differential equations of the form 

OU 
at(t,x) = D(t,x,u(t,x)) (1.1) 

possess the property that the right-hand side D (t, x,u) is a smooth function of the space variable x if 

the exact solution of the initial-value problem is substituted, even when the exact solution has large 

space derivatives. Here, D may be a (nonlinear) differential operator of parabolic or hyperbolic type. 
The situation described above arises in cases where the solution of the initial-boundary value prob

lem tends to a steady state solution: 

u(t, x) ~ r(x) + s(t, x) as t ~oo, (1.2) 

where r(x) is a rapidly varying function of x and s(t, x) is a smooth function of (t, x). Evidently, 

OS 
D(t,x,r(x)+s(t,x)) ~ fu(t,x), 

so that the right-hand side becomes a smooth function of x as t ~ oo (see the examples in Section 4). 

For such problems it was proposed in, e.g., [2] and [4] to smooth the right-hand side of the equa

tion (1.1) with respect to x, before applying a numerical integration method. The effect of smoothing 

the right-hand side of (1.1) becomes apparent when the space variable x and the differential operator 

D in (1.1) are discretized: the resulting system of ordinary differential equations is better conditioned 

in the sense that the spectral radius of the Jacobian matrix of this system reduces considerably in 

magnitude by the smoothing process. It is well known that the usually large spectral radius of semi-
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discrete partial differential equations makes explicit integration methods unattractive for solving these 
systems, because of the rather restrictive stability condition. However, if smoothing reduces the spec
tral radius sufficiently in magnitude, then explicit time integration methods become of interest. 

The price we have to pay for the "preconditioning" of the system of semi-discrete equations, is a 
possible drop in accuracy of the space discretization. To make this more clear, we consider the quasi 
linear equation 

au 
at(t, x) = A (u(t, x))Lu(t, x) + g(t, x), (1.3) 

where L is a linear differential operator with respect to x, and A and g are given functions; let A A and 
LA represent discretizations of A and L with~ characterizing the accuracy of the discretization, and 
let SA denote a (linear) smoothing operator. For example, in one space variable x, we may think of 

L = a:' LAu(t,x) = 2~ (EA-Ei 1 )u(t,x), SAu(t,x) = ~(EA+Ei 1 )u(t,x), 
where EA is the forward shift operator defined by EAu(t,x) : = u(t,x +~).Instead of solving (1.3), we 
try to solve the smoothed, semidiscrete equation 

au 
at(t,x) = SAAA(u(t,x))LAu(t,x)+SAg(t,x). (1.4) 

Let v(t, x) and w(t, x) denote the solutions of the initial-boundary value problem for the equations 
(1.3) and (1.4), respectively. Then, it is easily verified that the difference v-w satisfies the equation 

a 
at(v-w) = SAAA(w)LA(v-w)+SA[A(v)L-AA(w)LA]v (1.5) 

+ [J -SA] [A(v)Lv+g]. 

This "error equation" shows the effect of the space discretization and of the smoothing operator on 
the accuracy by which w approximates v. The second term in the right-hand side of (1.5) represents 
the (smoothed) space discretization error, whereas the last term represents the smoothing error. Evi
dently, the smoothing error vanishes if SA = I (no smoothing), it is small if A (v)Lv+g is a smooth 
function of x, and it hardly affects the accuracy of w if A (v)Lv+g is much smoother in x than v. 

Thus, we expect that the introduction of smoothing operators into the right-hand side of the partial 
differential equation (1.1) will not severely decrease the accuracy provided that the exact solution of 
(1.1) varies much more rapidly with x than its time derivative does. 

In [4] a few smoothing operators were tested and shown to have the expected effect. In this paper, 
we analyse smoothing operators more systematically, and we derive a family of optimal operators of 
second-order for a parabolic and a hyperbolic model problem. In addition, a family of fourth-order 
smoothing operators are constructed which are not optimal, but still result in a considerable reduction 
of the spectral radius of the Jacobian matrix. 

The various smoothing operators are tested by integrating a few initial-value problems of parabolic 
and hyperbolic type, both linear and nonlinear. The results obtained clearly show that the two-stage 
explicit Runge-Kutta time integrators used in our experiments, when combined with a suitable 
smoothing operator, exhibit a stability behaviour which is comparable with that of the (implicit) 
Crank-Nicholson method, while the accuracy is hardly lower. Since a smoothed Runge-Kutta step is 
"cheaper" than a Crank-Nicholson step, particularly in the case of nonlinear problems, we conclude 
that, for the class of problems described above, explicit Runge-Kutta methods equipped with the right 
smoothing operators are preferable to the Crank-Nicholson method. 
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2. SMOOTHING OPERATORS 

By restricting the semi-discrete (partial) differential equation (1.4) to a grid ~a in the x-space, we are 
led to a system of ordinary differential equations (method of lines). This system will be denoted by 

d~t) = S f(t,y(t)), t ~ t 0 , (2.1) 

where the matrix S corresponds to the smoothing operator Sa introduced in (1.4). More generally, by 
smoothing the right-hand side of (1.1) and by discretizing x and D, we will always obtain a system of 
the form (2.1 ). 

