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Abstract 

There are many commercial tools that address various aspects of the Year 2000 problem. 
None of these tools, however, addresses the closely related leap-year problem. In this paper, 
we provide experimental results that suggest that the leap-year problem can be addressed by 
plan-based techniques for automated concept recovery. In particular, we provide representative 
code fragments illustrating the leap-year problem, and we show the results of an empirical study 
that provides evidence that a plan-based approach can efficiently recognize both correct and 
incorrect leap-year computations and that the needed plan library is likely to be tractable in size. 
This paper furthermore argues that plan-based techniques are in fact mature enough to make 
a significant contribution to the Year 2000 problem itself, despite none of the existing tools 
making any documented use of these plan-based techniques. © 2000 Elsevier Science B.V. 
All rights reserved. 

1. Introduction 

The Year 2000 problem (generally abbreviated Y2K) is that many existing software 
systems that manipulate dates will behave incorrectly at the tum of the millennium, 
primarily as a consequence of having used a two-digit representation of years. Y2K is 
one of the most severe problems the software industry has ever faced [14, 29]. As a 
result, many tools have been developed to address the Y2K problem [20, 30, 40]. These 
tools deal with system inventory, impact analysis, project planning, code remediation, 
testing, and so on, using existing parsing and pattern-matching technologies. 

Perhaps surprisingly, none of these tools makes any apparent use of the results of 
research in using plan-based techniques for concept recovery [6, 13, 16, 24, 28, 34, 37]. 
A program plan describes common combinations of low-level program actions that 
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01 CONTRACT-INFO 

05 CONTRACT-SM PIC 99. 
05 CONTRACT-SD PIC 99. 
05 CONTRACT-SY PIC 9999. 

DIVIDE CONTRACT-SY BY 4 GIVING Q 
DIVIDE CONTRACT-SY BY 100 GIVING 

MOVE 'F' TO LY 
IF R-1 = 0 AND R-2 NOT 0 

MOVE 'T' TO LY 
END-IF 

IF LY = 'T' 
[leap year related code] 

END-IF 

REMAINDER R-1 
Q REMAINDER R-2 

Fig. 1. Example COBOL code that contains a leap-year bug. 

implement higher-level design concepts (such as "verify within warranty period" or 
"determine day of year"). A plan-based approach recovers design concepts by taking 
a library of program plans and automatically identifying the pieces of source code 
that actually implement such plans. An obvious application of this approach to Y2K 
is to construct a library consisting of typical correct and incorrect date-manipulating 
plans (such as determine-day-of-year, check-whether-leap-year, and so on). Given such 
a library, many Y2K infections could be located accurately, classified precisely, and 
potentially corrected automatically. 

In this paper, we discuss how Y2K tools actually work, present a problem closely 
related to Y2K, explain why current Y2K tools cannot address this problem, and then 
provide evidence that program plan recognition techniques can be successfully applied 
to it. 

1.1. The leap-year problem 

Our focus is on recognizing leap-year computations, such as the one shown in 
Fig. 1. 1 This code fragment, taken from real-world legacy COBOL code, correctly 
uses a four-digit date, rather than a two-digit date, but incorrectly tests whether the 
variable CONTRACT-SY is a leap-year. This means that when processing dates after 
February 28th, 2000, errors may occur in computations involving the number of days 
(e.g., interest payments) or the day of the week (e.g., determining weekend days for 
time locks). 

Ensuring that a program does its leap-year calculations correctly is usually not con­
sidered part of the Y2K problem. However, it is closely related [7], as many programs 
fail to recognize the year 2000 as a leap-year, considering it as a century year without 

1 Leap years are those years that are divisible by 4 but not by 100, unless they are divisible by 400 (so 
1996 and 2000 are leap-years and 1900 and 2100 are not). 
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recogrnzmg it as a year divisible by 400 as well . Chapter 4 ]. This situation has 

arisen because the definition of a kap-year is relatively complex and many program­

mers did not have a correct definition available while programming, resulting in their 

missing important cases and performing leap-year compmations incorrectly [27J. 

The costs related to a failed leap-year computations may be substantial. making rec­

ognizing and repairing them a potentially economically significant problem. As just one 

example, when the control computers of a New Zealand aluminum smelter sinmltane­

ously went down because they could not deal with the 366th day of 1996 it resulted 

in $1 OOO OOO damage [32]. Another recent example occurred in ont: vendor's version 

of DCE, a key UNIX-based application, that could not function at all from February 

29 through l'vfarch 3L 1996 [5]. 

1.2. Leap year and Y2K tools 

The prevalance of incorrect leap-year computations suggests that it is not sufficient 

for Y2K tools to carefully replace two-digit dates with four-digit dates. Instead. the 

ideal Y2K tool should identify our example code involving leap-years as Y2K related 

(despite its using a four digit date). identify the pair of divisions and remainder tests as 

being an incorrect check for whether we have a leap-year, and automatically transfonn 

that portion of the code to correctly test for leap years, as shovm in Fig, 2. :2 

Unfortunately, this example is problematic for the standard mechanisms used by 

existing Y2K tools and it gives rise to a need for alternative mechanisms to address 

the problem. The next section discusses the approach taken by existing Y2K tools 

and explains why extending them to address the leap-year problem appears to require 

augmenting them with plan recognition technology. 

