=

4

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

F.S. de Boer

A proof rule for process-creation

Computer Science/Department of Software Technology Report CS-R8710 February

Bibinthesk
Centrumvoor Wikisinds en bformatics
Amsterdas

for e s e e

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim-
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

éﬂ?\qk

Copynight € Stichting Mathematisch Centrum, Amsterdam

A Proof Rule for Process-Creation

Frank S. de Boer

Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: A Hoare-style proof system for partial correctness is defined for a language which embodies the
kind of parallelism which stems from process-creation.

We make use of the following proof theoretic concepts: Cooperation test, Global invariant, Bracketed sec-
tion and Auxiliary variables.

These concepts have previously been applied to CSP ([5], [13]), DP ([9]) and to a subset of ADA contain-
ing the ADA-rendezvous ([8)).

We shali study the proof theory of a language with a generalisation of the synchronous message-passing
mechanism of CSP. The syntactic construct of process creation and its semantic definition is taken from
the language POOL. ([2]).

One of the main characteristics of proof-theoretical interest of this language is that the communication
partner referred to by an output statement (or input statement) is not syntactically identifiable, in contrast
with the previously mentioned languages. :

Basically our proof system is built upon the way the semantic mechanism of process identification is
brought to the syntactic level.

We have proven the proof system to be sound and relative complete.

1980 Mathematics Subject Classification: 70A05.

1986 CR Categories: F.3.1.

Key Words & Phrases: proof theory, pre- and post-conditions, concurrency, dynamic process creation,
cooperation test, bracketed section, global invariant.

Report CS-R8710
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1. Introduction.

In this paper we show how the concepts of Cooperation test, Bracketed section, Global invariant and
Auxiliary variables can be used to formulate a proof rule for Process-creation.

The application of these concepts to CSP we assume known ([5]).

We shall study the proof-theory of a language with process-creation as it occurs in POOL ([2]), an
acronym for Parallel Object-Oriented Language.

Processes making up the concurrent systems formulated in this language can interact only by synchro-
nous message passing.

We shall call this language just P.

The rest of this introduction will be used to give some idea of the proof theoretical difficulties
involved in Process-creation.

In CSP concurrent systems are defined as follows:

<P](_'Sl’ ... ,Pn(_Sn:Pl” ot ”Pn>s

where S, . .., S, are sequential programs containing 10-statements (input-output statements).

The execution of the I0-statement P;!z by process P; is synchronised with the execution of P;2x by
process P; and results in assigning the value of expression ¢ to the variable x.

Execution of P,|| - - - ||P, consists of an interleaving of executions of S, . ..,S,.

Given specifications {¢,}S;{;}, 1<<i <n, we can specify the input-output behaviour of the total sys-
tem as follows: as precondition we take the conjunction of the preconditions ¢; , as postcondition the
conjunction of ;.

In languages which embody Process-creation things are a bit more complicated: we can not view a
concurrent system formulated in such a language as consisting of a fixed number of certain processes.
To be more specific consider the following program in P:

U=<C¢8,,Cr¢-8,,C385:>

where

S =if true — x:=new(C,)|true — x:=new(C3) fi,

S>=R,

S;=R’,

R, R’ being ordinary sequential programs.

Evaluation of an expression new(C) consists of creating a new process and results in a reference to
that process.
This new process is going to execute the program associated with the identifier C.
So after an assignment x : =new(C) x refers to the newly activated C-process.
Execution of the above system starts with a process, the socalled root-process, which executes ;.
This process ends with having activated a C,-process or a Cj-process.
So given postconditions ¢, ¢/ of R resp. R’ after execution of U {4/ will hold and not Yy A/,
It will be clear that neither as precondition of U can be taken the conjunction of the preconditions
for R resp. R’'.
The problem is how to define a postcondition resp. precondition for such a concurrent system in gen-
eral.
Another difficulty consists in the following: during execution of concurrent systems formulated in
languages which embody Process-creation there can be active several processes executing the same
program, but the sets of memory locations each process associates with the set of variables occurring
in that program are disjoint.
Consider the following P -program:

The research was partially sponsored by Esprit project 415: Parallel Architectures and Languages for AIP.

U=<C1<851,C2¢5,>,
where
S1=x:=new(C,);x10;x :=new(C,);x!1,
SzE?_y

The statements x !0, x!1 and 2y are IO-statements and can be viewed as generalisations of CSP 10-
statements.

In this example execution of the output statement x !0 resp. x!1 is synchronised with the correspond-
ing input statement 7y and results in assigning the value O resp. 1 to the variable y of the process
referred to by x.

Thus after the execution of the above system the value of the variable y of the first activation of S, is
0 and that of the second 1.

To be able to prove this we shall define a mechanism of process identification in such a way that its
expression at the syntactic level makes a definition of a proof-system possible.

Let U=<C,«S;, . ..,C,<S,> be a program of P.

At the semantic level processes will be 1dent1ﬁed by pairs of natural numbers <k,m>, 1<k<n,
such that process <<k,m > will be the m™ activation of program S;.

Semantically C;, . . . ,C, will be treated as counters, each one counting the number of activations of
the corresponding program. .
Given this semantic description we can formulate a creation axiom as follows:
(PIC.+1/Cp,<k,Cp+1> /x]}x:=new(Cy) {p} (where [- - -] denotes substitution). Note that
we assume C, . . . ,C, to be variables of the assertion language (the language used to describe states)
and that this assertion language contains terms which denote pairs of natural numbers.

We shall treat a variable occurring in, say, S;, semantically as a function with domain the set of
natural numbers and with range the set of integers, booleans etc..

The second component of a process name we use as a pointer to its workspace, that is, the process
identified by <k,m > will operate on f (m), f the function denoted by x, x a variable of Sj.
Proof-theoretically this interpretation of program variables lends itself to the treatment of these vari-
ables as one-dimensional arrays ([10]).

So we can refer to the value of the variable y w.r.t. the first activation of S, (of the example) by the
term y{1}.

To prove that, w.rt. the first activation of S,, the value of y is 0, we must prove that
{true}y[1}{y[1]1=0} holds.

But it will be clear that it is unsatisfactory and, in case of an infinity of activations of some program,
impossible, to have to construct a correctness proof for every activation of some program.

We must be able to construct a canonical proof for each program.

This is made possible by abstracting from the specific value of the second component of a process
name, the pointer to the workspace of the process denoted by that name.

We introduce a new variable i, not occurring as a program variable, and axioms and proof rules to
construct proofs for correctness- assertions like {p; }S{{g;}, 1<k<n.

S denotes Si[x1[i1/x1, . .. Xmli]/ Xn), where {x1,...,X,} is the set of variables occurring in
Sk.

Thus the execution of Sf” in a particular state consists of the execution of Sy by the process <k,m >,
m the value of the variable i in that state.

So for the example just given we would have to prove that
{true}?y[i]{i~—1->y[i]—0/\i=2—>y[i]=l} '
In the following section we give a definition of the language P.

In section three we give a operational semantics of this language, and a definition of the assertion
language.

In section four we show how the proof-theoretic concepts: cooperation test, global invariant, brack-
eted section and auxiliary variables fit in this framework and present a proof-system for partial

4

correctness assertions for P -programs.

The sections five and six discuss the soundness and completeness of the proof system.

In the first appendix we give a prove of the merging lemma, this lemma is used in the proof of the
completeness theorem.

This lemma basically states that given two computations of a P program such that a given process is
active in both and the sequence of its interactions with the environment in both computations are the
same we can replace the local computation of this particular process in the one computation of the
main program by the one of this process in the other main computation.

In the second appendix we prove a rather technical lemma, this lemma states that computation
sequences can be rearranged in a way which is imperceptible to the processes involved in this
sequence.

In the fourth appendix we show how to express in the assertion language a specific way of coding the
computations of a P program, this expressibility result is used in the proof of the completeness
theorem.