2.1. Relaxing the stability condition by smoothing 
If the system (2.1) is integrated by an explicit time integrator we are faced with a stability condition 
on the time step D.t of the form 

A ,,;:: _/}__ J .-1!.( ()) ut...,. p(SJ)' .- oy t,y t , (2.2) 

where p(SJ) denotes the spectral radius of the matrix SJ, and /J is a constant (the so-called stability 
boundary ) completely determined by the time integrator. 

Since the stability boundary of explicit methods is relatively small and p(J) usually extremely large, 
the condition (2.2) may be extremely restrictive if no smoothing is applied (i.e., S =I). This may force 
the method to take steps D.t that are much smaller than accuracy would require. By an appropriate 
choice of the smoothing matrix S we can reduce the magnitude of p(SJ) considerably. 

In general, it is too ambitious to derive optimal smoothing matrices for an arbitrary Jacobian 
matrix J. Therefore, we shall consider the optimization problem for two model problems which 
characterize, respectively, a parabolic and a hyperbolic equation. First, however, we consider the order 
of accuracy of the smoothing operator, that is we require 

S =I+ O(N) (2.3) 

as the spatial grid ~a is refined. 

2.2. The order of accuracy of smoothing operators 
Let the vector v have components vU> and define the shift operator Eby 

EvU> : = v<i+I>. (2.4) 

Let Qk(z) be a polynomial of degree k in z with Qk(l) = 1. Then we may consider smoothing 
matrices S of the form 

Sv = u := (~[Qk(E)+Qk(E- 1 )]vU>), Qk(l) = 1. (2.5) 

We shall call this matrix a smoothing matrix or smoothing operator of degree k. 
This operator should be sufficiently close to the identity operator I. In order to define the order of 

the smoothing operator (2.5) we apply S to the test vector v = (v<i>) := (w(jD.x)), where w(x) is a 
sufficiently differentiable function of x. We find 

Sv = ( ~ [Qk(E)+Qk(E- 1)]w(jD.x)) 

d d 
l tu- -tu-

= <2[Qk(e dx )+Qk(e dx )]w(jD.x)) 

= ([Qk(l)+ ~ (Q'k(l)+Q"k(l))D.2x d
2

2 +O(D.4x)]w(jD.x)). 
dx 
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DEFINITION 2.1. The smoothing operator (2.5) is said to be of order p if for all vectors w = ( w (j Lix )) 
with w E CP we have 

Sw = w+O(Nx) as Lix ~ 0. D 

The following theorem is easily proved: 

THEOREM 2.1. The smoothing operator (2.5) is at least of order p = 2; it is of order p = 4 if Qk(z) 
satisfies Q'k(I)+Q"k(l) = 0. D 

EXAMPLE 2.1. A two-parameter family of second-order smoothing operators is generated by the poly
nomial 

Qi(z) = I-qi -q2+q,z+q2z2. 

The order can be raised to four if we choose q 1 

operators always require k ;;;;;., 2. D 
-4q2 • We observe that fourth-order smoothing 

EXAMPLE 2.2. Let s be defined by 

Sv := ( 1~(E+2+E- 1 )(E2 +2+E-2)vU>). 

It is easily verified that this operator can be represented in the form (2.5) with 

Q3(z) = 1-+1.z+.lz2+.lz3. 
4 8 4 8 

Since Q 3(1) = 1, this smoothing operator is second-order accurate. D 

3. CONSTRUCTION OF OPTIMAL SMOOTHING OPERATORS 

In order to investigate the operator S defined by (2.5) we will use the test vectors 

e = (eU>), eU> : = exp(iwjLix), 

where w E Ill and Lix is the space discretization parameter. 

DEFINITION 3.1. Let C(z) be the polynomial 

r 
C(z) = ~ c1z

1
• 

/=O 
A 

Then we associate to C the polynomial C defined by 

A T 

C(z) : = ~ c1 TJ(z ), TJ(z) : = cos(/ arccos z ). 
/=O 

THEOREM 3.1. The smoothing operator S satisfies the eigenvalue equation 
A 

Se = Qk<ne, r : = cos(wLix). 

PROOF. On substitution of e into (2.5) we obtain 

Se = ~ [Qk(ei"'Ax)+Qk(e-i"'Ax)] e 

l=o 

/=O /=O 

(3.1) 
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A 

Th11s, the test vector e is an eigenvector of S with eigenvalue Qk(n. The behaviour of the polyno-

mial Qk(z) on the interval [ --::.1, l] determines the properties of the smoothing operator S (notice that 

-1.;;;;;t.;;;;; 1). For instance, if Qk(z) is small in magnitude for z ~ -1, then S will damp the high fre-

quencies in the Fourier expansion of the vector v = (w(j!l.x)). • 

In the actual derivation of the smoothing operator S from a given polynomial Qk(z) the following 

corollary of Theorem 3.1 is often convenient. 

COROLLARY 3.1. Let Qk(z) be a polynomial expression in terms of the functions T 0(z ), T 1 (z ), .•• , T ,.(z ): 
A 

Qk(z) = ~(To(z), ... ,T,.(z)). (3.2a) 

Then the generated smoothing operator is given by 

_ E0 +E0 E"+E-" vl 
Sv - (~( 

2 
, ... , 

2 
)v ). (3.2b) 

PRooF. From Theorem 3.1 it follows that the smoothing operator S generate!i by (3.2a), has the 

eigenvalues 
A 

Qk(t) = ~(To(t), ... ,T,.(t}), t = cos(w!l.x). 

