
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C.M. Baeten, R.J. van Glabbeek

Another look at abstraction in process algebra

Computer Science/Department of Software Technology Report CS-R8701 January

---··-·----------------------------------

Bib!hthP•>k
Centrum voo; W~'1.l.mde en lnt@m"latica
~

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright (~: Stichting Mathematisch Centrum, Amsterdam

Another look at abstraction in process algebra

J.C.M. Baeten,
Dept. of Computer Science, University of Amsterdam,

P.O. Box 41882, 1009 DB Amsterdam, The Netherlands

R.J. van Glabbeek,
Dept. of Software Technology, Centre for Mathematics and Computer Science,

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: Central to theories of concurrency is the notion of abstraction. Abstraction from
internal actions is the most important tool for system verification.
In this paper, we look at abstraction in the framework of the Algebra of Communicating
Processes (see Bergstra & Klop (3, 5]). We introduce a hidden step ,,, and construct a
model for the resulting theory ACP

11
. We briefly look at recursive specifications, fairness

and protocol verification in this theory, and discuss the relations with Milner's silent step
'C.

Key words and phrases: concurrency, process algebra, hidden step, hiding, abstraction,
silent step, internal action.
1985 Mathematics subject classification: 68055, 68045, 68010, 68N15.
1982 CR categories: F.3.2, F.4.3, F.1.2, D.3.1.

Note: Partial support received from the European Communities under ESPRIT contract
no. 432, An Integrated Formal Approach to Industrial Software Development (Meteor).
This report will be submitted for publication elsewhere.

1. Introduction.

Central to theories of concurrency is the notion of abstraction. In algebraic concurrency theories

such as the Algebra of Communicating Processes (ACP, see BERGSTRA & KLOP [3, 5]) we use

operators like alternative, sequential and parallel composition, to build up large systems from

smaller processes. Often, such a large system must have a certain prescribed external behaviour,

must communicate in a certain way with the environment. To verify that is indeed the case, we need

to abstract from all internal behaviour of the system.

Following ideas of MILNER [10] and HOARE [9], abstraction can be modelled by distinguishing

two kinds of actions in a process, viz. external or observable actions, and internal or hidden

actions, and by introducing an explicit hiding operator that transforms observable actions into

internal ones. We introduce a constant Tt for a hidden step, and formulate laws for this constant.

Then we discuss the axiom system ACP 11, incorporating the 1'l in the Algebra of Communicating
Processes, and consider some properties of this system. We touch upon the usefulness of 1'l in

protocol'verification, and discuss the issue of fairness. In this context, we formulate a fair

Report CS-R8701
Centre for Mathematics ·and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

abstraction rule HAR.
We also discuss a model for ACP11 consisting of finitely branching process graphs modulo an

appropriate notion of bisimulation (see PARK [12], MILNER [11], BAETEN, BERGSTRA & KLOP

[2]). We use this model to establish the consistency of ACP 11 and the conservativity of ACP 11 over

BPA&r) and ACP.
Finally, we discuss the relations of the constant 11 with Milner's silent step 't, that is also used for

abstraction (see MILNER [10], BERGSTRA & KLOP [4]). We note that 11 has nicer technical

properties than 't. Then, we consider two ways of combining both constants. First, the constant 't

(at least in a system with only prefix multiplication) becomes definable, so that 't can be studied in

the system ACP 11. Secondly, we can define a homomorphism from ACP 11 into ACP 't' that renames

11 into 't, and leaves all other constants fixed. This means that we can have a two-tiered abstraction:
first we can abstract to 11. and then, if further abstraction is desired, we can abstract from 11 to 't.
The original idea for the 11. and some of its laws discussed in this paper, are due to Karst Koymans
and Jos Vrancken, to whom the authors express their gratitude.

Table of contents:

1. Introduction.
2. Algebra of communicating processes.

3. Hidden step 11.
4. The graph model.

5. Recursive specifications and fairness.

6. Relations with 't.

2. Algebra of communicating processes.

In this section, we review the theory ACP (Algebra of Communicating Processes) as defined by

BERGSTRA & KLOP (3, 5]. In the first paper, also a review of related approaches and comparisons

with them can be found.

2.1 Process algebra starts from a collection of given objects, called atomic actions, atoms or steps.

These actions are taken to be indivisible, usually have no duration and form the basic building

blocks of our systems. The first two compositional operators we consider are·, denoting sequential

composition, and+ for alternative composition. If x and y are two processes, then x·y is the

process that starts the execution of y after the completion ofx, and x+y is the process that chooses

either x or y and executes the chosen process (not the other one). Each time a choice is made, we

choose from a set of alternatives. We do not specify whether a choice is made by the process itself,

or by the environment. Axioms Al-5 in table 1 below give the laws that+ and· obey. We leave out

·and brackets as in regular algebra, so xy + z means (x·y) + z. ·will always bind stronger than

3

other operators, and+ will always bind weaker.

On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of choice is

different), and therefore, an axiom x(y + z) = xy + xz is not included.

We have a special constant o denoting deadlock, the acknowledgement of a process that it cannot

do anything anymore, the absence of any alternative. Axioms A6-7 give the laws for o.

Next, we have the parallel composition operator II. called merge. The merge of processes x and y
will interleave the actions of x and y, except for the communication actions. In xlly, we can either

do a step from x, or a step from y, or x and y both synchronously perform an action, which

together make up a new action, the communication action. This trichotomy is expressed in axiom

CMl. Here, we use two auxiliary operators lL (left-merge) and I (communication merge). Thus,

x[Ly is xlly, but with the restriction that the first step comes from x, and x IY is xlly with a

communication step as the first step. Axioms CM2-9 and CFl-2 give the laws for lL and I. The

laws CFl-2 differ slightly from laws Cl-3 in BERGSTRA & KLOP [3]. This will facilitate the

X+Y=Y+X

(x + y) + z = x + (y + z)

X+X=X

(x + y)z = xz + yz
(xy)z = x(yz)

X+O=X

ox= 0

alb = y(a,b)

alb=o

if y(a,b)J,

otherwise

xlly = x[Ly + y[Lx + x IY

a[Lx = ax

ax[Ly = a(xlly)

(x + y)[Lz = x[Lz + y[Lz

al bx= (alb)x

ax lb= (alb)x

ax I by = (a I b)(xlly)

(x + y) I z = x I z + y I z

x I (y + z) = x I y + x I z

aH(a) = a if a ~ H

aH(a) = 0 if a E H

aH(x + y) = aH(x) + aH(Y)

aH(xy) = aH(x)·aH(Y)

Table 1. ACP.

Al

A2

A3

A4

A5

A6

A7

CFl

CF2

CMl
CM2
CM3
CM4
CM5

CM6
CM?
CM8
CM9

Dl

D2

D3

D4

4

formulation of the system ACP 11 later on. Finally, we have in table 1 the encapsulation operator aH.

Here H is a set of atoms, and ()H blocks those actions, renames them into <>. The operator aH can be
used to encapsulate a process, i.e. to block communications with the environment.

2.2 Signature: A is a given (finite) set of atomic actions. On A, we have given a partial binary
function y, which is commutative and associative, i.e.

y(a,b) = y(b,a)

y(a,y(b,c)) = y(y(a,b),c)

for all a,b,c E A yis the communication function: if y(a,b) is defined (we write y(a,b).l.), and

y(a,b) = c, it means that actions a and b communicate, and their communication is c; if y(a,b) is
not defined, we say that a and b do not communicate.

All elements of A are constants of ACP. Further, ACP has binary operators +,-,11,IL I. unary

operators ()H (for H ~A) and a constant o.

2.3 Axioms: The axioms of ACP are presented in table 1 (on the previous page). There a,b E

Au{o}, H ~ A, and x,y,z are arbitrary processes.
Notice that axioms CFl and CF2 imply that for all a,b,c E Au{<3} we have:

alb=bla (Cl)

al(blc) = (alb) le (C2)

<>la=<3 (C3).
Since every expression of the form a Ibis equal to an element of Au{<3}, we can assume that

axioms CM2,3,5-7 and Dl,2 also hold for these expressions. We call the theory just consisting of

the first five axioms, Al-5, BPA (so BPA has in the signature only operators+,. and constants A).

3. Hidden step 11 •

3.1 Let us consider a noisy machine, that is executing a process. When the machine starts the

execution of a process, it starts humming. This noise stops upon successful termination. We can

observe when the machine starts the execution of an atomic action a. Every atomic action takes

some time to be executed, but we do not know how long. Also, this execution time may vary from

instance to instance. Deadlock cannot be directly observed: we just see no termination, and no
atomic action beginning.

When the machine is executing an internal step 11, it is running for some time, but we do not
observe any action beginning.

For the moment, we restrict our attention to the theory BPA with extra constant 11.

3.2 We can observe no difference between processes a'll and a: in both cases we see the action a
begimring as soon as the machine starts, and then we see the machine stop after a while. Also we

can see no difference between 1111 and '11· This leads us to formulate the following law:

x11 = x Hl.

5

3.3 We do see a difference between processes 11a and a: in the case of11a we see a begin some

time after the start of the machine; in the case of a, we see a begin immediately. For the same

reason, we have 11a + a*- 11a.

3.4 The same philosophy leads us to adopt the law

a(11x + y) = a(11x + y) + ax H3,

for, when the process a(11x + y) is executed, it might be the case that we observe a begin, as soon

as the machine is started, and then after a while, the machine reaches a state where only execution

of x is possible. The laws Hl and H3 are (reformulations of) the first and the third 't-law of

MILNER [10]. The considerations made above can be formalised as follows. The theory BPAii has

laws Al-5 and Hl,3.

3.5 Definition. We define on BPAii-terms binary predicates -?a, and unary predicates -?a {for

each a e Au{11}.

x -?a y means that process x can evolve into process y, by starting a;

x -?a-../ means that process x can terminate (successfully), by starting a.

