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The odd-even hopscotch scheme is an integration scheme applicable to large classes of time-dependent 
partial differential equations. In this paper we examine it for the computation of free convection in a square 
cavity. The odd-even hopscotch scheme is combined with the pressure correction method in order to 
decouple the computation of the pressure from that of the velocity and temperature. The resulting scheme 
is called the odd-even hopscotch pressure correction scheme, and when combined with a suitable space 
discretization this scheme proves to be efficient regarding computing time and storage requirements. In 
order to test the accuracy of our scheme, the solution of the free convection problem computed with this 
scheme is compared with a very accurate reference solution computed by de Vahl Davis . . 
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1. INTRODUCTION 
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In this paper we consider the free convection of a fluid in a square cavity, i.e. the flow in a cavity 
caused by a temperature gradient. For this problem we use the primitive variable formulation (velo­
city, pressure, temperature) and the governing equations are the Navier-Stokes equations in Bous­
sinesq approximation [l]. A very accurate steady state benchmark solution for this problem is com­
puted by the de Vahl Davis (15]. 

We consider the fully transient Navier-Stokes equations in Boussinesq approximation. For the 
time-integration of these equations one can choose an explicit scheme, an implicit scheme or a combi­
nation of both. Explicit schemes are very cheap (per time step), but stability of these schemes is sub­
ject to severe time step restrictions. Implicit schemes are usually unconditionally stable, but are much 
more expensive since they require the solution of large sets of algebraic equations at each time step. 
The time-integration technique we use is the odd-even hopscotch (OEH) method, which is a combina­
tion of the explicit and implicit Euler rule [2, 3, 6]. When combined with a suitable space discretiza­
tion, the OEH scheme is almost as cheap(stepwise) as the explicit Euler rule, but has much better sta­
bility properties. 

In order to decouple the computation of the pressure from the computation of the velocity and the 
temperature, the OEH scheme is combined with the pressure correction method [7]. The scheme thus 
obtained is called the odd-even hopscotch pressure correction (OEH-PC) scheme. The OEH-PC 
scheme we will describe in this paper is an extension of the OEH-PC scheme for the incompressible 
Navier-Stokes equations described in (12]. 

The purpose of this paper is to give a description of the OEH-PC scheme for the free convection 
problem and to demonstrate that it is a feasible time-integration technique for this problem. To that 
end we apply the OEH-PC scheme to a free convection problem due to de Vahl Davis [15], who has 
computed a very accurate steady state solution for this problem. 

The contents of the paper is the following. In Section 2 a description of the free convection prob­
lem is given. The OEH-PC scheme is introduced in Section 3 and the space discretization combined 
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with this scheme is given in Section 4. Section 5 is devoted to the pressure computation and Section 6 
gives a survey of the stability results for the OEH scheme based on linear stability theory. Finally in 
Section 7 the computational results are presented and compared with the benchmark solution of de 
Yahl Davis. 

2. PHYSICAL PROBLEM AND EQUATIONS 
Consider the free convection of a viscous fluid in a 2-dimensional square cavity of width I as shown in 
Fig. I. [9,15]. The direction of the gravitational acceleration g is along the negative y-axis and the phy­
sical boundary conditions are: 

no slip conditions for the velocity on all 4 walls 
constant temperatures T 1 and T2(T1 >T2) on respectively the left and right vertical walls 
perfectly insulating upper and lower walls. 

The equations governing the fluid motion, in the Boussinesq approximation [l], are: 
equation of continuity 

Ux +Vy = 0 

equations of motion (Navier-Stokes equations) 

v, +uvx +vvy = 

temperature equation 

Tr+uTx+vTy = a\12 T. 

(2.1) 

(2.2a) 

(2.2b) 

(2.3) 

In the above equations u and v are the components of the velocity in x- and y-direction, respectively, 
p is the pressure and T the temperature. The unknown quantities u, v,p and T are all functions of x,y 
and t, whereas P.o is the (constant) density at some properly chosen mean temperature T0 • In this 
problem T0 = ; (T1 +T2). The coefficients v,a and a are respectively the kinematic viscosity, the 
coefficient of volume expansion and the coefficient of thermal conductivity. 

y 
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Fig. I. Geometry and boundary conditions. 
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In order to make the above equations dimensionless, we introduce the following (dimensionless) 
quantities: 

x' = ~ y' = l'.. t' = .!!:....t u' = .Lu v' = J_v 
I' I' 12·' a' a' 

(2.4) 