On the other hand, because IJW is an eigenvall!,e of (Ei + E-1)12, it follows from (3.2b) that the 

operator S has the same eigenvalues. Since S and S are both polynomial operators in E and E- 1 with 

identical eigenvalues, they are necessarily identical. D 

EXAMPLE 3.1. Suppose that 

Q6(z) = 2T2(z)T1(z)-Thz). 

Then, S is defined by 

Sv = ([~(E2 +E-2)(E+E- 1 )-!(E3 +E-3 )2]v<i>). D 

The following result is similarly proved by means of Theorem 3.1.: 

·w . 
CoROLLARY 3.2. Let the polynomials Q (z) generate smoothing operators s<J>, and let a and b be 

scalars. Then the polynomial 

Q(z) := aQ(1)(z)+bQ(2)(z)Q(3)(z) 

generates the smoothing operator 

S := as(l>+bs<2>s<3>. D 

The next theorem expresses the order conditions in terms of the polynomial Qk(z). 

A A 

THEOREM 3.2.(a) The smoo!hing operator generated by Qk(z) is of second-order if Qk(l) = 1, and of 

fourth-qrder if, in additfon, Q'k(l) = 0. 
(b) If Qk(l) = 1 and Q'k(l) =I= 0, then the polynomial 

A A A 

P2k(z): = 1-a+aQk(z)[2-Qk(z)] 

generates a fourth-order smoothing operator for all values of a. 

PRooF. (a) Since T1(1) = 1 and T'1(1) = 12 we have 

k k A 

Qk(l) = ~ q1 = ~ q1T1(1) = Qk(l) 
/=O /=O 

,, 
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and 

k k 
Q'k(l)+Q"k(l) = ~ q1[l+l(l- I)] = ~ q112 

/=O /=O 
k A 

= ~ q1T'1(I) = Q' k(I). 
/=O 

From these relationsAand Theorem 2.1 assertion (a) of the theorem easily follows. 
(b) The polynomial P 2k(z) is easily shown to satisfy for all a the conditions for fourth-order accuracy 
stated in (a). D 

A 

Once the polynomial Qk has been specified, the smoothing operator S is easily found, either by 
using Definition 3.1 (to obtain Qk) and formula (2.5) (to obtain S), or by using the above Corollaries 
3.1 and 3.2. 

In order to construct an effective operator S, in the sense that p(SJ) is substantially smaller than 
p(J), we need some additional information on the spectrum of J. We shall· distinguish Jacobian 
matrices with negative eigenvalues arising in parabolic equations and imaginary eigenvalues arising in 
hyperbolic equations. 

3.1. Smoothing of parabolic problems 
If symmetric space discretizations are used in parabolic problems then J is usually of the form 

Jv = (~[K(E)+K(E- 1 )]v<i>), (3.3a) 
A 

where K is a polynomial. In the same man11er as we associated to Qk the polynomial Qk ( cf. Theorem 
3.1), we can associate to K the polynomial K, to obtain the eigenvalue equation 

Je = KWe, e: = (eijwllx), t := cos(wlix). (3.3b) 

EXAMPLE 3.2. Consider the parabolic model problem 

U1 = Uxx + g(x,t). 

The standard three-point discretization leads to a system of differential equations of which the j-th 
equation reads: 

dy<i> = _l_[E-2+E-l]yU>+g<i>(t)· 
~ ~x ' 

it is easily seen that the matrix J can be characterized by the polynomial 

2 
K(z) = --(1-z). 

b.2x 
A 

The polynomial K(z) turns out to be identical with K(z). D 

EXAMPLE 3.3. If the equation above is discretized by the standard fourth-order five-point discretiza
tion we obtain the polynomial 

and 

I K(z) = - -
2
-(z2 -16z+l5) 

6/),, x 

A 1 1 
K(z) = ---(z2 -8z +7) = ---(z -l)(z -7). D 3a2x 3a2x 
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Let us return to our problem of minimizing p(SJ) occurring in the stability condition (2.2). It fol
lows from Theorem 3.1 and (3.3) that 

(3.4) 

Thus, the right-hand side has 10 be minimized taking into account the order condition in Theorem 

3.1. Moreover, the polynomial Qk should be nonnegative on [-1, l] (otherwise SJ would have positive 

eigenvalues). 
A In general, it is too ambitious to solve this minimax problem for arbitrary eigenvalue functions 

KW. Therefore, we shall write, instead, 

(3.5) 

A 

and solve the minimax problem for the polynomial (1-f)QkW, which is independent of the parabolic 
equatipn under consideration. This approach is justified by the observation that the resulting polyno

mial Qk does generate optimal second-order smoothing operators in the case of the parabolic model 

problem of ~xample 3.2. In nonmodel problems (where KW contains the factor r-1), the resulting 

polynomial Qk is not optimal, but it gives rise to the same reduction factor of the spectral radius as in 
the model problem. 