2 This example shows a snnpk change thal lixes the problem sole!J through an mse11ion of new code. 
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2. Current Y2K tool support 

A variety of comrnerical tools are available to support a Y2K conversion, including 
Peritus AutoEnhancer/2000 [11, 12], Reasoning Systems Reasoning/2000 [4, 18, 19, 30], 
The Software Revolution's Revolution/2000 [23], Microfocus's SoftFactory/2000 and 
SmartFind/2000 [21], Legasys's LS/2000 (17], and Techforce's Cosmos/2000 (31]. 

Most existing Y2K tools concentrate on two areas: 

• Identifying Y2K-related code by heuristically locating date-manipulating elements 
in source code and then identifying code that is dependent on those elements. 3 

• Supporting Y2K code changes by identifying suspicious expressions and statements 
within the code (e.g., year increments and comparisons involving date elements) and 
making some automatic repairs (e.g., widening year fields to four digits). 

Overall, much of the process of locating Y2K code, and some of its modification, 
is automated, although it may require some assistance from the programmer. However, 
the heuristic recognition of Y2K code leaves open the possibility of both false positives 
(recognizing code as potentially date-related when it is not) and false negatives (failing 
to recognize code as date-related when it is). It is easy to avoid recognizing false 
negatives simply by considering everything to be date-related, but at a cost of having 
more false positives. Therefore, the main challenge of Y2K tools is to avoid false 
positives. 

2.1. Identifying date-related code 

While there are many differences in the details, existing tools share the same general 
approach to identifying date-related code: hypothesizing that a particular piece of code 
is date-related, heuristically verifying that the code is date-related, and then using slicing 
to locate other code that must also be date-related. 

2.1.1. Hypothesizing date-relatedness 
Hypothesizing that a particular piece of code is date related is usually done by a 

combination of seeding and pattern matching. 
Seeding is the process of forming a library of likely date-related identifiers, such as 

Year or Date, and related data formats, such as COBOL pictures of the form MM­
DD-YY. Most tools support a customizable library of seeds, where programmers can 
suggest program- or domain-specific candidate identifier names, such as CONTRACT-SY, 

that are not part of the standard set of known date-related identifiers. 
Most tools use a pattern-based representation of seeds to allow more complex de­

scriptions of date-related items, such as names ending in "Y". The result is that tools 
tend to support patterns that are lexically-based, which deal directly with the source 
code entities; syntax-based, which deal with the internal nodes of the abstract syntax 

3 As well as identifying dependencies on control input, data dictionaries, screen definitions, and so on. 



A n:m Dt•urst'n et al. I Snt'Ni<' o/ Computer Pm<.1rammmy 36 r :!01.Xi J 303- 3.'4 307 

tree (AST); or a combination of the two (e.g., looking for a particular combination of 
names and operators in a specified region in the tree). 

The tools typically parse programs mto an abstract syntax tree and then apply pattem­
matching techniques to locate the places where various seeds appear. The result is an 
initial collection of candidate date-related identifiers. However. this heuristic approach 
can lead both to false positives and false negatives. For example, a complex lexical 
heuristic can lead to false positives, where an identifier is initially considered to be a 
date but is not (e.g., assuming that names that end in "Y" are date-related could lead 
to hypothesizing that SALARY is date-related). Alternatively, using simpler patterns or 
a simple list of names can lead to false negatives, in which a date-related identifier is 
initially missed, such as not recognizing that Contract-SY is a year. As a result, an 
inference process is necessary to filter false positives and to minimize false negatives. 

The end result of this seed-and-pattern-match process is an initial set of possibly 
date-related identifiers. 

2. 1.2. Heuristic rerification 
Accurately verifying code as date-related requires examining a variety of factors. 

Most tools appear to use an inference process to do this verification. 
These tools address the false negative problem (missed date-related code) by hypoth­

esizing additional date-related identifiers based on how identifiers previously hypothe­
sized as date-related are used. For example, if the tool notices a comparison between 
a date-related identifier and another, previously unknown identifier, it is likely that the 
other identifier is also a date. 

These tools address the false-positive problem (code erroneously recognized as date­
related) by examining how a possible date-related identifier is used to gather evidence 
that verifies that the identifier is, in fact, date-related. This task often involves checking 
whether an identifier is involved in expressions involving key constants such as 4, 28, 
29, l 00, 365, and 2000. This task is also heuristic in nature, as not every expression 
involving one or more of these constants is date-related. For example, dividing by 
4 could not only be part of a leap-year check, but could also be part of computing 
a QUARTERLY-PAYMENT from an ANNUAL-PAYMENT. Similarly, dividing by 100 is not 
only a part of leap-year checks. but is also a common way to handle percentages. It is 
only the combination of a variable that represents a year being divided by 4 and 100 
that is likely to be part of a leap-year computation. 

The end result of the heuristic verification process is a suggested set of identifiers 
that the tool has concluded are date-related. 

2.1.3. Locating other date-related code 
Given a set of data-related identifiers, most tools use slicing [33] to determine all 

code that is data- or control-dependent on those identifiers. In particular, a backward 
slice from a given variable's use in a particular statement locates those statements that 
might influence the values of that variable, and a forward slice locates that statements 
that are influenced by that statement. 
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Assuming that the suggested set of date-related identifiers is accurate, the result of 
the slicing process is that all date-related code is located precisely. 

