
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

P. Klint

Modularization and reusability in current programming languages

" Computer Science/Department of Software Technology Report CS-R8635 November

RihKnthe'91<

"'(· ···' "lnformmica

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was .founded on February 11, 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research {Z.W.0.}.

Copyrigbt (~' Stichting Mathematisch Centrum, Amsterdam

Modularization and Reusability
in current

Prag.ramming languages

Paul Klint

Department of Software Technology, Centre for Mathematics and Computer Science
Department of Computer Science, University of Amsterdam

How well do modularization constructs in current programming languages allow the construction of truly
reusable modules? This question is answered by examining the implementation of the datatype queues in
Pascal, Modula-2, Ada and Smalltalk. The merits of object-oriented languages versus algorithmic
languages are discussed from the perspective of reusability.

1986 CR Categories: D.2.2 [Software Engineering]: Tools and Techniques - Modules and interfaces,
Software libraries; D.3.3 [Programming languages]: Language Constructs - Modules, packages.

-. 1980 Mathematics Subject Classification: 6881 O [Software]: Analysis of Programs - Semantics. cl
Key Words and Phrases: software engineering, reusable software, modules, abstract data types,
object-oriented programming.
Note: This paper will be published in the proceedings of the 1986 CERN Summer School on Computing,
held in Renesse, The Netherlands, august 31 - september 13, 1986.

1. INTRODUCTION

Over the last two decades it has become widely recognized that abstraction is the key technique that
allows software developers to control the ever increasing complexity of the software systems they
are building. The primary concerns are to control the quality (conformance to specifications,
reliability, maintainability) and costs of the resulting product . The quality of a software product is
determined by the quality of all steps in its production process, ranging from requirements analysis,
problem specification and initial program design to coding, testing and maintenance. The costs of a
software product are also determined by the costs of all steps in its production process. More often
than not, the objectives of maximizing quality and minimizing costs cannot be reconciled.

A common abstraction technique is to decompose a program into a number of modules and to
distinguish between the behaviour of the module as it can be perceived from the outside,
and its internals, i.e. the details of the implementation that realizes its external behaviour. The
advantages of this form of information hiding are manifold. The interfaces between modules can be
minimized (thus controlling the number of inter-module dependencies) and the implementation of
modules can be changed or optimized without affecting the users of these modules.

A common technique for reducing the costs of software products is to reuse parts of previously
written and tested programs. This technique is by no means new. In the mid-fifties, one noticed
already that many programs require common operations such as computing the cosine function,
inverting a matrix, sorting a file or computing a standard deviation. The programmer of each of
these operations needs to have expertise in a particular area. The user of those operations might not
have this expertise. This observation has led to the construction of many subroutine libraries in
specialized fields of application. In order to accommodate the needs of as many future users as
possible, the operations provided by these libraries tend to be very general and highly
parameterized.

Report CS-R8635
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

Clearly, the modules of a modularized program also lend themselves to reuse. But which properties
should the module constructor in a programming language have in order to maximize the
possibilities of reuse? As a general rule, which will be detailed in the following sections, the
possibilities of reuse of a module are maximized if the assumptions about its use are minimized.
This can be achieved by delaying, as much as possible, the moment that a module is bound to its
"users" (i.e. other modules). Contrasting this with the desire to bind such information also as early
as possible--if one wants to perform static (compile-time) typechecking in order to achieve run-time
efficiency--we have concisely formulated one of the many dilemmas a language designer has to
face.

I will discuss modularity and reuse issues in two families of current programming languages: the
"algorithmic languages" and the "object-oriented languages". The major distinction being that the
algorithmic languages stay within the framework of statically typed languages and have limited
capabilities of reuse, while object-oriented languages use dynamic typing and lend themselves to
more general reuse.

This paper is organized as follows. In section 2 a common example is introduced that will be used
throughout. In section 3 the algorithmic languages Pascal, Modula-2 and Ada are discussed.
Section 4 discusses object-oriented languages in general, and Smalltalk-80 in particular. Section 5
contains some concluding remarks.

2.ACOMMONEXAMPLE

As a common example I will use the queue data type. A queue is a first-in-first-out list of elements
on which the following operations are defined:

empty
full
insert element
delete element

FRONT

true if there are no elements in the queue, false otherwise.
true if no more elements can be added to the queue, false otherwise.
insert an element at the rear of the queue.
delete an element from the front of the queue; return that element.