On the basis of (3.5) the stability condition (2.2) becomes 

At..;;;µ{3min r;:- 1 , 
-1..;r.;;;1 2KW 

where we introduced the amplification factor 
I A 

µ := [ max 2(1~f>Qk(f)]- 1 • 
-1..;r.;;;1 

A 

Notice thatµ = 1 (Q0 = 1) if no smoothing operators are applied. 

3.1.1. Second-order smoothing operators 
The following lemma is basic in our subsequent discussion: 

(3.6a) 

(3.6b) 

LEMMA 3.1. Of all polynomials P m(z) of degree m in z satisfying the conditions 
Pm(l) = 0, P'm(l) = -1, and Pm(z) ~ 0 on [-1,11 the polynomial Pm(z) := [l-Tm(z)]/m2 has the 
smallest maximum norm on [ - 1, 1 ]. 

PROOF. The assertion of the lemma follows immediately from the various properties of the Chebyshev 
polynomial Tm(z). D 

With the help of this lemma the following theorem is easily proved. 

THEOREM 3.3. Let the smoothing operator S be generated by the polynomial 

A l-Tk+1(z) 
Qk(z) = (k + 1)2(1-z). (3.7) 

Then, S is second-order accurate, and minimizes, for given k, the spectral radius p(SJ) of the model prob
lem in Example 3.2. 

PROOF. It follows from Example 3.2 and from (3.4) that 

2 l-Tk+1W 
p(SJ) - - max 

- A2x -1..;r.;;;1 (k + 1)2 
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A A 

and from Lemma 3.1 that p(SJ) is as small as possible, while Qk(z) is nonnegative with Qk(l) = 1. D 

A 

EXAMPLE 3.4. The first few polynomials Qk corresponding to the optimal polynomials Qk specified in 
Theorem 3.3 are given by 

1 
Ql(z) = 2(1 +z), 

1 
Q2(z) = 9(3+4z +2z 2), 

1 
Q3(z) = g-(2+3z +2z 2 +z3). 

Notice that Q3(z) is identical with the polynomial Q3(z) derived in Example 2.2. D 

THEOREM 3.4. Let J satisfY the conditions (3.3) and let S be generated by (3. 7). Then the amplification 
factorµ, is given by (k + 1)2 so that 

!:::.t ~ /3(k + 1 )2 min K-: 1 
, (3.6') 

-1.;;;r.;;;1 2K(t) 
A 

where K(K) is assumed to be negative. 

PROOF. The proof is immediate from (3.7) and (3.6). D 

We re~all that for k =O the stability condition (3.6') corresponds to the "unsmoothed" method 
because Q 0(z) = 1. This indicates that the gain factor obtained by the smoothing technique is as large 
as (k + 1)2 independent of the particular problem under consideration. 

EXAMPLE 3.5. Consider the model problem in Example 3.2. For this three-point discretization we 
have 

. r-1 /:::.2x 
mm -A-=--· 

-1.,;;r.;;;1 2K(t) 4 

Substitution into (3.6') yields the stability condition 

11t~ !/3(k+I)2t:::.2x. 

We recall that, by virtue of Theorem 3.3, there exists no smoothing operator of degree k which leads 
to a larger maximum stable step !:::.t. D 

EXAMPLE 3.6. Consider the discretization defined in Example 3.3. For this five-point discretization we 
have 

min K-:l = min 3/:::.2x - 3 2 
-1.;;;r.;;;1 2K(t) -1.;;;r.;;;1 2(7-K) - 16 11 

x, 

so that, by Theorem 3.4, the stability condition becomes 

!:::.t ~ 
1
3
6 

/3(k + t)2t:::.2x. D 

The following lemma is of interest in the actual implementation of smoothing operators. 

LEMMA 3.2. If m = 2q with q > 0, then 
q-1 

Tm(z) = 1-m(l-z) II (l+T2'(z)). 
/=O 



PRooF. It follows from the identity T 21 = 2Ty- l that 

1-Tm = l-T2• = 2(1-T~·-•) = 2(l+T2•- 1 )(l-T2•- 1 ) = 

... =2q(l + T2•- 1 )(1 + T2•-2 ) •••• (1 + T1)(l -T1). 

This proves the lemma. D 

By means of this lemma and Corollary 3.1 the following Theorem is immediate: 

9 

THEOREM 3.5. Let k = 2q -1 with q > 0, then the smoothing operator based on (3. 7) can be factorized 

according to 

1 q-1 I I 

Sv = - (II [£2 +2+E-2 ]v<i>). D (3.8) 
22q /=O . 

The operator (3.8) is identical to the smoothing operator proposed in WUBs [4]. In this factorized 
form it allows a rather efficient implementation on a computer. 

3.1.2. Fourth-order smoothing operators 
Suppose that we can solve the following minimax problem: 

Problem 3.1. Of all polynomials Pm(z) of degree m in z satisfying the conditions 
Pm(l) = O,P'm(l) = -1,P"m(l) = 0 and Pm(z) ;;l!: 0 on [-1, l], find the polynomial with the smal
lest maximum norm on [ - 1, 1 ]. D 

If such a minimax polynomial is found, then by defining 

A Pk+dz) 
Qk(z) = 

1 
, k = m -1, 

-z 
A A 

we obtain a polynomial satisfying the fourth-order conditions Qk(l) = 1, Q'k(l) = 0, being nonnega-
tive on [ -1, l], and maximizing the amplification factor in the stability condition (3.6). 

