

Centrum voor Wiskunde en Informatica Centre for Mathematics and Computer Science

A.M. Cohen, G.M. Seitz

The r-rank of the groups of exceptional Lie type

Department of Pure Mathematics

Report PM-R8607

December

The r-Rank of the Groups of Exceptional Lie Type

Arjeh M. Cohen

Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Gary M. Seitz

Mathematical Department, University of Oregon, Eugene, OR 97403, U.S.A.

In this note, we prove the following result, settling a question raised at the end of [BOREL & SERRE, 1953], cf. [BOREL, 1983 pp. 228 and 708]. A related result for Lie groups of type E_8 was recently proved by J.F. Adams.

THEOREM. Let r be a prime and G a simple algebraic group of exceptional type over an algebraically closed field of characteristic $\neq r$. Let E be an elementary abelian r-subgroup of G of maximal rank. Then $\operatorname{rank}(E) = \operatorname{Lie} \operatorname{rank}(G)$ with the exception of r = 2 and $G = G_2$, F_4 , the adjoint E_7 , and E_8 , in which cases $\operatorname{rank}(E) = \operatorname{Lie} \operatorname{rank}(G) + 1$. Moreover, E is unique up to conjugacy.

1980 Mathematics Subject Classification: 20G15, 20E15. Key Words and Phrases: Groups of Lie type, elementary Abelian subgroups. Note: This report will be submitted for publication elsewhere.

1. THE PRIME 2

In this section we prove the following

THEOREM. Let G be an algebraic group of type G_2 , F_4 , E_6 , adjoint E_7 , simply connected E_7 , or E_8 over an algebraically closed field of characteristic $\neq 2$, and let E be an elementary abelian 2-group in G of maximal order. Then $|E| = 2^3, 2^4, 2^6, 2^8, 2^7, 2^9$ in the respective cases. Moreover, in each case any two such elementary abelian subgroups are conjugate.

PROOF. By a theorem of [Springer & Steinberg, 1970], due to [Borel & Serre, 1953] in the Lie group case, E is a subgroup of $N_G(T)$ for some maximal torus T of G. In particular, $|E| \leq 2^l \cdot |W|$, where l is the Lie rank of G and $W = N_G(T)/T$, so E is finite. We shall deal with each case separately, although the arguments are similar. The idea is to produce a certain subgroup containing the preimage in N of a Sylow 2-subgroup of W.

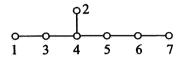
- G_2 . Let J_1 , J_2 be commuting (nonconjugate) fundamental SL_2 's. We may take $T \le D = J_1J_2$. Moreover $N_D(T)/T$ contains a Sylow 2-subgroup of $W = N_G(T)/T$, so we may assume $E \le D$. Let $Z(D) = \langle e \rangle$. Maximality of E then implies $E = \langle e, x_1x_2, y_1y_2 \rangle$, where $x_1, y_1 \in J_1$, $x_2, y_2 \in J_2$, $x_1^2 = x_2^2 = y_1^2 = y_2^2 = [x_1, y_1] = [x_2, y_2] = e$. It is clear that any two such groups are conjugate in D.
- F_4 . There is an involution in F_4 with centralizer D, the simply connected group of type B_4 . We may take $T \le D$ and check that $N_D(T)/T$ contains a Sylow 2-subgroup of $N_G(T)/T$. Hence, we may take $E \le D$. An involution in SO_9 lifts to an involution in D if and only if the eigenspace for eigenvalue -1 has dimension a multiple of 4. A direct check then shows that D has 2-rank 5 and all elementary abelian subgroups of D of order 2^5 are conjugate.
- E₆. Set $V = \Omega_2(T) = \{t \in T \mid t^2 = 1\}$. Then V is the natural module for $O^-(6,2) \cong W$. By §8 of [Aschbacher & Seitz, 1976] W has 4 classes of involutions, represented by a_2 , c_2 , b_1 , and b_3 . Here the subscript is the dimension of the commutator space of the involution. The involutions in $\Omega^-(6,2)$ are conjugates of a_2 and c_2 . Long root subgroups of W are generated by conjugates of a_2 , the commutator space $[V,a_2]$ is totally singular, and $C_V(a_2) = [V,a_2]^{\perp}$. Finally, by (19.9)(ii) of [Aschbacher & Seitz, 1976], applied to $O^-(6,2) \cong U_4(2) \cdot 2$, we have $C_W(b_3) \leqslant C_W(b_1)$ for suitable choice of b_1 .