REAR

delete etent
t

insert element

Figure 1. The queue data type.

Figure 1 illustrates these operations. There are two obvious implementations of queues: by means
of a linked list and by means of a circular buffer. The former allows the implementation of
unbounded queues, the latter provides a more compact representation since no explicit links
between the elements in the queue have to be stored. See [Knuth68] for a discussion of these
alternatives. The entities needed for the circular buffer implementation (also see figure 2) are:

MaxQsize
elems
first
last
size

maximal number of elements in a queue.
array containing the queue elements.
front of the queue.
the rear of the queue.
the number of elements in the queue.

3

elems:

0 1 2 • • • Max.Qsize-1

t
first

t
last

Figure 2. Queue implemented by circular buffer.

In this paper we are interested in the following three questions:

(1) Is it possible to define the data type queue in such a way that the implementation can be
changed (e.g. switching from a circular buffer to linked lists) without affecting the users of the
data type?

(2) Is it possible to define the data type queue once, such that queues with elements of a different
type can be defined using that definition?

(3) Is it possible to define queues in which the elements are heterogeneous, i.e. a queue may
contain elements of different types?

3. ALGORITHMIC LANGUAGES

3.1. Pascal

Pascal [Wirth74] is a widely used general purpose programming language. It is a descendant of
Algol60 [Naur63]. Most innovative were, at the time of its design, the facilities for defining
datastructures (records) and the static (compile-time) typechecking of programs using them.

The Pascal implementation of queues is shown in figure 3. Note how the wrap-around of the
indices first and last is achieved using the mod function. The consequence of this choice is that
indices of queue elements range from o to MaxQsize-1, and the last element of elems remains
unused (it is not possible in Pascal to declare arrays with constant expressions as bounds such as,
e.g., MaxQsize-1). The procedures underflow and overflow are left unspecified.

The problems with this Pascal implementation are three-fold:

Pl: Implementation hiding: the representation of queues by means of an array is visible and can
not be changed transparently to another representation using, for instance, linked lists. It is
even impossible to guarantee the consistency of this implementation, since users of the queue
may freely change elements of record Queue.

P2: Generic types: the type of the queue elements is fixed and the code as shown in figure 3
(which implements queues of integers) has to be repeated for each desired element type. The
only true modification required in each case is the substitution of the desired type for the type
ElemType.

4

const MaxQsize = 100;
type ElemType integer;

Queue record
first, last, size : integer;
elems : array[O •• MaxQsize] of ElemType

end;

procedure initialize(var Q : Queue);
begin

Q.first := O; Q.last := O; Q.size := O
end; {initialize}

function empty(Q : Queue)
begin

empty := Q.size = 0
end; {empty}

boolean;

function full {Q : Queue) : boolean;
begin

full := Q.size = MaxQsize
end; {full}

procedure insert(var Q : Queue; E ElemType);
begin

if full(Q) then overflow
else

begin Q.size := Q.size + l;
Q.last := (Q.last + 1) mod MaxQsize;
Q.elems[Q.last] := E

end
end; {insert}

procedure delete (var Q : Queue; var E
begin

if empty(Q) then underflow
else

begin Q.size := Q.size - l;

ElemType);

Q.first := (Q.first + 1) mod MaxQsize;
E := Q.elems[Q.first)

end
end; {delete}

types ElemTypes
ElemType

Figure 3. Queues in Pascal.

(booltype, inttype, realtype);
record case kind : ElemTypes of

booltype (boolvalue
inttype (intvalue
real type (real value

end;

boolean);
integer);
real)

Figure 4. Heterogeneous queue implemented with variant records.

5

P3: Heterogeneous types: it is impossible to implement heterogeneous queues. A possible
implementation using variant records for a queue with elements of type boolean, integer and
real is shown in figure 4. This approach has the disadvantage that the type definition of the
variant record that lists all allowed types has to be edited each time a new type is added. This
becomes very bothersome when generic operations on queues are defined such as, for
instance, a print procedure (see section 4.3 for a further discussion of this topic).

3.2. Modula-2

Modula-2 [Wirth85] is a descendant of Pascal and is intended for systems programming in general,
and multiprogramming in particular. The language extends Pascal in several ways. Here we are
only interested in the module concept. Modules are defined in two separate parts: a specification
part defining the external interface of a module and an implementation part defining its
implementation.This distinction provides not only proper implementation hiding of modules, but
also forms the basis for separate compilation in the Modula-2 implementation.