2.2. Finding and fixing problematic code 

Once tools have isolated the parts of the program that may have Y2K-related prob­
lems, most tools have mechanisms that attempt to determine exactly which code is 
problematic. This involves searching for possibly problematic operations (e.g., incre­
menting a year, comparing a value with a two-digit constant, and so on), as well as 
trying to filter out those expressions with "safe" calculations (e.g., comparing two date­
related identifiers). The tools then either flag suspicious code to the user, or they make 
use of a variety of transformation-based techniques to perform appropriate substitutions. 

3. Applying existing tools to the leap year problem 

Despite all of the effort currently focused on Y2K, there are as of yet no tools 
that claim to have successfully addressed the closely related problem of automatically 
recognizing and repairing incorrect leap-year calculations. 

Our hypothesis is that this situation has arisen because most Y2K code can be 
remediated and repaired without understanding the underlying purpose of the code -
but that this is not true for finding and fixing leap-year problems. For example, given 
an expression that compares a two-digit variable with a two-digit constant, a tool 
need only recognize that the variable is a two-digit year, infer that the constant must 
therefore represent an offset from the year 1900, replace the year with a four-digit year 
and add 1900 to the constant. There is no need, however, for the tool to understand 
the higher-level task this comparison is supporting, such as determining whether an 
input is in error. 

In contrast, processing leap-year examples requires recognizing that the purpose of 
a set of related code fragments is to perform a leap-year calculation, and it requires 
modifying or replacing those fragments to perform the calculation correctly. This sug­
gests that existing tools must be augmented to be able to recognize when and how 
various code fragments contribute to a leap-year calculation. 

3.1. Using a rule-based approach 

Perhaps the most straightforward approach to use to recognize leap-year computations 
is to use rule-based techniques. The idea is to use rules to describe various properties 
and interrelationships of program components that must hold to have an instance of 
a leap-year computation. This approach assumes that we can write specific rules to 
identify instances of common classes of correct and incorrect leap-year computations, 
and it further assumes that we can then efficiently recognize leap-year instances by 
applying a standard rule-based deductive inference engine. 
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IF NumericVariable(?V) 
Exists(Division(?V, 4, ?Q, ?RI), ?Div-1) 
Exists(Equality-Test(?RI. 0), ?Test-1) 
Data-Dcpcndcncy('!fcst-1, ?Div-1, ?Rl) 
Exists(Division(?V, 100, '?Q, ?R2), '!Div-2) 
Exists(lncquality-Tcst(?R2, 0), ?Tcst-2) 
Data-Dependency('Tfest-2, ?Div-2, ?R2) 
Same-Data(?Div-1, ?Div-2, '?V) 

THEN Is-Year('!V) 
Rccognizcd(Invalid-Lcap-Y car- I) 

Fig. 3. A rule to recognize a particular invalid leap-year computation. 

As an example, Fig. 3 is a rule that could be used to recognize the fragment of 

Fig. 1. Paraphrased, this rule states that if there is a numeric variable, and its value is 

involved both in a division by 4 and a division by I 00, and there are tests to determine 

whether the division by 4 is zero and whether the division by 100 is not zero, then 

we know the variable is a year and that we have an instance of an incorrect leap-year 

computation. 

At first glance, the rule-based approach seems sensible. The rule antecedents take 

care of verifying that particular program entities exist and that certain relationships 

hold between them (e.g., that there is a division by 4, that there is an equality test 

on the result of that division, and so on). The rule consequences are responsible for 

notifying us about which particular correct or incorrect date-manipulation was detected, 

what variables in that code were date-related, and possibly what transformation can be 

used to correct the code if an erroneous date manipulation is detected. 

Unfortunately, there is one important problem with the use of general rules in com­

bination with a deductive rule-based inference engine: scalability. In general, rule-based 

systems suffer scalability problems when they have large fact bases and many com­

plex, interacting rules. In the leap-year problem, the programs to be inspected are likely 

to be large, resulting in a large database of program facts (describing the program's 

components and the control- and data-flow relationships between them). Moreover, the 

rules are often complex, because each rule has potentially many antecedents describing 

the pieces of a leap-year computation and the relationships between those pieces. Last 

but not least, there may be many rules covering the many fundamentally different ways 

to implement correct and incorrect leap-year computations. 

3.2. Addressing the problems with the rule-based approach 

There are two ways to deal with scalability problems in rule-based systems. One 

approach is to modify the rules with additional information about how they are used 

(exactly when each should be applied, the order to use to process antecedents, and 

so on). The drawback to this approach is that placing this control information into 
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rules makes them complex, hard-to-maintain, and difficult to debug. The other is to 
try to provide a special-purpose engine that is targeted toward efficiently processing a 
particular class of rules. This approach is more attractive, but can require considerable 
effort in finding an appropriate engine. 

Plan-based techniques are an example of the latter option. These techniques can be 
thought of as combining a special class of rules (the plans) with a dedicated engine 
optimized for recognizing applications of rules from this class. Our earlier experiments 
provided some initial evidence that these plan-based techniques do, in fact, scale [26], 
which initially led us to believe that they might be useful for recognizing leap-year 
computations. 

