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In this paper likelihood-based inference procedures for discrete point process models are developed and a 
new family of discrete point process models for daily rainfall occurrences is proposed. The model, which is 
termed a Markov Bernoulli process, can be viewed as a sequence of Bernoulli trials with randomized suc­
cess probabilities. Contained within the family of Markov Bernoulli models are Markov chain and Bernoulli 
trial models. Asymptotic properties of maximum likelihood estimators of Markov Bernoulli model parameters 
are derived. These results provide the basis for ~ssessing standard errors and correlation of parameter 
estimators and for developing likelihood ratio tests to choose among Markov Bernoulli, Markov chain, and 
Bernoulli trial models. Inference procedures are applied to a data set from Washington D.C. 
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1. INTRODUCTION 
Markov chain models have played a major role in modeling wet-dry sequences. Two of the most 
attractive features of Markov chain models are the ease with which seasonality is accomodated and 
availability of effective statistical inference procedures for parameter estimation and model selection 
(see STERN AND CoE [84]). In this paper we propose a new family of models for wet dry sequences, 
which we term Markov Bernoulli processes. A Markov Bernoulli process can be viewed as a sequence 
of Bernoulli trials with randomized success probabilities. Although Markov Bernoulli processes con­
tain Markov chain models, we are motivated less by ideas adopted from the Markov chain literature 
than by ideas from the continuous point process literature. In this respect we follow the approach of 
FouFOULA-GEORGIOU [85) in developing "discrete point process" models of rainfall occurrences (see 
also FOUFOULA-GEORGIOU and LETTENMAIER [86]). 

An attractive feature of (some) continuous point process models is that physical significance can be 
readily attributed to model components. Models that have been introduced as physically-base& rain­
fall occurrence models generalize Poisson processes in one of two ways. "Poisson cluster processes" 
(see KAvvAs and DELLEUR [81)) are constructed by distributing rainfall events about a Poisson pro­
cess of "cluster centers". Kavvas and Delleur have shown that components of a Poisson cluster pro­
cess have a natural interpretation based on frontogenesis: cluster centers correspond to fronts, each of 
which has a random number of "storm" events associated with it. "Cox processes" (see SMITH and 
KARR [83]) can be viewed as Poisson processes with a randomly varying rate of occurrence. For 
modeling rainfall occurrences the random rate of occurrence has been interpreted as a "stochastic 
climatological process". In the Cox process model developed by Smith and Karr the random rate of 
occurrence is related to the frequency and duration of anticyclonic events. 

The discrete-time analog of Poisson processes is Bernoulli trials. Generalizations of Bernoulli trials, 
including Markov chain models, are typically based on a time series approach rather than the point 
process approach. One notes that much of the literature on wet-dry sequences (see WAYMIRE and 
GUPTA [81) for a review) is concerned with determining the appropriate order of a Markov chain 
model, much as the literature on time series modeling of streamflow is concerned with determining the 
appropriate number of autoregressive terms in an ARMA model. Our approach to model 
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construction is to generalize Bernoulli trials via the point process approach. A distinguishing feature 
of the point process approach is reliance on the "stochastic intensity" for description and statistical 
analysis of models. For a model of daily rainfall occurrences, the value of the stochastic intensity on 
a given day is the conditional probability of a wet day given the preceding history of wet-dry days. 

By analogy with Cox processes we generalize Bernoulli trials by randomizing the sequence of suc­
cess probabilities. For the Markov Bernoulli process the sequence of randomized success probabilities 
is particularly simple; it is a seasonal Markov chain which, for a given day of year, has two states. 
More complex models of wet-dry sequences can be constructed by selecting more complex sequences 
of randomized success probabilities. We illustrate in Section 3 that a discrete-time analog of 
Neyman-Scott models can be constructed in this fashion. We also note in Section 3 that the "Poisson 
cluster" construction has no discrete-time analog. An attractive feature of Cox processes is availabil­
ity of statistical inference procedures ( SMITH and KARR [85]). R. SMITH [84] suggests that Cox 
processes are amenable to incorporation of seasonality. These features provide ground for hope that 
Markov Bernoulli processes may possess the attractive features of Markov chain models. 

Development of procedures for parameter estimation and model selection is also motivated by the 
point process approach. The key result is Theorem 4.1, in which the log-likelihood function of a 
discrete point process is represented as a simple function of the stochastic intensity of the point pro­
cess. It follows from Theorem 4.1 that likelihood-based inference procedures can be used whenever 
the stochastic intensity can be computed. 

Contents of the sections are as follows. In Section 2 we introduce the general framework for a sea­
sonal point process model of daily rainfall occurrences. The stochastic intensity of a point process is 
introduced and used to define Bernoulli point processes and Markov chain point processes. Markov 
Bernoulli point processes are the topic of Section 3. The most important distributional result for 
Markov Bernoulli processes is a recursive formula for computing its stochastic intensity (Theorem 
3.1). Relationships with other discrete point process models are derived and an important invariance 
property of Markov Bernoulli processes is presented. In Section 4 likelihood-based inference pro­
cedures are developed for seasonal point process models. In Theorem 4.2 it is shown that maximum 
likelihood estimators of Markov Bernoulli model parameters are consistent and asymptotically nor­
mal. Furthermore, it is shown that log-likelihood ratios have a limiting')(- distribution. These results 
provide the tools for 1) estimating parameters of Markov Bernoulli models 2) assessing standard 
errors and correlation of parameter estimators, and 3) carrying out tests to choose among Markov 
Bernoulli, Markov chain, and Bernoulli trial models. To conclude Section 4 inference procedures for 
Markov Bernoulli models are applied to a data set from Washington D.C. 