To prove the theorem for E_6 we may and shall assume that E is not contained in a maximal torus

Report PM-R8607 Centre for Mathematics and Computer Science P.O. Box 4079, 1009 AB Amsterdam, The Netherlands of G, $|E| \ge 2^6$, and $E \le N_G(T)$. Set $\overline{E} = ET/T$, and for $x \in E$, write $\overline{x} = xT$. If \overline{E} centralizes b_1 , then there is a fundamental SL_2 normalized by T, containing a preimage in N(T) of b_1 , and such that $E \le SL_2 \circ SL_6$. A direct check then shows that E is necessarily contained in a maximal torus, a contradiction. Hence \overline{E} does not centralize a b_1 involution. In particular, $\overline{E} \le \Omega^-(6,2)$. Moreover, if $C_V(\overline{E})$ contains a nonsingular vector v, then \overline{E} centralizes the unique involution b_1 of W satisfying $[V,b_1]=\langle v \rangle$, a contradiction. Therefore, $C_V(\overline{E})$ is totally singular, $|E\cap T|\le 4$, and $|E|\ge 2^4$.

Let $\overline{E} \leqslant P$ be the stabilizer in $O^-(6,2)$ of a singular 1-space of V. Then $P = O_2(P)L$, where $L \cong \Omega^-(4,2)$ and $O_2(P)$ is the natural module for L. Since $|\overline{E}| \geqslant 2^4$, an easy argument shows that $\overline{E} = O_2(P)$ and so $|\overline{E}| = 2^4$. Hence, \overline{E} contains distinct a_2 involutions $\overline{x}, \overline{y}$. Then $C_V(\overline{x})$ and $C_V(\overline{y})$ have distinct radicals, so the singular points of $C_V(\overline{x}) \cap C_V(\overline{y})$ span a subspace of dimension $\leqslant 1$. Consequently, $|E| \leqslant |\overline{E}| \cdot |E| \cap T| \leqslant 2^4 \cdot 2 < 2^6$. This contradiction finishes the proof of the E_6 case.

 E_7 . Fix a maximal torus T and corresponding system of root groups. Let Σ denote a maximal set of pairwise commuting fundamental SL_2 's from this system. If we label the diagram as follows



then we can take $\Sigma = \{J_1, \dots, J_7\}$, where $J_i = \langle U_{\pm \beta_i} \rangle$ and the β_i are as follows:

$$\beta_1 = 2234321, \ \beta_2 = 0112221, \ \beta_3 = 0000001, \ \beta_4 = 0112100,$$

$$\beta_5 = 0000100, \ \beta_6 = 0100000, \ \beta_7 = 0010000.$$

Set $Z(J_i) = \langle e_i \rangle$ and $J = J_1 \cdots J_7$. Then $\{e_1, \cdots, e_7\}$ is a set of commuting involutions which span Z = Z(J).

LEMMA 1 (E_7) .

- (i) $N_G(J)/J \cong L_3(2)$ and $N_G(J)$ is 2-transitive on Σ , hence on $\{e_1, \dots, e_7\}$.
- (ii) If G is simply connected, the relations on $\{e_1, \dots, e_7\}$ are spanned by $\{e_4e_5e_6e_7, e_2e_3e_6e_7, e_1e_2e_5e_6\}$. So $|Z|=2^4$.
- (iii) If G is adjoint, the relations on $\{e_1, \dots, e_7\}$ are spanned by $\{e_4e_5e_6e_7, e_2e_3e_6e_7, e_1e_2e_5e_6, e_1e_2e_3\}$. So $|Z|=2^3$.