In the last appendix we discuss an example of a correctness proof. “

2. The language P

Given the following sets of syntactic objects:

Cname={C, - - - }, the set of class names,
Pvar = LCJ Pvar€={x, - - - }, the set of program-variables,
€ Cname .

such that for any two distinct class names the associated sets of program variables are disjoint,
Icon={n:n €N}, the set of integer-constants,

Lab=(i, - - - }, the set of labels,

the syntax of the language P is given by the following grammar:

n n
S:=nil|lix:=e|l:xW |1y | Lxlt |1t | Sy ; S,]l:_l;llbi—>S,- |l:*'l;llb,-—>S,-.

e::=t |self | new(C)

tm=n x|t +ip| X |0
bu=t;=ty|t,<ty| ---|=b| by \by| -~
un=<Cie8S1,...,C«S,>

where, for 1<<k<n, C, is a class name and var(Sy) ngarC".

A syntactic construct u is called a unit. We introduced a set of labels to be able to distinguish
between different occurrences of a particular subprogram of a unit. Therefore we demand that all the
labels occurring in a unit are different. We shall make use of this labelling in the proofs of the sound-
ness and completeness theorems. Execution of a wnit u=<C;<S4,...,C,<8S,> consists of the
execution of §,. Evaluation of an expression new(C) results in a reference to a new process which
associates new memory locations to the variables occurring in the program corresponding with C and
which starts executing that program. Evaluation of the expression self by a process results in a refer-
ence to that process. The communication mechanisms are generalisations of the way processes in CSP
communicate. Execution of x!f by a process P is synchronised with the execution of 7y or z% by a
process P’ if x refers to P’ and, in case z 7 is being executed, z refers to . In the same way execu-
tion of x 7y by a certain process is synchronised with the execution of ! or z!# by another process. So

two processes can communicate when at least one refers to the other. Note that we do not allow
n

n
statements like x lnew (C). ”.le,-—»Si" and ”*.le,v—»S,-” we use as notations for the generalised IF
i= i=

resp. DO statement. Nil denotes the empty process.

3. Semantics

We shall define an interleaving operational semantics for P, making use of the way it is done for
POOL ([3]). For general information about this technique for semantic description we refer to [11].
First we define the class of states. A state consists of two components: the first component assigns
values to the program variables; the second component assigns (positive) integer values to the class
names occurring in u. Semantically we will treat these class names as global counters, each counting
the number of active instances of that particular class.

The value w, in the definition below, stands for undefined.

DEerFINITION 3.1
We define states, elements of which are denoted by o,... , as follows:
o Sstates
a. o= (0'0 »01)
b. 0y EPvar XNt DU {w}
c. o6, ECname—sN
d. when x €Pvar®, C €Cname, then for k=>0,(C), op(<x,k>)=cw.
where
D=NUNXN.
D is the domain of all possible values, elements of which are denoted by d,....
N denotes the set of natural numbers.
N7 denotes the set of natural numbers greater than zero.

REMARK
In the sequel we shall not distinguish the two components of a state, that is we shall just write
o(C), o(<x,n>), C a class name , x a program variable. Subscription of states will be used to be
able to introduce new states when needed.

Before defining an operational semantics for P we define the assertion language L used to describe
o Estates. :

DeriNiTiON 3.2
Given har the set of logical variables the syntax of the class of terms of L is described as follows (
these terms we denote by f, f1, - -+):

term::=Dt | At

Dt::=1It| Pt

It::=n, n€N| Ity +1ty| --- |(Pt);|(Pt)|At[It]| C|i, i ELvar
Pt::=<It| It,>| At[It]|nil

At::=x, x € Pvar |(At;[It]:Dr).

We distinguish two kinds of terms: D¢, the Data terms, and A¢, the Array terms.

We view every variable occurring in a unit as an one-dimensional array with lowerbound 1, so the
basic array terms are program variables.

The array term (A4¢;[1t]:Dt) ([10], chapter 5.) denotes the array resulting from assigning the value of
the data term D¢ to the n™ element of the array denoted by A#, n the value of the integer term It.
There are two kinds of data terms: I7, the integer terms, Pt, the process terms.

Process terms denote pairs of natural numbers.

The integer term (Pt); resp. (Pt), denotes the first resp. the second component of the pair of
numbers denoted by Pr.

W.r.t. the assertion language we treat class names as variables.

&

DEerFINITION 3.3

Let vEEnv=Nkar—N. We define for a term fEL, oEstates, V(f)(#)(0), the value of term f in
state o, w.r.t. the logical environment ».

1.

V(ﬁ Y@)e)=n, neN
2 |

V(G) 0)=0(Cy)
3.

V (nil)(v)(o)=w
4,

V(@) o)=r(i), i Elvar
5.

V(x)»)(0)=g(x), x €Pvar,

where g € Pvar—»>(Nt DU {®}), such that g(x)(n)=0o(<x,n >).
6.

VIt +It2))e)=VIt)) o)+ VIt)wXo) if V(I)pXo), V(It2)(v)(0) EN

= otherwise

7.

V(<Ity, Ity >)p)e)= <Vt)Yp)o), VU12)¥)0)> if V(I11)(#)0),VIt2)()) EN

= otherwise

8.

V(P)X o)=n if V(PH)(@)o)=<nm>&NXN

= otherwise

9.

V(P (w)o)=m if V(PHY)o)=<nm>&NXN

=w otherwise

10.

V (At [It () 0)= V (Ar)Xo)V (I1)(#X0)) if VIr)p)Ne)ENT

=w otherwise

11.

V(AL [T :D)(e)0) =V (ANE)0) if V) o) ENT
=V (AP o){V (Dt)w)(o) / V (It)(»)(s)} otherwise.
In clause 3 of the definition just given we used g{ - -+ / - - - }, g a function, as the variant notation.
First-order formulae are defined in the following way:

Yu=It,=It, | Pt =Pty | Aty =At,|It,<Ity--- | iy, i€har| - -
The truth-definition differs slightly from the usual one w.r.t, for example, the following case:

&

8

kIt <It;)(#)0) if and only if V(I1,)#)(0), VI12)(¥)(0) EN and V(It,)) o)<V It2)(#)(0).

h
We are now able to give a deduction system for tramsitions like <X,o,u>— <X’ o',u>.
k

<X,0,u> and <X’,0’,u> are called configurations. X, X’ are sets of pairs <a,§>, a€NXN, §
the piece of program still to be executed by the process denoted by a.

The variable k ranges over the set of natural numbers, it denotes the number of ”steps” the derivation
of the configuration to the right of the arrow from the one to the left takes.

The variable & ranges over the set of histories, a history being a sequence of pairs <a,8>, and tri-
ples <d,a,8>, a, BENXN, the intended meaning of the first being "« creates 8” and that of the
second being ” the value d is sent by « to B”.

The last component of a configuration is a unit.

The information encoded by 4 and k is used in the proofs of the soundness and the relative complete-
ness of the proof system.

Basic to the following definition of a deduction system for transitions is the coding of processes by
pairs <<m,k>>, where m, k are natural numbers, such that the process coded by <m,k> will be the
k™ activated instance of class C,, and operates on x[k], where x Evar(S,,), the variable x treated as a
one-dimensional array.

In the following definition when we write XU { - - - } this implies { - - - }NX=g.

In the sequel 1@, b® for the term 7 and the boolean expression b, i a logical variable, denotes the
result of substituting for each program variable x occurring in ¢ resp. b the term x[i].