12 T-T2. 
p' = --2 (p-phydr), T' = T T . 

~a 1- 2 

Note that p' is the dimensionless deviation from the hydrostatic pressure Phydr = const. -~gy. After 
substitution of these variables, the governing equations take the following form (drop the primes) 

ux+vy = 0 

u,+uux+vzs, = -px+Pr\12u 
1 

v,+uvx+vvy = -py+Pr\12v+RaPr(T--7) 

T, +uTx +vTy = \12 T, 

where Pr and Ra are the Prandtl number and the Rayleigh number respectively, defined by 

.,,· ga/3(T1 -T2) 
Pr=-, Ra= · 

a va 

(2.5) 

(2.6a) 

(2.6b) 

(2.7) 

(2.8) 

In the dimensionless variables the computational space domain is 0 = [O, 1] X [O, 1] and the boundary 
conditions we consider read 

x = 0: u = v = 0, T = l 

x = 1: u = v = 0, T = 0 

y = 0, 1: u = v = 0, Ty = 0. 

Initial conditions will be specified later. 

(2.9) 

In what follows we will consider the dimensionless equations and refer to them, for convenience, as 
the Navier-Stokes equations in Boussinesq approximation. Finally we note that the equations (2.6a)­
(2. 7) can be rewritten as 

u1 +(u2)x +(uv)y = -px + Pr\12u 
1 

v1 +(uv)x+(v2 )y = -py+Pr\12v +RaPr(T-7) 

T,+(uT)x+(vT)y = \12 T. 

(2.6a') 

(2.6b') 

(2.7') 

The equations (2.6a)-(2.7) are written in the so-called convective form and the equations (2.6a')-(2.7') 
in the conservative form. 

3. THE ODD-EVEN HOPSCOTCH PRESSURE CORRECTION SCHEME 
In this section we consider the odd-even hopscotch (OEH) scheme for the time-integration of the 
Navier-Stokes equations in Boussinesq approximation. For a detailed discussion of the OEH scheme, 
the reader is referred to [2,3,6,14]. The OEH scheme is combined with the pressure correction method, 
which is a predictor-corrector method for the decoupling of the pressure computation. The resulting 
scheme will be referred to as the odd-even hopscotch pressure correction (OEH-PC) scheme, and is an 
extension of the scheme given in [12]. A description of the pressure correction method can be found 
in [7]. 

The Navier-Stokes equations in Boussines approximation in d space dimensions (d =2 or d =3) can 
in general be written as: 
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u, = f(u,T)-Vp 

T, = h(u,T) 

v·u = 0, 

(3.1) 

(3.2) 

(3.3) 

where u is the velocity, p the pressure and T the temperature. For the time being, the exact form of 
f(u,T) and h(u,T) (convective/conservative) is not important. The partial differential equations 
(PDEs) (3.1)-(3.3) are defined on a connected space domain 0 with boundary r, on which conditions 
for the velocity u and the temperature T are specified. Notice that the boundary conditions for u must 
satisfy 

tu·nds = J J V ·udS = 0, 
!l 

(3.4) 

where n is the unit outward normal on r (conservation of mass). 
We present the OEH-PC scheme for the PDEs (3.1)-(3.3) following the method of lines approach 

(6). Thus suppose first that by a suitable finite difference space discretization the PDEs (3.1)-(3.3) are 
replaced by the following set of ordinary differential equations (ODEs) and algebraic equations 

U = F(U,T)-GP 

T = H(U,T) 

DU=B. 

(3.5) 

(3.6) 

(3.7) 

In (3.5)-(3.7) the variables U,P and Tare grid functions defined on a space grid covering 0, and 
F(U,T) and H(U,T) are the finite difference replacements of f(u,T) and h(u,T), respectively. The 
operators G and D are the finite difference replacements of the gradient- and divergence-operators 
and B is a term containing boundary values for the velocity u. 

First consider the ODEs (3.5), (3.6) and suppose for the time being that GP is a known forcing 
term. Let xj be a gridpoint corresponding to the multi-index j = (JJ. ... ,)d) and let Uj denote the 
approximation to u(xj,tn) (and likewise for P,T,F and H), then the OEH scheme for (3.5), (3.6) reads 
[3) 

Uj +I -TOj + 1(FjW + 1, rn +I )-(GP)j +I) = Uj +TOj(Fj(Un' rn)-(GP)j) 

TJ+1_,,.(Jf!+IH·(Un+I rn+I) = TJ+,,.(J'!fl.(Un Tn) 
J J J ' J }} '. 