The implementation of queues in Modula-2 is given in figure 5. Note that only the name of the type
Queue and the name and .type of the five operations defined on queues are specified in the definition
module. All information concerning the representation of queues and the algorithms used for
implementing the five queue operations is hidden in the implementation module. The type Queue is
defined as a pointer to a QueueRecord (which contains the actual information related to the queue).
This construction is necessary to circumvent the constraints imposed on the "opaque" export of a
type, which oruy exports the name of a type but not its representation.

The advantage of the Modula-2 implementation is that a true division has been achieved between the
specification of a module and its implementation, thus eliminating problem Pl (implementation
hiding). However, the Modula-2 implementation shares problems P2 (generic types) and P3
(heterogeneous types) with the Pascal implementation. Modula-2 also permits the (unsatisfactory)
solution of P3 based on variant records.

3.3. Ada

Ada is based on a language designed by J. Ichbiah (Cii Honeywell Bull) in 1977. After several
revisions and international reviews, the reference manual of the resulting language "Ada" was
published in 1980 and the definition was finilized and accepted by ANSI in 1983 [DoD83].

Ada supports the concept of separating the definition and the implementation of a module in a
comparable but more general way than Modula-2. Modules are called packages in Ada terminology
and definition part and implementation part are called package specification and package body,
respectively. However, Ada extends the notion of modules in a major way, by allowing generic
packages. A generic package is a template for a package, but it is not a package in itself. Generic
packages can best be compared with compile-time macros which exist in many languages: a macro
definition consists of a macro-name, some formal parameters and a replacement text possibly
containing these parameters. Every occurrence of the macro in the text of a program is then replaced
--at compile-time--by the replacement text of the macro definition after proper substitution of the
parameters. In a similar way, generic packages are instantiated by properly substituting the
parameters of the generic package. Generic packages form a mechanism for delayed binding, i.e.
the "tailoring" of the generic package is performed when the package is instantiated.

The Ada implementation of queues is given in figure 6. This implementation is inspired by an
example given in [Hibbard, Hisgen, Rosenberg, Shaw & Sherman 81]. In this case all
initializations of the queue are performed in the declaration of the type Queue.The type Queue is
declared 1imited private; this forbids assignment operations and equality tests for queues. An
instance ojthe generic package Queue can, for example, be obtained by the following declaration:

6

definition module Queue;
type ElemType = integer;

Queue;
procedure initialize(var Q : Queue);
procedure empty(Q : Queue) : boolean;
procedure full(Q : Queue) : boolean;
procedure insert(var Q Queue; E : ElemType);
procedure delete(var Q : Queue; var E : ElemType);
end Queue.

implementation module Queue;
from storage import allocate;
from system import tsize;

const MaxQsize = 100;
type QueueRecord = record

first, last, size
elems : array (0

end;
Queue = pointer to QueueRecord;

procedure initialize(var Q : Queue);
begin

allocate(Q, tsize(QueueRecord));
Q".first := O; Q".last := O; Q".size

end initialize;
procedure empty (Q Queue) boolean;
begin

return Q".size 0
end empty;
procedure full (Q Queue) boolean;
begin

return Q".size MaxQsize
end full;

integer;
MaxQsize-1] of ElemType;

:= 0

procedure •insert(var Q : Queue; E
begin

ElemType);

if full(Q) then overflow
else

Q".size := Q".size + l;
Q".last := (Q".last + 1) mod MaxQsize;
Q".elems[Q".last] := E

end
end insert;
procedure delete (var Q : Queue; var E
begin

if empty(Q) then underflow
else

Q".size := Q".size - l;

ElemType);

Q".first := (Q".first + 1) mod MaxQsize;
E := Q".elems[Q".first]

end
end delete;
end Queue.