These predicates are defined by the following rules (a e Au{11}, x,y arbitrary processes):

1. a -?a-../

2. if x -?a x', then x+y -?a x' and y+x -?a x'

3. if x -?a -../, then x+y -?a -../ and y+x -?a -../

4. if x -?a x', then xy -?a x'y

5. if x -?a-../, then xy -?a y

6. a -?a 11

7. if x -?a y and y --711 z, then x -?a z

8. ifx -?a y and y--711-../, thenx -?a-../.

(Compare these definitions with the ones in VAN GLABBEEK [8].)

3.6 Next, we say that two processes are equal, if they can perform the same actions.

Definition. A bisimulation is a binary relation Ron process terms, satisfying (a e Au{11}):

1. if R(p,q) and p -?a p', then there is a q' such that q -?a q' and R(p',q');

2. if R(p,q) and q -?a q', then there is a p' such that p -?a p' and R(p',q');

3. if R(p,q), then p -?a-../ if and only if q -?a {

If there exists a bisimulation between processes p and q, we say p and q are bisimilar, and write

pHq.

3.7 Theorem.His a congruence on BPAii-terms.

Proof: Straightforward.

3.8 Definition: A basic term is a closed BPAii-term of the form

t = aoto + ... + an-1tn-1 + bo + ... + bm-1

for certain n,m with n+m>O, certain ai,bj e Au{11} and basic terms ti. We usually abbreviate such

6

expressions, in this case to

t = Li<n aiti + Li<m bi.
The depth d(t) of a basic term t is defilled inductively by

d(Li<n aiti + Li<m bi)= 1 + max(O, d(to) •... , d(tn_1)).

By systematically applying the rules of definition 3.5 it turns out that all relations t ~a s and

t ~a.,,/ are of the form:

1. t ~ai ti (kn);

2. t ~ai 11ti (kn);

3. t ~bi 11 G<m);
4. t ~ai s (kn) ifti ~11 s;

s. t ~bi .,,/ G<m);
6. t ~ai .,,/ (kn) if ti ~11 V.
So if t ~a s, there are four possibilities:

1. t has a summand as, i.e. t = as + r or t = as (in fact, Al,2 I- t = as + r or Al,2 I- t = as);

2. s = 11s' and t =as'(+ r);

3. s = 11 and t = a (+ r);

4. t =at' (+ r) and t' ~,, s.

Now we have the following proposition.

3.9 Provosition. Lett be a basic term and a E Au{11}.

1. if t ~as, then sis a basic term and d(s) :s; d(t);

2. ift ~as, then BPA,, I- t =as+ t (we say: as is a BPA11-summand oft);

3. if t ~a.,,/, then BPA,, I- t =a+ t.
Proof. 1. With induction on d(t): cases l, 2 and 3 (of 3.8) are trivial; for case 4 we can use the

induction hypothesis, since d(t') < d(t).

2. Cases 1, 2 and 3 are again trivial. For case 4 use induction on d(t): assume BPA,, I- t' = 11s + t',

then BPA,, I- t =as+ t follows by application of H3.

3. As 2. Case 5 is trivial, case 6 follows by induction, using Hl and H3.

3.10 Theorem. For all closed BP A,,-terms t,s we have t H s {::::} BP A,, I- t=S.

Proof: <=: Straightforward.

=>:Consider the rewrite system consisting of the following two rules:

(x + y)z ~ xz + yz

(xy)z ~ x(yz)

This system is clearly terminating and a normal form of a closed BP A,,-term w .r.t. these rules must

be a basic term. Now it is enough to prove the theorem for basic terms t,s.

For, ift',s' are two closed BPA,,-terms with t' H s', and t,s are the corresponding normal forms,

then BPA,, I- t=t' and BPA,, I- S=S', sot H t' H s' H s (apply the direction<= of the theorem),

and BPA,, I- t=S will imply BPA,, I- t'=s'.

For basic terms sand t, we use induction on d(t) + d(s).

Thus, suppose s,t are basic terms, t H s, and for all basic terms t',s' with t' H s' and d(s')+d(f)

7

< d(s}+d(t} it is already proved that BP~ I- t'=s'.

Notice that it is enough to prove that any summand as' or a of sis a BP ~-summand oft, since

that implies BPA..q 1- t = s + t, and then, for reasons of symmetry, also BP~ I- s = t + s, which

yields BP~ I- t = s.

Case 1: as' is a summand of s, i.e. s =as'(+ r). Then s -7a s', so also t -7a t' for some t' with s'

H t'. By 3.9.1, t' is a basic tenn and d(t'} ~ d(t}. Furthermore d(s'} < d(s}, so the induction

hypothesis can be used and BP~ I- t'=s'. Hence BP~ I- at'= as', and using proposition 3.9.2

this yields BP~ I- t = as' + t.
Case 2: a is a summand of s, i.e. s =a (+ r). Then s -7a .../, so also t -7a .../. Now apply 3.9.3.

3.11 n and merge. The situation becomes more complicated if we consider the interaction of 1l and

merge. Since 1l is also an action, all axioms that hold for atomic actions must also hold for 1'1· In

particular, laws CM2 and CM3 must hold for rt instead of a. This leads to the following

observation (assume that a I b = C>):

rt(ab + ba) = rt(allb) = rtallb = rtTtalLb = rt(Ttallb) = rt(Tta!Lb + bllrta + rta I b)

= 11(11(allb) + bTta + <>) = 11(rt(ab + ba) + ba).

The first term and the last tenn in this chain of equations cannot be proved equal in the system

Al-5, Hl,3. It turns out that it is sufficient to add one more law to the theory we have so far:

a(11(x + y) + x} = a(x + y) H2.

The execution of the 11 in the left-hand side leads from a state to another state that has at least the

same possibilities, no options get lost. The philosophy is, that the execution of such an internal step

cannot be observed by the environment.

3.12 Alternative. An alternative to the solution in 3.11 is, not adopting the law H2, but instead

changing the laws CM2 and CM3 of ACP. In accordance with definition 3.5 we would have

if x -7a x', then xlly -7a x'llY and x!Ly -7a x'lly

so that in particular a!Lx -7a rt !Ix. This leads to the following fonnulation oflaws CM2 and CM3:

a!Lx = a(11x + x)

ax!Ly = a(rt(xlly) + xlly).

We do not take this possibility in this paper, bec&use we do not want to change the underlying

system ACP.

3.13 ACP rr Now w.e collect all axioms discussed so far together in the equational specification

ACP
11

• The theory ACP
11

has in the signature, besides the elements of the signature from ACP, a

constant rt (11 ~ A) and unary operators 111 for I ~ A. rt1 is the hiding operator, that renames

actions from I into 11; I is the set of internal actions. ACP 11 has the axioms in table 2 (on the

following page). We put C = Au{C>,rt}. the set of all constants. In table 2 we have a,b E C, H,I

~A, and x,y,z are arbitrary processes.

The theory BPA&q consists oflaws Al-7 and Hl-3.

From now on we write X=Y for ACP TJ I- X=y; if this holds we say that x is ACP 11-equal to y. If

Al,2 I- X=Y we write x=y.

8

X+Y=Y+X Al XT] = X Hl
{x + y) + z = x + {y + z) A2 a{Tl(X + y) + x) = a(x + y) H2
X+X=X A3 a(Tlx + y) = a(T]x + y) + ax H3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5

X+Ci=X A6

Cix = <> A7

a lb= y(a,b) if y(a,b)J.. CFl

alb=<> otherwise CF2

xlly = x[Ly + y[Lx + x IY CMl

a[Lx = ax CM2
ax[Ly = a(xlly) CM3
(x + y)[Lz = x[Lz + y[Lz CM4

albx = (alb)x CM5

axlb = (alb)x CM6

ax I by= (a I b)(xlly) CM7

(x + y) I z = x I z + y I z CMS

x I (y + z) = x I y + x I z CM9

aH(a) =a ifae H Dl T]1(a) =a ifa e I Hil

aH(a) = <> ifae H D2 1'11(a) = 1'1 ifa EI HI2

aH(x + y) = aH(x) + aH(Y) D3 1'11(X + Y) = 1'11(X) + 1'11(Y) HI3
()H(xy) = ()H(x)·()H(Y) D4 1'11(xy) = 1'11(x)· 1'11(Y) HI4

Table 2. ACP 11•

3.14 ~The following identities follow from ACP11 (a E C):

LTlla=<> 2. ()H(Tl) = Tl 3. 1'11(<>) = <>.

3.15 ~Axioms CMS and CM6 are derivable from the other axioms of ACP 11•

Proof: CMS: al bx= aT] lbx = (alb)(Tlllx) = (alb)Tl(Tlllx) = (alb)(T]T][Lx) = (alb)(Ttllx) =
= {a I b)Tlx = (a I b)x.

For CM6, note that Tl ITlX = (Tl ITl)X = <> = (Tl ITl)(XllTl) = T]X 11'11'1=T]X11'1· Using this fact, we get
TlllTlx = TlXllTl and hence ax lb= aT]X lbTl = {alb)(TlXllTl) = (alb)(TlllTlx) = aT] lbTlX =al bx=
= (alb)x.

3.16 As in 3.8, we define a basic term as an expression of the form

t = Li<n aiti + Lj<m bi

9

with n+m>O, ai,bj E C, and the ti are again basic terms. The set of basic terms BT can be

inductively built up as follows (working modulo law Hl):

1.11 E BT

2. if a E C and x E BT, then ax E BT

3. if x,y E BT, then x+y E BT.

Alternatively, we can build up BT as follows:

1.11 E BT.

2. if n>O, ai E C and ti E BT (for kn), then I.kn aiti E BT.

Both these inductive schemes will be used in proofs.

3.17 Theorem: For every closed ACP 11-term t there is a basic terms such that ACP 11 I- t=S. This is

the .so-called elimination theorem.