DEerFINITION 3.4

axioms:
<a,f>

[11 <XU{<a,l:x:=new(Cp)>},0,u> -—l-> <XU{<a,nil>,<p,S;>},0, u>
where B=<k,6(Ci)+ 1> and
o'=o{nil / <y,Br>,...,nil / <y,,B>B/<x,0,>, Br* / C;}
D1 - Ya)=var(Sy)
2] <XU{<a,l:x:=self >),0,u> _1> <XU{<anil>},ou>
where o' =o{a / <x,0,>}
3] <XU{<a,l:x:=t>},0,u> —j—><XU {<a,nil>}, 0’ u>

where o’ =o{d / <x,0,>}
d=v D) w{az /i})o)
v & Lvar—N arbitrary
[4] <XU{<a,nil;S>},0,u> —l><XU {<a,$>},0,u>
<d,B,a>
[5] XU{<a,l:xlWy>,<B,l:z!t >},0,u> -—l-> <XU{<a,nil>,<B,nil>},0', u>
if o(<x,a,>)=f and o(<z, B, >)=a
where o’ =0{d / <y, >}
d=VD){B, /i})o)

v&Elvar—N arbitrary s
<d,B,a>

[6] <XU{<a,l:ixly>,<Bl':t>},0, u> - <XU{<a,nil>,<pB,nil>},0', u>
if o(<x,00>)=p8

*:for BENXN B,,8, denotes the first resp. the second component of 8.

where o’ =o{d / <y,a,>}
d=V(D)p{B, /i})o)

vElar—N arbitrary

<d, Ba>
[7l <XU{<al:ly>,<Bl:xlt>},0, u> - <XVU{<ea,nil>,<p,nil>},¢', u=>

if o(<x, B>)=a

where o'=0{d / <y, >} -
d=V(D)Y(B, / 1})0)
vElvar—N arbltrary

[8] <Xu{<a,l: I:lbk—>Sk>} au>—> <XU{<a,S,>}0,u>

if kb, O (v{ / l})(ﬂ)
vElvar—N arbltrary

[9] <XU{<a,l:* D bk-—>Sk} o,u> - <XU{<a, Syl * D bk—>Sk>} ,0,U>>

if kb, O (r{e /l})(a)
vEhar—-N arbltraqy

[10] XU<{<a,l:* D bk—->Sk>} o, u>—> XU {<a,nil>},0,u>>

if k/_\ l—nbk(') #{az /i})o)
v & lvar—>N arbitrary
€
[11] <X,0,u >;><X, ou>>

rules

(1l
h

<XU{<a,S; >},o,u>—l><X’U {<a,S,>},0,u>

h
<XU{<a,8;S>},0,u >—1><X’U {<a,85;8S>}),0/,u>

2]
h, h,
<X,0,u >;—><Y,a’,u >, <Y, 0, u>-><Z,ou>

2

hyoh,
<X,0,u> —» <Zbou>
ky+k,

Now we are able to state the meaning of a unit u.

DEFINITION 3.5
Let u=<C,<Sy,...,C,<S,> then:

<o,0'>EM(u) <=

BXO’X11h9k:
a. X0:{<<l,1>,S1>}
b o(C)=La(C)=01<j<n

C. <X0,o,u>—,;><X1,o’,u>
d V<oS>€X, S=nil

O S R R Y

10

< Xy,0,u > we call an initial configuration.

Having defined the meaning of a unit y=<C;«S), .. .,C,«S,> we want to define the meaning of
R, R;R’, R|IR’, where R, R’ are subprograms of, say, S resp. S, l<m,k<n.

But given a o, oEstates, there can be active several instances of classes Cy, C, (in case
6(C,n),0(C,)>0) all of which are candidates to execute R resp. R’.

One way to specify the particular instance one wants to consider can be described as follows:

We will define, for example, M (R(i))EEnv—-)P (states X(states), R a subprogram of S, i a logical vari-
able, such that <o,0’>€EM(RV)(») if execution of R by the process <k,»(i)> starting from o
results in o’.

DEFINITION 3.6
Let u=<C1«S,,...,C,«<8,>, R a subprogram of S;,1<k<n,
i € Lvar,

<o,0/>EMR)) «

a. 3A<X,05,u >0 m Such that for every 0<</<<m:
=0
<X;,0.,u >_1-> <X} +1,0,41,u > for some history &,

and oy =g, 0,,=0’

b, Xo={<<ki)>R>)

e 0<ui)=<o(Cp)

d. VOsIsm V<B,S>EX, (B£<kv(i)>—-><B,S>EX,)
e. <<k wi)y>nil>cX,.

Clause a of the above definition states the existence of a sequence of configurations, a so called com-
putation, such that every element, but the first, of this sequence is derivable from the previous one in
one step.

Clause b expresses that we want to consider the behaviour of the process <k,»(i)> executing the
subprogram R.

The number of active instances of class C; in a state ¢ is given by o(Cy), so clause ¢ must be
included. ‘

Clause d states that every step of the computation, mentioned in clause a, is done by the process
<k, v(i)>.

Clause e states that the process <k, #(i)> has finished executing R.

DEeriNITION 3.7
Let u=<C«S8,,...,C,S,>,
R, R’ subprograms of S, resp. S,,, 1<k,m=<n,
i, j&Lvar,

<6,6’>EM RV ;RV)») &
Jo (<o,0> € M(RDN\<5,6'>€E M(R'V)).

DEFINITION 3.8
Let u=<C1«S,,...,C,S,>,
R, R’ subprograms of Sy, S,,, 1<k,m<n, i, j Ebhar,

<0,6'>€ MRP|R'V)p) &

PR e R R

11

a. 3IA<X,0;,u> P such that for every 0<</<p:

=0
<X;,05,u >—l> < Xj41,0;+1,u > for some history hy;

and oy =o0,0, =0’

b. Xo={<<k,(i)>,R>,<<m,nj)>R">)}

c. k=m-v(i)#£r()), 0<e(i)< o(Cy), 0<v(j)=<0o(C,)

d. VO<I<pV<B,S>EX; (BF#<k,v(i)>N\BF£E<m,¥(j)> -»><B,S>EX 1)
e. <<k p(i)>,nil>,<<m,p(j)>,nil> €X,.

Having defined M (1), y=<C¢S},..,C, Sy > and M(RD), MR ;RY), M(RY ||RY’), where
i, jEMhar, R, Ry, R, subprograms of one of the programs Sy, 1<<k<n, we can define the partial-
correctness assertions: {p}u{q},{p}R®{q} - , such that e{p}u{q} iff for every », <o,0’>€EM (u)
if pp(¥)(0) then kg()(@),

and £{p }RV (g} iff for every », <o,0’> EM(RO)() if #p(#)(0) then £q()(o),
the truth of the other partial correctness assertions is defined in a similar way.
W.r.t. the correctness-assertion {p}u{q} we do-not allow class names occurring in p and g other than
those mentioned in #, and, furthermore, every program variable occurring in p or g must belong to
one of the classes defined in u.

12

4. The Proof System

The following axioms and proof rules are modifications of the axioms and proof-rules of the Hoare-
style proof-system for sequential programs ([4]). These modifications are introduced because we treat
the program variables as one-dimensional arrays. These axioms and proof rules enable one to reason
about the correctness of the components of a concurrent system given assumptions about those parts
which depend on the behaviour of the environment.

Let u=<C«Sy,...,CoeS,>, iELvar.
AL @:{plCxslilt D) /x]} dax:=0)P{p))
A2, (u:{pl(x;lil<k,i>) / x]} (:x:=self YD {p})

where ”x : =self” occurs in Sj.

Rl1.
w:{p A} R {q}), 1<k<m
(u:{p} (D bk—>Rk) {q})
R2.
(u'{p/\bff)} RP{(p)H,1<k<m
@) m
(u: {P}(* D bk"‘>Rk) {P/\ A ﬁbfé -
R3.
(u:{p} RY {r}) ,@u:{r} RY {q})
:{p} R;;R)D{q})
R4.

PAIS<Cr—p1 , w:{p1}RD {1),q1 Ni<Cr—q
@:{p} RY {¢)), R occurs in S,

W.r.t. axiom 2 we translated the expression self by the term <Ck,i > because the value of the variable
i denotes in the context (/:x:=self)?”) the second component of the name of a process executing
l:x:=self. Without this modification of the parameterized rule of consequence our proof-system
would be incomplete: consider the following valid correctness-assertion,
@:{i>C}(I:x:=1)P{x[i]=0}). It is valid because ki>Cy(v)(c) means that there is no process
<k,»(i)> active in state ¢. This assertion is deducible from the system consisting of the axioms
ALA2 the rules Rl ,..., R3 and the parameterized consequence rule if and only if
i>Cp—>(x;[i]: D[]0 is valid, which is not the case.

In the following definitions we show how the proof theoretic concepts: Bracketed Section, Global
Invariant, Cooperation Test and Auxiliary Variables, can be applied to the language P.