Here T = tn + 1 - tn is the time step and Oj is the so-called odd-even function defined by 

{

I if n + "'J:J; is odd (odd points) 

OJ = 0 if n +~;is even (even points). 

(3.8a) 

(3.8b) 

(3.9) 

Note that in the odd points the OEH scheme reduces to the forward Euler rule and in the even points 
to the backward Eules rule. 

An alternative form of (3.8a}, (3.8b) is 

un +I = un +TFoW' rn)+TF E(Un + 1, rn +I )-T(GPn)o -T(GPn +I )E 

yn +I = rn +THo(Un' rn)+THEW + 1, rn +I), 

(3.lOa) 

(3.lOb) 

where F0 is the restriction of F to the odd points (etc.). Note that F0 +FE = F and H 0 +HE =H. 
We shall use this formulation in the remainder of the section. It is customary to write down two suc­
cessive steps of (3.lOa), (3.lOb) with stepsize ,,.12, where the order of implicit and explicit calculations 
alternate [14) 

- I I -- I 
U = un +1TFoW,rn)+2TFE(U,T)-2TGPn (3.lla) 



- I I - -
T = rn+2THo(Un,rn)+2THE(U,1) 

un+I = U+ ~TFE{iJ,i')+ ~TFoW+I,Tn+l)- ~TGpn+l 
- I - - I rn+I = T+2THE(U,1)+2TH0W+ 1,rn+I). 
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(3.llb) 

(3.1 lc) 

(3.1 ld) 

This is a second order accurate integration_ formaja for the numerical integration of the ODE systems 
(3.5), (3.6) usin¥ stepsize T. The variables U and T can be interpreted as results from the intermediate 
time level (n +1)T, like in a Runge-Kutta formula. Note that in (3.lla) P is set at time level In = nT 

and in (3.1 lc) at time level In+ 1 = (n + l )T. An alternative for maintaining second order is to com­
pute Pat time level n + ~ both stages. However the choice made in (3.lla), (3.llc) is better adapted 

to the pressure correction approach. 
Consider (3.1 la)-(3.1 ld) coupled with the (time discretized) set of algebraic equations 

(3.lle) 

The computation of un+l ,pn+I and Tn+l requires the simultaneous solution of (3.llc)-(3.lle). In 
order to avoid this, we follow the known pressure correction approach [7] in which the computation 
of pn+I is decoupled in the predictor-corrector fashion. Substitution of pn for pn+I in (3.llc) 

~ ~ 

defines the predicted velocity U and the predicted temperature T. The corrected velocity, pressure and 
temperature (which we hereafter also denote by un + 1,Pn+ 1 and Tn + 1 and hence should not be 
mixed up with the approximations in (3.llc), (3.lld)) are then defined by replacing F0 cun+ 1,rn+I) 

~ ~ ~~ 

in (3.llc) and H0cun+ 1,rn+I) in (3.lld) by respectively F0(U,1) and H0(U,1): 

(3.12a) 

(3.12b) 

together with the discrete continuity equation (3.lle). From (3.12a), (3.12b) and the modified equa­
tions (3.llc), (3.lld) one can easily see that 

(3.13a) 

~ 

rn+l _T = 0. (3.13b) 

The trick of the pressure correction method is now to multiply (3.13a) by D and to write, using 
(3.1 le), 

LQn = 1- (DV-Bn+l),L = DG. (3.14) 
T 

Since L = DG is a discretization of the Laplace operator \7 ·(\7), the correction Qn for the pressure 
can be obtained by applying a Poisson solver. Once Qn is known, the new velocity can be directly 
determined from (3.13a). 

To sum up, the OEH-PC scheme for the semi-discrete system (3.5)-(3.7), reads 
- I I -- I 
U = un +1TFoW,Tn)+2TFE(U,1)-2TGPn (3.15a) 

(3.15b) 

~ - I -- I ~ I 
U = U+2TFE(U,1)+2TFo(U,Tn+l)-2TGPn (3.15c) 

rn+I = T+l.TH (U- 1)-+l.TH (U~ rn+l) 
2 E ' 2 0 ' (3.15d) 
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LQn = 1.(DU-Bn+l),Pn+l = pn+Qn 
T 

(3.15e) 

(3.15f) 

When combined with a suitable space discretization, the OEH-PC scheme possesses various advanta­
geous features. We shall discuss this in greater detail in the next section for symmetric finite 
differences on a staggered grid. 