Figure 5. Queues in Modula-2.

package intqueue is new queue(ElemType =>integer, MaxQsize => 100);

The result is a package declaration, defining queues of at most 100 integers. Ada allows us to hide
the implementation of queues and also to define generic types. However, Ada does not solve P3
(heterogeneous types), in another way than using variant records as can be done in Pascal and
Modula-2.

generic
type ElemType is private;

package Queue is
type Queue(MaxQsize : Natural) is limited private;
function empty(Q : in Queue) return Boolean;
function full(Q : in Queue) return Boolean;
procedure insert(E in ElemType; Q : in out Queue);
procedure delete(Q : in out Queue; E: out ElemType);

end Queue;

package body Queue is
type Queue(MaxQsize : Natural) is

record
first, last, size : Natural := O;
elems : array(O .. MaxQsize) of ElemType;

end record;

function empty(Q
begin

in Queue) return Boolean is

return Q.size O;
end empty;

function full(Q : in Queue) return Boolean is
begin

return Q.size = Q.MaxQsize;
end full;

procedure insert(E : in ElemType; Q in out Queue) is
begin

if full(Q) then overflow
else

Q.size := Q.size + 1;
Q.last := (Q.last + 1) mod Q.MaxQsize;
Q.elems (Q. last) := E;

end if
end insert;

procedure delete(Q : in out Queue; E out ElemType) is
begin

if empty(Q) then underflow
else

Q.size := Q.size - 1;
Q.first := (Q.first + 1) mod Q.MaxQsize;
E := Q.elems(Q.first);

end if
end delete;

end Queue;

Figure 6. Queues in Ada.

4. OBJECT-ORIENTED LANGUAGES

4.1. What are object-oriented languages?

7

Algorithmic languages are based on a computation model that distinguishes between operands (i.e.
data values of a certain named type) and operators (i.e. functions or procedures operating on
operands of certain types and producing a typed result). Operands are thus passive while operators

8

are active: operands represent the current global state of a computation while operators can
transform this global state. It is essential that the context in which a certain computation is to be
performed is responsible for the selection of a properly typed operator to carry out the desired
computation. If, for instance, an addition operator exists for types integer, real and complex,
one of these three operators has to be selected at each position where an addition operator is used.

The so-called object-oriented languages are based on a different computation model. The entities
considered in this model are called objects which may have their own private storage (containing
data values). The notion of computation is captured by the concept of message passing: each object
is capable of answering certain messages. A message is a request to the object receiving it and the
latter has the obligation to provide a method (cf. operator) for answering it. During the construction
of the answer the private memory of the object may be changed and messages may be sent to other
objects. It is essential in this model that the sender of a message does not know which method will
provide the response to the message. In this way object-oriented languages provide data abstraction
and--as we will see below--reusability.

Usually, many objects have equal properties, i.e. they respond to the same messages in the same
way. It is common to organize those objects into classes . An element of a class is called an
instance of that class. The advantage of this organization is that the methods needed for answering
messages do not have to be specified separately for each object; they can be specified once for a
whole class.

The notion of classes can be refined by relating classes in order of increasing specificity. A more
specific class (e.g. automobiles) inherits properties (e.g. has a number of wheels) from a more
general class (e.g. vehicles), but it can also add specific properties (e.g. consumes fuel). The more
specific class is called a subclass of the more general one. In this way, a subclass can extend or
modify an existing class by specifying the differences with it or by specifying new messages that
are typical for the subclass.

A distinction should be made between an object-oriented language and object-oriented
programming. The former is a programming language which is strictly based on the message/object
computation model (see next section). The latter is a style of programming that simulates the
message/object model in an existing programming language (see section 4.5). See [Cox86] for a
general introduction to object-oriented programming.

4.2. Smalltalk

The language Simula [Dahl, Myhrhaug & Nygaard71] is a statically typed superset of Algol60.
Simula introduced the notions of classes and of class inheritance (called class concatenation in
Simula) in the context of solving simulation problems. These two concepts combined with the
notion of dynamic binding stemming from Lisp form the basis for Smalltalk [Goldberg &
Robson83], which is nowadays the prime example of an object-oriented programming language.
Some aspects of Smalltalk are now discussed by commenting on the Smalltalk implementation of
queues (see figure 7). For a complete description of the language the reader is referred to [Goldberg
& Robson83].

Each class has a name (e.g. Queue) and may be a subclass of another class. All classes are
ultimately a subclass of the most general class Object, which defines general operations such as
testing the class of an instance, and comparing and copying instances. The "private memory" of
each object consists of a number of instance variables; each instance of a class has a separate set of
instance variables.

The messages accepted by a class have a name and (optional) parameters. Parameters may be
separated by user-defined delimiters. Sending a message to some class instance is written as the
juxtaposition of the instance and the message.