Proof: We will prove that, using the axioms of ACP11 except Al-3, A6,7 and Hl-3 as rewrite rules

(from left to right), t can be rewritten to a basic terms. Call this rewrite system RACP TI.

First, we define the length, width and height of a closed ACP TI-term t inductively as indicated in

the following table 3.

t= l(t) w(t) h(t)

aEC 1 1 0

u+v max(l(u),l(v}) w(u)+w(v) 0

u·v l(u)+l(v) w(u) 0

ullv l(u)+l(v) w(u)+w(v)+w(u)·w(v) 0

ull_v l(u)+l(v) w(u) 0

ulv l(u)+l(v) w(u)-w(v) 0

aH(u) l(u) w(u) h(u)+1

111(u) l(u) w(u) h(u)+1

Table 3. Length, width and height of an ACP TI-term.

Roughly, the length of a term indicates the maximal number of steps that can occur when the term

is executed, the width gives the number of alternatives at the start of the execution, and the height

gives the number of renaming operators aH and 111 around the term. Finally, we define the size of

t, s(t), to be the triple <l(t), w(t), h(t)>. The proof now proceeds via a number of claims.

Claim 1: Lett be a closed ACP 11-term. Then (using the alphabetical ordering on triples):

i. application of a rewrite rule does not increase the size of t;

ii. any proper subterm oft has a smaller size than t.
Proof: :t;asy.

Claim 2: The rewrite system RACP 11 is (strongly) terminating for closed ACP 11-terms.

10

Proof: Suppose it is not terminating. Let t be a closed ACP 11-tenn of minimal size, such that there is

an infinite reduction sequence t-? t 1 -? t2 -? A reduction on ti is called external (outennost)

if it works on the main operator of ti, and internal if it works on a proper subterm of ti. From
claim 1 it follows that it is not possible that from some ie N on, the sequence consists of internal

reductions only. Therefore, there must be infinitely many external reductions in this sequence.

Now note the following facts:

• all external reductions result in a constant ae C, or in a term with + or · as main operator;

• there are no external reductions working on a constant or on a tenn with + as main operator;

• only the external reductions A4 and A5 work on a term with · as main operator;
• the external reduction A4 results in a tenn with+ as main operator.
Thus, apart from the first one, all external reductions must be AS-reductions. Therefore, in t -? t1
-? t2 -? ... we have, from some ion, ti = U(Vi, with l(ui) decreasing with each external reduction.
This is impossible, and so claim 2 is proved.

Claim 3: All closed terms, which are nonnal fonns w.r.t. the rewrite system RACP11, are basic

terms.

Proof: By induction on the structure of closed nonnal forms t. t must be a constant ae C or a term

u+v, u·v, uJlv, u[Lv, u Iv, ()H(u) orrti(u). Since also u and v are normal forms, we may assume

that they are basic terms. If t = u·v with u:t:a for certain ae C, or if t = ullv, u[Lv, u Iv, ()H(u) or

111(u), then t cannot be a normal form. In the other cases t is a basic term.

The elimination theorem now follows from claim 2 and claim 3.

3.18 Proposition: For all closed ACP11-terms x,y,z we have the following laws of standard

concurrency:

xly=ylx

xlly = yllx
x I (y I z) = (x I y) I z

(xll_y) ll_z = xll_(yilz)

(x I y)ll_z = x I (yll_z)

xll(yllz) = (xlly)llz

SCl

SC2

SC3
SC4

SC5

SC6.
Proof: Because of the elimination theorem we can assume that x,y,z are basic terms. We use the

second induction scheme in 3.16. We consider only the case where none of x,y,z is 11 (the other
cases are simpler). Write

x = Li:~n aixi, y = Lj:s;m bjYj and z = L1<:s;p ckzk
(ai,bj,ck E C).By induction hypothesis, we can assume that the proposition holds for all triples

(xi,y,z), (xi,yi,z), (xi,yi,zk). Then:

1. x I Y = Li,j (ai I bj)(xdlYj) = Li,i (bi I ai)(Yjllxi) (Cl, induction hypothesis for SC2) = y Ix.
2. xlly iF xll_y + y[Lx + x IY = yll_x + x[Ly + y Ix (by 1) = yJlx.

3. x I (y I z) = Li,j,k (ai I (bi I ck))(xdl(Yillzk)) = Li,j,k ((ad bi) I ck)((xillYj)llzk) (C2, induction
hypothesis for SC6) = x I (y I z).

11

4. (xlJ..y)lJ..z =(Li aixilLY)lLz =Li (ai(xilly))lJ..z =Li ai((xdlY)llz) =Li ai(xdl(yllz)) (induction

hypothesis for SC6) =Li aixilJ..(yllz) = xlJ..(yllz).

5. (x ly)lJ..z = (Li,j (ai lbj)(xillyj))ll..z = Li,j (ai lbj)((xillYj)llz) =

= Li,j (ai I bi)(xdl(Yjllz)) (induction hypothesis for SC6) = Li,j aixi I bj(Yjllz) = x I (ylJ..z).

6. xll(yllz) = xlJ..(yllz) + (yllz)ll..x + x I (yllz) =
= xlJ..(yllz) + (ylJ..z) U..x + (zlJ..y)lJ..x + (y I z)ll..x + x I (ylJ..z) + x I (zlJ..y) + x I (y I z) =

= (xlJ..y) U..z + ylJ..(zllx) + zlJ..(yllx) + (z I y) U..x + (x I y) U..z + (x I z) lJ..y + (x I y) I z (by 1,3,4,5) =
= (xlJ..y)lJ..z + ylJ..(xllz) + zlJ..(yllx) + z I (ylJ..x) + (x I y) U..z + (z Ix) lJ..y + z I (x I y) (by 1,2,5) =

= (xlJ..y)lJ..z + (ylJ..x)lJ..z + zlJ..(xlly) + z I (ylJ..x) + (x ly)lJ..z + z I (xlJ..y) + z I (x ly) (by 2,4,5) =

= (xlly)lJ..z + zll..(xl!y) + z I (xlly) = (xllY)llz.

3.19 Note: We usually assume that the laws of Standard Concurrency hold for all processes.

Therefore, they are often called the axioms of Standard Concurrency.

Often, we also assume the following Handshaking Axiom:

x ly!z = o (HA).

It says, that all communication is binary, i.e. only involves two communication partners.

3.20 Proposition: In ACP11 with standard concurrency and handshaking axiom we have the

following expansion theorem (n2':1):

lh::;;n Xi = Li::;;n xill..(llk:s;n, k:;ti xk) + Li<j::;;n (xi I xj)lJ..(llk:s;n, k:;ti,j xk)
(Where lh::;;n xi of course means x0 11 .•• llxn.)
Proof: We use induction on n. The case n=1 is exactly the axiom CML The induction step is as

follows: II i:s;n+ 1 xi = (II i::;;n xi} llxn+ 1 =
= (lli::;;n Xj)ll..xn+1 + Xn+1 lL(lh::;;n xi) + (lh::;;n xi) lxn+1·

We consider these three terms in tum. The first:

(lh::;;n xi) ll..xn+ 1 =

= { Li::;;nXill..(llk:s;n, k:;ti xk) + Li<j::;;n (xilxj)ll..(llk:s;n, k:;ti,j xk) }ll..xn+1 =
= Li::;;n (xill..(llk:s;n, k:;ti xk))ll..xn+1 + Li<j::;;n ((xi lxj)ll..(llk:s;n, k:ti,j xk))ll..xn+1 =
= Li::;;n xj[L((llk::;;n, k:ti xk)llxn+1) + Li<j::;;n (xi lxj)ll..((llk:s;n, k:;ti,j xk)llxn+1) (use SC4,5) =
= Li::;;n xill..(llk:s;n+1, k:ti xk) + Li<j::;;n (xi lxj)lJ..((llk::;;n+1, k:ti,j xk).
The second term is equal to Xn+ 1 ll..(lli:s;n+ 1, k:tn+ 1 xi), and the third:

(lh::;;n xi) lxn+1 =
= { Li::;;n xill..(llk::;;n, k:ti xk) + Li<j::;;n (xi lxj)ll..(llk:s;n, k:ti,j xk)} lxn+1 =

= Lj::;;n (xjll..(llk:s;n, k:ti xk)) lxn+1 + Li<j::;;n ((xi lxj)ll..(llk::;;n, k:ti,j Xk)) lxn+1 =
= Li::;;n (xi lxn+1)lJ..(llk:s;n, k:ti xk) + Li<j::;;n (xi lxj lxn+1)ll..(llk:s;n, k:;ti,j xk) (use SCl,3,5) =

= Li<n+ 1 {Xi I Xn+ 1) ll..(llk:s;n+ 1, k:ti,n+ 1 xk) (by handshaking axiom).
Adding the three obtained expressions gives the desired result.

3.21 Note: In the next section we will prove that ACP11 is a conservative extension of BPA011
and of ACP, i.e. for all closed BPA&t-terms t,s we have

ACP11 1-t=S iff BPA011 1-t=S,

and for all closed ACP-terms t,s we have

ACP 11 f- t=S iff ACP f- t=S.

4. The graph model.

12

We construct a model for ACP 11 consisting of equivalence classes of process graphs.

4.1 Definition: A process graph is a labeled, rooted, finitely branching, directed multi graph. An

edge goes from a node to another (or the same) node, and is labeled with an element of C, the set

of constants. We consider only finitely branching graphs, so each node has only finitely many

outgoing edges. Graphs need not be finite (have finitely many nodes and edges), but we must be

able to reach every node from the root in finitely many steps, so our graphs never have height more

than ro. Finite graphs are also called regular graphs. G is the set of all process graphs, except the

trivial graph 0, just consisting of one node. For more information about process graphs, see e.g.

BAETEN, BERGSTRA & KLOP [2].