PROOF. For each i, the centralizer $C_G(J_i)$ is of type D_6 . Within D_6 a maximal commuting product of fundamental SL_2 's corresponds to a decomposition of the usual orthogonal module into three perpendicular 4-spaces. One checks that S_4 is induced on such a commuting product, transitive on the 6 copies of SL_2 . Hence, $N_G(J)$ is 2-transitive on $\{J_1, \dots, J_7\}$, $N_G(J)/J$ has order 168, and (i) follows.

For (ii) and (iii) first check that $e_4e_5e_6e_7$, $e_2e_3e_6e_7$, $e_1e_2e_5e_6$, $e_1e_2e_3$ are each in Z(G) (show that they centralize each root group corresponding to a fundamental root). Hence, in the simple group $|Z| \le 2^3$. Equality must hold since $L_3(2)$ acts nontrivially on Z. This gives (iii). For (ii), view $E_7 \le E_8$ and note that $e_4e_5e_6e_7$, $e_2e_3e_6e_7$, $e_1e_2e_5e_6$ are in $Z(E_8) = 1$, while $e_1e_2e_3$ is not.

One can now list explicitly all relations on the e_i 's, listing tuples of integers to indicate corresponding products of e_i 's which are trivial.

G simply connected: 4567,2367,1256,1247,2345,1357,1346.

(*)

G adjoint: 4567, 2367, 1256, 1247, 2345, 1357, 1346, 123, 145, 347, 356, 167, 246, 257, 1234567

LEMMA 2 (E_7). Let $E \leq J$ be an elementary abelian 2-group.

- (i) There exist subgroups Q_i of J_i $(1 \le i \le 7)$ such that $Q_i = \langle x_i, y_i \rangle$ is quaternion of order 8, $N_{J_i}(Q_i)$ induces S_3 on Q_i , and $E \le Q = Q_1 \cdots Q_7$.
- (ii) $|E| \le 2^8, 2^7$ according to whether G is adjoint or simply connected.
- (iii) If G is adjoint, there is a unique J-class of elementary abelian groups of order 2^8 , represented by $\langle Z, x_4x_5x_6x_7, x_2x_3x_6x_7, x_1x_2x_5x_6, x_1x_2x_3, y_1 \cdots y_7 \rangle$.
- (iv) If G is simply connected, there is a unique J-class of elementary abelian groups of order 2^7 , represented by
- $\langle Z, x_4x_5x_6x_7, x_2x_3x_6x_7, x_1x_2x_5x_6 \rangle$.
- (v) Any 2-group in G is conjugate to a subgroup of $N_G(J)$.

PROOF. Consider $EZ/Z \le J/Z$ and project to each of the simple summands. Each projection of E is contained in the Klein 4-subgroup of a group isomorphic to S_4 . The preimages of the S_4 's are the normalizers of the Q_i 's. This gives (i).

For the other parts take E of maximal order. Then $Z \le E$. Suppose $e \in E - Z$. Conjugating by a suitable element in the product of the normalizers of the Q_i 's we may assume e is a product of certain of the elements x_1, \dots, x_7 . Since e is an involution the relations force $e = x_i x_j x_k x_l$, $x_i x_j x_k$, or $x_1 \dots x_7$, where ijkl or ijk is one of the tuples in (*).

For each i, $[x_i, y_i] = e_i$. Moreover, inspection of the above tuples shows: $|\{i, j, k, l\} \cap \{r, s, t\}| = 0$ or 2 and $|\{i, j, k, l\} \cap \{r, s, t, v\}| = 2$ if $\{i, j, k, l\} \neq \{r, s, t, v\}$. The proof of (ii), (iii), and (iv) is completed using these facts and an easy check of cases. Finally, (v) follows since $E \leq N_G(T)$ and the orders of $N_G(T)/T$ and $N_J(T)/T$ have the same 2-part (2¹⁰).

LEMMA 3 (E_7) . Assume G is adjoint and $E \leq N_G(J)$ is an elementary abelian 2-group. Then $|E| \leq 2^8$, equality possible only if E is G-conjugate to a subgroup of J.