Sofar, we did not succeed in deriving closed expressions for the optimal polynomials Pk+i(z) and 
the corresponding maximal amplification factor µ. The derivation of these polynomials will be subject 
of future investigations. 

An alternative is offered by Theorem 3.2(b). By starting with the one-parameter family of fourth
order polynomials 

Q(z) = 1-a+aQ· (z)(2-Q• (z)), (3.9) 

where Q• (z) generates a s~nd-order smoothing operator s·, there is only one parameter to be 

optimized such that (1- z )Q(z) has a minimal maximum norm on [ - 1, I]. In Table 3.1 the resulting 

amplification factorsµ, arAe listed for the case where Q • (z) is given by (3.7). It seems that µl(k + 1)2, k 

denoting the degree of Q, converges to a constant value (recall that this values is 1 in the second-

order case). A 
We observe that the spectral radius p(SJ) can be reduced further for a > 1. However, then Q(z) is 

not nonnegative on [ -1, l] anymore which leads to unstJtble discretizations. 
Finally, we remark that the operator S generated by Q(z), i.e., 

S = (1-a)J +aS*(2I -S*), (3.10) 

is to a high degree factorizable ifs· is factorizable. 
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TABLE 3.1. µ-values for (3.9) with Q \z) defined by (3. 7) 

Degree k of S a µ µl(k +I)'-
2 1 2.6 .29 
4 1 4.7 .19 
6 1 8.3 .17 
8 1 12.7 .16 

3.2. Smoothing of a hyperbolic model problem 
Symmetric space discretizations of hyperbolic problems often lead to Jacobian matrices defined by 

Jv = (;[K(E)-K(E- 1)]v<i>), (3.lla) 

where K is a polynomial. 

DEFINITION 3.2. Let C(z) be defined as in Definition 3.1. Then C is defined by 

- r 
C(z) : = ~ c1U1-1(z), 

/=I 

where U1 is the Chebyshev polynomial of the second kind. D 

By means of this definition we can write the eigenvalue equation for the Jacobian matrix J in the 
form 

Je = +i v1 -r2 .Kme, e : = (eij"'Ax), r: = cos(w.ix), 

where the sign is determined by the sign of sin( w.ix ). 
In order to prove this, let 

r 
K(z) : = ~ c1z

1• 

/=O 

Then 

r r 
= i ~ c1 sin(wl.!lx)e = i ~ c1 sin(w.ix)U1- 1(cosw.ix) e 

/=I /=I 

= +iVI""=f f c1U1-1(t)e. 
/=I 

ExAMPLE 3.7. Consider the hyperbolic model problem 

U1 = Ux + g(x,t) 

and its three-point discretization 
(i) 

d~t = 2!x[E-E-I]yU>+g<i>(t). 

(3.llb) 



The Jacobian of this system is characterized by 

1 
K(z) = !:uz, 

so that 

- 1 
K(z) = :u· 0 
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EXAMPLE 3.8. If the above equation is discretized by the fourth-order five-point discretization we 

obtain 

z 
K(z) = 

6
/u (8-z), 

- 1 
K(z) = 

3
/u (4-z). 0 

For hyperbolic problems we are faced with the problem of minimizing 

p(SJ) = max Vl-K2 l{Mt)K(DI, 
-1.;;r.;;1 

A 

(3.12) 

taking into account the order conditions for Qk stated in Thzorem 3.2. Notice that, in contrast to the 

minimax problem for parabolic problems, the polynomial Qk is not required to be nonnegative on 

[-1, l]. Consequently, the polynomials derived for parabolic problems are not optimal in the present 

case. 
Instead of minimizing the right-hand side of (3.12) we shall write 

p(SJ) os;;; max Vl-t2 1Qk(DI. max IK(DI 
-1.;;r.;;1 -1.;;r.;;1 

(3.13) 

and we solve the minimax problem for Vl -t2 Qk(D independently of K (cf. the discussion given for 
(3.5)). Similarly to (3.6), we derive from (3;13) the stability condition 

b.t os;;; µ /J min -
1 

,µ. : = [ max Vl -t2 I Qk(t)l]- 1. (3.14) 
-1.;;r.;;1 IK(DI -1.;;r.;;1 

Again, µ is chosen such that µ = 1 if no smoothing is applied. 

3.2.1. Second-order smoothing operators 
The following lemma plays the rele that Lemma 3.1 played for parabolic problems. 

LEMMA 3.3. Of all functions of the form ~ P ~here P m(z) is a polynomial of degree m in z 

satisfying the condition Pm(l) = 1, the function v'l-z 2 Um(z)/(m+l) has the smallest maximum 

norm on [ -1, 1]. 