4. Plan-based recognition of leap-year computations 

Fig. 4 shows an adaptation of a standard plan-based architecture to address the leap­
year problem. The source program is fed into a parser for building an abstract syntax 
tree (AST), which is then passed to a canonicalization tool that handles tasks such as 
regularizing expressions in the AST (e.g., modifying comparisons to use only a subset 
of the relational operators) and to static analysis tools that produce control-flow and 
data-dependency graphs. 

In addition, the source is fed into a Static Date Analyzer (SDA), which is essentially 
the "date-recognition" component of existing Y2K tools [1, 12]. Effectively, the SDA 

Source 
Program 

t 
Parser 

AST 

Canonicalizer 

Canonicalized AST 

Flow Generator 

Flow-Annotated AST 

Date Analyzer 

Annotated AST 

Plan Library 

Correct 
Leap Year Plans 

Plan Recognizer 1-E----+- - - - - - - -- -- - - -

Recognized 
Plan Instances 

Incorrect 
Leap Year Plans 

Fig. 4. An architecture for recognizing leap-year related program plans. 
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phase associates date types with variables (without worrying about correct or incorrect 
constructs). The plan library can take advantage of these date types to reduce the search 
space when looking for these plans. 

The plan recognizer is a special-purpose engine that is given a library of leap-year 
plans and that tries to locate instances of them in the canonicalized AST Particular 
plan recognition engines differ in the details, but they all describe plans in terms of 
syntactic, data, and control flow dependencies, and view plan recognition as an explicit 
process of matching this description [6, 16, 34]. 

4.1. Representing leap-year plans 

Our particular approach to plan recognition represents plans as a combination of 
components and constraints (in the spirit of the Concept Recognizer [16] and DECODE 
[6]). 

Fig. 5 is an example plan in the component-and-constraint formalism. This plan is 
suitable for recognizing a leap-year-related code fragment similar in function to the 
one in Fig. 1. 

The components are syntax tree entities or sub-plans. This example specifies five 
components: two remainder computations, an equality test, an inequality test, and a 
logical AND of the results of the two tests. Any program containing these five com­
ponents matches the plan, provided it also meets the plan's constraints. Each plan 
component has attributes which correspond to variables or constants in the program or 

plan Not-lOOth-Year(In: ?year, Out: ?out) 
isa Incorrect-Leap-Year-Check-Plan 

recognize 
Not-lOOth-Year(Year: ?year, Status: ?out) 

components 
Dividel: REMAIN(Srcl: ?year, Src2: ?divbyl, Rem: ?reml) 
Divide2: REMAIN(Srcl: ?year, Src2: ?divby2, Rem: ?rem2) 
EqTestl: EQ{Srcl: ?reml, Src2: ?zero, Dest: ?tl) 
EqTest2: NOT-EQ(Srcl: ?rem2, Src2: ?zero, Dest: ?t2) 
EqTest3: LOGICAL-AND(Srcl: ?tl, Src2: ?t2, Dest: ?out) 

constraints 
Numeric-Field(?year) 
Constant-Value{?divbyl, 4) 
Constant-Value{?divby2, 100) 
Constant-Value(?zero, 0) 
DataDep{Dividel, EqTestl, ?reml) 
DataDep(Divide2, EqTest2, ?rem2) 
DataDep(EqTestl, EqTest3, ?tl) 
DataDep{EqTest2, EqTest3, ?t2) 

Fig. 5. A plan that recognizes our earlier incorrect leap-year computation. 
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to the results of computations. For example, the EqTestl component corresponds to an 
equality test, the Srcl attribute corresponds to the result of evaluating the operator's 
left operand, the Src2 attribute corresponds to the result of evaluating the operator's 
right operand (in this case, 0 ), and the Dest attribute corresponds to a boolean that 
holds the operator's result (which may then itself appear in another expression). 

The constraints can be restrictions on the component's attributes or on the relation­
ships between components. Some examples of attribute constraints are that the year 
variable must be numeric and that the divisors must be constants with values 4 and 
100. Alternatively, the DataDep constraint ties two components together by specifying 
that the value of the specific variable produced by one component is the same used 
by another component. ln our example plan, this produces an implicit partial order on 
the divisions and the tests that combine them. 

4.2. Recognizing plans 

Our approach is to treat program plan recognition as a constraint satisfaction problem 
(CSP) [25, 35, 36, 38, 39]. In particular, our recognition engine, Layered MAP-CAP, 
represents plan components as CSP variables and the possible values of these compo­
nents as the variable domains. In addition, we represent the types of components and 
constraints on component attribute values as node-constraints and the inter-component 
constraints are arc-constraints. We then apply a specialized constraint satisfaction en­
gine to locate instances of plans in the code [26, 36]. 4 

Our engine further relies on a hierarchically organized plan library and operates 
breadth first through the hierarchy, processing plans consisting only of AST nodes 
first, then the plans that involve the initial set of plans and so on. Our engine uses 
properties of the constraints and the information available in the AST and flow-graph 
to direct the actual plan-matching process and recognizes all possible instances of a 
given plan before moving on, 

The details of this engine and its application to a variety of recognition problems 
have been presented elsewhere [26, 36]. Our focus in this paper is on its specific 
application to the leap-year problem. 