An a-step in a graph from s to s' is an edge going from s to s' with label a e C, notation s -?a

s'; 11 is the transitive and reflexive closure of---t11, so s 11 s' if there is a number ofri-labeled

edges (2::0), starting ins, and ending ins' 11 is called a generalized ri-step.

4.2 In order to define when two graphs denote the same process, we have the notion of

bisimulating process graphs. For more information about bisimulations, see PARK [12], MILNER

[11] or BAETEN, BERGSTRA & KLOP [2].

4.3 Definition. Let g,h be process graphs, and let R be a relation between nodes of g and nodes of

h. R is a rooted ri-bisimulation between g and h, notation R: g f:±rrt h, iff

1. The roots of g and h are related.

2. If R(s,t) and s -?as' is an edge in g with label aeA (so a*1'}, a:t~). then, in h, we can do a

generalized ri-step t 11 t* to a node t* with R(s,t*), and from t*, there is an a-step, followed by a

generalized ri-step to a node t' with R(s',t'). See fig. la.

g h g h

Si<<~~~
..

t

s'
~. t*
\•

\ ..
... .•

\ ··. ...

Fig. la.

t'

s It ..
11 •••••• ••• a ··

s* ••• t'

s'

. .. .• . .: •.
.:

Fig. lb.

13

In case (s,t) is the pair of roots, we mu~t have t=t* (this is part of the so-called root condition).

3. Vice versa: if R(s,t) and t -?at' is an edge in h with label a~ A, then, in g, we can do a

generalized~Tl-Step s __,, 1'l s* to a nodes* with R(s*,t), and from s*, there is an a-step, followed by

a generalized Tl-step to a nodes' with R(s',t'). See fig. lb. In case (s,t) is the pair of roots, we

must have s=s* (another part of the root condition).

4. If R(s,t) and s -?'Tl s' is an edge in g, then, in h, we can do a generalized Tl-step t _,,T) t' to a nod(

t' with R(s', t'). In case (s, t) is the pair of roots, the step t,.,. 1'l t' must contain at least one edge (the

third part of the root condition).

5. Vice versa: if R(s,t) and t -?'Tl t' is an edge in h, then, in g, we can do a generalized Tl-step s __,, 1'l

s' to a nodes' with R(s',t'). In case (s,t) is the pair of roots, the steps _,,T) s' must contain at least

one edge (the last part of the root condition).

6. If R(s,t) and sis an endpoint in g (i.e. s has no outgoing edges), then, in h, we can do a

generalized Tl-Step to an endnode of h.

7. Vice versa: if R(s,t) and t is an endpoint in h, then, in g, we can do a generalized Tl-Step to an

endnode of g.

A relation R between nodes of g and nodes of h is an Tl-bisimulation between g and h, g HT\ h,

if we do not require the root condition in points 2-5.

Graphs g and hare rTl-bisimilar, g Hl'll h, ifthere is a rooted.Tl-bisimulation between g and h; g

and hare Tl-bisimilar, g HTJ h, ifthere is a Tl-bisimulation between g and h.

4.4 Examples: See fig. 2. We have a,b,c E Au{Tl}, so ;eS.

i. ' ' ii.

iv.

Fig. 2, i-iv.

Tl

' '
s

0

4.5 Lemma: Hni and HTI are equivalence relations on G.

Proof: Straightforward.

4.6 G/±::zni will be the domain of the graph model for ACP TI" The interpretation of a constant a e C
is the equivalence class of the graph with two nodes and a single edge between them labeled a.
What remains is the definition of the operators of ACP TI on G/±::zni· We will define these operators

on G, and will then show that tlni is a congruence relation w.r.t. them.

4. 7 Definitions.

1. +. If g, h e G, graph g+h is obtained by taking the graphs of g and h and adding one new node

r. For each edges ~as' in g from the root of g, we add an edge r ~a s'; similarly, for each edge

t ~at' in h from the root of h, we add an edger ~at'. Then, we discard nodes and edges that

cannot be reached from the new root r.

15

Example:

a

+
b b

Fig. 3.

2. ·. If g,h E G, graph g·h is obtained by identifying all endpoints of g with the root node of h. If

g has no endpoints, the result is just g. The root of g·h is the root of g.

Example:

a

Fig.4.

3. II. If g,h E G, graph gllh is the cartesian product graph of graphs g and h, with 'diagonal'

edges added for communication steps, i.e. if (s,t) is a node in gllh, then it has an outgoing edge

(s,t) ~a (s',t) for each edges ~as' in g, an outgoing edge (s,t) ~b (s,t') for each edge t ~b t' in

h, and moreover, whenever 'Y(a,b) is defined, outgoing edges (s,t) ~ y(a,b} (s',t'), so-called

diagonal edges. The root of gll h is the pair of roots of g and h.

Example: Suppose 'Y(a,a) = d, and 'Y(a,b) and 'Y(a,c) are not defined. Then:

II

Fig. 5.

4. IL. If g,h E G, graph g[Lh is obtained from graph gllh by adding a new node r, and, ifs is the

root of g and t the root of h, then we add, for each each edges ~as' in g, an edger ~a (s',t).

Then, we discard nodes and edges that cannot be reached from the new root r.

16

Example: (communications as in the previous example)

lL

Fig. 6.

5. I . Similar to 4: if g, h E G, graph g I h is obtained from graph g II h by adding a new node r, and

adding, ifs is the root of g and t the root of h, an edger -7a (s',t') for each diagonal edge (s,t) -7a

(s',t') in gllh. Then, we discard nodes and edges that cannot be reached from the new root r.

Example: (communications as before)

and

a

Fig. 7.

6. aH, 111· If g E G, obtain aH(g) by replacing all labels in g from H by(), and obtain 111(9) by

replacing all labels from I by 11.

This finishes the definition of the operators of ACP
11

on G. Then we also have the operators on

G/H111, if we use the following proposition.

4.8 Proposition. H 111 is a congruence relation on G.

Proof: Straightforward. As an example, consider the case of II. So suppose g,g',h,h' E G and g

H 111 g', h H 111 h'. We have to prove that gllh H 111 g'llh'.

Take an rooted 11-bisimulation R between g and g', and an rooted 11-bisimulation S between hand

h'. Let RxS be the cartesian product of Rand S, i.e. RxS((s,t),(s',t')) iff R(s,s') and S(t,t') (s a

node in g, s' in g', tin h, t' in h').

We claim that RxS is a rooted 11-bisimulation between gllh and g'llh'.

Proof of the claim: (1) Let (s1 ,t1) -7a (s1 ,t2) be a 'horizontal' step in gllh, with aE A. Let

RxSHs1 ,t1),(s'1,t'1)). Then t1 -7a t2 in hand S(t1 ,t'1), hence we can find nodes t* 1 and t'2 such

that t' 1 _,.11 t* 1 -7a _,.11 t'2 and S(t1,t*1) and S(t2,t'2). This path can be 'lifted' to g'llh', i.e. we get

(s'1,t'1) 11 (s'1,t*1)-7a --*11 (s'1,t'2) and RxS((s1,t1},(s'1,t*1)) and RxS((s1,t2),(s'1,t'2)).

17

(2) Likewise for a 'vertical' step in g II h.

(3) Suppose (s 1 , t 1) -4 c (s2 , t2) is a diagonal step in g 11 h, and

RxS((s1,t1),(s'1,t'1)). Then there arestepss1 -4as2 ing andt1 -4bt2 inh withy(a,b) =c.

Since R(s1,s'1), there are nodes s* 1 and s'2 in g' such that s'1 __,.,, s*1 -4a _,.11 s'2 and R(s1 ,s*1)

and R(s2,s'2). Likewise, t'1 _,.11 t*1 -4b 11 t'2, S(t1 ,t*1) and S(t2,t'2) for certain t* 1, t'2 in h'.

We compose these paths in

g' llh': (s' 1,t'1) __,. 11 (s' 1,t* 1) __,. 11 (s* 1,t* 1) -4° __,. 11 __,. 11 (s' 1.t'2) and RxS((s1 ,t1),(s*1,t* 1)) and

RxS((s1,t2),(s'2 ,t'2)).

The remainder of the verification is straightforward.

4.9 Theorem: G/Hrri is a model of ACP 11.

Proof: It has to be checked that for any closed instance of an axiom of ACP 11, t=S, the interpretation

of both sides of the equality sign in G/±±rrt yields the same equivalence class of process graphs.

Thus, if graph(t) denotes the graph corresponding to the closed term t, following definitions 4.6

and 4.7, then it has to be checked that graph(t) Hrri graph(s). The construction of these rooted

T\-bisimulations is routine, tedious and omitted (cf. BERGSTRA & KLOP [4], 2.5). The only

interesting cases concern the Tl-laws, of which instances are presented in examples 4.4.

4.10 Remark: We also obtain models of ACP11, if instead of limiting ourselves to finitely branching

graphs, we allow all graphs of branching degree less than some infinite cardinal number. Thus we

get models GJtin,· G/±±rrt is the model GN:cl±±rrt· Also, the set R of all finite process graphs

modulo ±±rrt and the set IF of all finite and acyclic process graphs modulo ±±rrt form models of

ACP11.

In the sequel, we will show that these models are also complete for closed ACP 11-terms, i.e. if t,s

are closed ACP11-terms, then graph(t) Hrri graph(s) implies ACP11 1- t=s.

4.11 Definitions: A rooted path 7t in a process graph g is a finite alternating sequence of

connected nodes and edges of g, starting in the root, and ending in the so-called endnode of 1t.

The length of 7t is the number of edges in 1t. A node s of g is reached by the rooted path 1t ifs is

the endnode of 7t. A process graph g is a tree if any node of g is reached by exactly one rooted

path. A graph is finite if it has finitely many nodes and edges. Note that a tree g is finite iff there

are finitely many rooted paths in g. The depth d(g) of a finite tree g is the length of its longest

path. Note that the set of graphs JF, introduced in 4.10, is the set of graphs with only finitely many

rooted paths.