PRooF. Since Um(l) = m + 1 the condition Pm(l) = 1 is satisfied. Furthermore, we deduce from the 
identity 

1-T~+I (z) 

l-z2 

that the function ~ Um(z) satisfies the equal ripple property from which it can be concluded 
that this function is optimal. 0 

By virtue of this lemma the following theorem is obvious. 
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THEOREM 3.6. Let the smoothing operator S be generated by the polynomial 

A Uk(z) 
Qk(z) = k+l . (3.15) 

Then S is second-order accurate, and minimizes, for given k, de spectral radius p(SJ) of the model prob
lem in Example 3. 7. D 

EXAMPLE 3.9. The first few polynomials Qk(z) generated by (3.15) are given by 

Q1(z) = z, 

1 
Q2(z) = 3(1 +2z2

), 

1 
Q3(z) = 2(z3+z). D 

THEOREM 3.7. Let J satisfy the conditions (3.11) and let S be generated by (3.15). Then the amplification 
factor is given by k + 1 leading to the stability condition 

/J..t ..;;; /3(k + 1) min _ 1 (3.14') 
-1..-;;r..-;;1 IK(t)I 

PROOF. Substitution of (3.15) into (3.14) leads to (3.14'). D 

EXAMPLE 3.10. Consider the discretization of Example 3.8. Applying Theorem 3.7 we find that this 
five-point discretization is stable if 

/J..t ..;;; ~ /3(k + 1 )/J..x. D 

As in the parabolic case the operator S generated by (3.15) can be factorized for special values of k. 
The counterpart of Lemma 3.2 is given by 

LEMMA 3.4. If m = 2q with q > 0, then 
q-1 

um_i(z) = m II Ti(Z). 
l=O 

PROOF. Using the identity U2/-I = 2U1_ 1 T1, (cf [I], p.782) we deduce that 
q 

Um-1 = U2•-1 = 2U2•-•-1 T2•- 1 = · · · = 2q II Ti-' 
/=I 

proving the assertion of the lemma. D 

The analogue of Theorem 3.5 is given by 

THEOREM 3.8. Let k = 2q- l with q > 0, then the smoothing operator based on (3.15) can be factor
ized according to 

1 q-l I I 

Sv = -( II [E2 + E 2- ]v<i>). D (3.16) 
2q l=O 
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3.2.2. Fourth-order smoothing operators 
For hyperbolic problems we have the following analogue of Problem 3.1. 

Problem 3.2. Of all functions of the form ~ Pm(z) where Pm(z) is a polynomial of degree m in 
z satisfying the conditions Pm(l) = 1 and P'm(l) = 0, find the function with the smallest maximum 
norm on [ -1, l]. D 

A 

If this problem is solved form = k, we set Qk(z) = Pk(z) to obtain the generating polynomial for 
a fourth-order smoothing operator with optimal amplification factorµ as defined in (3.14). 

As in the parabolic case w~ .did not yet find closed expressions for the optimal polynomials and we 

applied, instead, (3.9) with Q (z) given by (3.15). The analogu~ of Table 3.1 is presented by Table 

3.2. Notice that here a is not restricted by a sign Ac?ndition on Q(z). The resulting smoothing opera

tors are given by (3.10) with S* corresponding to Q . 

TABLE 3.2. µ-values for (3.9) with Q\z) defined by (3.15) 

4. NUMERICAL EXPERIMENTS 

Degree k of S 

2 
4 
6 
8 

a µ 
.67901 1.38 
.83512 2.06 
.84250 1.96 
.95280 2.56 

µl(k + 1) 

.46 

.41 

.28 

.28 

In WUBs [4] a few first experiments are reported for hyperbolic problems using smoothing techniques 

in combination with conventional time integrators. Here, we present further experiments, both for 

parabolic and hyperbolic problems. All examples are chosen such that conventional explicit time 

integrators (without smoothing) require unrealisticly small time steps. 
The examples are, respectively, 

U1 = Uxx +g1(t,x), 

u1 = u 2uxx +g2(t,x), 

u1 = Ux+g3(t,x), 
I 2 -

U1 = 2(u )x+g4(t,x), 

where the forcing functions gj(t,x) are chosen in such a way that 

u(t,x) = ; [sin(x +t)+sin(wx)], w E N 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

presents the exact solution. The initial condition is taken from the exact solution, and periodic boun

dary conditions are imposed at x =O and x =2'1T. In all examples the integration interval is given by 

[O, T], where T is specified in the tables of results. 
The semi-discrete equations are obtained by using, respectively, the three-point discretizations of 

the Examples 3.2 and 3.7, and the five-point discretizations of the Examples 3.3 and 3.8. The spatial 

grid is given by the points xj = jl:u, j = l,2, ... ,27T//:u, where tu is chosen such that the forcing 

function and the initial function can adequately be represented. 
The time integrators used (in combination with smoothing operators specified in the tables of 

results) are given by the explicit Runge-Kutta methods (for the notation used see LAPIDUS & SEIN

FELD [3]): 
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RKP: 0 0 
118 1/8 
112 0 112 

0 0 

RKH: 0 0 
112 112 
112 0 112 

0 0 

Both methods are second-order accurate: RKP is used for the parabolic problems (4.1) and (4.2) with 
stability boundary /J. = 6.26 in the stability condition (3.6); RKH is used for the hyperbolic problems 
(4.3) and (4.4) with stability boundary f:J = 2 in the stability condition (3.14). These conditionally 
stable methods were respectively applied with the parabolic smoothers generated by (3.7) and Table 
3.1, and with the hyperbolic smoothers generated by (3.15) and Table 3.2. 