5. Empirically evaluating the plan-recognition approach 

There are two key issues in applying plan-based techniques to the leap-year problem: 

• The feasibility of using plans to describe existing leap-year computations. That is, 
how many plans are needed? 

4 This engine is specialized to the class of constraint satisfaction problems containing at least some con­
straints that can be evaluated as functions that return the particular values for which some relationship 
between variables holds true, rather than simply as functions evaluating the truth of individual relationships 
between values for those variables. 
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• The scalability of the CSP-based algorithm for locating plan instances. That is, how 
quickly can this algorithm locate leap-years? 

Ideally, a "manageable" set of plans is all that is necessary to capture a significant 
fraction of actual leap-year computations in code. It is certainly reasonable to construct 
a plan library containing the same number or fewer plans than the number of common 
synonyms and patterns used to recognize date-related identifiers in existing tools, as a 
pattern library of that size has proven to be constructable in practice for the general 
Y2K problem. Unfortunately, there are potentially a wide variety of different ways 
to compute leap-years (both correct and incorrect). As a result, it is necessary to 
empirically determine how many leap-year plans are needed. 

Similarly, our recognition algorithm must run in a "reasonable" time. Since, in the 
worst case any algorithm addressing this problem is NP-complete [37], this suggests 
that we have to verify the performance of our algorithm empirically. 

5.1. A plan library to capture leap-year computations 

We have examined a large amount of COBOL code (several hundred thousand lines 
worth) to determine how many plans would be needed to handle the leap-year com­
putations found in that code. This code contained 15 different correct and incorrect 
leap-year computations that fell into the following six categories: 

• Every-Fourth-Year: An incorrect computation (although it is correct until the year 
2100) that computes a remainder divided by 4 and then tests it against zero. 

• Every-Fourth-Year-Except-2000: An incorrect computation that is similar to Every­
Fourth-Year, except that the year is erroneously also verified not to be 2000. 

• Check-Leap-Year-List: An incorrect computation that compares a year against each 
element in a list of leap-years (and that fails for the first leap-year not in the 
list). 

• Not-JOOth-Year: An incorrect computation that computes remainders divided by 4 
and 100. 

• Not-400th-Year: An incorrect computation that is very similar to Not-JOOth-Year, 
except that it computes remainders divided by 4 and 400 rather than 4 and 100. 

• Complete-Leap-Year, which computes remainders divided by 4, 100, and 400, and 
does the appropriate tests. 

From this initial study, there appear to be only a relatively small set of categories 
of incorrect leap-year computations, and these involve either forgetting one or more 
divisions (e.g., failing to divide by 100 or 400) or explicitly testing for specific years 
(e.g., explicitly checking whether the year is 1992 or 1996 ). 

Each category can be thought of as placing some requirements on the components 
that must be present in a computation that falls into that category. For example, any 
computation in the category Every-Fourth-Year-Except-2000 will be required to test 
divisibility by 4 and equality against 2000. 



314 A. van Deursen et al. I Science of Computer Programming 36 (2000) 303-324 

However, despite these requirements, there are several dimensions by which the 
individual computations within a particular category can vary. These include: 

• The ordering and exact placement of specific computations and comparisons (e.g., 
whether the remainder of the division by 4, 100, or 400 happens first, as in Fig. 1, 
or whether the divisions by 100 and 400 occur only after realizing the division by 
4 has a remainder of zero, as in Fig. 6). 

• Whether logical operators, nested IF statements, or a combination of both are used 
(e.g., whether a single, complex expression is used to determine whether a year is 
a leap year, as in Fig. 1, or whether a pair of IF statements is used, as in Fig. 6). 

• The specific constructs used to compute remainders (e.g., using DIVIDE-GIVING, 
as in Fig. 1, integer division, as in Fig. 6 ), or an alternative method such as storing 
the division's result in a variable that can store only two digits behind the decimal 
point). 

• The specific logical operators used (e.g., testing whether the year is divisible by 
4 and not divisible by 100, as in all our earlier examples, versus testing whether it 
is not true that the year is not divisible by 4 or divisible by 100 ), as in Fig. 7. 

• Whether the test is to determine whether a year is or is not a leap year (e.g., setting 
a flag to remember a year is a leap year, as in Fig. 1, versus setting a flag to 
remember that a year is not a leap year, as in Fig. 7). 

In addition, many categories have variants specific to that particular category. For 
example: 

• With Every-Fourth-Year-Except-2000, the order of the tests can vary (e.g., whether 
the division involving 4 or the explicit test against 2000 is computed first). 

• With Check-Leap-Year-List, the specific values that are tested can vary as well as 
the order in which they are tested (e.g., whether the years tested are 92 and 96, 96 
and 00, or 96 and 92). 

Finally, in addition to these variations, there were specialized calculations closely re­
lated to leap-year computations. Fig. 8 shows one example, with a computation that 
determines both whether the current year or the last year is a leap year. These special­
ized uses appear to be relatively rare and tend to include one of the basic leap-year 
plans within them. As a result, at least the basic leap year calculation will be recog­
nized, drawing attention to that general area of code as potentially problematic. 