DerintTION 4.1

13

A BS (Bracketed Section) is of the form <S> where:

S=R;R’;R;, R’ an 10 (a communication statement) or a new-statement and in R, , R, there are
no occurrences of IO or new- statements and if R'=/:x:=new(C) then x &change(R;),where
x Echange(R) if and only if x occurs at the Lhs. of an assignment or the r.h.s. of a ”?” of an
input-statement.

DEFINITION 4.2 :
The bracketed sections <R ;>,<{R,> match if:
Ri=R3;R;Rs, Ry=Rs;R";Rs.
1. R=l:x? , R’=l:y\t or R'=I:t
2. R=172 , R'=lylht.

Note that bracketed sections are syntactic constructs. Let u=<C;<«S},...,C,<S,>, such that
each IO and new-statement occurring in # appears in a bracketed section. To be able to deduce
correctness-assertions {p}S§){q}, 1<<k<n, for some logical variable i, we introduce sets of assump-
tions Ay, 1<<k<n, an assumption being a correctness-assertion about a bracketed section. We say
that two assumptions about bracketed sections containing IO statements match if the corresponding
IO statements do. Having established the deducibility of {p;}S¥{qi}, 1<<k<n, using the sets of
assumptions 4, (notation: A,+{p; }S¥{g:}) we have to show that these assumptions cooperate. The
formal definition of this cooperation test is given below, the notion of global invariant, a first-order
formula, occurring in this definition is introduced to restrict the cooperation test to the semantically
matching assumptions. By semantically matching assumptions we mean a pair of assumptions con-
taining 1O-statements execution of which can be synchronised.

In the following definition FV (p), p a formula in the assertion language, denotes the set of free vari-
ables, program variables and logical variables, occurring in p, class names are treated as variables too.

DEFINITION 4.3
let u=<C;<S,, . ..,ChS,>, u bracketed. Given are the proofs Au+{p;}S¥{q}, 1<k<n, i
some logical variable. These proofs cooperate w.r.t the global invariant I if for some logical vari-
able j distinct from i:

a. Fr(hDn{,j}=2,
and there are no free occurrences in I of variables which can be changed outside a bracketed
section

b. let {pre(R)}<R,>{post(R;)} €Ay,
{pre(R;)}<R;>{post(R;)} €An, be two.matching assumptions then :
Hu:{(IApre(Ry) Npre(Ro)lj / iD}RPIRY {IApost(R) \(post(Ry)j /iD}

c. let {pre(R)}<R>{post(R)} €4,, , R=<Ry;x:=new(C;);R,> then:
HIApre (R)}R® (IApost (R)Npil(x[i])2 / i1}

d. For every {p}R{q)}€E€A;, lsk<n: FV(Q@p,q.pr.qx)Nwar(SHU {Cy,...,C, D=2, for
I<<ks£l<n,
j&FV(p,q), and every x€EFV(p,q,pr.qx)Nvar(Sy) occurs only subscripted by a free
occurrence of i in p,q,pr,qx-

Comment:
We do not allow i, j occurring free in the global invariant because this formula is introduced to
express some global information. Clause d guarantees freedom from interference. We do not allow
j occurring in the formulae mentioned in clause d because we have chosen the variable i to enable

&

14

one to relate the values of some program variables of, say S, to a particular instance of class C.
The clauses b and c together establish the invariance of the formula I over the bracketed sections.
Clause a implies invariance of I over the remaining parts. Clause ¢ states among others that for
every statement x : =new(C;) we have to establish that the precondition p; is satisfied by the newly
activated instance of class C,. Because x & change(R,) we can access that instance.

Given the above definition we can now formulate a proof rule for process-creation.

RS.
there exist proofs Ai+(u:{pr}S®{qr}), 1<<k<<n, which cooperate w.r.t the global invariant I

{INAP\1/ iBu{IN A VISI<C, i}

To derive the correctness assertions mentioned in the clauses b and c of the cooperation test we intro-
duce the following axioms and rules:

Let i, j be distinct logical variables.

A3. R=- -+ Mx,R'="---lt:
@ :{plex;li1:29) / xPROIRD {pY)
A4,
@ pICe+1/ Cst1 /Y15« o st /Y, (x3li 1<k, Ce+12>) / x I} :x - = new (C)P {p})
where {y;, . .. ,ym}=var(S), and t,=(,;[C, + 1L:nil), 1<r<m.

R6. Let R=I!:x? occurin S; and R'=/":z1tin S,,.
(u pAxlil=<m,j>NAz[jl=<k,i>Ni<CNj<C,}RPIRV{g})
(u:{p}RPIRD{g})

a. kstm

(u P Axlil=<m,j>Nz[jl=<k,i>Ni£Ej Ni<C N\j<C,}RPIIR'D{q})

b. k=m
(u:{p}RDVIR{g})

R7. Let R=I:? occur in S and R'=/":x tinS,,.
(u {p Ax[j1= <k,i > Ni<C,A\j<C,}RO|IR"{g})
@:{p}ROIRD (g})

a. kstm

(u P Ax[Jl=<k,i>NiEjNIi<CNj<C, }R(')IIR'(I){q})
(u:{p}ROIRV{q})

b. k=m

R8. R=l:x 7y, R’=l":1t analogously.

R9.

15

u:{p}RPRY (p1}), w:i{p1}ROIRD{g:}), (u:{g:}RY;RY {g})
(u:{p}<Ry;R;R;>P<R;3;R;R>P{g})

R10.

@:(p)RP (1)), @:{g1)RY (4))
(0)RP KD (4))

Axioms 3 and 4 model communication resp. creation by (implicit) assignment. The rules 7, 8, 9 state
that to prove some correctness assertion about a communication we can use some additional informa-
tion: the relation, which must hold for the communication to take place, between the values of the
variables used as references to the communication partners and the values of the logical variables i
and j. We conclude the exposition of the proof-system with the following rules:

RIL.
{p/\C] = 1/\k/n___\2ck =0}u{q}
{plu{q)
R12.
p—=p1 {p1}u{q1} 919
{plu{q}
R13.
{piv'{q}
pYu{q}

Provided FV(q)NAUX=@, where u results from u’ by deleting all assignments to
x EAUX, AUX a set of (auxiliary) variables appearing only in assignments of the form x:=¢
such that for every occurrence of an assignment x:=¢ in ' if FV({)NAUX5~2 then x EAUX.

R14.
{plu{q}

{pl(x;[1]:Dr) / xJ}u{q}

where x €Pvar® and x does not occur in %, and x &F V(g)-

16

5. Soundness

In this section we shall sketch a proof of the soundness of the proof-system for P. We consider only
the case of rule 5, the process-rule, soundness of the other rules and axioms being a routine matter.
We will make use of the following definitions and lemma:

DeFiNITION 5.1
Let u be a bracketed unit. R, a subprogram of u, we call normal iff R=nil or every bracketed sec-
tion of u occurs inside or outside of R.

DEFINITION 5.2
let u=<C,<S},...,C<8,>. R a (labelled) subprogram of one of the S, 1<k<n. We
define after (R,S;) as follows:
[1] If R=S, then after (R,S;)=nil
m

[2] If SkEkEilbm—»Rm and R occurs in R, then after (R, Sy)=after(R,R,)

m
{31 If SkE*kl;IlbkaRk and R occurs in R, then after (R,Sr)=after(R,R,); Sy

[4 I S;=R,;R, then after(R,S,)=dafter(R,R\);R, if R occurs in R, else
after (R, S,)=after (R,R;)
Next we define before(R,S;) such that if after(R,S,)=nil;R’ then before(R,S;)=R;R’ and if
after (R, S,)=nil then before(R,S;)=R.
The intuition behind these concepts should be clear.

Lemma 5.1
let u=<C¢Sy,...,C,<S,>, u bracketed, 4;, 1<k <n, sets of assumptions, then:
Ae-{pi }S{qr}, i some logical variable, iff there exists for every normal subprogram R assertions
pre(R), post(R) such that: (Let R be a subprogram of Sy, 1<k<n)
[0] {pre(R)}R{post(R)}€EA; R a bracketed section,
[11 peNi<Cy—pre(Sy), post (S)Ni<Cr—q.
[2] pre(R)Ni<Cr—post(R)(x;[i1:tD) / x], R=x:=t, tsself.
[3] pre(R)Ni<Cr—post(R)(x;[il:<k,i> /x], R=x:=self.
[4] pre(RINi<Cr—pre(R,), post(RDNi<Cr— pre(R,), Post(R)INI<Cy—post(R), R=R;R,.
m

[5]1 pre(RINBP Ni<Ci—spre(R)), post(R)Ni<Cr—spost(R), =1, ... ,m, REk[;llbkeRk.
m .
[6] pre(R)/\bf")/\i <Cy—pre(R), post(RINi<Cy—pre(R),I=1,...,m, pre(R)/\I/_\l-.bf’)

m
Ni<Cr—post(R), RE*kEnllbkeRk.