2. DEFINITIONS AND NOTATION 
Consider a sequence of nonnegative random variables ZI, ... , Zt,Zr, ... , Z}, ... with the interpre­
tation that Z~ represents total rainfall on day t of year i. The total number of days during the year is 
T (which we will take to be 366 throughout the paper). The point process of wet day occurrences is 
specified by 

P,(x) = l(Z~ > x), t =I, ... , T; i = 1,2, ... (2.1) 

that is, P,(x) equals I if Z~ is greater than the threshold x, otherwise P,(x) equals 0. The threshold x 
is generally determined by the nature of the application and/ or sampling thresholds of the station 
being used. The counting process 

t 
N~(x) = ~ P,(x), t = 1, ... T; i = 1,2,... (2.2) 

s=I 

provides cumulative wet days over the course of year i. The occurrence times of wet days are denoted 

T1(x) = inf {t:P,(x)=l}, N~(x);;a.I (2.3) 
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Tk(x) =inf{t>Tk-1(x):~(x)=l}, ko;;;.N~(x). 
The data set of wet day occurrences is denoted by the a -algebra 

'.JG(x) = a{ r,(x) ;s o;;;.f} U a{ Y{(x) ;s = l, ... ,T,j <i}, t = 1, ... ,T; i = 1,2,... (2.4) 

The data set '.JG(x) contains data on wet day occurrences up to and including day t of year i. The 
precipitation threshold x plays only a "supporting" role in model development. To simplify notation 
we will suppress dependence on the threshold x unless explicitly stated otherwise. Thus ~ will 
denote the point process of wet days (larger than x). 

The stochastic intensity {i\~} of a point process { ~} is defined by 

i\~ = P{Y: = 1 J'.JG-1}. t=l, ... ,T; i=l,2,... (2.5) 

The value of i\~ is the conditional probability that day t of year i is a wet day given the history of 
preceding wet days. 

In Section 4 statistical inference procedures based on the stochastic intensity (2.5) are developed for 
discrete point processes. SMITH and KARR [85] develop intensity-based inference procedures for con­
tinuous point process models of rainfall occurrences. It will be seen that motivation and mechanics 
for using intensity-based inference procedures are much simpler in the discrete case. 

Utility of the stochastic intensity for inference problems stems largely from the facts that 1) the sto­
chastic intensity uniquely determines the distribution of a point process and 2) the likelihood function 
has a simple representation in terms of the stochastic intensity (see Theorem 4.1). We have for n vec­
tors of 0-1 values y; = (YL ... ,y~), i = l, ... ,n , 

P{vn -yn Y'l -yn yl _ I yl _ I} 
~ r- r •.. ., 1 - 1, · · ·, r-Yr····· 1-Y1 (2.6) 

ITITP{Y~=y~ 1r.-1 =y~-1 .... 'YI =yl} 
i=ls=I 

n T 
IIIJy~i\~ + (1 - y~)(l - i\~) 
i=ls=I 

EXAMPLE 2.2 Bernoulli point process 
Let p map E = {1, ... ,T} into the interval [0,1]. The point process{~} is termed a Bernoulli point 
process with success probability p if 

i\~ = p(t), t = 1, ... ,T; i = 1,2, ... (2.7) 

Thus for a Bernoulli point process the value of the stochastic intensity is determinisitic, depending 
only on day of year. On day t of any year the stochastic intensity equals the success probability p(t). 

EXAMPLE 2.2 Markov Chain point process 
Let q0 and q 1 map E into the interval (0,1). The point process{~} is termed a Markov chain point 
process with transition probabilities q0 and q 1 if 

i\~ = q1(t)~-1 + (1 - qo(t))(l - ~-i), t = l, ... ,T; i = 1,2, ... (2.8) 

The value of the stochastic intensity on day t of year i is q 1 (t) if the previous day was wet and 
(1 - q0 (t)) if the previous day was dry. In other words, q1(t) is the conditional probability of a wet 
day given that the preceding day was wet and 1-q0(t) is the conditional probability of a wet day 
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given that the preceding day was dry. 
Note that equation (2.8) is not well defined fort= I. Clearly, we want 

~-1 = yiT-I (2.9) 

whenever t= 1 (and i is greater than 1): Fort= l, equation (2.9) states that the value of Yon the day 
preceding the first day of year i is the value of Y on the last day of year i-1. To simplify presentation 
of results we will not explicitly use notation of the form (2.9) whenever interpretation is clear from 
context. 