It is clearly necessary to have at least one plan for each category. However, the 
precise number of plans needed and the completeness of the resulting plans depends 
significantly on how much hierarchical structure there is to the plan library and how 
much canonicalization is done before hand. 

5.1.l. Hierarchical structure with subplans 
One way to reduce the number of plans needed to recognize high-level concepts, such 

as leap-years, is by providing supporting plans for recognizing low-level details. As we 
have seen, there are a number of ways to compute a remainder: "DIVIDE-GIVING", 
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COMPUTE Q =CONTRACT-SY I 4. 
COMPUTE R-1 = CONTRACT-SY - (Q * 4). 

MOVE 'F' TO LY 
IF R-1 = 0 

COMPUTE Q =CONTRACT-SY I 100. 
COMPUTE R-2 = CONTRACT-SY - (Q * 100). 
IF R-2 NOT = 0 

MOVE 'T' TO LY 
END-IF 

END-IF 

IF LY = 'T' 
[leap year related code] 

END-IF 

Fig. 6. A variant of our initial buggy COBOL fragment (category: Not-JOOth-Year). 

DIVIDE CONTRACT-SY BY 4 GIVING Q REMAINDER R-1 
DIVIDE CONTRACT-SY BY 100 GIVING Q REMAINDER R-2 

MOVE 'T' TO LY 
IF NOT (R-1 = 0 OR R-2 NOT = 0) 

MOVE 'F' TO LY 
END-IF 

IF LY = 'F' 
[code that applies to non-leap years) 

ELSE 
[code that applies to a leap year) 

END-IF 

Fig. 7. Yet another COBOL fragment that contains a leap year bug (category: Not-JOOth-Year). 

MOVE 'F' TO LEAP-THIS-YEAR 
MOVE 'F' TO LEAP-LAST-YEAR 
DIVIDE YEAR BY 4 GIVING Q REMAINDER R. 
IF R EQUAL 0 

MOVE 'T' TO LEAP-THIS-YEAR 
ELSE 

IF R EQUAL 1 
MOVE 'T' TO LEAP-LAST-YEAR 

END-IF 
END-IF 

Fig. 8. Determining whether the current year or the last year is a leap year. 

using integer division, and using a variable that can store only two digits behind the 
decimal point. We can capture these variants in three specific plans: "Remainder-By­
Divide-Giving", "Remainder-By-Integer-Division", and "Remainder-By-Fixed-Point", 
which are specific instances of the general plan "REMAIN". 
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01 DATE. 
02 DAY PIC 99. 
02 MONTH PIC 99. 
02 YEAR PIC 9999. 
02 CCYY REDEFINES YEAR 

03 cc PIC 99. 
03 yy PIC 99. 

01 LEAP PIC x. 

MOVE 'F' TO LEAP. 
DIVIDE YEAR BY 4 GIVING Q REMAINDER R-1. 
IF R-1 = 0 

IF YY = 0 
DIVIDE YEAR BY 400 GIVING Q REMAINDER R-2 
IF R-2 = 0 

MOVE 'T' TO LEAP. 
END-IF. 

ELSE 
MOVE 'T' TO LEAP. 

END-IF 
END-IF 

IF LEAP = 'T' THEN 
[Leap year-related code] 

END-IF 

Fig. 9. Another leap-year example. 

The other place where subplans are useful with leap years is in recogmzmg a 
DIVISION-BY-100. In COBOL, there are a variety of different ways a value can 
be divided by 100 without using an explicit division. Fig. 9 is an example of a correct 
leap year computation that takes advantage of the implicit division that results from 
using REDEFINE clauses. It redefines the date as a century field and a year field, and 
it then checks whether the two-digit YY sub-field equals zero instead of testing whether 
the remainder of dividing the four-digit field YEAR by 100 is zero. 

These implicit divisions, however, can be recognized by fairly simple plans: any use 
of variable that has been redefined in a two-digit field is an instance of a DIVISION­
BY-100. 

Having these subplans simplifies the higher-level plans corresponding to the various 
leap-year categories, and it results in the need for fewer plans to be able to recognize 
computations with a particular category. 

5.1.2. Canonicalization 
Canonicalization as a complimentary technique to subplanning for reducing the num­

ber of plans we need to handle leap-year variants. In general, the more powerful 
the canonicalization component, the fewer plans we need to recognize program-level 
variations. 
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The simplest form of canonicalization is to turn program source into an AST anno­
tated with flow information, which allows our plans to ignore a variety of differences 
in variation between plans [34]. For leap year, this allows us to ignore the precise 
order in which the remainder calculations take place, as our plans can just verify that 
certain flow-based constraints hold between those calculations. In addition, it allows 
us to ignore differences in Cobol dialects, as these can presumably be handled by the 
canonicalization component. 

Other forms of canonicalization are essentially a form of specialized plan recognition 
and transformation, where there are engines for recognition and transformation that are 
targetted to specific types of components. One such complex form of canonicalization 
involves techniques such as GOTO elimination and expansion of non-recursive proce­
dures, which in general allow our plans to ignore meaningless variations in control flow. 