9

Some examples of messages that might be sent to q (an instance of class Queue) are:

q empty (send message empty to q)
q insert: 3 (send message insert: with argument 3 to q)

Other examples are:

2 + 3 (send the message+ with argument 3 to 2; both 2 and 3 are
instances of the class Smallinteger)

a at: 3 put: 'abc'

a at: 3

(send the message at :put: with arguments 3 and 'abc' to a;
if a is an instance of the class Array, this corresponds to the
Pascal statement a [3] : = ' abc')
(fetch third elememt of a)

These examples show that some syntactic freedom can be achieved by using messages such as at :
and at :put:. The parsing of these message patterns is done at compile-time.

The implementation of a message is called a method and is comparable to a procedure in a
conventional language. Methods return a value to the sender of the message by means of the
operator i. They may also refer to the receiving object itself (i.e. the class instance that is currently
executing this method) by means of the pseudo-variable self. When a message is sent to an object,
the selection of the method to be invoked is determined--at run-time--by the class of that object.

Control structures such as if- and while-statements are modelled by messages sent to the class of
Boolean values. The if-statement, for instance, is provided by the message ifTrue: ifFalse:. The
Smalltalk expression:

x > 0

ifTrue: sign ~ 1]

ifFalse:[sign~ -1]

corresponds to the following Pascal statement:

if x > 0 then sign := 1 else sign := -1;

The semantics of the Smalltalk expression is as follows: the expression x > o is evaluated and
yields one of the two possible instances of the class Boolean: true or false. Next, the message
ifTrue: ifFalse: is sent to this Boolean, which in turn responds by evaluating either the first or
the second argument of that message.

The Smalltalk implementation solves all three problems we have posed in section 2. Problem Pl
(implementation hiding) is solved by the class mechanism itself. Problems P2 (generic types) and
P3 (heterogeneous types) are solved by run-time method selection which avoids nearly all static
constraints on the types of the elements in the queue. I will further discuss this issue in the next
section.

4.3. The effect of object-oriented programming on program organization

In languages based on the operator/operand model, programs are organized around the defmitions
of the operators required to solve a particular problem. In languages based on the message/object
model, programs are organized around the definitions of classes; the defmitions of operators are
distributed over the class defmitions. An example will illustrate this. ·

"

10

Queue
Object

class name:
subclass of:
instance variables: first last size maxqsize elems

initialize: n

first ~ last ~ size~ a.
maxqsize ~ n.

elems ~ Array new: n

empty

i size = a

full

i size = maxqsize.

insert: e
self full

ifTrue: i •overflow']

ifFalse: [size ~ size + 1.

last ~ (last + 1) rem: maxqsize.
elems at: (last + 1) put: e J

delete
self empty

ifTrue: i •underflow' J
ifFalse: [size ~ size - 1.

first ~ (first + 1) rem: maxqsize.

i elems at: (first + 1))

Figure 7. Queues in Smalltalk.

Suppose we want to add a print operation to a heterogeneous queue data type. Assume that values
of types t 1 , ... , tn may occur as elements in the queue and that these values can be printed by the
procedures t 1print, ... , tnprint. In a Pascal implementation using variant records (see figure
4), a print routine for queues will have the following general structure:

procedure print(Q : queue);
begin

for each element E in Q do
case E.kind of

ti: tiprint(E.t1value);

tn: tnprint(E.tnvalue);
end;

end print;

One can clearly see that this procedure has to be aware of the various types the queue elements may
have. Whenever elements of another type are allowed to appear as elements in the queue, a new
entry has to be added to the above case statement.

"
The same problem formulated in Smalltalk-style will have the following structure:

print "print method of class Queue"
self do: [:e I e print]

11

This can be paraphrased as:

print "print method of class Queue"
for each element E in Q do

send print to E

In this case the selection of the precise code to be executed in response to the message print is not
made in the print routine for queues, but is determined by the class of which each queue element is
an instance. The code of the above print method thus becomes independent of the types of the
elements in the queue.