3. MARKov BERNOULLI PROCESSES 
In this section we introduce a class of discrete point processes which will be termed Markov Bernoulli 
processes. A Markov Bernoulli process can be viewed as a Bernoulli point process with randomized 
success probability. The randomized success probability is of particularly simple form; it is a (sea­
sonal) Markov chain that alternates between two states. The main result of this section is Theorem 
3.1 in which a recursive formula for computing the stochastic intensity of a Markov Bernoulli process 
is presented. In subsequent corollaries relationships between Markov Bernoulli processes and other 
families of discrete point process models are presented and an important invariance property of Mar­
kov Bernoulli processes is derived. At the end of the section we indicate how more complex models 
can be constructed from randomizing the success probabilities of a Bernoulli point process by a Mar­
kov chain. In particular, we construct in this fashion a discrete analog of the Neyman-Scott model. 
We be~.by defining a Markov Bernoulli process. 

Let { Yr} be a Markov chain point process with transition probabilities q 0 and q 1 and let p be a 
function mapping E into (0,1]. The sequence of randomized success probabilities is given by 

~ = p(t)Yi, t = l, ... ,T; i = 1,2,... (3.1) 

Note that on day t of any year the random success probability can take either the value p(t) or 0. 
The point process {Y~} is termed a Markov Bernoulli point process with parameters p, q0 , and q 1 if 
for all positive integers n and 0-1 vectors/ = (y;1 , ••• ,y~) , i = l, ... ,n 

P{ Pr=yh ... , Y1{ =y7, ... , Y}=y}, ... , YI =yl l~,s = l, ... ,T,i = l, ... ,n} (3.2) 

;ttup{ Y~=y~I~} 
n T 

=II IlY~~ + (1-y~)(l - ~) 
i=ls=I 

It follows from equation (3.2) that: 
1) The sequence of wet-dry days are conditionally independent given the sequence {~} of success 
probabilities. 
2) The conditional probability of a wet day, given that~ equals p(t), is p(t). 
3) The conditional probability of a wet day, given that ~ equals 0, is 0. 
The main distributional result for Markov Bernoulli processes is the following recursive formula for 
the stochastic intensity. 

THEOREM 3.1 
The stochastic intensity of a Markov Bernoulli process with parameters p, q0 , and q 1 is given by 

A~ = p(t)[l-q0(t)] + p(t)[qo(t)+q1(t)- l] [~-1 - (1- ~-I) l ;ri(~ ~/) A~-d (3.3) 

PROOF. 



A~ = E[Pi!'.JG-d 

=E[E[Pi!~Jl'.JG-d 

=E[~l'.JG-d 

=p(t)P{~ = p(t)i'.JG-1} 

=p(t)[P{~ =p(t),~-1 =p(t -l)l'.JG-1} + P{~=p(t),~-1 =Ol'.JG-1 }1 

=p(t)[P{~=p(t)l~-1 =p(t -l)}P{~-1 =p(t - l)l'.JG-1} 

+ P{~=p(t)l~-1 =O}P{~-1 =Ol'.JG-1}1 

=p(t)[q1(t)P{ X:-1 =p(t - l)l'.JG-1} + (l -qo(t))[l -P{ X:-1 =p(t - l)l'.JG-1 })] 

=p (t)[(l -q0(t)) + (q0(t)+ q1 (t)- l)P {x:-1 =p(t -1)1 '.lG-1 }1 

=p(t)(l -q0(t)) 

+ p(t)(qo(t)+q1(t)- l)[Pi-1 + (1- Pi-d(l-p(t -l))P{~-1 =p(t -1) i:JG-2 }1 

. . (1-p (t -1 )) . 
=p(t)(l-q0(t)) + p(t)(q0(t)+q 1(t)-l)[r,-1 + (l-r,_i) p(t-l) A~-d· 
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(3.4) 

The following two corollaries characterize relationships with Bernoulli point processes and Markov 
chain point processes. 

COROLLARY 1. A Markov Bernoulli process with parameters p, q0 and q 1 is a Bernoulli point process if 
andonlyifqo+q 1-I = 0, that is, qo(t)+q 1(t)-I = 0, t=l, ... ,T. 

COROLLARY 2. A Markov Bernoulli process with parameters p, q0 and q1 is a Markov chain point pro­
cess if and only if p = 1, that is p(t)=l, t=l, ... ,T. 

Corollary 1 follows by comparing (3.3) with (2.7); the second corollary follows by comparing (3.3) 
with (2.8). These results are of particular importance in developing likelihood ratio tests for model 
selection in Section 4. 

We now examine relationships between Markov Bernoulli processes and discrete renewal processes. 
Importance of renewal processes for rainfall modeling stems in large part from data analysis results. 
For numerous data sets it has been found that correlation of interarrival times for rainfall occurrences 
(within a season) is very small (see, for example, SMITH and KARR [831), suggesting the plausibility of 
renewal models. 

The point process {Pi} is a renewal process if the interarrival times are independent and identically 
distributed (i.i.d.). For simplicity we will denote the interarrival times of {Pi} by UI> U 2 ,... • The 
distribution of a discrete renewal process can be specified by its probability mass function 

f(k)=P{Uj=k}, k=l,2,... (3.5) 
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or hazard function 

h(k) = p{ 0=kl0>k -1}, k ;;a., 2 
=f(I), k=I 

The two are related by 

h(k) = _ _,,,_f~(k_,_)_, k=l,2, ... 
k-l 

I - "'2.f(j) 
j=l 

Importance of the hazard function is clear from the following lemma ( KARR [86]). 