We conclude this section with two remarks. Firstly, the second stage (3.15c), (3.15d) can be 
economized using its equivalent fast form ( cf. [2,3]) 

uE = 2-UE-u~, n-+1 = 2rE-n 
U = U- + .!_TF (U.., Tn + 1 )- .!_-'GPn) T,! + 1 

0 0 2 0 ' 2 '\ o. 0 

(3.16a) 

(3.16b) 

Our implementation is based on this fast form. Secondly, in the derivation of scheme (3.15) no use 
has been made of the particular definition of F0 ,FE,Ho and HE, except that F0 +FE = F and 
H0 +HE = H. Consequently, pressure correction schemes using other splittings of F and H, such as 
ADI, can also be described by (3.15). · 

4. SPACE DISCRETIZATION 
G:msider the 2-dimensional Navier-Stokes equations in Boussinesq approximation (see section 2) 

u, = f1(u,v,T)-pxo withf1(u,v,T) = -(u2)x-(uv),+Pr(uxx+~) (4.la) 

v, = fi(u,v,T)-p,, withfi(u,v,T) = -(uv)x-(v 2),+Pr(vxx+vyy)+RaPr(T- ~) (4.lb) 

T1 = h(u,v,T), with h(u,v,T) = -uTx-vTy+Txx+Tyy (4.2) 
ux+vy = 0. (4.3) 

Note that the equations of motion are written in conservative form while the temperature equation is 
written in convective form. The reason for this will become clear later. Boundary conditions for the 
velocity and the temperature are specified. Also note that there are no pressure boundary conditions 
available although we have to solve a Poisson equation for the pressure. We will return to this point 
later in the section. 

For the space discretization we use the staggered grid of Fig.2. (see also [12,8]). The application of 
standard, second order central differences converts (4.la)-(4.2) into (Cf.(3.5), (3.6)) 

where 

Uij = F 1,ij(U, V,T)-dxPij i = l(l)N -1, j = l(l)M (interior X -points) 

Vij = F2,;j(U,V,T)-dyP;j i = l(l)N, j = l(l)M-1 (interior 0-points) 

Tij = H;/U, V,T) i = l(l)N -1, j = l(l)M -1 (interior *-points) 

(4.4.a) 

(4.4b) 

(4.5) 

_I 2 2 I - -F1,;j(U, V,T) - -
2
h (U1 +i,j- Ui-1,j)-

2
k (U;,j+l V;,j+I -U;,j-1 Vi,j-1) + (4.6a) 

Pr Pr J;i(U; + I,j-2U;j + U;-1)+ f;2(U;,j + 1 -2U;j + U;,j-i) 

_ -1 - - 1 2 2 F2,ij(U,V,T) -
2h (U;+1,jVi+1,j-U;-1,jVi-1,j)-

2
k(V/,j+I -V/,j-d + (4.6b) 

Pr Pr I J;i(Vi + 1,j-2Vjj + Vi-1)+f;2(Vi,j + 1 -2V;j + Vi,j-1)+ RaPr(T-7) 



M • • • 
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Fig.2. The staggered grid. 

v .. Gt}T .. 1J u. _ . 
1J 

cell (i,j) 

-1 = 1 = 
Hij( U, V, T) = lh Uij(T; + 1,j -T;-1,j )-

2
k V;j(T;,j + 1 - T;,j-1) + 

1 1 
J;i(T; +1,j-2T;j + T;-1,j)+J;2(T;,j+I -2T;j + T;,j-d 

1 
dxPij = h(P;+1,j-Pij) 

1 
dyP;j = k(P;,j +I - P;). 
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(4.6c) 

(4.6d) 

(4.6e) 

~ (4.6a)_V;j represents an approximation to V in the X-points (points where U is_de~ed); Ji!ewise 
Uij and T;j represent approximations to U and Tin the 0-points. The values of Uij, V;j and Tij are 
determined by averaging over neighbouring values of respectively U;j, V;j and T;j in such a way that 
the odd-even coupling between the variables is preserved. This means that the variables in an odd cell 
are only coupled with variables in even cells and vice versa. This leads to 

- I - l - l 
lf;j = 2(lf;j+U;-1,j+l),V;j = 2(V;j+V;+l,j-1),T;j = 2(Tij+T;-1,j). (4.7) 

The same argument leads to the definitions 

(4.8) 

where Uij and V;j are approximations to U and V in the *-points. In case we use the convective form 
of the equations of motion or the conservative form of the temperature equation, one can see that the 
odd-even coupling between the variables is lost. This explains our choice of writing the equations of 
motion in conservative form and the temperature equation in convective form. Remark that the gra­
dient operator G (Cf.(3.5)) is of course defined by GPij = (dxPij,dyPij)T. 