4.12 Proposition: i. If t is a basic term then graph(t) is a finite nontrivial process tree.

ii. If graph(t) = graph(s) for s,t E BT, then t = s (i.e. Al,2 1- t=s).

iii. For any finite nontrivial process tree g, there is a basic term t with graph(t) =g.

Proof: Easy.

4.13 Definition. Let term be a function that maps a finite nontrivial process tree g onto a basic term

18

t with graph(t)=g. By proposition 4.12 we have term(graph(t))=t for tE BT. Although term(O)

is undefined we write a·term(O) for a.

4.14 Definition. Ifs is a node of a process graph g then (g)5 denotes the subgraph of g, obtained

from g by leaving out all nodes and edges which are not reachable from s. s will be the root of

(g)5 . Of course (g)root(g) = g.

4.15 Proposition: If R is an T\-bisimulation between process graphs g,h (not necessarily rooted),

and R(s,t), then (g)5 H'l'l (h)t·

Proof: R, restricted to the nodes of (g}5 and (h)t, will be an T\-bisimulation.

4.16 Proposition: Let g be a finite nontrivial process tree. Then term(g) has a summand s = as' or

s =a iff there is an edge root(g) ~aping with a·term((g)p) = s.

Proof: Easy.

4.17 Proposition: Let p and q be nodes of a finite process tree g, such that p ~a TI q (i.e. from

p, we can do an a-step, followed by a generalized T\-Step, ending in q). Then term((g)p) =

a·term((g)q) + term((g)p) (i.e. a·term((g)q) is an ACPTl-summand of term((g)p)).

Proof: By induction on the number of 11-steps in TI. Let this number be n.

The induction base n=O follows from proposition 4.15.

Now suppose p ~a p' ~TI _,, 11 q and for n=length(..... TI) the proposition is already proved.

Then term((g)p) = a·term((g)p·) + term((g)p) and term((g)p·) = 11·term((g)q) + term((g)p•).

Hence term((g)p) = a(11·term((g)q) + term((g)p·)) + term((g)p) =(using H3)

= a·term((g}q) + a(11·term((g)q) + term((g)p·)) + term((g)p) = a·term((g)q) + term((g)p).

In case q is an endnode, we have term((g)p·) = 11 + term((g)p•), and hence

term((g)p) = a(T\ + term((g)p·)) + term((g)p) =(using Hl and H3)

=an + a(1111 + term((g)p·)) + term((g)p) =a+ term((g)p).

4.18 Proposition: For finite process trees g,h we have:

i. If g H 11 h then ACP 11 f- a·term(g) = a·term(h) for each aE C.

ii. If g,h * O and g Hrri h then ACP 11 f- term(g) = term(h).

Proof: (i) will be proved with induction on d(g) + d(h). So suppose g ~TI h, say R: g H'l'l h, and

for any finite process trees g',h' with d(g') + d(h') < d(g) + d(h) (i) is already proved.

Claim: One of the following statements holds:

I: h * o and term(h) = T\·term(g) + term(h)

II: g,h * o and term(h) = term(g) + term(h)

III: a·term(h) = a·term(g) for aE C.

Proof .of the claim: I: Suppose there is a node q in h with root(h) ~TI, TI q and R(root(g),q).

Then, by proposition 4.15, g H'l'l (h)q and d((h)q) < d(h), so by induction T\·term(g) =

11·term((h)q). Furthermore, using proposition 4.17, term(h) = 11·term((h)q) + term(h), and

19

hence term(h) = 11 ·term(g) + term(h). (Of course h * 0.)

II: Suppose there is no such node. If g = 0, then there must be an endnode q in h with root(h) _,. TJ

q. Of course, R(root(g),q). Hence, by the assumption just made, root(h) = q so h = 0. Thus III

holds. Therefore, we can suppose g * 0. In that case term(g) is well-defined. We call a summand

()or C>t of term(g) redundant if term(g) also has a summand a or at with at;C>. We will prove

that any non-redundant summand at or a of term(g) either is an ACP TJ-summand of term(h) or is

ACPTJ-equal to 11·term(h). If all non-redundant summands of term(g) are ACPTJ-summands of

term(h) we get II. The case that there are summands of term(g) ACP TJ-equal to 11·term(h) will be

considered in part III of this proof.

So let s = as' or s = a be a summand of term(g). By proposition 4.16 there is an edge root(g)

-7a ping with a·term((g)p) = s.

Case 1: a E A. Since R: g H
11

h there mustbe nodes q* and q in h with root(h) _,.TJ q* -7a _,.TJ q

R(root(g),q*) and R(p,q). Hence, by proposition 4.15, (g)p H 11 (h)q, and since d((g)p) < d(g)

(and d((h)q) < d(h)), the induction hypothesis yields a·term((g)p) = a·term((h)q). By the

assumption above root(h) = q* and proposition 4.17 gives term(h) = a·term((h}q) + term(h).

Thus term(h) = s + term(h).

Case 2: a = 11. Since R: g HTJ h, there must be a node q in h with root(h) _,. TJ q and R(p,q}.

Hence (g}p H'll (h)q and since d((g)p) < d(g), the induction hypothesis yields 11·term((g)p) =

11 ·term((h)q). Now there are two possibilities:

Case 2.1: root(h) * q. Then root(h) -7TJ _,. TJ q and proposition 4.17 gives term(h) =

ri·term((h)q) + term(h). Thus term(h) = s + term(h).

Case 2.2: root(h) = q. Then s = ri·term((g)p) = ri·term((h)q) = 11·term(h).

Case 3: a= C>. If h * 0 then term(h) is defined and term(h) = s + term(h) follows from laws A6

and A7. If h = 0 then clause 7 of definition 4.3 implies that there is an endnode q in g with root(g)

_,. TJ q. Since we also have root(g) -7° p, root(g) * q. Hence term(g) has a summand T) or T)t, so

s is redundant.

III: Finally suppose that g * 0, and some summands of term(g) are ACPTJ-equal to ri·term(h),

while the others are redundant or ACPTJ-summands of term(h). Then, if h * 0,

term(g) = ri·term(h) + t and term(h) = t + term(h). Hence, using H2, a·term(g) = a(ri(t +

term(h)) + t) = a(t + term(h)) = a·term(h), foraeC. Ifh = 0, then term(g) = ri·term(h) and

Hl yields a·term(g) = a·term(h) for ae C.

Thus we have proved the claim. Now we return to the proof of the proposition, part (i).

For reasons of symmetry also one of the following statements must hold:

A: g * O and term(g) = ri·term(h) + term(g)

B: g,h * o and term(g) = term(h) + term(g)

C: a·term(g) = a·term(h), for ae C.

Now the remainder of the proof consists of a simple case distinction.

• Suppose that I and A hold. From I it follows that for ae C

a·term(h) = a(11·term(g) + term(h)) =(using H3, and Hl in case g = 0)

= a(11·term(g) + term(h)) + a·term(g) = a·term(h) + a·term(g).

20

Likewise, A implies a·term(g) = a·term(g) + a·term(h). Putting these two statements together

yields a·term(g) = a·term(h).

• Suppose that II and B hold. Then term(g) = term(h) + term(g) = term(h), so a·term(g) =

a·term(h) for aEC.

•Suppose that II and A hold. Then, for aEC, a·term(g) = a(11(term(g) + term(h)) + term(g)) =

a·term(h), using H2.

• Likewise the case that I and B hold.

• If m or C hold there is nothing left to show.

This finishes the proof of part (i).

For part (ii), suppose g,h -::t:. 0 and g HI'!\ h, say R: g HI'!\ h. We will prove that any summand as'

or a ofterm(g) is an ACP11-summand ofterm(h) (and vice versa), which yields the desired result.

So lets = as' ors = a be a summand of term(g). By proposition 4.16 there is an edge

root(g) ~aping with a·term((g)p) = s.

Case 1: aE A. Since R: g HI'!\ h, there must be nodes q* and q in h with root(h) _..11 q* ~a _,.11 q

R(root(g),q*) and R(p,q). Moreover, the rootedness condition gives root(h) = q*. By proposition

4.15, (g)p Hri (h)q, and (i) yields a·term((g)~) = a·term((h)q). Furthermore, proposition 4.17

gives term(h) = a·term((h)q) + term(h), so term(h) = s + term(h).

Case 2: a=T}. Since R: g HI'!\ h, there must be a node q in h with root(h) _,.11 q and R(p,q).

Moreover, the rootedness condition gives root(h) ~11 _..11 q. By proposition 4.15, (g)p HT\ (h)q,

and (i) yields 11·term((g)p) = 11·term((h)q). Furthermore, proposition 4.17 gives term(h) =

11·term((h)q) + term(h), so term(h) = s + term(h).

~. a=<>, follows from A6 and A 7.

This finishes the proof of part (ii).

4.19 Theorem: ACP 11 is sound and complete for closed terms, with respect to G/Hl'l\, i.e.

for all closed ACP 11-terms t,s we have: graph(t) HI'!\ graph(s) <=> ACP
11

1- t=S.

Proof: Direction <==, the soundness, follows from theorem 4.9.

For direction =>, the completeness, note that the elimination theorem 3.17.1 and direction<== imply

that it is enough to prove => for basic terms t,s. This amounts to an application of 4.18.ii, using

definition 4.13: if t,s E BT and graph(t) HI'!\ graph(s), then

t = term(graph(t)) = term(graph(s)) = s.

4.20 Theorem: BP~0 is sound and complete for closed terms, with respect to G/Hl'l\' i.e.

for all closed BP~0-terms t,s we have: graph(t) HI'!\ graph(s) <=> BP~0 1- t=S.

Proof: Subsections 4.16 through 4.19 remain valid if every occurrence of ACP
11

is replaced by

BP ~o and X=Y stands for BP ~o I- X=Y instead of ACP 11 I- X=y.