Another similar form includes expression simplification and reordering techniques 
that allow us to ignore meaningless variations in expressions (e.g., always using LESS­
THAN for comparisons rather than GREATER-THAN, rewriting expressions that 
involve logical negation without it, recomputing expressions in disjunctive normal 
form, simplifying negated conditions by switching the IF and ELSE branches, and 
so on). These allow plans to be written to check for only particular constructs, such 
as EQUALS and NOT-EQUALS, without worrying about the use of NOT. 

The final place where cannonicalization is useful in our leap-year example is turning 
logical connectors (such as "AND" and "OR") into sequences of IF statements (or 
doing the opposite and turning particular sequences of IF into ANDs and ORs ). That 
is because we have a low-level plan "LOGICAL-AND" that can be implemented in 
two different ways: either the language's logical AND construct, or a pair of nested 
IFs, where one test is in the outer IF, and the other test is in the inner IF. By map­
ping one into the other, we have only to write plans to deal with the construct that 
remains. 

5.1.3. The results 
Fig. 1 O lists each of our leap-year categories and the number of required plans. 

Each plan describes a particular variation that cannot be easily handled with subplans 
or cannonicalization. The plans differ primarily in terms of exactly which tests occur. 
For example, the four plans in the category Every-4th-Year-Except-2000 capture the 
four different possible combinations of divisibility and indivisibility by 4 and equality 

or inequality with 2000. 
Each of these plans is designed to recognize a block of code that is executed only 

if a particular variable is a leap year. There is also another, similar set of plans to 
recognize blocks of code that are executed only if the variable is not a leap year. 
The result is a set of approximately 50 plans in all, a number that is well within the 
manageable range. While there is no guarantee that this set of plans is complete, it 
covers all variations we have seen in the COBOL code we have examined, as well as 
many alternative ways those leap-year tests could have been written. 
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Category 

Every-4th-Year 

Every-4th-Year-Except-2000 

Check-Leap-Year-List 

Not-lOOth-Year 

Not-400th-Year 

-Complete-Leap-Year 

Needed Plans Key Components And Constraints 

2 

4 

2 

4 

4 

8 

Variable is year 

(ln)Divisibility-by-4 test 

(ln)Divisibility-by-4 test 

(In)Equality-with-2000 test 

Varis year 
Compaxison(s) with constant 

(In)Divisibility-by-4 test 

(ln)Divisibility-by-100 test 

(In)Divisibility-by-4 test 

(In)Divisibility-by-100 test 

(ln)Divisibility-by-4 test 

(ln)Divisibility-by-100 test 

(In)Divisibility-by-400 test 

Fig. 10. Required leap-year plans. 

5.2. A scalability experiment 

The other important factor in the application of plan-based techniques to Y2K tech­
nology is the speed of the plan recognition engine. We performed an experiment in 
recognizing the leap year plan shown in Fig. 11. This plan is a more complicated 
version of Fig. 5, using two nested if statements instead of the AND clause. 

Our current experimental testbed is tied to C language programs, precluding an 
experiment recognizing this particular plan in COBOL code. As a result, in our ex­
periment we first translated this plan into a lower-level representation tied to our AST 
representation for C programs. The result is a plan with 21 components and 28 con­
straints. We then constructed C programs of varying sizes, from 100 to 10 OOO lines, 
containing one instance of this plan within each 100 lines of code. We did not just 
use random C programs because we wanted to be able to have some control over how 
many instances were present in programs of different sizes. Finally, we used constraints 
checked as our measure of effort. 

Fig. 12 shows the results, along with comparisons to other plans we have searched 
for in programs of similar sizes (an array averaging plan and a simple plan to com­
pute variance). It takes linear effort (of about 1. 7 evaluated constraints per line of 
code) to recognize instances of this plan. It took approximately 30 s to locate and 
find all instances of this plan in the 10 OOO line program, using an unoptimized Lisp 
implementation of our plan recognition algorithm running on a Sun workstation. 

In this experiment, we have recognized all instances of a single leap-year plan in 
a single piece of software. In general, we have to attempt to recognize instances of 
all leap-year plans in the library. Assuming that our experimental results are similar 
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plan Incorrect-Leap-Year-2(In: ?year, Out: ?out) 
isa Incorrect-Leap-Year-Plan 

recognize 
Incorrect-Leap-Year-2(Year: ?year, Status: ?out) 

components 
Dividel: REMAIN(Srcl: ?year, Src2: ?divbyl, Re­

sult: ?reml) 
EqTestl: EQUAL(Srcl: ?reml, Src2: ?zero, Dest: ?tl) 
IfCondl: IF(Cond: ?testl, Then: ?stmt-then, Else: ?stmt­

else) 
EqTest2: EQUAL(Srcl: ?year, Src2: ?zero, Dest: ?t2) 
IfCond2: IF(Cond: ?test2, Then: ?strnt-then, Else: ?stmt­

else) 
Divide2: REMAIN(Srcl: ?year, Src2: ?divby2, Re­

sult: ?rern2) 
EqTest3: EQUAL(Srcl: ?rern2, Src2: ?zero, Dest: ?out) 

constraints 
Numeric-Field(?year) 
Constant-Value(?zero, 0) 
Constant-Value(?divbyl, 4) 
Constant-Value(?divby2, 400) 
DataDep(Dividel, EqTestl, ?rernl) 
DataDep(EqTestl, IfCondl, ?tl) 
Control-Flow(IfCondl, TRUE, IfCond2) 
DataDep(EqTest2, IfCond2, ?t2) 
Control-Flow(IfCond2, TRUE, Divide2) 
Control-Flow(IfCond2, TRUE, Divide2) 

Fig. 11. A second incorrect leap-year plan. 

across different the library contains 50 leap-year plans, and that we recognize each of 
the 50 plans from scratch, this suggests that approximately 80 constraints need to be 
evaluated for each line of code. However, there are no dependencies between plans, 
so there is no theoretical reason why recognizing the individual leap-year plans cannot 
be done in parallel. 