PROOF : routine.

Given A, +H{p, N {qx} we define VC({p; }Sg){qk}) to be the set of assertions corresponding with the
clauses 1, . . . ,6 of the above mentioned lemma.

Given u=<C;«S,...,C,«85,>, a firstorder formula I and for 1<k<n proofs
A+{pe }SP{qx}, for some logical variable i, CP(4,, .. .,A,, I) denotes the set of (correctness-)
assertions corresponding with the clauses b and c of the cooperation-test.

These (correctness-) assertions are formulated w.r.t to some logical variable j distinct from i, such
that i, j&FV(I) and j does not occur in the pre (post)-condition of any assumption.

Now we can phrase the soundness of the process-rule as follows: if all assertions of
VC({pc}SP{gr}), 1<k<n and CP(4,,...,A,, I) are true and for every bracketed section R of,
say, Si,1<k<n, {pre(R)}R{post(R)}EA, (and I and the assertions pre(R), post(R), pi, qx, R a

£

=

17

bracketed section of Sy, 1<<k<<n satisfy the additional syntactic restrictions mentioned in the
m
cooperation test) then {p[1 / iIN\I}u {k/_\lV1<i<quk NI} is true.

It is easy to see that this formulation of the soundness of the process-rule is implied by the following
lemma:

LEMMA 5.2
Let u=<C;«Sy, . ..,Cy<S,>>, u bracketed. Assume there exists for every normal subprogram
R of S, 1<<k<n, assertions pre(R), post(R) and sets A;, 1<<k<n, of correctness assertions of
bracketed sections occurring in u such that all assertions of VC({pi}SP{q), 1<k<n,
CP(A,, ...,A,, I) are true (i some logical variable) and for every bracketed section R of, say,
Sk, 1<k<n, {pre(R)}R{post(R)} €A, (and I and the assertions pre(R), post(R), pk, k. R a
bracketed section of Sy, 1<<k<n, satisfy the syntactic restrictions mentioned in the cooperation

h

test). Let c:<X,o,,u>,_, such that for 1<i<m <Xj,05,u >—l><X,+1, 0;.4.1,u > for some

activation, communication record k;, <X;,0;,u> being a initial configuration w.r.t. % and for
every <a,S>€EX,: S=before(R,S,,) or S=after(R,S,), R a bracketed section, or S=nil.
Furthermore suppose that: kp,[1 /i]A\I(v)(e1)
Then:
tI(v)(o,,) and
V<a,$>€EX,:
If S=before(R,S,,) then rpre(R)(v')(0,),
if S=after(R,S,,) and for some 1<k <m, <a,before(R,S ,,)> € X, such that for every k<l<m
<a,before(R’,S ,,)> € X, implies that R’ is a subprogram of R, then epost (R)(¥')(0,,),
if S=nil then kg, (V')(0).
Where v'=v»{a, / i}
ProOF :
Induction to |4 |, the length of the history of the computation c.
|h|=0:
We note that in this case eI(#)(o,,) because kI(»)(o;) and for every x EFV(I)U{C,,...,C,}
61 (x)=0m(x).
We prove with induction to m, the length of the computation c that:
if S=before(R,S;) and R is minimal w.r.t the relation ” is a normal subprogram of ” then
kpre (R)(Y)(om),
if S=after(R,S) and for some 1<k<m <<1,1>,before(R,S1)>EX, such that for every k<<I<m
<<1,1>,before(R’,S)> €X, imlies that R’ is a subprogram of R then epost (R)(¥')(o,,) and
if S=nil then kq,(')(0,)
where v =»{1 /i}.
m=1X,={<<],1>,5,>}.
Given is that: e Ai<C—pre(S,), 1 Ni<Cy[l1/i}(»)(0)) so we can conclude that
kpre (S1)(¥') 1)

From pre(S)/\i<<C,—pre(R) we conclude kpre (R)(¥')(0,,).
m>>1: we have to consider two main cases:
1. X,={<<1,1>,nil;S$>}.
1.1 X, ={<<L1>l:x:=t;8>}:
Ind.hyp.: kpre(l:x :=t)(¥'}0 -1)
Given: kpre(l:x :=)Ni<C;— post(I:x : =1)[(x i1:69) / x1.
So:kpost (I:x : =1)[(x s11:49) / x 100 —1)-
0 =0m—1 {VEOWINOm-1)/ <x,1>}.
Thus: epost(I:x : =) (¥)(0,,.

I3

18

1.2

2.1

22 X

2.3.

Let nil;S=after(R,S) and for some 1<k <m, X, ={<<1,1>,before(R,S;)>} such that
for every k<</<m if <a,before(R’,S1)> € X, then R’ a subprogram of R An easy induc-
tion to the complexity of R establishes that epost (/ :),f =ONISC, -—->kpost (R).

X, -1 ={<<1,1>,before(R,S)>)} where R=I :* 0 bi—>R,, and pl/_\lﬁbfﬂ @O —1).
Ind.hyp:epre (R)(V/’c)(a'" ~1)
Given:kpre (R)/\I/_\lﬁb;i) Ni<Cy— post(R)

G,y —1 =0,,,thus epost (R)(V')(o,,,)
Let nil;S=after (R’,S) and for some 1<n<m, X,={<<1,1>,before(R’,8,)>} such that
for every n<<i<m if <a,before(R,S;)>€X, then R a subprogram of R’. With induction
to R’ one can prove kpost (R)N\i<C,->post(R').

X ={<<1,,1>,8 >}, S=nil;S’ for any S’

X,, -1 ={<<1,1>,bejore (R, sl>} R_Db->R and S=before(R,,S), kb, ') 0,,_1),

for some 1<<n<k.
Ind.hyp.:epre (R)(V')(0,, —1).
Given:kpre(R)ANb, D Ni<C, —spre(R,). Thus:epre (R,)V' X6, —1). Op—1=0, SO
kpre(R,) (' X6,,).
Let R’ be minimal such that S=before(R’,S), then R'=R, or R,=R,’; - - - ;R/, where
Rl,: ‘,.
We know that epre(R,)Ni<C; —pre(R).
So epre(R’)(»')(0,,,).

m—1={<<1,1>,before(R,S,)>}, R.__* El b;—R; and S=before(R,,S1), tb, (@) o)1),
for some 1<n<k.
Analogously to case 2.1..
X1 ={<<L,1>,nil;S >}.
Let S=before(R,S1), R minimal.
Let R’ be maximal such that: after(R’,S)=nil;S, and _for some 1<k<m-—1
<<1,1>,before(R’,S) € X, and for every k<I<m, <a,before(R,S,)> E€X, implies that
Ra subprogram of R’.

Ind.hyp.:kpost (R")(v')(6,, —1). There are the following two cases to consider:
a. R;R Eksubprog(S 1) then: post (R)N\i<C,—pre(R).

b. R_—-__—_*Vlzllbj—aRj, R'=R, 1<p<k. Then: post(R)Ni<C;-pre(R).

This concudes the basis of the induction.

REMARK :

In the sequel we will write <<X, 06> instead of <X,s,u > when it is clear from the context which unit
u is meant.

End of remark.

|h|>0

h= h1°<a B>

It is not difficult to prove that we can assume that

c=<X,01>, ..., <Xk,sok,>’ ey <Xk2’ak,>, R <Xk,9ok~,>’ S @ S, -

where:

1. <a,before(R;x:=new(Cpg);R,, S,)>€EXy, <a,after(Ry;x:=new(Cp);R3,
Sa,)> Esz,

2. from configuration <X ,6;, > to <X,,,0,>> only the processes a, B are active.