4.21 Lheorem: ACP is sound and complete for closed terms, with respect to G/Hl'l\' i.e.

for all closed ACP-terms t,s we have: graph(t) HI'!\ graph(s) <=> ACP I- t=S.

Proof: As above for ACP 11, but much simpler, by removing all Tl's from this chapter.

21

4.22 Theorem: ACP11 is a conservative extension of BPA011 and of ACP, i.e. for all closed

BPABTJ-tenns t,s we have

ACP TJ I- t=S iff BP A011 I- t=S,

and for all closed ACP-terms t,s we have

ACP TJ I- t=S iff ACP I- t=S.

Proof: Combine 4.19 with 4.20 and with 4.21.

5. Recursive specifications and fairness.

Most processes encountered in practice cannot be represented by a closed term, by an element of

the initial algebra of ACP 11, but will be specified recursively. Therefore, the model presented in the

previous section also contains infinite processes, processes that can perform infinitely many actions

consecutively. The algebraic way to represent such processes is by means of recursive

specifications. First, we develop some terminology.

5.1 Definition. A recursive specification over ACP11 is a set of equations {x = tx: xeX}, with

X a set of variables, and tx a term over ACP 11 and variables X. No other variables may occur in tx.

There is exactly one equation X=tx for each variable x. X contains one designated variable, called

the root variable.

A process p (in a certain model of ACP 11) is a solution of the recursive specification E if

substituting p for the root variable of E, and substituting other elements of the model for the other

variables of E, yields a set of statements that hold in the model.

5.2 Definition. i. Lett be a term over ACP 11, and x a variable in t. We call the occurrence of x in t

guarded if x is preceded by an atomic action, i.e. t has a subterm of the form a·s, with ae A, and

this x occurs in s. Otherwise, we call x unguarded.

ii. A recursive specification {x=tx : xe X} is guarded if no tx contains an abstraction operator 111,

and each occurrence of a variable in each tx is guarded.

5.3 Remark: We will establish in the sequel that each guarded recursive specification has a unique

solution in the graph model of section 4. We see that the constant 11 cannot be guard, since the

equation x = 11x has infinitely many solutions (for each process p, 11P is a solution).

A definition of guardedness involving abstraction operators 111 is very complicated. Therefore, we

limit ourselves to the case where no abstraction operators appear in a recursive specification. Of

course, we can apply abstraction to a process that has been defined by means of a guarded

recursive specification.

5.4 Definition. We formulate two principles that will be shown to hold in the model G/~ of

section 4. First, the Recursive Definition Principle (RDP) is the assumption that every

guarded recursive specification has at least one solution. Second, the Recursive Specification

22

Principle (RSP) is the assumption that every guarded recursive specification has at most one

solution.

5.5 In order to show that RDP and RSP hold in G/Hrri we need some auxiliary notions, that may

also be interesting in their own right. First, we define the projections of a process. To that end,

we enlarge the signature of ACP 11 with unary operators 1tn, for nE N. Then we add the following

axioms PR (using the inductive structure of basic terms from 3.16; aE Au{C>}).

1tn(11) = 11

1tn(11x) = 1l "1tn(x)

1to(ax) = <>

1tn+ 1 (ax) = a·1tn(x)

1tn(X + Y) = 1tn(x) + 1tn(Y)

Table 4. Projection.

We see that the operator 1tn cuts off the process after it has executed n visible steps; the remaining

visible steps are replaced by C>.

5.6 Lemma: Suppose process p is a solution of the guarded recursive specification E. Then for

each n, 1tn(P) is equal to a closed ACP 11-term (independent of p}.

Proof: This follows easily from the definition of guardedness. For details, see BAETEN,

BERGSTRA & KLOP [l].

5.7 Definition. Let p be a process (in a certain model of ACP11). We say p has bounded

nondeterminism if for each sequence a of atomic actions, there are only finitely many different

processes to which p can evolve by performing cr. For more details concerning this notion, and an

axiomatisation of it, see VAN GLABBEEK [8].

5.8 Theorem: Let Ebe a guarded recursive specification. Then, in G/Hrri, E has a solution that has

bounded nondeterminism. Thus, G/Hn, I= RDP.

Proof: We build up such a solution in stages, using the finite projections that we can calculate from

E (by the proof oflemma 5.6). It is easy to see that the graph we obtain is finitely branching, and

no infinite sequence of11-steps can occur. This is enough to conclude that this graph has bounded

nondeterminism. For more details, see BAETEN, BERGSTRA & KLoP [2].

5.9 Finally, we need the Approximation Induction Principle (AIP-) which says that a

process that has bounded nondeterminism, is completely determined by its finite projections, i.e. if

p has l!lounded nondeterminism, and q is such that for all n 1tn(P) = 1tn(q), then p = q.

(The"-" refers to a version of AIP without the restriction to bounded processes.)

23

5.10 Theorem: A.IP- holds in G/Hnr

Proof: See v AN GLABBEEK [8] or BAETEN, BERGSTRA & KLOP [2].

5.11 Theorem: RSP holds in G/Hrri.

Proof: 5.8 plus 5.10.

5 .12 Thus, we have established that every guarded recursive specification has a unique solution in

the graph model. On the other hand, it is not hard to show that each element of the graph model can

be given by a guarded recursive specification (maybe after applying abstraction first). (For the

proof, associate a variable to each node of the tree, and then the equation for node x enumerates the

outgoing edges of x; in case an infinite sequence of 11-steps occurs, first rename them into a fresh

atom h, and then apply 11{h} to the solution of the specification.)
In BAETEN, BERGSTRA & KLOP [2], it is even shown that each computable element of G/Hrri can

be obtained from afinite guarded recursive specification.

5 .13 Definitions. i. A process p is definable if it can be obtained from the constants C by means

of guarded recursion and the operators of ACP 11•

ii. A process p can be written in head normal form if there is an n>O, constants a1 , .. .,an E C

and processes p1 , ..• ,pn such that p = Li~n aiPi·

5 .14 Proposition: Each definable process can be written in head normal form.

Proof: Straightforward.

Note that all elements of G/Hrri are definable. As an application of proposition 5.14, we prove the

following proposition.

5.15 Proposition: Let p,q be definable processes. Then pllq = qllp.

Proof: We saw in the proof of 3.15that11xll11y = 11yll11x for all processes x,y.

It follows that ax I by= a'llx I bilY = (a I b)(11xll11y) = (b I a)(11yll11x) = by I ax for all x,y and all

a,bE C. Since I distributes over +, we get that I is commutative for all head normal forms. Thus

p lq = q Ip, and it is easy to deduce pllq = qllp.

5.16 Next, we briefly discuss the issue of fairness. As a motivation, we first consider an example

(from v AANDRAGER [13]).

Example: A statistician performs a simple experiment: he tosses a coin until tail comes up; then he
goes to report success. The behaviour of the statistician is given by the recursive equation

8 = head·8 + tail·success.

For an observer that cannot see the coin, the actions head, tail are hidden, so he observes the

process 111(8), with I= {head, tai~. If we assume that the coin is fair, 8 will perform a tail action
sooner or later, which yields the identity

111(8) = 11·success.

24

What is needed is an algebraic framework in which one can prove this equation

Looking in the graph model, we see indeed that there is a rooted Tt-bisimulation between the

processes in fig. 8.

head) H
-rTt

Fig. 8.

success

The algebraical rule that expresses that a process will not perform an infinite sequence of internal

steps, but will perform an external step eventually (if possible) is the TI Abstraction Rule

(HAR):

if x =ix+ y, and iEI, HAR

then Tt1(x) = T\"1l1(Y) + 1l1(Y)

The process x will not remain in the i-loop, but will either exit immediately (start executing 111(y))

or exit after some internal action (execute 11 ·rt1(y}).

Applied to the example above, we obtain

Tt1(S) = Tt·Tt1(tail·success) + 111(tail·success) =
= Tt·rt·success + fl·Success = 11·success.

A particular consequence of HAR should be mentioned: if we define the process x by the recursive

equation x = ix, then 'll{i} (x) is the process that only performs an infinite sequence of internal steps,
a situation that is often called live lock. Since x = ix = ix + o, an application of HAR yields

Tt{i}(x) = rt·rt{i}(o) + 11rn(o) = 110 + o = flO.
This equation we can call livelock = deadlock.

HAR can be generalized to the case where we have a loop of internal steps of length n> 1; this gives

us the following rules HARn. Note that HAR1 is just HAR.

"ifkE Zn xk = ikxk+ 1 + Yk· ikE I

1l1(xo) = Tt1(Yo) +rt· I. 111(Yk).
keZn

We conjecture that, with the use of renaming operators, the rules HARn (and even more

complicated generalizations, dealing with clusters of internal steps) can be derived from HAR. For

a similar sitation with the rules KFAR and KFARn, see V AANDRAGER [13].

We claim that the rule HAR (and its generalization) is well-suited to deal with fairness

consigerations in the verification of communication protocols, as in VAANDRAGER [13] and other
papers.

25

6. Relations with 't.

6.1 This paper is called another look at abstraction in process algebra, because a different

abstraction mechanism has already been in use in process algebra for some time, starting with

BERGSTRA & Kl.OP [4]. This abstraction mechanism is based on Milner's silent step 't.

The three laws of the constant 't are from MILNER [10], and are presented in table 5 below.

X't = X

'tX+X='tX

a('tx + y) = a('tx + y) + ax

Table 5. 't-laws.

The crucial difference with the 11-laws presented in section 3 is the second law: the second 't-law

implies the second 11-law, since 't(X + y) = 't(X + y) + (x + y) = 't(X + y) + x + y + x = 't(X + y) + x,

but not the other way around, as example 4.4.ix illustrates.