PROOF. Suppose $|E| \ge 2^8$, $E \le N_G(J)$, but $E \le J$. Let X = EJ/J, regarded as a subgroup of $L_3(2)$. Hence, $X \cong Z_2$ or $Z_2 \times Z_2$. The permutation action of $N_G(J)/J$ on Σ is the same as that on $Z^{\#}$. Let $Y = E \cap J$, with $Y \le Q = Q_1 \cdots Q_7$ as in Lemma 2, and E normalizing Q (use the fact that $N_G(J_i) = J_i C_G(J_i)$ for each i). Set $a_i = x_i Z$ and $b_i = y_i Z$.

CASE 1. $C_Z(E) \cong Z_2$. By transitivity we may assume $C_Z(E) = \langle e_1 \rangle$. Since involutions in $L_3(2)$ have a 2-dimensional fixed space on the usual module, $X \cong Z_2 \times Z_2$. So $Y = E \cap J$ is elementary abelian of order at least 2^6 and $|YZ/Z| \ge 2^5$.

 $R = C_{J/Z}(X)$ is the product of groups of type PSL_2 , one for each orbit of X on Σ . Now, X has orbits of size 1,2,2,2. Write $R = R_1 \cdots R_4$, each $R_i \cong PSL_2$ and $R_i = J_i Z/Z$. If $\{J_i, J_j\}$ is an orbit, then $e_i e_j$ is fixed by E, hence $e_1 = e_i e_j$. Thus 1ij is one of the triples above. So the orbits are $\{J_2, J_3\}$, $\{J_4, J_5\}$, $\{J_6, J_7\}$, with corresponding PSL_2 's R_2, R_3, R_4 . $YZ/Z \cap R_1 = 1$ (since $Y \cap J_1 = \langle e_1 \rangle$). So conjugating by an appropriate element of N(Q) we may assume that the image of YZ/Z under projection to $R_2R_3R_4$ contains a hyperplane of $\langle a_2a_3, b_2b_3, a_4a_5, b_4b_5, a_6a_7, b_6b_7 \rangle$. Intersecting the projection with $\langle a_2a_3, b_2b_3 \rangle$, $\langle a_4a_5, b_4b_5 \rangle$, and $\langle a_6a_7, b_6b_7 \rangle$, we may assume Y contains elements projecting to a_2a_3 , a_4a_5 , and a_6a_7 . Hence, we may assume Y contains $x_1x_2x_3, x_1x_4x_5$, and $x_1x_6x_7$. But also, Y contains an element projecting to an involution in $\langle b_2b_3, b_4b_5 \rangle$, forcing Y to be nonabelian. Contradiction.

CASE 2. $C_Z(E) \cong Z_2 \times Z_2$. Then E fixes 3 J_i 's, but does not centralize Z. So we may assume E normalizes J_1 , J_2 , and J_3 . No element of $L_3(2)$ fixes more than 3 elements of the usual module, so X is semiregular on $\{J_4, J_5, J_6, J_7\}$.

First assume $X \cong \mathbb{Z}_2$. Then $Y\mathbb{Z}/\mathbb{Z}$ has order at least 2^5 and without loss of generality we may assume the nontrivial orbits of E on Σ to be $\{J_4,J_5\}$ and $\{J_6,J_7\}$. Now $Y \cap J_1J_2J_3$ is not contained in \mathbb{Z} , so we may assume $x_1x_2x_3 \in Y$. If $Y \cap J_1J_2J_3 = \langle e_1,e_2,x_1x_2x_3 \rangle$, then the image of Y under projection to $J_4J_5J_6J_7\mathbb{Z}/\mathbb{Z}$ coincides with $\langle a_4a_5,b_4b_5,a_6a_7,b_6b_7 \rangle$ and this forces Y to be nonabelian. So assume $x_1x_2x_3,y_1y_2y_3$ are both in Y. As above, we may assume Y contains an element projecting to a_4a_5 , which again forces Y to be nonabelian. Thus $X\cong \mathbb{Z}_2\times \mathbb{Z}_2$.