As reference method we apply the implicit Crank-Nicholson method which can be represented by 
the array: 

CN: 0 0 0 
I 1/2 112 

112 1/2 

This method is also second-order accurate,· but it is unconditionally stable both for parabolic and 
hyperbolic problems (i.e., f:J = oo ), and, therefore, it requires no smoothing in order to stabilize the 
integration process. 

The integration steps t::..t are chosen as large as allowed by the stability condition of the smoothed 
RKP or RKH methods. 

In the tables of results we list the degree k of the smoothing operator used, the total number of 
steps N : = TI t::..t, and the number of correct significant digits obtained in tN = T, i.e., the value of 

sd : = min( - log10 lyW- u (T,xj) I). 
J 

4.1. Problem (4.1) 
This problem is given by ( 4.1) with solution ( 4.5) and with w = 16. The solution is therefore rapidly 
oscillating, while its time derivative is slowly varying with x; hence, the problem belongs to the prob
lem class for which the smoothing technique described in the preceding sections should be effective. 
In order to represent the initial condition and the forcing function adequately on the spatial grid we 
choose t::..x = 77I192. 

The results obtained are listed in the Tables 4.la and 4.lb (see Section 4.5). They show that the 
smoothed RKP method performs stably for all integration steps. Compared with the maximal step 
allowed by the "unsmoothed" RKP method (i.e. k =O), the gain factors for second and fourth-order 
smoothing are at least 64 and 32, respectively. The accuracy is hardly reduced by the smoothing pro
cedure, except for the case where fourth-order space discretization is combined with second-order 
smoothing (here, an increase of the degree of the smoothing operator by I decreases the number of 
correct digits by about .25 if k is small and by about .15 if k becomes larger). In all other cases, the 
accuracy is comparable with that of the CN method. 
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4.2 Problem (4.2) 
This problem is a nonlinear modification of problem (4.1), again with w = 16. The results listed in the 
Tables 4.2a and 4.2b show a similar behaviour as for the linear problem ( 4.1 ), provided that the 
degree of the smoothing operator is not too large (k~5 for second-order smoothing and ko;;;;IO for 
fourth-order smoothing). The respective amplification factors of the maximal stable integration step 
are at least 35 and 18. 

4.3 Problem ( 4.3) 
The results for the linear hyperbolic problem (4.3) with w = 16 (see the Tables 4.3a and 4.3b) again 
show that the smoothed RKH method performs stably for all integration steps, while the accuracy is 
not or only marginally less than the accuracy obtained by the CN method. The amplification factors 
of the maximal stable integration steps are at least 8 and 4 for second-order and fourth-order smooth
ing, respectively. Notice that, in contrast to the results obtained for the parabolic problems (4.l) and 
( 4.2), the numerical error is not only determined by space discretization and smoothing errors, but 
also contains a time discretization error. 

4.4. Problem (4.4) 
When we integrated the nonlinear problem (4.4) with w = 16, rather low accuracies were obtained on 
a spatial grid with !lx = 'IT I 192, and instabilities developed in the case of fourth-order smoothers. 
Due to this low accuracy, the numerical solution did not satisfy the requirement that its time deriva
tive is a smooth function of x. In order to overcome this unwanted behaviour we should decrease !lx, 
or equivalently, in order to stay within our budget available for these numerical experiments, we may 
decrease w. Choosing w = 8 we obtained the results listed in the Tables 4.4a and 4.4b. We now have 
stability for all integration steps and accuracies which are even higher than those produced by the CN 
method. 

4.5. Tables of results 

TABLE 4.la. sd-values for problem (4.1) with w=l6,T=l.O,!lx=7T/l92, and with second-
order smoother based on (3.7) 

3-point coupling 5-point coupling 
k N RKP CN N RKP CN 

0 2400 2.54 2.54 3200 4.59 4.59 
1 600 2.54 2.54 800 4.34 4.58 
2 270 2.53 2.54 355 4.10 4.58 
3 150 2.53 2.54 200 3.90 4.58 
4 96 2.52 2.54 130 3.73 4.56 
5 68 2.51 2.54 90 3.58 4.54 
6 49 3.26 2.54 66 3.46 4.50 
7 38 2.49 2.54 50 3.35 4.44 
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TABLE 4.lb. sd-values for problem (4.1) with w= 16,T= 1.0,L\x =?T/192, and with fourth-
order smoother based on { (3.9), a= 1} 

3-point coupling 5-point coupling 
k N RKP CN N RKP CN 
0 2400 2.54 2.54 3200 4.59 4.59 
2 925 2.54 2.54 1250 4.59 4.59 
4 540 2.54 2.54 710 4.59 4.59 
6 300 2.54 2.54 400 4.58 4.58 
8 192 2.54 2.54 260 4.58 4.58 

10 136 2.54 2.54 180 4.58 4.57 
12 98 2.54 2.54 132 4.57 4.56 
14 76 2.54 2.54 100 4.55 4.55 

TABLE 4.2a. sd-values for problem (4.2) with w= 16, T = 1.0,L\x =?T/192, and with second-
order smoother based on (3.7) 

3-point coupling 5-point coupling 
k N RKP CN N RKP CN 
0 2400 0.62 0.62 3200 3.35 3.35 
1 600 0.58 0.62 800 2.62 3.35 
2 270 0.74 0.62 355 2.23 3.34 
3 150 1.07 0.62 200 2.03 3.32 
4 96 1.26 0.62 130 1.86 3.28 
5 68 1.40 0.62 90 1.68 3.22 