19

3. from <X, ,0;, > to <Xg,,0,,> only the process a is active, the result of this activity being
the activation of 8.

4. from <X, o0, > to <X,,6,> only B is performing.

(see appendix 2)

Let <vy,before(R,S,)>€E€X,,, R a bracketed section, indhyp. (note that for every

<v,8 > EX, S=before(R,S,,) or S=after(R,S,), R a bracketed section, or S=mnil):

epre(R)(»{v2 /i})or,), in case ys4a, B: o (<x, Y2>)=0,,(<x,v.>), x€Evar(S,), so

kpre (RY@{Y2 / i})X0m)

(remember that all the free program-variables of pre(R) are subscripted by a free occurrence of i

and that Cy, . . .,C, do not occur in pre(R}).

The same reasoning applies to the case that <y,after (R,S,)>E€X;,, (R a bracketed section) or

<v,nil>€ X .

In particular:tl NApre(S)p{az /i}) (6k, S=Ry;x :new(Cpg)i R,.

Furthermore: &{J /\pre(S)}S(‘) {I \post (S)Npg [(x[i]y /i]} holds.

We know that <oy ,0;,> EM(SO)w{a, /i}).

So kI Apost(S) Npg [(x[iD /il (#{ez / i})or,)-

Following the same pattern of reasoning used in the case of |h|=0 we conclude that

kpre (R)w{ey / i})0n), tpost(RYp{az /i})om), Tesp. ko ({2 /i}) (Om) in case

<a,before(R,S,)>, <a,after(R,S,)>,R a bracketed section, resp. <a,nil> € X,,.

Because the free program-variables of I are not changed by the computation <X ,0r,>, ...,

<X,,0,=> we conclude that £I(v)(0,,).

Finally because kpg[(x[i]), /i] {ay /i})or,) we know that kpg (¥{B2/i})or,) (

x €change(Ry)!).

Thus: kpp (?{B2 /i}) (ox,). Again reasoning as in the case |k | =0 gives us the desired result.

h=ho<d, e, f>:

It is not difficult to prove that we may assume that:

c=<X1,01>>, .o, <XpOr >, ..., <Xpoi>, ..., <Xp,0p>, ..., <Xp0,>,

where,

1. <a,before(R,S,)>, <B,before(R’,Sp)>€E Xy,

(@, B are to enter the bracketed sections R resp. R’ execution of which consists of the

transfer of the value d from a to 8)

from <Xj,0,> to <X,,0,> only a and B are performing steps.

<a,after (R,S,,)>, <B,after(R',Sp)> EX,.

From <X;,0,> to <Xp,0p> only the process a is executing.

. From <Xp,op> only B is performing.

(see appendix 2)

For y=£a, B we reason as in the previous case.

Ind.hyp.: eI (¥)(oy), kpre (R)(v{a; / i})(or) epre (R"Y(v{B> / i})(ow)-

So for some logical variable j distinct from i, such that i,j&FV(I), j&FV (pre(R),pre R"),

el Apre(R)N\pre(R")j /i1 (W{e,B2 / i,j })ok)-

Furthermore: <<;,0,> €M (R®|RD) (»{e,B / i,j})-

Thus: kI Apost (R)N\post (R)|j /i) (#{a2,B2 / i,j})o1)

From which we conclude: £I (#)(0;), kpost (R)(»{az / i})(6;), kpost (R"Y(¥{B2 / i})a)).

Because for x EFV(I)U{C}, . . ., C,} 0/(x)=0,,(x), we deduce that kI (#)(0.).

Finally reasoning as in the case |k | =0 gives us the desired result, (making use of the fact that

the assertions we must show to hold in the last state of the computation, w.r.t. some particular

process, are invariant over the actions of all the other processes).

S AW

20

6. Completeness

Let e{p}u{q}, u a unit. We want to prove +{p}u{q} along the lines of [6]. We want to extend u by
substituting, for example, for a IO statement x 7y the statement x 7y ;h: =ho<<x,self,y >, where h is a
new variable used to record the sequence of communications and activations each process of a partic-
ular class has executed. '
In CSP this sequence contains only communication records and can be coded into an integer. But
this is not the case w.r.t. the language P: at the programming level we can not manipulate a variable
which refers to a process as a pair of integers.
We therefore extend our language to be able to manipulate sequences of data in the following way.
Introduce for each class name C a set of new program variables histC.
Define: r::=t | self
Trace::=hh € \Jhist® | <ry,...,r,> | trace,otrace,.

c .

Extend the class of statements by:
S::=l:h:=trace, h& Uhistc.
c

We extend the set of terms of our assertion language as follows:
Te::=h[It], h€ \Jhist® | <Dt,...,Dt,> | Tt\°Tt,
c

ATt::=(h;[1t]:TH), he | hist©
C

It::=|Tt| | Te(dt)
Pt::=Te(It)

We will prove completeness w.r.t. this extended programming language (note that for each program
u’ formulated in this language we have that M (u’)=M (4) modulo the set of history variables occur-
ring in #’ u obtained from u’ by deleting all assignments to the socalled trace variables).

Now let k{p}u{q}). We will show that this correctness assertion is deducible. Say
u=<C1<81,...,C,«S5,>. We introduce the auxiliary (trace) variables 4, ... ,h,. Each vari-
able 4, will record for each activation of C, the sequence of communications, activations it has exe-
cuted. For each variable xE€var(S;) we introduce a corresponding fresh program variable
2, EPvar® (not occurring in p, ¢, u). These variables are used to freeze the initial values of the
root proces.

Without loss of generality we assume that F V(q)ﬂPvarC‘ Cvar(S), 1<i<n.

We extend u to u’ as follows:

Substitute

x in S by <xW;h:=ho<0,y,x,self >>,

x1tin 8§ by <x!t;h:=h,0<0,e,s€lf,x >>,

Itin Sy by <!t;h:=h,0<0,e,self ,nil >>,

x in Si by <?x;hy:=h°<0,x,nil,self >>,

x:=new(C) in S; by <x:=new(C);h,:=ho<l,self,x >>.

We define nile<<0,d,a,$>=<0,d,a,8>, and nilo<<l,a,f>=<1,a,8>. The empty process nil is
used to mark that the communication patner is not known.

It is obvious how to view each variable h; for each active process of class C, as a sequence of com-
munication and activation records.

Let w'=<Cye8"1,...,CeS8",>.

DEFINITION 6.1
We define [h],, yYENXN, h a sequence of communication, activation records as follows:
length (h)=0: [h], =nil

&

21

length (h)=n +1:
h=ho<<d,a,f>>:
[h}, =[h)o<<d,a,f>> if y=a or y=8,
=[h’}, otherwise
h=hc<<a,f>>:
[hl, =[] e<<,a,B>> if y=a,

=[h’], otherwise.

DEFINITION 6.2
Let x,y €D’ or x, y €D%:
x=gy iff (|x|=\y|=2 Ax =y) V(x| =|y|=3A xp =N (x; =yinil vV
x,»-‘—‘nilVy;:nil), 122,3)

So, for example, <d, a,f>=y<d, a,nil>.)
This notion is introduced to cope with the situation that locally the communication partner is not

always known.

DEFINITION 6.3
Let , h’ be sequences of communication, activation records:
h=yh' iff length(h)=length(h’) and V1<i<length(h) (h;=yh";).

Using the expressiveness of the underlying domain of values we will construct proof-outlines for the
components of the unit 4’ and a global invariant.
Let p’=p Ahy[1]=nil N\ c /\(s)x[l]‘—‘zx[l].

DEFINITION 6.4
eI(v)(o) iff 3X, l;, h, k, o, o
[a] <X,E,u'>—k><Y,a’,u'>, < X,o,4’> an initial configuration.
[b] ()G
[c] o(r)=0"(hy), 1<k<n and o(z,)(1)=06"(z,)(1), x Evar(Si)
[d]l o(CL)=0d(Cy), 1<k<n
[e] ViI<i<Co'(h)@)=vy [hl<pi>) k=1, ...,n

Stated very roughly this formula I collects all those states in which all the activated processes occur
outside a bracketed section.