Hence E has a unique nontrivial orbit on Σ of size 4 and $|YZ/Z| \ge 2^4$. It follows that $|Y \cap J_1J_2J_3| \ge 2^4$, so we may assume $x_1x_2x_3$, $y_1y_2y_3 \in Y$. Now $N_G(J_1) \cap N_G(J_2) \cap N_G(J_3) = J_1J_2J_3D$, where D° is simply connected of type D_4 (indeed, $Z(D) = \langle e_4e_5, e_5e_7 \rangle$). Take $h \in E - \langle Z, x_1x_2x_3, y_1y_2y_3 \rangle$. Since h commutes with $x_1x_2x_3$ and $y_1y_2y_3$, we may take $h \in D$. Now D has just 1 class of involutions in D - Z(D), represented by e_4 (corresponding to involutions in SO_8 of type $(1)^4(-1)^4$). Hence $C_D(h)$ is D-conjugate to $C_D(e_4) = J_4J_5J_6J_7$. Thus, $E \leqslant J_1J_2J_3C_D(h)$, a D-conjugate of J. This completes the proof of Lemma 3.

LEMMA 4 (E_7) . Assume G is simply connected and $E \leq N_G(J)$ is an elementary abelian 2-group. Then $|E| \leq 2^7$, equality possible only if E is G-conjugate to a subgroup of J.

PROOF. Assume $|E| \ge 2^7$ and $E \ne J$. Then, up to conjugacy in $N_G(J)/J \cong L_3(2)$, we have that X = EJ/J is one of the groups listed in the table below, where a, b, c are elements of $N_G(J)/J$ inducing the permutations (2,3)(6,7), (4,5)(6,7), (4,6)(5,7), respectively, on Σ . A direct check shows that, in each case, $C_Z(X)$ is as indicated in the table. Thus, the rank of $E \cap Z$ (a subgroup of $C_Z(X)$) is at most 3, 2, and 3, so that $|(E \cap J)Z/Z| \ge 2^3$, 2^3 , and 2^2 , in the respective cases.

On the other hand, if $q = q_1 \cdots q_7$, where $q_i \in Q_i Z/Z$, is an involution then the tuple of indices i with $q_i \neq 1$ is a 4-tuple of (*). Moreover, if q is centralized by X, this tuple must be invariant under the permutation action of X on Σ . In the table, under inv(X), those tuples from (*) are listed which are X-invariant. It readily follows from the structure of inv(X) that $(E \cap Q)Z/Z$ has size at most 2^2 in all three cases. Therefore, we must have $X = \langle b,c \rangle$, $E \geqslant \langle e_1,e_2,e_3 \rangle$, and, without loss of generality, $(E \cap J)Z/Z = \langle x_4x_5x_6x_7,y_4y_5y_6y_7 \rangle Z/Z$. In particular $E \leqslant N_G(J_1)N_G(J_2)N_G(J_3)$, and we can finish as in the previous lemma.

X	< <i>c</i> >	< <i>a,b</i> >	< <i>b</i> , <i>c</i> >
		$< e_1, e_2 e_3 >$	$< e_1, e_2, e_3 >$
inv(X)	4567,1357,1346	4567,2367,2345	4567

The E_7 case of the theorem follows from Lemmas 2, 3, and 4.

 E_8 . We proceed as for E_7 . Again T is a maximal torus, and Σ a maximal set of pairwise commuting fundamental SL_2 's. We label the diagram

and take $\Sigma = \{J_1, \dots, J_8\}$, where $(J_i)_{1 \le i \le 7}$ is as for E_7 and $J_8 = \langle U_{\pm \beta_8} \rangle$, with $\beta_8 = 23465432$. Set $Z(J_i) = \langle e_i \rangle$ and $J = J_1 \dots J_8$. Then $\{e_1, \dots, e_8\}$ is a set of commuting involutions spanning Z = Z(J).

LEMMA 5 (E_8) .

- (i) $N_G(J)/J \cong \mathbb{Z}_2^3 L_3(2)$ and $N_G(J)$ is 3-transitive on Σ , hence on $\{e_1, \dots, e_8\}$.
- (ii) The relations on $\{e_1, \dots, e_8\}$ are given by the tuples of even length in (*) and the tuples obtained by joining 8 to the tuples of odd length in (*).

PROOF. For each $i \in \{1, \dots, 8\}$, the group $C_G(J_i)$ is of type E_7 , so the lemma is easily derived from Lemma 1.