Concerning the boundary conditions for the velocity we note the following. Consider e.g. equation 
(4.la) in the X-points (i, l)(i = l(l)N -1). Discretization of the derivatives (uv)y and Uyy would 
require values outside the computational domain. Therefore we replace the central difference approxi­
mations to (uv )y and Uyy by the following noncentered first order differences [8], which preserve the 
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odd-even coupling between the variables 

((uv)y);1 = 3~(U;2"Vi2-u(ih,O)v(ih,O)) 
(Uyy);1 = ~(U;2-3Un +2u(ih,O)). 

3k 

(4.9a) 

(4.9b) 

Second order non-centered approximations to (uv)y and Uyy would destroy the odd-even coupling. 
Space discretization of equation (4.3) in all ·-points (using central differences) yields 

1 
(DU)ij := h(Uij-U;-1,j+fj(Vij-V;,j-1)) = 0, (4.10) 

where f3 = hlk. One should note that boundary values for U or V occurring in (4.10) are written in 
the right hand side B (Cf. (3.7)). For example for j = 1, equation (4.3) is discretized as 

(4.10') 

Having defined the operators G and D, one can easily deduce the following expression for the 
operator L 

1 
(LQ)ij = D(GQ)ij = -;;<dxQij-dxQi-1,j+P(dyQ;j-dyQ;,j-d) = (4.11) 

hl2 (/32 Qi,j - I + Q; -1,j -(2 + 2/32 )Qij + Q; + 1,j + /32 Qi,j +I), 

which is the standard 5-point molecule for the Laplace operator. Near a boundary (4.11) takes a 
different form, because of the different definition of the operator D. For example, for j = 1 one finds 

1 
(LQ);1 = D(GQ)n = h(dxQil -dxQi-1,I +/3dyQn) = (4.11') 

h\ (Q;-1,1 -(2+/32)Qn +Q;+l,I +/32Q;2). 

Now consider equation (3.15e) at the ·-points (i, 1) (i = l(l)N). Using (4.10), (4.10'), (4.11) and 

(4.11') it is easy to see that !(Q;o-Q;1) = ~(J170+ 1 -'V;0) = 0, which is the (central difference) 

approximation to ~; ((i - ; )h, 0) = 0, where n is the outward unit normal on x = 0. Hence we see 

that a Neumann condition for the pressure (-increment) is automatically involved in the scheme. 
We conclude this section with a few remarks. The essential feature of the OEH scheme is the alter­

nating use of the forward and backward Euler rule. Consider the equations (3.15a)-(3.15d) of the 
OEH-PC scheme (3.15). The order of computation is: 

- l l 
Vo = U~+2TFo(Un,Tn)-2'T(GPn)o (4.12a) 

- l 
To = T'o+2TH0W,Tn) (4.12b) 

- l - - l 
VE = u~+2TFE(U,T)-2'T(GPn)E 

- l - -
TE = n+2 THE(U,T) 

,.. - l -- l -
VE = VE+2TFE(U,T)-2'T(GPn)E = 2UE-U~ 

- l - - -n+1 = TE+ 2 THE(U,T) = 2TE-n 

(4.12c) 

(4.12d) 

(4.12e) 

(4.12f) 

(4.12g) 



9 

(4.12h) 

Because of the odd-even coupling between the variables and the alternating use of the forward and 
backward Euler rule, the algorithm ( 4.12) is only diagonally implicit. This means that per cell a 3 X 3 
system of linear equations has to be solved, which is of course very cheap. Hence the OEH-PC 
scheme is almost as fast as the explicit Euler rule, but has much better stability properties as we shall 
see in Section 6. From (4.12) one can also see that only one array of storage is required for each vari­
able (a known feature of the OEH scheme [2,3]), which is especially of interest for multi-dimensional 
problems. 