LEMMA The stochastic intensity of a renewal process is given by 

(3.6) 

(3.7) 

A~ = h(0r) (3.8) 

where h is the hazard function and { M} is the backward recurrence time, that is, the time that has 

elapsed since the most recent event. 

COROLLARY 3. A Markov Bernoulli process with parameters p, q0 and qi. which do not vary with time 
of year is a renewal process with hazard function 

_ p(l-qo) [ I -(l-p)q1 l k h(k) - p+(l-p)(qo+q1) +p (l-p)[l-(qo+q1-l)(l-p)] [(l-p)(qo+qi-1)] (3.9) 

PROOF. It follows from (3.3) that 

A~ = h(0r) 

where h is the solution to the first order difference equation 

h(k) = p(l-q0 ) - (q0 +q1 -1)(1-p)h(k -1) 

with initial condition 

h(l)=pq1 

The solution to (3.10) is given by (3.9) (see, for example, GOLDBERG [58]). 

Remarks. 

(3.10) 

I) If q0 +q1 -1 is greater than 0, his a decreasing function of k. If q0 +q 1 -1 is less than 0, his an 
oscillating function of k. In particular h(l) is less than h(2) if q0 +q1 -1 is less than 0, implying that 
rainfall is more likely two days following a wet day than the day after a wet day. Recall that if 
q 0 + q 1 - 1 equals 0, the point process is Bernoulli. We can thus view q 0 + q 1 - I as a measure of 
temporal correlation of the point process. 
2) In the case that the parameters p, q0 and q 1 vary with time of year, it follows from (3.3) that 

A~ = h1(0r) (3.11) 
where the functions h1 , t= l, ... ,T, are solutions to the system of difference equations 

h1(k) = p(t)(l-q0(t)) - (q0(t)+q 1(t)- l)(l -p(t))h1 _ 1(k -I) 

h1(l) = p(t)q1(t) 

(3.12) 
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Existence of solutions and general expressions for solutions can be obtained from results in GOLD­
BERG [58]. While (3.ll) does not provide a useful computational tool (in the way that (3.9) does), it 
does indicate an alternative strategy for obtaining "seasonal renewal models". Instead of dividing the 
year into homogeneous seasons and fitting separate renewal models for each season, one introduces 
seasonality into a renewal model (specified by its hazard function as in (3.8)) through the stochastic 
intensity using the representation (3.11 ). 

An attractive feature of Markov Bernoulli processes is invariance under random deletion (or p­
thinning) of events. Corollary 4 below states that if we randomly delete wet days from a Markov Ber­
noulli model we still have a Markov Bernoulli model. As discussed below, this property insures that 
model selection is not too strongly tied to the particular precipitation threshold that Ji? chosen. Before 
presenting Corollaries 4 and 5 we define the "p-thinning" of a point process. Let { z;} be a Bernoulli 
point pro9'ss with success probability p, which is independent of the point process { ~ }. The point 
process { ¥; } specified by . 

:;) -; . 
I,= Z,Y:' t=l, ... ,T; i=l,2, ... (3.13) 

is termed a p-thinning of{~}. From (3.13) it is seen that the p-thinning {Yr} is constructed by ran­
domly deleting events of { ~}; an event of { ~} that occurs on day s of any year is retained with pro­
bability p(s) and deleted with probability (1-p(s)). Corollary 5 below is virtually a paraphrase of the 
definition of a Markov Bernoulli process. Corollary 4 follows from the commutative property of p­
thinning. 

COROLLARY 4. The p-thinning {Yr} of a Markov Bernoulli process { ~} with parameters p, q0 and q 1 is 
a Markov Bernoulli process with parameters pp, q0 and q1• 

COROLLARY 5. The p-thinning of a Markov chain point process with parameters q0 and q 1 is a Markov 
Bernoulli process with parameters p, q 0, and q 1• 

A common assumption in modeling daily precipitation is that precipitation amount is conditionally 
independent of previous precipitation values given that positive precipitation occurs (see, for example, 
STERN and COE [84] and WOOLHISER and ROLDAN [82]), that is 

P{z~.;;;;xlZ~>O,Z~-I>····zl} = P{z~:s;;;xlZ~>o} (3.14) 

=H,(x) 

where, for each t, H,(x) is a distribution function on (0, oo ). In this case, the point process of days 
with total precipitation greater than x, {~(x)}, is a p-thinning of the point process of days with posi­
tive rainfall { ~(O) }, with 

p(t) = 1 - H1(x), t=l, ... ,T (3.15) 

It follows from the preceding corollary that if the conditional independence property (3.14) holds 
and if {~{x)} is a Markov chain for some x ;;a.O, then for any u not equal to x, Y~(u) is not a Mar­
kov chain. On the other hand if { ~(x)} is a Markov Bernoulli process for some x ;;;;.o then 
{ ~(x + u)} is a Markov Bernoulli process for all u ;;a.O. This invariance property of Markov Ber­
noulli processes under p-thinning is very attractive in light of (3.14). 