LEMMA 6 (E_8). Let $E \leq J$ be an elementary abelian 2-group.

- (i) There exist subgroups Q_i of J_i such that $Q_i = \langle x_i, y_i \rangle$ is quaternion of order 8, $N_{J_i}(Q_i)$ induces S_3 on Q_i , and $E \leq Q = Q_1 \cdots Q_8$.
- (ii) $|E| \leq 2^9$.
- (iii) There is a unique J-class of elementary abelian subgroups of order 29, represented by

$$\langle Z, x_4x_5x_6x_7, x_2x_3x_6x_7, x_1x_2x_5x_6, x_1x_2x_3x_8, y_1 \cdots y_8 \rangle$$
.

(iv) Any 2-group in G is conjugate to a subgroup of $N_G(J)$.

PROOF. Similar to Lemma 2.

LEMMA 7 (E_8) .

- (i) Let $K = \langle e_j e_k | 1 \leq j, k \leq 8 \rangle$ and $R/J = O_2(N(J)/J)$. Then K is a hyperplane in Z and $R = N(J) \cap C(K)$.
- (ii) R-J contains a conjugate d of e_1 such that each involution in R-J is N(J)-conjugate to an involution in dK.
- (iii) If ijkl is a 4-tuple as in Lemma 5(ii) and if x_i, x_j, x_k, x_l are elements of order 4 in J_i, J_j, J_k, J_l , respectively, then $x_i x_j x_k x_l \in e_1^G$.

PROOF. N(J) acts on K since it permutes Σ , and clearly K is a hyperplane in Z. So $N_G(J)$ induces $L_3(2)$ on K and (i) follows. Observe that R/J acts regularly on Σ .

Let $z \in K^{\#}$. Then $J \leq D = C_G(z) = D_8$ (half-spin). Consider SO_{16} (an image of the covering group of D) and its subgroup $\tilde{D} = SO_{16} \cap (O_4)^4$. Set $(\tilde{D})^\circ = \tilde{J}$, a group corresponding to J. Choose reflections t_1, t_2, t_3, t_4 , one from each O_4 . The product of any two of these is in SO_{16} , and these products generate an elementary abelian group \tilde{S} of order 8 which acts faithfully on the set $\tilde{\Sigma}$ of simple factors of \tilde{J} . Let \tilde{R} denote the subgroup corresponding to R. Then $\tilde{S} \cap \tilde{R}$ is not contained in \tilde{J} . Since $t = t_1 t_2 t_3 t_4$ is the unique element in \tilde{S} acting semiregularly on $\tilde{\Sigma}$, we have $t \in \tilde{R} - \tilde{J}$. In SO_{16} , t is conjugate to an involution in a fundamental SL_2 . Translating this to D we conclude that there must exist an element $d \in (D \cap R) - J$, with d a conjugate of e_1 .

To prove (ii) let t be any involution in R-J. Since $(R/J)^{\#}$ is fused in $N_G(J)$, we may assume tJ=dJ. Hence, J/Z is the direct product of simple groups permuted semiregularly by t. Therefore, all involutions in dJ are conjugates of those in dZ. Hence, we may assume $t \in dZ$. Also, $C_Z(d)=K$ (since $Z-K=\{e_1,\dots,e_8\}$). So the only involutions in dZ are in fact in dK. This proves (ii).

For (iii) again consider D and choose $X \circ Y \leq D$ with X, Y of type D_4 . Then X and Y are simply connected and we may take $J \leq X \circ Y$, where $J \cap X$ and $J \cap Y$ are each a product of 4 of the fundamental SL_2 's. Say $J \cap X = J_r J_s J_u J_v$. One checks that $e_r e_s e_u e_v = 1$ so rsuv is one of the 4-tuples of Lemma 5(ii). From 3-transitivity of N(J) on Σ we may assume $\{r,s,u,v\} = \{i,j,k,l\}$. Set $x = x_i x_j x_k x_l$. The image of x in a quotient of X isomorphic to SO_8 is necessarily conjugate to the images of e_i,e_j,e_k , and e_l (by consideration of the action of this image on the orthogonal module). Without loss we may assume the kernel to the map is $\{e_ie_j\}$. Hence, $x \sim e_i$ or $e_i(e_ie_j) = e_j$, proving (iii).