5. COMPUTATION OF THE PRESSURE 

For the computation of the pressure (-increment) we have to solve the Poisson equation 

2 "" LQn = -c, c = DV-Bn+I, 
T 

(5.1) 

where L is the operator defined in ( 4.11) and ( 4.11 '). Considered as a matrix, L has a few attractive 
properties such as symmetry, positive definiteness and a pentadiagonal structure. However, Lis singu­
lar with Le = 0, where e = (1, ... ,l)r, and therefore the set of equations (5.1) has only a solution if 
(e,c) = 0. The condition (e,c) = 0 implies that 

M N 
~ k(lJ'k/ 1-CJ8/ 1

) + ~h(v;'J 1 -v;'o+I) = 0, (5.2) 
j=I i=I 

which is a second order approximation to (3.4) at time level tn + 1 = (n + 1 )T. In our case (5.2) is trivi­
ally satisfied due to the zero boundary values for the velocity. For arbitrary boundary values ur, it 
may be necessary to make small adjustments in the right hand side c in order to satisfy (5.2). 

There are many methods available for the solution of (5.1). Since the OEH scheme is very cheap 
per time step, it is essential that we combine it with a fast Poisson solver in order to obtain a fast 
OEH-PC scheme. In our computations we used the multigrid method MGD5V [4,11]. The multigrid 
method MGD5V is a saw tooth multigrid iterative process (i.e. one relaxation sweep after each coarse 
grid correction) for the solution of linear second order elliptic boundary value problems. It uses 
incomplete line LU-decompposition as relaxation method, a 7-point prolongation and restriction, and 
a Galerkin approximation for the coarse grid matrices. The multigrid process is repeated until the Ii­
norm of the residual is less than 10-4 • We wish to emphasize that MGD5V was designed for more 
general elliptic problems than our simple Poisson equation. Consequently, the computation of the 
pressure-increment, which is considerable anyhow, can probably be done faster with a solver 
specifically designed for the Poisson equation. 

6. LINEAR STABILITY ANALYSIS 

In this section we present the conditions for stability based on von Neumann analysis [10]. Consider 
the linearized equations (Cf.(2.6a)-(2.7)) 

- 2 
u,+q1ux+q2Uy = -px+Pr."V u 

I 
v,+q1vx+q2vy = -py+Pr\l2v+RaPr(T--:1) 

Ti+q1 Tx +q2I'y = '72T, 

(6.la) 

(6.lb) 

(6.2) 

where q 1 and q2 are properly chosen approximations to u and v. Note that the computation of T is 
now decoupled from the computation of u and v, and hence the term RaPr(T- ~) in (6.lb) can be 

considered as a source term, which has no influence on stability. Therefore we can leave out this term 
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in our analysis. For the sake of simplicity we also leave out the terms -px and -pY' and thus con­
sider the equation 

j; +(q·\7)/ = £\72/, t >0, XEIJid, (6.3) 

where f = u,v or T, q = (q1>···,qdl is the constant velocity and e>O the viscosity parameter. This 
equation models the convective and viscous effects in (6.la)-(6.2). 

Suppose that for space discretization of (6.3) we use standard central differences with mesh size h in 
all space directions, then von Neumann stability analysis applied to the OEH scheme for (6.3) yields 
the following time step restriction [14] 

T 2 d 2 
d. (h) ~ qk .;;;; 1. (6.4) 

k=l 

Observe that the time step restriction is independent of the viscosity parameter e. In our actual com­
putations (d =2), the value of T is based on the choice q 1 = umax,q2 = Vmax, where Umax and Vmax 
are the maximum values of u and v, respectively, computed by de Yahl Davis [15]. (see Table 1). 

For the sake of comparison, we give the necessary conditions for von Neumann stability of the for­
ward Euler central difference scheme for (6.3)[5] 

2de-r .,;;:: 1 ..f:, q~T .,;;:: 1 2 """ •£.J 2€ ...,. . 
h k=I 

(6.5) 

The second inequality (convextion-diffusion barrier) shows that the forward Euler central difference 
scheme becomes unconditionally unstable as e ~ 0, whereas the OEH scheme is conditionally stable 
uniformly in e, i.e. T = O(h) independent of e. The first inequality of (6.3) implies that 
T = O(e- 1h2 ) for stability, which is disadvantageous for large values of£. From the above it is clear 
that the OEH scheme has much better stability properties than the forward Euler central difference 
scheme. 

7. COMPUTATIONAL REsULTS 

We have computed the solution of the free convection problem (2.5)-(2.9) for the Rayleigh numbers 
Ra = 103, 104 , 105 and 106 • The Prandtl number is set equal to 0. 71 (air). Computations were per­
formed on a 20X20 grid and a 40X40 grid, until the steady state was obtained. We assume that the 
solution has reached its steady state if II un +I - un Iii < 8-r, II vn +I - vn 111 < M and 
II rn + 1 - rn Iii < 8-r, where 8 is a sufficiently small number. In our computations we took 8 = 10-2 • 
Initial conditions will be specified later. Since the steady state solution is independent of the initial 
conditions, we can choose these arbitrarily, provided that the initial velocity field is divergence free. 