We conclude this section with a discussion of extensions to the Markov Bernoulli model. At the 
beginning of the section we noted that the Markov Bernoulli model can be viewed as a Bernoulli 
point process with randomized success probabilities. The random sequence of success probabilities 
{ ~} for a Markov Bernoulli process is a simple Markov chain. By allowing { ~} to be more compli­
cated Markov chains we obtain a broad family of discrete point process models, including discrete 
analogs to Neyman-Scott models. The reason for restricting the sequence of randomized success 
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probabilities to be Markov chains is that the stochastic intensity of the resulting models can often be 
computed from "filter equations" analagous to (3.3). 

A constructive definition of a discrete Neyman-Scott model would procede along the followin_g lines 
(for notational simplicity we consider a stationary model on the positive integers). Let {Tn} be 
arrival_ times of a Bernoulli point process on the nonnegative integers, representin_g "cluster centers". 
Let {Ni} be a sequence of nonnegative integer-valued random variables wijh N; representing the 
number of cluster members associated with the cluster center located at time Tj. We now _?ttempt to 
distribute cluster members about cluster centers. The problem we encounter is that unless N; equals 0 
or 1 for all i, we can not avoid the possibility of having more than one event on a single day. This 
approach clearly will not work. 

SMITH and KARR [85] show that a large class of Neyman-Scott processes can be represented as Cox 
processes (that is, Poisson processes for which the rate of occurrence is a random process). The fol­
lowing result suggests a different approach for constructing a discrete Neyman-Scott model. 

LEMMA (SMITH and KARR [85]) Let N be a N_ eyman-Scott process on [O, ~) of the following form. 
I) The Poisson process of cluster centers is N; arrival times are denoted T. 
2) The distribution of cluster sizes is Poisson with parameter a. 
3) The distances from each cluster center to its cluster members are i.i.d exponentially distributed with 

parameter b. 
Then N is a Cox process directed by the Markov process 

-
N, -X(t) = exp(-bt)X(O) + ab .L exp(-b(t -Tj)) (3.16) 

i=I 

The Neyman-Scott process N can be interpreted as a Poisson process with randomized rate of 
occurrence given by the Markov process (3.16). 

By ~nalogy with (3.16) we introduce the following definition of a discrete Neyman-Scott model. 
Let { Yt] be a stationary Bernoulli point process on Z + = {1,2, ... } with success probability p, arrival 
times { Tj} and counting process { Nr}. Let 

-
N, -

X
1 = b1X 0 + ab.Lbt-T; (3.17) 

i=I 

where a,b > 0, 

and X 0 is chosen to have the stationary distribution of the Markov chain { Xi}. A point process { Yi} 
on Z + is a discrete Neyman-Scott process with parameters a, b and p if for all positive integers n 
and 0-1 vectors (y 1 ,. .. ,y n) 

P{Yn=yn, ... ,Y1=yiJX1,t;;;;.O} = }JP{Y1=y1IXl (3.18) 

n 

= I!Y1X1 + (l-y1)(1-X1) 
t=I 
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4. INTENSITY-BASED STATISTICAL INFERENCE 
In this section we develop likelihood-based inference procedures for discrete point processes { P, }, 
establish asymptotic properties for maximum likelihood estimators of Markov Bernoulli model param­
eters, and apply inference procedures _to a data set from Washington D.C. The principal results are 
Theorem 4.1 which exhibits the log-likelihood function of a discrete point process as a simple function 
of the stochastic intensity and Theorem 4.2 which asserts that maximum likelihood estimators of Mar­
kov Bernoulli model parameters are consistent and asymptotically normal and that log-likelihood 
ratios have a limiting -JC distribution. Theorem 4.1 tells us how to estimate parameters; Theorem 4.2 
tells us how to assess standard errors and correlation of parameter estimates and how to select among 
competing classes of models. Theorem 4.2 guarantees that generalization of the Markov chain model 
to the Markov Bernoulli model is not done at the cost of losing the attractive statisical inference pro­
cedures described by STERN and COE [84]. 

For the Markov Bernoulli model presented in Section 3 it is impractical to estimate all 3T parame­
ters of the parameter functions p, q0 , and q1• For implementation of the model it is necessary to 
parameterize p, q0 , and q 1 in the form 

p(t) = f1(t,8) (4.1) 

qo(t) = fi(t, 8) , t = 1, ... , T ; 8=(81> ... , 8d) 

q1(t) = f3(t,8) 

where 8E0 and 0 is a compact subset of Rd. Later in this section we will discuss practical aspects of 
the parameterization (4.1). Now we are concerned with establishing conditions under which asymp­
totic properties of maximum likelihood estimators of Markov Bernoulli model parameters hold. For 
this purpose we need to assume that the functions Ji, Ji, and f3 are continuous in 8 and possess con­
tinuous derivatives up to order 3. We now present a representation for the likelihood function of a 
discrete point process depending on d real-valued parameters, 8. 
THEOREM 4.1 The log-likelihood function of a point process {P,} with stochastic intensity {A~} taking 
values in (0,1), given observations over n years is 

n T 
Ln(8) = ~ ~ PslogA~ + (1- Ps)log(l-A~) 

i=ls=I 

PROOF. The result follows immediately from (2.6). 