TABLE 4.2b. sd-values for problem (4.2) with w= 16,T= 1.0,L\x =?T/192, and with fourth-
order smoother based on { (3.9), a= 1} 

3-poi11t coupling 5-point coupling 
k N RKP CN N RKP CN 
0 2400 0.62 0.62 3200 3.35 3.35 
2 925 0.52 0.62 1250 3.13 3.35 
4 540 0.59 0.62 710 3.01 3.35 
6 300 0.83 0.62 400 3.18 3.34 
8 192 1.09 0.62 260 3.40 3.33 

10 136 1.13 0.62 180 3.35 3.31 
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TABLE 4.3a. sd-values for problem ( 4.3) with w = 16, T = 10, Llx = '1T 1192, and with second-
order smoother based on (3.15) 

3-point coupling 5-point coupling 
k N RKH CN N RKH CN 
0 310 2.19 1.96 472 3.57 3.54 
1 155 2.08 1.97 236 2.83 3.05 
2 104 1.94 1.81 160 2.46 2.75 
3 78 1.79 1.77 120 2.20 2.52 
4 62 1.66 1.82 95 2.00 2.33 
5 52 1.54 1.58 80 1.84 2.19 
6 43 1.42 1.49 67 1.70 2.03 
7 39 1.33 1.47 58 1.58 1.91 

TABLE 4.3b. sd-values for problem (4.3) with w=l6,T=l0,Llx='1T/192, and with fourth-
order smoother based on { (3.9), Table 3.2 } 

3-point coupling 5-point coupling 
k N RKH CN N RKH CN 
0 310 2.19 1.96 472 3.57 3.54 
2 220 2.16 2.16 350 3.39 3.45 
4 145 2.10 2.41 240 3.10 3.06 
6 150 2.11 2.10 260 3.16 3.13 
8 115 2.04 2.28 180 2.86 2.88 

10 110 2.03 2.02 185 2.88 2.91 
12 85 1.93 1.83 135 2.62 2.64 
14 85 1.93 1.83 145 2.68 2.68 

TABLE 4.4a. sd-values for problem (4.4) with w=8,T=4,Llx ='171192, and with second-
order smoother based on (3.15) 

3-point coupling 5-point coupling 
k N RKH CN N RKH CN 
0 llO 1.36 1.37 145 3.12 2.86 
1 50 1.63 1.44 75 2.55 2.19 
2 33 1.83 1.66 45 2.19 1.71 
3 22 1.67 1.27 30 1.81 1.32 
4 17 1.73 1.06 25 1.82 1.20 
5 14 1.42 0.84 20 1.52 1.03 
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TABLE 4.4b. sd-values for problem (4.4) with w=8,T=4,Ax ='171192, and with fourth-order 
smoother based on {(3.9), Table 3.2} 

3-point coupling 5-point coupling 
k N RKH CN N RKH 
0 110 1.36 1.37 145 3.12 
2 75 1.53 1.38 115 3.09 
4 50 1.65 1.44 70 2.54 
6 45 1.69 1.48 70 2.57 
8 35 1.27 1.62 55 2.10 

10 30 1.34 1.61 40 1.74 

5. CONCLUDING REMARKS 

CN 
2.86 
2.65 
2.13 
2.13 
1.90 
1.59 

In this paper we analysed a smoothing technique for preconditioning a special class of semi-discrete 
partial differential equations. It turned out that, in order to obtain optimal smoothing matrices, one 
should distinguish between parabolic and hyperbolic equations. The resulting smoothing matrices are 
quite different. For instance, application of a smoothing matrix, which is optimal for the hyperbolic 
model problem, would lead to instabilities when applied to a parabolic problem. However, if the 
smoothing operator is appropriately chosen, a substantial amplification of the maximal stable step size 
is obtained, irrespective of the (explicit) time integrators used, while the additional computational effort 
is rather limited. The price to be paid for the less restrictive stability condition is (i) a decrease of the 
accuracy for large degree smoothing matrices, and (ii) the requirement that the right-hand side function 
should be provided in grid points beyond the boundary. 

The reduced accuracy for large k has two sources: firstly, the smoothing technique analysed in this 
paper presupposes that the right-hand side function is a smooth function of the spatial variables and 
rapidly looses accuracy if not; secondly, the error constant of the smoothing operator increases with 
k 2 • On the other hand, the numerical experiments of the preceding section show that smoothing 
matrices of degree as high as 14 still do not reduce the accuracy very much if the problem belongs to 
the class of problems we are aiming at. 

In Section 4, the need of providing right-hand side values outside the domain was solved by impos
ing periodic boundary conditions. In the case of other types of boundary conditions, a plausible 
approach is to generate these values by extrapolation. We repeated the series of experiments of Sec
tion 4 by employing rationa/-extrapolation and we found a comparable stability behaviour and accu
racy behaviour as well (polynomial extrapolation leads, of course, to severe instabilities). Alterna
tively, one may employ the Jacobian matrix of the right-hand side to achieve a correct amount of 
smoothing in the near boundary points. Both approaches will be subject of further investigations. 
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