This form of program organization is also known as data-driven programming and leads to easily
extensible implementations. Another example may further illustrate this. In a conventional compiler
for some language L, a source program is converted into an abstract syntax tree and this tree is
processed in several phases. Typical operations to be performed are: check (check types), dataflow
(perform dataflow analysis), allocate (allocate registers) and generate (generate code). Each of these
operations will be implemented as a procedure operating on the complete syntax tree and
knowledge about the various constructs that may occur in it has to be repeated in each of these four
procedures. This same problem can be implemented in an object-oriented style by defining a class
for each kind of statement in L. Each such class has to implement methods for the four desired
operations. This leads to a totally different organization: all information about one language
construct is concentrated in one class definition. This approach is superior over the traditional one,
if language L is not fixed (i.e. L is still under design and language features may come and go), or if
several dialects of L have to be implemented and one wants to maximize the sharing between these
implementations. See [Veen86] for a description of this technique in the context of the SUMMER
programming language [Klint85], and [Abelson, Sussman & Sussman85] for a description in the
context of Lisp.

4.4. Disadvantages of object-oriented languages

The advantages of object-oriented languages for reusability and extensibility will by now be clear;
what disadvantages do these languages have? First, the message/object model forces an asymmetric
view on operations which are inherently symmetric such as, for instance, arithmetic operators. The
problem then arizes how conversions can be inserted in mixed-mode expressions such as, e.g. an
addition with operands of types integer and real. Straightforward application of the view that
"2 + 2 . s is evaluated by sending the message + with argument 2 . 5 to the integer instance 2"
automatically leads to selection of the addition operation on integers, which is clearly undesired. In
this particular case, the problem can be solved by assigning a level of generality to all classes
defining arithmetic operators and by defining coercion protocols between them: when a message is
sent to a less general class with an argument of a more general one, the former should be coerced to
the class of the latter and the message should be re-sent to the (coerced) class instance. No
solutions exist for this phenomenon which are both elegant and general.

Secondly, not all problems can be modularized by means of strictly linear inheritance chains as
provided by, for instance, Smalltalk. A typical example is the class waterplane, which could best
be defined as a subclass of the classes boat and plane. Here one needs a form of multiple
inheritance.

Finally, there is a certain overhead associated with run-time method selection. Measurements show
that the operation of sending a message to an object is roughly twice as expensive as performing a
procedure call [Cox86].

4.5. Objechoriented programming in existing languages

It was already mentioned in section 4.1 that object-oriented programming techniques can, in
principle, also be used in conventional programming languages. In this section I will briefly
review the language features that are required to support such an object-oriented style. These

12

features are: information hiding, generic operations, dynamic binding, inheritance, and automatic
storage management.

Clearly, without an information hiding mechanism, it is impossible to implement a notion of
"objects". Modules from Modula-2 and packages from Ada are acceptable from this point of view.

As we have seen in the preceding sections, it frequently occurs that messages with identical names
are defined for several classes. Such messages are generic (or polymorphic), i.e. their behaviour
depends on the type of object to which they are sent. Such operators are not expressible in
Modula-2 (since overloading of names is forbidden) and only to a limited extend in Ada (since the
language is defined in such a way that all overloaded and generic names can be resolved at
compile-time).

The late moment of binding of names to their definition (also called dynamic binding) is one of the
major reasons for the flexibility of object-oriented languages. This aspect of object-oriented
languages is very hard to represent in statically typed languages, but is present in many not
object-oriented languages such as, e.g., Lisp.

The notion of linear inheritance can be mimicked by the import and use constructs in, respectively,
Modula-2 and Ada.

Strictly speaking, automatic storage management is a property of a programming language
implementation, rather than a language feature in itself. Availability of automatic storage
management, however, makes implementations of datatypes more reusable since details concerning
allocation and deallocation can be omitted. If we consider, for instance, an implementation of
queues based on linked lists, the question arizes whether a value just deleted from the queue should
be deallocated or not. It is most likely that the implementor is forced to leave this decision to the
user of the queue data type. But by doing so, he also compromises the implementation
independence of his data type.

This discussion makes clear that the possibilities for object-oriented programming are absent in the
case of Modula-2 and that they are limited in the case of Ada. What are the possibilities in other
languages? I will briefly mention two cases: Lisp and C++.

Clearly, Lisp scores high when checking the features mentioned above. It is therefore not
surprising that various Lisp extensions have been defined that provide primitives for object-oriented
programming. The functionality of these systems is comparable to or even encompasses that of
Smalltalk. In particular, improvements have been made in the area of introducing multiple
inheritance and of user-defined inheritance schemes.

C++ [Stroustrup86] adds the notion of classes to the language C [Kemighan&Ritchie78], in a
similar way as Simula added classes to Algol60. C++ is a superset of C and supports inheritance
("derived classes") and operator overloading, but--staying within the framework of compile-time
typechecking--it does not support general polymorphic functions.