LEMMA 8 (E_8) . Let $E \le N_G(J)$ be an elementary abelian 2-group. Then $|E| \le 2^9$, equality possible only if E is G-conjugate to a subgroup of J.

PROOF. Assume $|E| \ge 2^9$ and let X = EJ/J. If X has a fixed point, say J_8 , on Σ , then $E \le N(J_8) = J_8 E_7$ and we are done by reduction to E_7 . Similarly, we may assume E centralizes no conjugate of e_1 .

Assume $X \cap (R/J) = 1$, so $|X| \le 4$. Involutions in N(J)/J fixing a point in Σ fix exactly 4 points, so from the above paragraph we conclude X contains a regular involution, say x. Then $C_Z(x) \le K$ (as $Z - K = \{e_1, \ldots, e_8\}$) and x is nontrivial on K (as $x \notin R$). Thus, $|E \cap Z| \le |C_Z(E)| \le 4$. But $|E \cap J| \ge 2^7$, whence $(E \cap J)Z$ is an elementary abelian group of order at least 2^9 .

Apply Lemma 6. Replacing E by a J-conjugate, if necessary, we may assume $(E \cap J)Z/Z = \langle Z, x_4x_5x_6x_7, x_2x_3x_6x_7, x_1x_2x_5x_6, x_1x_2x_3x_8, y_1 \cdots y_8 \rangle$. However, x must centralize $(E \cap J)Z/Z$ and have no fixed points on Σ . Checking possible orbits of x we see this to be impossible.

We may now assume $X \cap (R/J) \neq 1$ and let $s \in (E \cap R) - J$. Lemma 7(ii) implies sK = aK for some $a \in e_1^G$. From the first paragraph it follows that E does not centralize K. In particular, E is not contained in E. Let $E \in E$ and $E \cap E$ are $E \cap E$ and $E \cap E$ are $E \cap E$. Then $E \cap E$ are $E \cap E$ and $E \cap E$ are $E \cap E$ and $E \cap E$ are $E \cap E$.

It follows that $E \cap J$ must contain an element of the form $d = x_i x_j x_k x_l z$, where ijkl is a tuple as in Lemma 5, x_r is of order 4 in J_r for $r \in \{i,j,k,l\}$, and $z \in Z$. Note that $\{i,j,k,l\}$ is necessarily a union of two orbits of $\langle s \rangle$. Also X must act on $\{i,j,k,l\}$ and also on its complement (as E centralizes s).

The E_8 case of the theorem is now immediate from Lemmas 6 and 8.

COROLLARY. Let q be an odd prime power. Then the 2-rank of ${}^2G_2(q)$, $G_2(q)$, $F_4(q)$, $E_6(q)$, $E_7(q)$, $E_7(q)$, $E_8(q)$ is 3,3,5,6,6,8,7,9 in the respective cases.

PROOF. Let G be the algebraic group and let q be a power of the prime p. If σ is a field endomorphism, then it is immediate from the description given that the elementary abelian 2-groups of maximal rank can be taken in $O^{p'}(G_{\sigma})$. Suppose G is of type E_6 and that $\sigma = q\tau$, where τ is a graph automorphism. Set $E = \Omega_2(T)$, where T is a σ -stable torus contained in a σ -stable Borel subgroup. Let $\dot{w}_0 \in N(T)$ represent the long word $w_0 \in W = N(T)/T$. Since $\tau \dot{w}_0$ acts on T by inversion it fixes E elementwise; hence $\sigma \dot{w}_0 = q\tau \dot{w}_0$ fixes E elementwise. The result follows since Lang's Theorem implies that σ and $\sigma \dot{w}_0$ are G-conjugate. Finally, consideration of the centralizer of an involution shows that the 2-rank of ${}^2G_2(q)$ is 3.

2. ODD PRIMES

In this section r is an odd prime and G is an algebraic group of exceptional type over an algebraically closed field of characteristic disinct from r. We begin with a general lemma.