The score functions are defined by 

oLn(8) 
[ Un(8)]j = 

08
_ , j = l, ... ,d 

J 

It follows from (4.2) that 

n T ()~ . . I . . 
[Un(8)]j = i~ls~1( 08j )[>.~(1-A~)r (~-A~) 

A 

The maximum likelihood estimator 8 is the solution to the system of equations 

Un(8) = 0 

The observed information matrix Vn(8) is defined by 

o2 Ln(8) 
[ Vn(8)]j,k = -

08j
08k 

The Fisher information matrix I(O) is defined by 

o2L1(8) 
[ I (8) ]j,k = E[ -

08joOk ]j,k 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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Before presenting the main theorem we give results for the observed information matrix and Fisher 
information matrix. 

LEMMA I The observed information matrix is given by 

n T a2;>..i { . . }-I ();\i OAi l-2Ai . . [ v. (0) ]· = - ""' ""' [ s A'(l -A') - s s s ](P. -A') n l].k .~ ~ ao.ao s s ao. ao ("i(l-'i))2 s s 
1 =I s =I J k J k l\s l\s 

n T a;>..i a;>..i . . 
+ L L _s _s [A~(l-A~)r' 

i =ls= I ()0} ()Ok 

LEMMA 2 The Fisher information matrix is given by 

- T aA.~ aA.~ i i - ' [ /(0) ]j,k - LE[ ao. ao-<As(l-As)) ] 
s=l J k 

(4.8) 

(4.9) 

Lemma I follows from direct calculation of (4.6) (using the differentiability assumptions on fi. Ji, 
and !J). Proofs of Lemma 2 and Theorem 4.2 are sketched in the Appendix. We denote below the 
true model parameters by 00 . 

THEOREM 4.2 The following properties hold for maximum likelihood estimators of Markov Bernoulli pro­
cess parameters. 

0 ~ Oo 

n'12(0-00 ) ~ N(0,/(00)-
1) 

n- 1 Vn(O) ~ /(Oo) 

2(Ln(O)- Ln(Oo)) ~ X~ 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

Practical significance of the theorem can be summarized as follows. From (4.10) we ::i¥e guaranteed 
that for sufficiently large data sets, maximum likelihood estimators will be close to the true model 
parameters. Standard errors and correlations of parameter estimates can be assessed using ( 4.8), 
(4.11) and (4.12). Finally (4.13) provides a tool for model selection that is particularly useful when 
competing models are embedded in one another (as, for example, Markov chain models are embedded 
in Markov Bernoulli models). 

Note that the form of asymptotic properties of maximum likelihood estimators for Markov Ber­
noulli model parameters does not depend heavily on properties of the Markov Bernoulli model. Pre­
cisely the same asymptotic results (4.10 - 4.13) will hold in a much broader setting. Conditions under 
which asymptotic properties will hold can be obtained by mimicking conditions under which asymp­
totic properties of maximum likelihood estimators for continuous point processes hold (see KARR [86], 
Section 9.2, or OGATA (78]). In effect one needs three types of conditions: a) the stochastic intensity 
must be a "smooth" function of unknown parameters b) dependence of the stochastic intensity on the 
past must die out sufficiently quickly, and c) the Fisher information matrix must be invertible. Using 
conditions of this type one can derive asymptotic properties of maximum likelihood estimators for a 
broad class of discrete point process models, including the discrete Neyman-Scott model presented in 
Section 3. 

We conclude this section by applying inference procedures developed in this section to a 10 year 
record of daily precipitation data (1971-1980) from Washington D.C. Our primary tasks are 1) to 
estimate parameters of a Markov Bernoulli model and 2) decide whether a Markov Bernoulli model is 
better than a Markov chain or Bernoulli trials model. Furthermore, we want to carry out these tasks 
for a range of precipitation thresholds. Below we present results for three "wet day" thresholds: .01", 
.10", and 1.00". 
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Before implementing parameter estimation and model selection procedures we must parameterize 
the seasonal parameter functions p(t), q0(t) and q 1(t). We will take our seasonal parameter functions 
to be of the form 

(4.14) 

where (JI> 82, and fh E R 
The following properties of the parameterization (4.14) are of primary importance. 

1) The parameter functions are "probabilities", that is, 

f(t,OI>02,03) E (0,1)' t=I, ... ,T (4.15) 

This condition is necessary because all of our parameter functions are either "transition probabilities" 
or "success probabilities". 
2) For 02 = 83 = 0, 

(4.16) 

that is, the parameter functions do not vary with time of year. 
3) For large positive values of 01 the parameter function is close to 1; for large negative values of 01 
the parameter function is close to 0. More precisely, 

(4.17) 

(4.18) 

Using (4.14) for the Markov Bernoulli model we obtain 9 parameters (J = (81> ... ,09 ) specified by 

p(t) = j(t,81>82,83) (4.19) 

qo(t) = f (t,84,85,86) 

q1(t) = f(t,81,0s,89) 

(4.20) 

(4.21) 