LemMa 6.1
The above mentioned clauses a, . . . ,e are expressible in the assertion language such that the result-
ing formula I contains as free only the variables of the set {4, . .. e} U{ze: x Evar(Sy)).
Proor :
See appendix 3.

DEFINITION 6.5
Let R be a normal (see definition 5.1) subprogram of, say, S, i some logical variable,

kpre (R)O(v)(o) ii;’:‘ElX, Y, h, k, 5, o’
[a] <X,E,u’>—l?< Y,o’,u’>, <X,o,u’> an initial configuration.

SR

22

[b] Ep'()o)

[e] <<k,v(i)>>,before(R,S',)>€Y
[d] o(x)(@E)=0" (x)¥(¥)), x Evar(S’y).
[e] o(z)(1)=0'(zX(1), x Evar(S)

This formula pre (R)® collects all those states ¢ where the process <k, »(i)> is going to execute R.

LemmMa 6.2
The previously mentioned clauses a, . . . ,e are expressible in the assertion language such that the
free variables of the resulting formula pre(R) are contained in var(S',)U{i} U{z.: x&€var(S;)}
and all the program variables of var(S’;) occur only subscripted by a free occurence of the logical
variable .

Proor :
See appendix 3.

DEFINITION 6.6
Let R be a normal subprogram of §’,,, i some logical variable,
kpost (R)O(v)(0) iff 3X, Y, h, k, 5, o’ such that:
[a] <X,0,u'> }ils an initial configuration,

<X,0,u'>— <Y, o', u'>
k

[b] p’(¥)(o).
[c] <<m,p(i)>,after(R,S',)>EX,,

[dl o)) =0(x)(¥()), x Evar(S'y), a(zx)(1)=0"(z,X1), x Evar(S,)

This formula post (R)® collects all those states o in which the process <<m, »(i)> has just finished exe-
cuting R.

LemMa 6.3
The clauses a, . . . ,e of the previous definition are expressible in the assertion language such that
the free variables of the resulting formula post(R) are contained in var(S’,)U{i}
U{z,: xEvar(S,)} and all the program variables of var(S’,) occur only subscripted by a free
occurence of i.

Proor :
See appendix 3.

We consider a routine matter to check that wr.t a particular component of u’ the assertions,
pre(R)D, post (R)?, i some logical variable, R a normal subprogram of that componenent, constitute
a valid proof-outline (use lemma 5.1). What remains to be shown is that these proof-outlines
cooperate. This is done by first establishing the truth of the following correctness assertions:
e{pre(R)D NApre(R)D[j /iIANI} RPIRY {post(R)P Apost(R)P[j /i]AI}, R, R, being
matching bracketed sections, j a fresh logical variable, and {IApre(RY?}RO{INpost(R)®
/\pre(Sk)(i)[(x [iD, / i1}, R a bracketed section containing a new-statement of the form: x : =new (Cy).
After that we show that arbitrary true correctness assertions like the ones mentioned are deducible.
To establish the truth of these correctness assertions we need the following definition and lemma, the
so called "merging lemma”.

DEFINITION 6.7
Let A be a finite (non-empty) set of pairs of natural numbers (= processes), ¢ a state such that
for a€4, 1<<a;<n, 1<, < o(C,,). Let for a€4 R, be a subprogram of §’, or be equal to nil,
and v & Env-—>N.

&

23

Then we call the set {R,: a €A} (0,»,4A)—reachable
iﬁ‘ .
1Y, h, k, o, o’: .

[a] <X,E,u’>7>< Y,o',u’>, <X,o,u’> an initial configuration.

[b] ()@ -

[c] Va€EA 3<a,§>€EY such that: if R,=nil then S=nil else S=before(R,, S’,) and
a(x)(on)=0'(x)¥a), x Evar(S’,,).

[dl oz)(1)=0"(zX1), x Evar(Sy)

[e] If furthermore o(x)=0'(x), x €{hy, ... ,h,,Cy,...,C,} and
o)D) =vlh <>, 1<k<n, 1<i<o'(Cy)
we speak of (I,0,7,4)—reachability of {R,: a€EA}.

Note that kpre (R)?(v)(o) and #(i)<o(C}) implies that R is (o,, <k, (i)>)—reachable (R occurring
in S,). The following lemma states the conditions under which we can fuse different computations of
u’ into one computation.

LeMMA 6.4 (merging-lemma): 4
Let A be a finite set of processes such that for every a€4 R, is a normal subprogram and
(0,7,a)—reachable (and for a €4, 1<a;<n, 1<a,<0(C,)). Let furthermore kI (v)(0).
then:
{R,: a €A} (I,0,v,A)—reachable

Proor :
See appendix 1..

Given this lemma we can prove the following lemma:

LemMA 6.5
Let R, R, be two matching bracketed sections, occurring in, say, S resp. S’p, i, j some logical
variables such that i, j&FV(I).
Then:
k(pre(R,)D Npre(Ry)P[j /ilAI} RPIRYP {post(R)® Apost(R)Dj /iIAT}.

PROOF :

Let (spre(R))® Apre(R,)®[j /iIAD(@)0) and <o,00> EM(RDIRD)@).

From the definition of the formulae pre(R;)®, pre(R,)®) and the merging-lemma it follows that (
note that pre(R)(i)[j / ilespre R)? and v(i))<o(C)), »j)<o(C,)):

iX, Y, o, o', h, hk such that

<X,E,u’>—k->< Y,o',u’> <X, o,u’> an initial configuration.
&p’(#)(0)
o'(x)=o(x), xEFV()U{C,, ..., C}.

o' (X)) =o(x)»(i)), x Evar(S"))

o' (x)())=0(x)(¥())), x Evar(S’,)

o(z, J(1)=0"(z,)(1), x Evar(S,) ~
<<, w(i)>,before(R,S))>, <<m,v(j)>,before(R3,5,)>€EY
. I =ulh)<k, 1<k<n, 1<i<d'(Cy).

Note that:oy(C;)=0(C;)=0"(Cp), j=1, ... ,n.

We define the state o; as follows:

PR Mo ae g P

61 (X)()=0ao(x)(s), x Evar(S’,), (r =INs =v(@)V (r =m /s =u(j)).

24

For the rem;u'm'ng cases o) agrees with ¢’. It follows that:
<X, o,u'>-><Y,0' . u'> -;)< Y’,0,,u’>, for some h’, k’,
X :

where

Y=Y /{<<Lu(@i)>,before(Ry,S'))>, <<m,¥(j)>,before(R,,8',)>}UZ,
(Z={<<lv@)>,after(R|,S'})>, <<m,v(j)>,after(R3,5',)>}).

We conclude: kpost (R))® Apost (R,)Pj /iIAI) ()oy) (ij €FV)).
So:k(post (R)® Apost (R2)V[j / i1/\I)(»)(6,) (making use of c. above).
Which finishes the proof.

We shall now prove that arbitrary true correctness assertions about 1/0 bracketed sections are dedu-
cible.

LemMA 6.6
Let R, R’ be two matching bracketed sections, occurring in S’; resp. S’,,. Then k{p}R®|IRV (4}
implies +{p }RO| RV {4}.

PrOOF :
Let: kp,(n)(0)=30'(5p (1)) N<d’,6> €M (R{’; RY)), and
2N O)SV(<o,0'> EM(RY ;RP)—+q () (),
where R=R;C;R,, R'=R;;A;R;.
Using the coding techniques as presented in appendix 3 it can be shown that p, and p, can be for-
mulated in the assertion language. It follows that: #{p}RY;RY (p,} and (p,}RY ;RY {q}.
From the completeness of the Hoare logic for sequential programs (which carries over to its
parameterized version) it follows that: +{p }R{?;RY? {p;} and +{p;}RY ;RY {¢}.
Furthermore: k{p;}C?P1149(p,}.
Let:C=x 1%, A==zt, k5 m, the other cases are treated similar. It is easily shown that:
i Axlil=<m,j>NAz[jl=<k,i> Ni<CAJ<Cp— pal(y;i[i1:19) /y]
Thus: +H{p,}CPI4P{p,)}. Finally apply the formation rule (R9).