We can motivate the second 't-law by reconsidering the action relations of 3.5. If we change their

meaning to:

x ~a y means that process x can evolve into process y, during a period in which a starts;

x ~a "' means that process x can tenninate (successfully), after perfonning an a-step,

then we have for 't the same definition as the one in 3.5 for the 11. with two extra clauses:

9. ifx ~-cy and y ~a z, thenx ~a z

10. if x ~-c y and y ~a { thenx ~a"'

(see VAN GLABBEEK [8]). It can be argued that the presence of these clauses makes the 't less

operational than the 11. It turns out that the 't-laws give a complete axiomatisation for these modified

action relations, i.e. for all closed BPAi:-terms t,s we have t H s <=> BPA-c I- t=s. In this

philosophy, 't and 11 denote the same process, but in ACP11, more subtle differences between

processes are observable.

A different motivation for 't is along the lines of 3.1: when the machine is executing an internal step

't, it is running for a period of time, which can also have no duration; therefore, we can consider 11

to stand for 1 or more machine-steps, and 't to stand for 0 or more machine-steps (clauses 9 and 10

above can also be used with this motivation, if we keep the original meaning of predicates ~a).

This philosophy does not mesh nicely with the abstraction operator 't1: it now abstracts an atomic

action of some duration to a process which might have no duration.

The difference between 't and 11 has far-reaching consequences, of which we will mention a few in

the sequel. The first of these differences is that not all laws of ACP, that hold for all atomic actions

a, also hold for 't. For if y(a,b) is defined, we obtain

'talb =('ta+ a) lb ='talb + alb = 'talb + y(a,b),

so 'ta I b contains a summand y(a,b), contrary to the situation with11. Thus, in order to axiomatise

the theory ACP -c• the relation of 't and merge had to be explicitly defined, which necessitated careful

26

deliberations. The result was the axiom system ACP't, presented in table 6. There a,b E Au{o},
H,I ~A and x,y,z are arbitrary processes.

x+y=y+x
(x + y) + z = x + (y + z)

X+X=X
(x + y)z = xz + yz
(xy)z = x(yz)

X+O=X
ox =o

alb=y(a,b)

alb=o

if y(a,b)!

otherwise

Al

A2

A3

A4

A5

A6

A7

CFl

CF2

xJly = xll_y + yll_x + x IY CMl

all_x = ax CM2

axll_y = a(xlly) CM3

(x + y)ll_z = xll_z + yll_z CM4

albx = (alb)x CMS

axlb = (alb)x CM6

axlby = (alb)(xlly) CM7

(x + y) I z = x I z + y I z CM8

x I (y + z) = x I y + x I z CM9

aH(a) = a if a e H Dl

()H(a) = 0 if a E H D2

()H(x + y) = ()H(x) + ()H(Y) D3

()H(xy) = ()H(x)·C>H(Y) D4

X't =X

'tX+X='tX
a('tx + y) = a('tx + y) + ax

'tll_X = 'tX

'txll_y = 't(xJJy)

't Ix= o
x l't = 0
'txly=xly
xJ'ty=xly

()H('t) = 't

't1('t) = 't
't1(a) =a if a e I

't1(a) = 't ifa EI

't1(X + Y) = 't1(x) + 't1(Y)
't1(xy) = 't1(x)· 't1(Y)

Table 6. ACP 't"

Tl

T2

T3

1Ml

1M2

TCl

TC2

TC3

TC4

DT

Tll

TI2

TI3

TI4

TIS

6.2 The theory ACP Ti' as developed in this paper, has nicer technical properties than the theory

ACP 't" For instance, the proofs of theorem 3.17 (Elimination Theorem) and propositions 3.18

(laws of Standard Concurrency) and 3.20 (Expansion Theorem) become more cumbersome (see

BERGSTRA & KLOP [4]). Also, not every definable process can be written in head normal form,

and the set of all finitely branching process graphs cannot be made into a model for ACP 't' because

it is not closed under the communication merge (see BAETEN, BERGSTRA & KLOP [2]).

However, the authors do not favor one theory over the other, and feel they are not in competition.

Depe:qping on the particular application, one theory may be more suited than the other, and the

theories can even be applied one after the other (the 't represents afurther abstraction than the 11; in

the sequel we will define a mapping 't{'ll} that abstracts more, by renaming Tl into 't), or even

27

simultaneously (in the sequel we define 'tin ACP 11, at least in prefix position).

6.3 Definition. We will define a mapping 't{T\} from ACP 11-processes to ACP't-processes on the

graph model G. First some notes on the graph model of ACP 't.

The graph model of countably branching process graphs modulo rooted 't-bisimulation for ACP 't is

defined in BAETEN, BERGSTRA & KLoP [2]. We denote this model by G N 1/Hr't· The definition of

rooted 't-bisimulation is very similar to the notion of rooted T}-bisimulation; the differences are

(using the notation of 4.3) that in 2 we do not require R(s,t*), in 3 we do not require R(s*,t), and

we drop the root condition in point 2 and 3 (but not in 4 and 5). For the proof that ACP 't is sound

and complete for closed terms w.r.t. GN 1/Hr't' we also refer to [2]. The definition of the operators

on GN 1/Hr't is the same as on G/Hl'll' except forthe definition of the communication merge (the

set of finitely branching process graphs caruiot be made into a model for ACP 't' because it is not

closed under this communication merge).

Then, the mapping 't{T\} simply changes all T}-labels of a graph to 't-labels. Since this is a renaming

operator, it is on closed terms completely axiomatised by the equations in table 7 below.

There aEAu{o}.

't{T\}(a) = a

't{T\}(Tl) = 't

't{T\}(x + y) = 't{T\}(x) + 't{T\} (y)

't{T\}(xy) = 't{T\}(x)· 't{T\}(Y)

Table 7. T}-to-'t-abstraction (HT)

It is immediate that the following lemma holds for all process graphs not containing a label T} or 't.

Using the axioms HT above, we give the algebraic proof for closed terms.

6.4 Lemma: Let x be a closed ACP-term and let I ~ A. Then f- 't{T\}(Tl1(x)) = 't1(x).

Proof: Write x as a basic term. Then we can use induction on the structure of x.

Case 1: x is an atomic action or o, so x E Au{o}. If x E I, 't{T\} (111(x)) = 't{T\} (Tl) = 't = 't1(x); if x e
I, 't{T\}(Tl1(x)) = 't{T\}(x) = x = 't1(x).

Case 2: Otherwise, x is of the form y·z or y+z, and the lemma holds for y and z. Write * for · or

+.Then 't{T\}(Tl1(x)) = 't{T\}(Tl1(y) * n1(z)) = 't{T\}(1l1(y)) * 't{T\}(TlJ(z)) = 't1(y) * 't1(z) = 't1(x).

6.5 Proposition: The mapping 't{T\} is a homomorphism on closed terms, w.r.t. the operators

+,-,ll,ll_,()H·

Proof: The proof is only non-trivial for the case of II. Thus, let x,y be closed ACP TI-terms. We

have to prove that ACP't f- 't{T\}(xlly) = 't{T\}(x)ll't{T\}(y). We use induction on basic terms (see

3.16). We consider four cases:

Case 1: X=Tl and Y=T}. Then 't{T\} (xlly) = 't{T\} (Tl) = 't = 'tll't = 't{T\} (x) ll't{T\} (y).

Case 2: x = Lkn aixi + Lj<m T}X'i and y = T} (n+m>O, aiE Au{o}). Then 't{T\}(xlly) =

28

= Li ai·-r{11}(xillY) + Li -r·-r{11}(x'dlY) + -r·-r{11}(x) + <> = Li ai(-r{11}(xi)ll-r{11}(y)) +
+ Lj -r(-r{11}(x'j) 11-r{'ll}(y)) + -rll_ 't{'ll}(x) + 't 1-r{11}(x) (by induction hypothesis)= -r{11}(x)ll-r{11}(y).
Case 3: x = 11 and y = Lk<p bkYk + L1<q 11y'1 (p+q>O, bkEAu{o}). Like case 2.

Case 4: x = Li<n aixi + Lj<m 11x'i and y = Lk<p bkYk + L1<q 11Y'1 (m+n>O, p+q>O,
ai,bkE Au{<>}).
Note that as a consequence of the second 't-law we have the following equation for all processes

t,s: -r(tlls) = -r(tlls) + t Is.

We get -r{11}(xlly) =

=Li a('t{'ll}(xillY) + Lj -r·-r{11}(x'il!y) + Lk bk·-r{11}(xllyk) + L1 -r·-r{11}(x1ly'1) +

+ I:i,k (ai I bk)·-r{11}(xi11Yk) =
=Li ai(-r{11}(xi)lh{11}(y)) + Lj -r(-r{11}(x'i)ll-r{11}(y)) + Lk bk(-r{11}(x)ll-r{11}(Yk)) +

+ 1:1 -r(-r{11}(x) ll-r{11}(Y'1)) + Li,k (ai I bk)(-r{11}(xi)ll-r{11}(Yk)
(by induction hypothesis). We can add to this last expression the following terms, as noted above:

Lj 't{'ll}(x'i) 1-r{'ll}(Y) +LI 't{'ll}(x) 1-r{11}(y'1). Straightforward calculations show that the result is
equal to -r{11}(x)lh{11}(y). This finishes the proof.

6.6 Note: The mapping 't{'ll} is not a homomorphism w.r.t. J. If e.g. y(a,b) is defined, then -ra I b

= y(a,b), while 11a I b = <>.

It is not hard to see that proposition 6.5 also holds in the graph model, since the operators

+,.,II, 11_,aH have the same definition in both cases. We will usually assume that propositions 6.4

and 6.5 hold for all processes (similar to the situation with the equations of Standard Concurrency,
see note 3.19).

6.7 Theorem. Let g be a finitely branching process graph with labels from Au{o,11}, and let h be a

finitely branching process graph with labels from Au{o}, such that -r{11}(g) Hrt h.
Then g H 111 h.