In object-oriented languages all operations are performed by means of message passing,
independently of the amount of work required to compute them. For low-level operations such as,
e.g., the addition of two numbers, the overhead of message passing will be relatively large.
Object-oriented programming in a suitable conventional language has then distinct advantages since
such low-level operations can be performed by direct procedure calls thus eliminating the message
passing overhead.

5. CONCLUDING REMARKS

We have discussed two families of languages, each with different properties as far as reusability is
concerned. The algorithmic languages place a strong emphasis on compile-time typechecking: types
are identified by a name and all procedures and data structures in a program are explicitly typed. At
compile-time, this type information can be used to check that all expressions and statements in a

13

program are properly typed. The advantages of this approach are reliability (all improperly typed
expressions are detected at compile-time) and efficiency (there is no need to keep type information
at run-time). The disadvantage is limited reusability due to the early binding of type information.

In object-oriented languages, types are not identified by name but by the set of operations that are
defined on values of that type. This leads to very reusable code (each method only sends a limited
set of different messages to its arguments and will therefore work for all types that implement these
messages), but is less efficient (since run-time management of type information is required).

The distinction between compile-time and run-time typechecking is less absolute than is suggested
here. By performing a sufficiently sophisticated analysis of programs one may infer type
information that is only implicit in the text of the program. See, for instance, [Suzuki81] or
[Boring & Ingalls 82] for an application of this idea to Smalltalk. In this way, one can eliminate
most (but not all) run-time typechecks from a language that would otherwise require complete
dynamic checking.

The best of two worlds can be obtained by using elastic typing schemes [Heering & Klint85], in
which typechecking is performed as soon as type information becomes available (e.g., due to input
operations) or can be inferred (e.g., by filling in details in an incomplete program).

ACKNOWLEDGEMENT

Ard Verhoog, Pum Walters and Freek Wiedijk made several comments on drafts of this paper.

LITERATURE

H. Abelson & G.J. Sussman with J. Sussman, Structure and Interpretation of Computer
Programs, The MIT Press, McGraw-Hill, 1985.

A.H. Boring & D.H.H. Ingalls, A type declarartion and inference system for Smalltalk, Ninth
ACM Symposium on Principles of Programming Languages, 1982, pp. 133-141.

B.J. Cox, Object Oriented Programming, An Evolutionary Approach, Addison-Wesley, 1986.

0-J. Dahl, B. Myhrhaug & K. Nygaard, SIMULA 67 Common Base Language,
Norwegian Computer Centre, Report S-22, 1971.

0-J. Dahl & C.A.R. Hoare, "Hierarchical Program Structures", in 0-J. Dahl, E.W. Dijkstra &
C.A.R. Hoare, Structured Programming, Academic Press, 1972.

A. Goldberg & D. Robson, SMALLTALK-80, The Language and its Implementation,
Addison-Wesley, 1983.

J. Heering & P. Klint, " Towards monolingual programming environments", ACM Transactions
on Programming Languages and Systems, 7 (1985) 2, pp. 183-213.

P. Hibbard, A. Hisgen, J. Rosenberg, M. Shaw & M. Sherman, Studies in Ada Style,
Springer-Verlag, 1981.

K. Jensen & N. Wirth, Pascal User Manual and Report, Springer-Verlag 1974.

B.W. Kernigan & D.M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

P. Klint, A Study in String Processing Languages, Lecture Notes in Computer Science 205,
Springer-Verlag, 1985.

D.E. Knuth, The Art of Computer Programming, Volume 1: Fundamental Algorithms,
Addison-Wesley, 1968.

14

P. Naur (ed.), "Revised report on the algorithmic language Algol 60",
Communications of the ACM 6 (1963) , pp. 1-17.

B. Stroustrup, The C++ Programming Language, Addison-Wesley, 1986.

N. Suzuki, "Inferring types in Smalltalk", Eighth ACM Symposium on Principles of Programming
Languages, 1981, pp 187-199.

U.S. Department of Defense, Reference Manual for the Ada Programming Language,
Mil-Std 1815a (1983).

A.H. Veen, The Misconstrued Semicolon: Reconciling Imperative Languages and Data.flow
Machines, CWI Tract 26, Centre for Mathematics and Computer Science, Amsterdam, 1986.

N. Wirth, Programming in Modula-2, Third Edition, Springer-Verlag, 1985.