6. Future work 

We have obtained some initial empirical evidence of the scalability of our approach 
to locating leap-year related code. Our goal is to now more perform more realistic 
experiments that work with real-world code and that involve both leap-year related 
plans and other, more general plans. 
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Fig. 12. The results of our search for our Y2K Leap Year plan. 

6.1. An environment for plan-recognition experiments 

We are currently developing an extensible, component-based environment to sup­
port realistic COBOL reverse engineering experiments. It consists of the components 
outlined earlier in Fig. 4: 

• The COBOL parser is an instantiation of the ASF+SDF Meta-Environment (15, 8] 
with a COBOL grammar [3]. 

• The cannonicalization step is done through a series of transformation functions 
on the abstract syntax trees produced by the parser, where these transformation 
functions are automatically generated from the grammar [2]. The primary use of 
these transformations is to map the full set of COBOL constructs to a smaller set 
of canonical ones. 

• Control and dataflow analysis is done by means of the DHAL dataflow analysis 
framework [22]. It consists of an abstract representation, called DHAL (Dataflow 
High Abstraction Language), which covers exactly those program elements that affect 
control and dataflow. The framework provides a mapping from COBOL to DHAL, 
as well as control flow normalization, alias propagation, inter-procedural analysis, 
and definition-use chaining at the DHAL level. This environment supports the easy 
addition of additional analysis functions, allowing us to quickly provide dataflow 
dependencies in the format required by the plan recognizer. 

• The static date analyzer is realized by means of a general COBOL type inference 
engine [ 1 O]. It essentially builds a hierarchy of groups of variables by analyzing 
assignments, relational operators, and constants used. The inferred groups closely 
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correspond to types. Certain types (and hence all variables of that type) can be 
marked as date-related by means of standard lexical pattern matching on names, 
suspicious literals, or by recognizing typical record structures such as three two­
digit fields. 

• The plan recognizer uses our constraint-based approach [25, 35, 36, 38], with the 
added benefit that the interplay between plans and the types recognized by the 
static date analyzer (such as year or month) may help to improve its performance. 
Type information can be used in the node consistency propagation phase of the 
constraint solver used in the recognition engine [36, Chapter 3], potentially reducing 
the engine's search space significantly. 

This environment has only two components tied to date-related problems: the static 
date analyzer (which searches for date-related types) and the recognizer's plan library 
(which has so far been set up with leap-year related plans). As a result, the tool 
environment can easily be adapted for other sorts of plan recognition experiments, for 
example in the area of discovering typical Euro or currency-related computations in 
COBOL code. 

6.2. Specific experiments 

Our initial goal is to apply this environment to determine its performance results in 
searching for our leap-year plans in [9] in a collection of real-world COBOL programs. 
The end result of this experiment will go a long way toward validating the apparent 
linear performance of our plan recognizer. Along the same lines, we are also planning 
to perform experiments that measure the performance improvements possible within 
our recognizer when we have determined in advance (through heuristic means) that a 
particular variable is actually a particular type of date-related value. 

Assuming the performance results hold-up, we are planning to then recognize other 
date-related code plans, such as windowing-related Y2K code fragments. This involves 
providing a more general date-related plan library, which will be an excellent oppor­
tunity to determine how large libraries have to be to understand significant amounts 
of code within a particular domain, as well as giving us some insight into the effort 
necessary to construct and maintain a sizable plan library. 

7. Conclusions 

This paper argues that plan-based concept recovery can play an important role 
in addressing the real-world problem of locating and classifying incorrect leap-year 
computations. 

In particular, we have discussed several problems with the pattern-based and rule­
based approaches to locating potentially problematic leap-year calculations, and we have 
demonstrated that our plan-based approach addresses these drawbacks. In addition, we 
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have shown how to represent leap-year plans and provided experimental evidence that 
they can be recognized in time that is linear with the size of the program. 

While our paper has focused on recognizing leap-year computations, it is likely to 
be applicable to other date-related computations, such as recognizing computations that 
rely on date windows (and, more importantly, exactly what those computations are 
doing). This suggests that our work may prove useful to those maintaining code that 
has been automatically remediated using Y2K tools, since our recognizer can check 
for common date-related mistakes that might be introduced in the maintenance phase. 
More generally, our work is likely to be applicable to other problems that involve 
locating highly stereotypical computations within large programs (such as currency 
manipulations in banking systems). 

Our work with leap years suggests that plan-based techniques are, in fact, applica­
ble to real-world problems, and they should not not be ignored due to an incorrect 
perception that they do not scale. 
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