Proof: Let g,h be as stated. 't{'ll}(g) is obtained from g by changing all 11-labels to -r-labels, but has

the same nodes. Let R be a rooted -r-bisimulation between 't{'ll}(g) and h. We claim that R is also a

rooted 11-bisimulation between g and h. We see that it is enough to check the extra conditions of the

rooted 11-bisimulation.

1. Let R(s,t) and lets ~as' be an edge in g with aE A. Since Risa rooted -r-bisimulation, there
are nodes t*,t' in h such that t _,,'t t* ~a _,,'t t' and R(s',t'). Buth contains no -r-labels, so the

number of -r-steps in _,. 't must be 0, and t* = t. This means R(s,t*) holds.

The root condition is also taken care of, since t* =t.

2. Vice versa: let R(s,t) and let t ~a t' be an edge in h with aE A. Since R is a rooted
-r-bisimulation, there are nodes s* ,s' in g such that s _,. 't s* ~a _,. 't s' and R(s' ,t'). If the number oJ

-r-steps ins _,.'t s* is 0, we are done. Otherwise, consider the first -r-step s ~'t s". Since Risa

rooted -r-bisimulation, there is a node t" in h with t _,.'t t" and R(s",t"). Buth contains no -r-labels,
sot =,t" and R(s",t). By repeating this procedure, we obtain R(s*,t).

If (s,t) is the pair of roots, we must have that the number of -r-steps ins _,, 't s* is 0. Otherwise, s
~ 't s" for some node s" in g, and since R is a rooted -r-bisimulation, there is a node t" in h with t

29

__,. 't t" and R(s",t"). But by the root condition of the rooted 't-bisimulation, t" can be chosen such that

the number of 't-steps in t __,. 't t" is at least 1. This is a contradiction, since h contains no 't-labels.

6.8 Theorem 6.7 allows us to formulate .the following proof principle:
if x is an ACP 11-process and y is an ACP-process,

and 't{T\}(x) = y,
thenx = y.

We will call this the Two-tiered Abstraction Principle (TAP). It follows from the

completeness of the graph model that TAP is derivable for closed terms. In the following example

we apply this proof principle.

6.9 Example: A bag (a channel that does not preserve the order of its contents) with input port i and

output port j is given by the following guarded recursive equation:

9ii = LdeD ri(d)·(8iillsj(d)).

Here Dis a finite set of data, ri(d) is the atomic action receive datum d at port i, and sj(d) is the

atomic action send datum d at port j. For more information, see BAETEN, BERGSTRA & KLoP [1].

Now we connect two bags in series. If we abstract from the communications between the bags, the

resulting process should again be a bag. We express this as follows.

In fig. 9, we have bags 8 12 and 823. Communications between them are given by defining

y(r2(d),s2(d)) = 'Y(s2(d),r2(d)) = c2(d)

(communicated at 2). y is undefined in all other cases. When we merge these bags, we have to

encapsulate unsuccessful communications, actions from H = {r2(d), s2(d) : de D}, and abstract

from internal steps, actions from I= {c2(d) : de D}. With these definitions, we have the following

theorem.

1 •I -8-12__. 2 •I -8-23-

Fig. 9.

6.10Theorem:111°aH(912ll823) = 913.

Proof: In BAETEN, BERGSTRA & KLOP [1] it is proved that
'ti°dH(81211823) = 913.

3

By 6.4, we have 'ti°dH(81211823) = 't{T\} 011i°aH(81211823). An application of the Two-tiered
Abstraction Principle finishes the proof.

6.11 Thus, we can see that we can consider ACP 't to be a homomorphic image of ACP 11 (viewing I
as a hidden operator). (Note that this mapping cannot be an isomorphism, as example 4.4.ix

" shows.)
When verifying statements about processes, we often use abstraction from internal behaviour. Now

30

it is possible to use the operator 111, and the theory ACP 11, to implement this abstraction. Then later,

if we want to abstract further, if we want to identify more processes, we can apply the operator 't{11}

and use the theory ACP 't to see if the· obtained expression can be simplified further. Of course,

having done that, it is still possible to add more identifications, for instance the laws of failure

semantics (see BROOKES, HOARE & ROSCOE [7] or BERGSTRA, KLoP & OLDEROG [6]).

In the sequel we will consider a different way to use the constants 't and 11 together, by defining

(part of) 'tin ACP 11• Where the approach with the operator 't{TJ} is closest to the first motivation

given in 6.1, the following approach is more consistent with the second motivation in 6.1.

6.12 Definition: Enrich the signature of ACP 11 with a unary operator 't and add the following law:

't(X) = 11X + X TH.

We call the resulting theory ACP 11't.

6.13 Note: An immediate consequence oflaw A4 is that 't(x)·y = 't(x·y). This allows to write 't"X
instead of 't(x).

6.14 Lemma: The following equations hold in the theory ACP TJ't (aE C):

1. a'CX = ax 2. 't'tX = 'tX

3. 't'11 = 11
5. 'CX + X = 'CX
6. a('tx + y) = a('tx + y) + ax
7. 'tx[j_y = 11(xlly) + x[j_y
Proof: Easy.

6.15 Lemma: The following equations hold for all closed ACP 11't-terms x,y:

1. X'tY = xy

2. 'CX I y = x I y = x I 'tY
3. x[j_ 'tY = xlL11Y = x[j_y
4. 'tXllY = 't(xlly).
Proof: First note that each closed ACP 11't-term is again equal to a basic term (the operator 't can

easily be eliminated). Therefore, we only have to prove the lemma for basic terms x,y. This proof

proceeds by an induction on the structure ofx and y, and is easy to complete.
Remark: Statements 2-4 are even provable for all definable processes.

6.16 We have seen that we can introduce 't in the theory ACP 11 as a unary operator, so that we can

simulate prefix multiplication by 't. In prefix position, this 't obeys all laws of the 'tin ACP 't (at least

for closed terms), except for the law for left-merge. Strangely enough, obtaining 't from ACP
11

by

means of the mapping 't{11} respects all operators except the auxiliary operator I. and obtaining 'tin

ACP 11,as a unary operator respects all operators except the auxiliary operator [j_. Thus, viewed with

the greater discriminating power of the 11. we see that the laws used in ACP't to define the relation
of 't and merge, generate friction amongst eachother, so they cannot be united with the laws for 11.

31

In both 'cases though, we do get the same laws for 't and merge.

6.17 Remark: It still can be viewed as a drawback that we were not able to define a process 't in the

theory ACP
11

. We can do this, however, with the use of another constant, namely the empty

process E discussed in VRANCKEN [14]. The constant E has the characteristic laws

EX= XE = X.

We see that Eis the process that terminates immediately (stands for zero machine-steps), and we

can fonnulate the following definition:

't=T\ +E.

Thus, 't becomes definable in a theory ACP 11 with E, and in this theory, we can also define a

mapping 't{Tl}' renaming 11 into 't, so that 't1='t{Tl}
0 1'\1.

References

[l] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, Conditional axioms and a/f3-calculus in

process algebra, report CS-R8502, Centre for Math. & Comp. Sci., Amsterdam 1985, to appear

in: Proc. IFIP Conf. on Formal Description of Progr. Concepts (M.Wirsing, ed.), Gl. Avemres

1986, North-Holland.

[2] J.C.M.BAETEN, J.A.BERGSTRA & J.W.KLOP, On the consistency of Koomen's fair

abstraction rule, report CS-R8511, Centre for Math. & Comp. Sci., Amsterdam 1985, to appear in

Theor. Comp. Sci.

[3] J.A.BERGSTRA & J.W.KLOP, Process algebra for synchronous communication, Inf. &

Control 60 (1/3), pp. 109 - 137, 1984.

[4] J.A.BERGSTRA & J.W.KLOP, Algebra of communicating processes with abstraction, Theor.

Comp. Sci. 37 (1), pp. 77 - 121, 1985.

[5] J.A.BERGSTRA & J.W.KLOP, Algebra of communicating processes, Proc. CWI Symp. Math.

& Comp. Sci. (J.W.de Bakker, M.Hazewinkel & J.K.Lenstra, eds.), pp. 89 - 138, North­

Holland, 1986.

[6] J.A.BERGSTRA, J.W.KLOP & E.-R. OLDEROG, Failures without chaos: a new process

semantics for fair abstraction, report CS-R8625, Centre for Math. & Comp. Sci., Amsterdam

1986, to appear in: Proc. IFIP Conf. on Formal Description of Progr. Concepts (M.Wirsing, ed.),

Gl. Avemres 1986, North-Holland.

[7] S.D.BROOKES, C.A.R.HOARE & A.W.ROSCOE, A theory of communicating sequential

processes, JACM 31 (3), pp. 560 - 599, 1984.

[8] R.J.v AN GLABBEEK, Bounded nondeterminism and the approximation induction principle in

process algebra, report CS-R8634, Centre for Math. & Comp. Sci., Amsterdam 1986.

[9] C.A.R.HOARE, Communicating sequential processes, Prentice Hall 1985.

[1 OJ R.fytlLNER, A calculus of communicating systems, Springer LNCS 92, 1980.

[11] R.MILNER, Lectures on a calculus of communicating systems, Seminar on concurrency

(S.D.Brookes, A.W.Roscoe & G.Winskel, eds.), pp. 197 - 220, Springer LNCS 197, 1985.

32

[12] D.M.R.PARK, Concurrency and automata on infinite sequences, Proc. 5th GI Conf., Springer

LNCS 104, 1981.

[13] F.W.VAANDRAGER, Verification of two communication protocols by means of process

algebra, report CS-R8608, Centre for Math. & Comp. Sci., Amsterdam 1986.

[14] J.L.M.VRANCKEN, The algebra of communicating processes with empty process, report FVI

86-01, Dept. of Comp. Sci., Univ. of Amsterdam 1986.