In Fig.3,4 and 5 we present the steady state streamline patterns, velocity fields and isotherms, 
respectively, computed on the 40X40 grid. In the vectorplots of Fig.4 the velocity field is scaled to the 
maximum occurring velocity. From these figures we can draw the following conclusions. 

For Ra = 103, the temperature field satisfies in a crude approximation the Laplace equation, and 
therefore heat is transferred between the vertical walls primarily by conduction. In the velocity field, a 
weak clockwise vortex is prevailing. For Ra = 104, 105 a vertical temperature gradient in the core of 
the flow is present. Now heat transfer between the vertical walls takes place through convection and 
conduction. A boundary layer for the temperature as well as for the velocity starts to develop near the 
vertical walls. Finally, for Ra = 106 the isotherms in the interior flow field are almost horizontal and 
the predominant mode of heat transfer is convection. Clearly a boundary layer for the temperature 
and the velocity near the vertical walls and a weak two eddy structure in the core of the flow can be 
observed. 

At this point it is emphasized once more, that the OEH-PC scheme is a solution technique for the 
transient Navier-Stokes equations. However, we use the scheme to compute the steady state solution 
of the free convection problem, in order to be able to compare our solution with the benchmark 
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solution of de Vahl Davis [15], which is one of the most accurate solutions available for this problem. 
For that purpose we have computed a few characteristic values of the flow, which can be readily com­
pared. 
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Table 1 shows, for the benchmark solution of de V ahl Davis and our solution, the following charac­
teristic values 

Umax 

l/lmid 
l/lmax 

Nu 
NUl 

2 

Numm. 

the maximum horizontal velocity on the line x =0.5 (together 
with its location) 
the maximum vertical velocity on the line y =0.5 (together with 
its location) 
the absolute value of the stream function at the point (0.5,0.5) 
the maximum absolute value of the streamfunction (together with 
its location) 
the average Nusselt number throughout the cavity 

the average Nusselt number on the line x =0.5 · 
the average Nusselt number on the line x =O 
the maximum absolute value of the local Nusselt number on the 
line x =O (together with its location) 
the minimum absolute value of the local Nusselt number on the 
line x =O (together with its location). 

· Concerning the characteristic values in Table 1 we note the following. The streamfunction o/(x,y) is 
computed from the Poisson equation 

\12 1/1 = zs,-vx, (7.1) 

subject to the boundary condition 1/1 = const. ( =O) on au (the boundary is a streamline). The local 
Nusselt number is the local heat flux in the horizontal direction, and is given by [15] 

Q(x,y) = uT-Tx. 

Through any vertical line x = x0 , the total heat flux is given by 
I 

Nux
0 

= J Q(xo,y)dy. 
0 

(7.2) 

(7.3) 

Nux. is called the average Nusselt number on the line x = x 0 • In a cavity with insulated horizontal 
boundaries, Nux. must be independent of x 0 • Finally, the average Nusselt number Nu throughout the 
cavity is given by 

I 

Nu= jNuxdx. (7.4) 
0 

The integrals in (7.3) and (7.4) have been computed using Simpson's rule, and the term Tx in (7.2) is 
evaluated using a second order finite difference approximation (also on the boundary x =O). de Yahl 
Davis computed the maximum (minimum) values from Table 1, and their locations, by numerical 
differentiation [15]. The maximum (minimum) values computed with the OEH-PC scheme are the 
largest (smallest) grid-point values, and their locations are the corresponding gridpoint coordinates. 

From Table 1 we can draw the following conclusions. The 40 X 40 solution is an accurate solution, 
except for the characteristic values in the boundary layer (vmax,Nuo,Numax,Numin) occurring for 
Ra = l <>6. The 20 X 20 solution is still a fairly accurate solution for Ra = HP, 1 <>4, however not for 
Ra= HP, 106 • We also note that the values in Table 1 become less accurate for increasing Ra. This is 
to be expected as the problem becomes increasingly difficult for increasing Ra due to the emerging of 
a boundary layer. 