To estimate the nine parameters of the Markov Bernoulli model the likelihood function is maxim­
ized numerically using the representation ( 4.2) for the likelihood function (in terms of the stochastic 
intensity) and the representation (3.3) for the stochastic intensity of a Markov Bernoulli model. Ini­
tial parameter estimates are: 01 = a "large" posivite value (see (4.17)), 02 = 03 = 0 (see 4.16), and 
04 - 09 equal to maximum likelihood estimates of Markov chain parameters obtained using the pro­
cedures described by STERN and COE [84]. Parameter estimates for threshold values of .01", .10", and 
1.00" are given in Table 1. 
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A A A 

Threshold 01 02 03 04 05 06 01 Os 
. 1 .1 -0.4. -0. 1.0 -0. 0.0 0.0 

0.10 1.6 -0.2 -0.2 1.4 -0.3 0.0 -0.5 0.4 0.0 
1.00 -0.5 -0.3 -0.2 3.4 -0.3 0.1 -2.4 0.2 0.1 

TABLE 1. Markov Bernoulli model parameter estimates for 
for wet day thresholds of 0.01, 0.10 and 1.00 inches. 

From Table 1 it is seen that the estimated thinning function p(t) is a decreasing function of precipi­
tation threshold. The Markov Bernoulli model is most similar to the Markov chain for the smallest 
threshold value. For this threshold the thinning function varies seasonally about a value of .88. 

Recall from Section 3 that a measure of temporal correlation for the Markov Bernoulli model is 
q0 +q 1 -1. From Table 1 is is seen that temporal correlation decreases with increasing threshold. 
For the .01 inch threshold, q0 +q 1 -1 varies seasonally about a value of .3; for the 1.00 inch thres­
hold, q0 +q 1 -1 varies about a value of .05. 

Qualitative features of parameter estimates suggest the following dependence of model selection on 
precipitation threshold. For small precipitation thresholds the Markov Bernoulli model is similar to 
the Markov chain model. For large thresholds the Markov Bernoulli model is indistinguishable from 
a Bernoulli trials model. For "moderate" thresholds Markov Bernoulli models are different (and 
superior) to both Markov chain and Bernoulli trial models. 

Likelihood ratio tests, based on (4.13), can be used to more formally assess questions of model sui­
tability. A likelihood ratio test for model selection between Markov Bernoulli and Markov chain 
models is obtained by replacing the "true parameter" 00 in (4.13) with maximum likelihood estimators 
of a Markov chain model with parameters q0 and q 1 specified by (4.20) and (4.21). Recall from Sec­
tion 3 that a Markov Bernoulli model with thinning function p identically equal to 1 is a Markov 
chain. The distribution of the test statistic is approximately X: with 3 degrees of freedom. In similar 
fashion, a likelihood ratio test is constructed for model selection between Markov Bernoulli and Ber­
noulli trial models. 

Markov Bernoulli Markov Bernoulli 
x VS VS 

Markov Chain Bernoulli 
0.01 2.5 (0.6) > 20 (>0.99) 
0.10 3.8 (0.7) > 20 (>0.99) 
1.00 < 1.0 (<0.1) < 1 (>0.99) 

TABLE 2. Likelihood ratio test values with 
significance levels in parenthesis. 

Table 2 contains log-likelihood ratios (with approximate significance levels in parenthesis) for tests 
of Markov Bernoulli versus Markov chains and Markov Bernoulli versus Bernoulli trials. For a thres­
hold of one inch, selection of a model more complex than a seasonal Bernoulli trials model is clearly 
unsupportable. The Markov Bernoulli model is clearly preferable to the Markov chain model for the 
.10 inch threshold. For the .01 inch threshold, superiority of the Markov Bernoulli model is marginal. 
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5. SUMMARY AND CONCLUSIONS 

The main points of the paper are summarized below. 
1) A new family of discrete point process models of rainfall occurrences, termed Markov Bernoulli 
processes, is proposed. A Markov Bernoulli process can be viewed as a sequence of Bernoulli trials 
with randomized success probabilities. The family of Markov Bernoulli processes not only contains 
Markov chain and Bernoulli trial models, but also both families can be represented as Markov Ber­
noulli models via simple parameterizations. Seasonality is easily accomodated in Markov Bernoulli 
models, as is the case with Markov chain models of wet dry sequences. Unlike Markov chain models, 
Markov Bernoulli processes are invariant under random deletion of wet days. Random deletion arises 
in modeling wet dry sequences when more than one precipitation threshold is used to define a wet 
day. Markov Bernoulli models can be easily generalized to more complex models of wet dry 
sequences by appropriate choice of the sequence of "randomized success probabilities". As an exam­
ple, we present in Section 3 a discrete analog to the Neyman Scott model. 
2) Likelihood-based inference procedures are developed for discrete point process models of wet-dry 
sequences. We obtain asymptotic properties for maximum likelihood estimators of Markov Bernoulli 
model parameters. In particular we show in Theorem 4.2 that maximum likelihood estimators are 
consistent and asymptotically normal and that log-likelihood ratios have a limiting X: distribution. 
These results provide the necessary tools for assessing standard errors and correlation of Markov Ber­
noulli model parameter estimators and for developing likelihood ratio tests for deciding whether Mar­
kov Bernoulli models are better than Markov chain and Bernoulli trial models. 
3) Inference procedures developed for Markov Bernoulli models are applied to a data set from 
Washington D.C. We present results for wet dry sequences with precipitation thresholds of .01, .10, 
and 1.00 inches. Results illustrate dependence of model selection on precipitation threshold. For 
large precipitation thresholds there is little justification for resorting to more complex models than 
Bernoulli trial models. For the smallest threshold, the Markov Bernoulli model is very nearly a Mar­
kov chain. With moderate thinning, the Markov Bernoulli model diverges from the Markov chain 
model. 