LEMMA 9. Let J be an algebraic group over an algebraically closed field of characteristic $p \neq r$. Suppose $J = T_s \circ J_1 \circ \cdots \circ J_k$, a central product of an s-dimensional torus and k groups isomorphic to SL_r . Then the r-rank of J is s + k(r-1) and all elementary abelian r-subgroups of maximal rank are contained in a maximal torus of J.

PROOF. Assume $2 < r \neq p$. J contains a maximal torus of rank s + k(r - 1), so the r-rank of J is at

least s+k(r-1). Since the r-rank of both SL_r and PSL_r is easily checked to be r-1, the first assertion follows by induction, factoring out T_s and all but one of the SL_r 's. These remarks also show that J/J_i has r-rank s+(k-1)(r-1), for each $1 \le i \le k$. Let E be an elementary abelian r-subgroup of J having maximal rank and fix i ($1 \le i \le k$). By the above, $E \cap J_i$ has rank r-1, and since $E \cap J_i$ is abelian it is contained in a maximal torus T'_i of $J_i \cong SL_r$. Moreover, $C_{J_i}(E \cap J_i) = T'_i$. Hence, $E \le \bigcap_i C_J(E \cap J_i) = T_s T'_1 \cdots T'_k$, a maximal torus of J. The lemma follows.

By the results of [SPRINGER & STEINBERG, 1970] every elementary abelian r-group in G can be embedded in a torus if r>3 for G_2 and F_4 , r>5 for E_6 and E_7 , and r>7 for E_8 . Thus, we only consider the remaining odd primes. Let T be a maximal torus of G. The following subgroups D of G contain T and are such that $N_D(T)/T$ contains a Sylow r-group of $N_G(T)/T$.

G	r=3	r=5	r=7
$\overline{G_2}$	A_2		
F_4	A_2A_2		
E_6	$(A_2A_2A_2)3$	T_2A_4	
E_7	$T_1(A_2A_2A_2)3$	T_3A_4	
E_8	$A_2(A_2A_2A_2)3$	A_4A_4	T_2A_6

Here, T_i stands for a torus of rank i, and A_{r-1} for a fundamental subgroup isomorphic to SL_r .

PROPOSITION. If r is an odd prime and G is an algebraic group of exceptional Lie type over an algebraically closed field of characteristic $\neq r$, then the r-rank of G is the Lie rank of G. Moreover, all elementary abelian r-subgroups of maximal rank are conjugate and contained in a maximal torus of G.

PROOF. Let E be an elementary abelian r-subgroup of G of rank at least the Lie rank of G. In view of the previous comments we may take r to be one of the primes in the table above and assume that $E \leq D$, where D is also given in the table. A dimension check shows that D° contains a maximal torus of G, so the result follows from Lemma 9 provided $E \leq D^{\circ}$.

Suppose there is $e \in E - D^{\circ}$. Then r = 3, $G = E_6$, E_7 , or E_8 . Here D contains a normal subgroup S with $S \cong 1$, T_1 , or A_2 , respectively, D/SZ(D) the wreath product of PSL_3 with \mathbb{Z}_3 , and $C_{D/SZ(D)}(e) \cong PSL_3 \times \mathbb{Z}_3$. So the 3-rank of E is at most 3 plus the 3-rank of $C_{SZ(D)}(e)$. From the action of e it is clear that the latter is at most 2,3,4, respectively, so this is a contradiction.

REFERENCES.

- M. ASCHBACHER & G.M. SEITZ (1976). Involutions in Chevalley groups over fields of even order, Nagoya J. Math. 63, 1-91.
- A. BOREL (1983). Oeuvres, Collected papers, I, 1948-1958, Springer, Berlin.
- A. BOREL & J.-P. SERRE (1953). Sur certains sous-groupes des groupes de Lie compacts, Comment. Math-Helv. 27, 128-139.
- T.A. Springer & R. Steinberg (1970). Conjugacy Classes, Part E in: Seminar on Algebraic Groups, and Related Finite Groups (A. Borel et al.) Springer Lecture Notes in Math. 131, Springer, Berlin.