So far we did not specify the initial conditions. A possible choice is the zero-solution. In this case 
there exists a discontinuity between the initial- and boundary-conditions for the temperature (see 
(2.9)). This introduces high frequency components into the solution, and the exponential decay of 
these components is not properly simulated by many time-integration techniques, such as e.g. the 
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Solution after (15] 

Umax Ymax 1/'max - lVUmax lVUmin 

Ra 
y o/mid xiv Nu Nui. Nu0 v v x 2 

3.649 3.697 1.505 0.692 
HP l.174 l.118 1.118 1.117 

0.813 0.178 0.092 1.0 

16.178 19.617 3.528 0.586 
1<>4 5.071 2.243 2.243 2.238 

0.823 0.119 0.143 1.0 

34.73 68.59 9.612 7.717 0.729 
105 9.111 4.519 4.519 4.509 

0.855 0.066 0.285/0.601 0.081 1.0 

64.63 219.36 16.750 17.925 0.989 
106 16.32 8.800 8.799 8.817 

0.850 0.0379 0.151/0.547 0.0378 1.0 

Solution on 40 X 40 grid 

Umax Ymax 1/'max - lVUmax lVUmin 

Ra y o/mid x/y Nu Nu.l. Nu0 y y x 2 

3.647 3.691 1.176 1.504 0.695 
103 l.176 1.117 l.117 1.119 

0.8125 0.1875 0.5/0.5 0.1 1.0 

16.131 19.601 5.080 3.531 0.590 
104 5.080 2.240 2.237 2.245 

0.8125 0.1125 0.5/0.5 0.15 1.0 

34.543 68.130 9.564 7.988 0.744 
lOS 9.077 4.519 4.5ll 4.604 

0.8625 0.0625 0.275/0.60 0.075 1.0 

64.728 214.643 16.601 21.509 1.081 
106 16.106 8.927 8.919 9.858 

0.8625 0.0375 0.15/0.55 0.05 1.0 

Solution on 20 X 20 grid 

Umax Ymax 11'max - lVUmax: lVUmin 

Ra y x o/mid x/y 
Nu Nui. Nu0 2 y y 

3.632 3.693 1.180 1.495 0.702 
103 1.180 1.114 1.115 1.117 

0.825 0.175 0.5/0.5 0.1 l.O 

16.143 19.574 5.104 3.611 0.601 
1<>4 5.104 2.231 2.218 2.273 

0.825 0.125 0.5/0.5 0.15 1.0 

34.203 64.916 9.522 9.226 0.777 
IOS 9.070 4.565 4.513 5.063 

0.875 0.075 0.3/0.6 0.1 1.0 

62.217 215.920 15.768 24.180 0.928 
106 15.153 9.425 9.096 12.635 

0.875 0.025 0.15/0.55 0.1 1.0 

Table 1. Some characteristic values of the free convection flow. 

Crank-Nicolson scheme. The OEH scheme also suffers from this drawback. Unless T is very small, the 
OEH scheme produces false results for T (and hence for U and JI'), for small t-values. In (13] this is 
demonstrated for the linear, I-dimensional convection-diffusion equation. One should be aware of this 
when simulating the transient behaviour of the free convection problem, but when computing the 
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steady state solution this is of minor importance. In our numerical experiments, we found unreliable 
solutions for small t-values (especially for the computation of the 40X40 solution), unless we chose T 

much smaller than needed for stability. Obviously, when dealing with steady state problems one can 
always adjust the initial condition to the boundary data. A more suitable initial condition is therefore 
the steady state solution for the next lower Ra-number. Then there exists no discontinuity in the free 
convection problem and the OEH scheme does not show the aforementioned pathological behaviour. 
The computational results presented in this section are based on this choice for the initial condition. 

We conclude this section with a few remarks. The OEH-PC scheme has proven to be a feasible and 
accurate scheme for the free convection problem for Ra-numbers in the range 103 -106 • However, the 
boundary layers occurring for Ra= 106 are not represented very accurately. In order to improve the 
accuracy in the boundary layer, the best thing to do is to refine the mesh near the vertical walls. We 
left out this possibility, because it would lead to a rather severe time step restriction for stability. In 
this connection we note that the OEH-PC scheme is probably not very suitable for the computation 
of the solution of the free convection problem for higher Ra-numbers (Ra= 107 , 108 , ••• ) because of this 
severe time step restriction (In (6.4) q1 and q2 become very large for large Ra). In that case it would 
be better to consider the application of unconditional stable methods (e.g. ADI). Of course, stepwise 
such a method will be more expensive than our OEH-PC scheme and it would also require more 
memory. 
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