The inference procedures we present provide not only quantitative tests for model selection but also 
tools that can be used to qualitatively evaluate signficance of parameter estimates. These tools are of 
particular value in situations where physical interpretation is attributed to parameter estimates. Pre­
cipitation modeling has increasingly moved in the direction of physically-based models. As increas­
ingly sophisticated models of rainfall are developed it is important that development of statistical 
tools keep pace. 

Acknowledgements. This research was carried out at the Centre for Mathematics and Computer 
Science in Amsterdam with the support of a Fullbright postdoctoral research grant. 
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Appendix 

In this Appendix we sketch the proofs of Lemma 2 and Theorem 4.2. The key to obtaining asymp­
totic results for intensity-based inference procedures is that the sequence {Pi->-.~} is a martingale 
difference series with respect to the data set {~ }, that is, 

E[(Y~->-.~)J~-d = 0 , t=l, ... ,T; i=l,2, ... (A.I) 

The representation for the Fisher information matrix presented in Lemma 2 follows from (A.I) as 
follows. We have, from (4.2) and (4.3) that 

T - I I I T o>-.1 o>-.1 I I - I 
[/(Oo)]j,k = - s:;

1
E[Zs(Ys ->-.s)] + s:;

1
E[ oOj oOk (As(l->-.s)) ], (A.2) 

where 

a>-.1 a>-.1 I - 2>-.1 
aoj aok <>-.1o->-.1>i 

depends only on observations in X1_1. It follows that 

- T - I I I I T o>-.1 o>-.1 I I - I 
[/(O)lj,k - -s:;

1
E[E[Zs(Ys->-.s)J%-d] + s:;

1
E[ oOj oOk (As(l->-.s)) ] 

The lemma follows by noting that 
-I I I I _ -I I I I 

E[E[ZAYs ->-.s)l:lCs-d] - E[ZsE[(Ys ->-.s)IXs-d1 

=O. 

(A.3) 

(A.4) 

(A.5) 

An important feature of Markov Bernoulli models is that {>-.I} has the same distribution as {>-.~} 
for all i. This property is used in defining the Fisher information and in the proof of Theorem 4.2, 
which we sketch below. 

To prove asymptotic normality we first take a Taylor series expansion of the score function about 
00 • We obtain, 

(A.6) 
A 

where o• is on the line segment between 0 and 00 • Substituting the maximum likelihood estimator 0 
in (A.6) we obtain 



• A 

- Un(Oo) = - Vn(O )(0-0o) 

Multiplying both sides by n - 'h yields 

n-'hUn(Oo) = [n- 1 Vn(O*)Jn'h(O-Oo) 

To complete the proof of asymptotic normality we need to show that 

n- 1 Vn(O*) ~ J(Oo) 

and 

n-'h Un(Oo) ~ N(O,J(Oo)) 

We begin with (A.10). Setting 

T OA~ . . I . . 
Z; = ~(ao)[A.~(1-A~)]- (Ys-A~) 

s=I 

we have from (4.4) that 

i=I 

15 

(A.7) 

(A.8) 

(A.9) 

(A.10) 

(A.11) 

(A.12) 

Note that Z; is a random vector of dimension d. Using computations analagous to (A.5) it is 
straightforward to show that 

E[Z;] = 0 

E[zn.k = [I(Oo)Jj.k 

E[Z;Z1JJ,k = [O]j,k 

for i different from I. 

(A.13) 

(A.14) 

(A.15) 

Condition (A.10) follows now from a standard central limit theorem for stationary ergodic 
sequences (see, for example, Karr [86]). Similarly, consistency of the maximum likelihood estimator 
follows from (A.12), (A.13), and the strong law of large numbers for stationary ergodic sequences. By 
(A.9) the proof of asymptotic normality is complete if we prove consistency of the observed informa­
tion matrix as an estimator of the Fisher information matrix. In proving Lemma 2 we carried out 
computations which show that 

E[n- 1 Vn(Oo)J = [J(Oo)]j,k (A.16) 

The consistency result follows from Lemma 1 of Section 4 and the strong law of large numbers for 
martingale difference series using the martingale difference property of { ~ -A~}. 

To show that log-likelihood ratios have a limiti11g X- distribution we take a Taylor series expansion 
of Ln(O) about the maximum likelihood estimator 0, obtaining, 

(A.17) 

where 0* is on the li~e segment between 0 and 0. Evaluating (A.17) at the true parameter 00 , and 
using the fact the Un(O) is by definition equal to 0, we obtain 

Ln(Oo) - Ln(O) = -1/i(Oo-O)Vn(O*)(Oo-Ol (A.18) 

It follows that 

(A.19) 

The result follows from asymptotic normality and consistency of the estimators 0. 
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