The only thing left to do is to prove the following lemma:

LeEMMA 6.7
Let <R>=<<x:=new(Cp);h,:=ho<self, x >>in §',,.
Then +{I Apre(R)?} R® (I Npost(R)® Apre(S")Pl(x[i D, / i1}-
Where i € Lvar, i € FV (I).
PROOF :
define:

fo=C+1

[i=@slCe H1Lnil), i=1, ... ,L {y1, ..., yi}=var(Sk)
fir1=slili<k,Cc+1>)
fiva=hsliLkhplil<<m,i>,x[i]>)

Let y=(I Apost (RYO N pre(S")PUx[i D / iDUfi+2 / Bm)-

We prove that hI/\pre(R)(')/\iSCm =YW/ Cu:f1 /Y1 S /Yifi+1 / x] as follows:
Let eI Apre (R)O Ni<C,,(v)(0). '

Then (merging lemma): 3X, Y, ,5, ¢, A, k:

2
a <Xou'>-><Y, o', u'>
k

25

b. <<m,v(i)>,before(R,8',)>€Y

c. (X))@ =0(x)(¥i)), x €var(S’,)

d o(x)=0'(x), x€FV(I)

e. d(h)D=[hlri>> 1<k <n, 1<i<d'(Cy).
£ oz) 1D)=0'(z,)(1), x Evar(S;)

hl
Let <7, o’,u’>;'> <Z,0q,u’>, such that all the k’-steps are taken by process <m,»(i)> and

< <m,W(i)>,after(R,S",,)> EZ.

Let o, =o{V (fo)()©) / Ci, VF1)®)O) /1, - - s VEXO®) / ¥,V (fi+1)#X0) / x}
Then:

eMfo / C. 1 /Y15 - - - 1 /V6Siv1 / X)) o)
B0y

£l Apost(RYO Npre (S)P[(x[i D2 / 110} o1 {V (i +2)#)01) / B })-
hoh’
This last assertion follows from <X,E,u’>k—_‘-_->k'<Z, ag, U >

We conclude +H{I Apre(RY?}(x : =new (C,)P (¥}, .
HY By =ho<self,x >)P (I Apost (RYO A pre(S")Plx[is /i]}-
Finally apply the rule of sequential composition.

This finishes the cooperation test.
n 3
We may apply now rule 7: +{I Apre(S'1)O[1 / il}u’ {IAN (V1<i<Cypost (S")Dy).

n
It is easy to see that: kp’ AC, = 1/\k/_\2c,c =0— IApre(S8)P[1 /i] (use axiom 12 of the transition

system).
We next prove that:
n

HA N (V1<i<Cypost S")P)—q.

n »
Let £ /\k/_\l(v1 <i<Cipost (S))w)o).

Define:4 ={<k,l >:1<k=<n, 1<I<o(Cp)}.
Apply the merging-lemma for R,=nil, aEz]‘z.

So for some X, Y, h, k, 6, ¢: <X,o0,u’>—-<Y,0o,u’>, (<X,o,u’> a initial configuration w.r.t.
P gu

u') a €A implies <a,nil> €Y and

o(x)ay)=0"(x)(az), x Evar(S’,,), furthermore: o'(Cc)=0(Cy), k =1, ... ,n, and £p'(v)(0).

So V<a,R> €Y R=nil, in other words <{o,0'>> €M (v').

From k{p}u’{q} (which follows from k{p}u{q}) and kp(v)(6) we conclude that kq(»)(¢").

But o’ agrees with o w.r.t. the free variables of ¢ (F V(q)ﬁPvarC’ Cvar(S;), 1<i<n). Thus:
kq(»)(c). Applying rule 12 and rule 11 gives {p’}u’{q}. Application of rule 13: {p'}u{q}. Appli-
cation of rule 14: {p}u{q)} (substituting for z,, (z,;[1]:x[1]), x Evar(S,), and for h; (hy;[1]:nil)).

26

1. Conclusion.

We have shown in this paper how we can apply the concepts of cooperation test, global invariant,
bracketed section and auxiliary variables to the proof-theory of a language containing process crea-
tion.

We have proven the proof system to be sound and (relative) complete.

The following remains to be studied:

a formalisation of a more general class of safety properties;

how to prove absence of deadlock.

Another problem is the construction of a proof system which abstracts from the specific mechanism of
process identification. Such a proof system is developed for a sequential object-oriented language in

(1.

acknowledgement

The idea of the language the proof-theory of which we studied in this paper has been inspired by the
language POOL designed by Pierre America. We wish to thank Pierre America, Jaco de Bakker,
Joost Kok, John-Jules Meyer, Jan Rutten and Erik de Vink for their part in the discussion of this
proof-system.

references
[1] Pierre America, A proof theory for a sequential version of POOL, ESPRIT 415, Doc. No. 188,
Philips Research Labs, October 1986.
[2] P.America, Definition of the trogramming language POOL-T, ESPRIT project 415, Doc No.
0091, Philips Research Laboratories, Eindhoven, the Netherlands, June 1985.
[3] P.America, J.W. de Bakker, J.N. Kok, J.J.M.M. Rutten,
Operational semantics of a parallel object-oriented language,
13th ACM symposium on principles of programming Languages, St. Petersburg, Florida, January
13-15, 1986.
[4] K.R.Apt, Ten years of hoare’s logic:a survey -
part 1, TOPLAS 3 (4) (1981) 431 -484 .
{51 K.R.Apt, N.Francez, W.P. de Roever, A proof system for CSP,
TOPLAS 2 (3) (1980) 359 -385.
[6] K.R.Apt, Formal justification of a proof system for CSP,
J.ASSOC. COMPUT. MACH,, 30 1 (1983) 197 -216.
[71 J.W. de Bakker: Mathematical theory of program correctness.
Prentice-Hall International, 1980.
[8] R. Gerth, A proof system for concurrent ADA programs
in: Science of computer programming 4 (1984) 159-204,
North-Holland, ,
[9] R.Gerth, W.P.de Roever, M.Roncken, Procedures and concurrency: a study in proof,
in:Lecture notes in computer science;
International Symposium On Programming, nr.137, Turin, April, 1982.
[10] D.Gries, The science of programming,
Springer-Verlag, New York Heidelberg Berlin, 1981.
[11] G.D. Plotkin, A structural approach to operational semantics,
Report DAIMI FN-19, Comp.Sci.dept., Aarhus Univ. 1981.
[12] G.D.Plotkin, An operational semantics for CSP,
in:Formal description of programming concepts 2 (D.Bjorner ed.), North Holland, Amsterdam

&

27

(1983) 199-223
[13] J. Zwiers, W.P. de Roever, P. van Emde Boas: Compositionality and concurrent nerworks:
soundness and completeness of a proof system. br Proceedings of the 12% International Collo-
\ quium on Automata, Languages and Programming (ICALP), Nafplion, Greece, July 15-19, 1985,
Springer-Verlag, Lecture Notes in Computer Science, Vol. 194, pp. 509-519.

28

Appendix 1

LeEMMA (merging lemma):
Let for a4 (A a non-empty finite set of processes) R,, a mnormal subprogram, be
(0,v,0)—reachable and kI (v)(0) and for <k,!>€A4: 1<k<n, 1<i<o(C}) then:
{R,: a€A} (I,0,v,A)—reachable.

PrOOF :
Let 4 :{<k1,11 > A <km,lm>}-
From tI(v)(o) and the (o,7,a)— reachability of R,, a €4, follows the existence of the following com-
putations (transitions) (these computations are defined w.r.t. u’ as defined on page 17):

h
c=<Xy,00 >-;><X, o’> according I (v)(s),
h.
Cq=<Xo,00 >;—> <Y,,0,> according R, (o,a)— reachability, a=<k,,[,>, I<p<m.

Such that:
(YD =06<p 1>, <k,I>€EA,
Vism<d(Colhl<ims> =v OUu)m), k=1, ...,n,

<a,before(R,,8 4,)> EX,,
(74, = v Oulha, N@2), aEA (R, being normal).

To proceed we need the following definitions:
Let B be a finite set of processes.
Given states o, 0,, a €B we define 6{g,: a EB} s.t.:

0{0,: a EB}(x)(n)=0,(x)n), if x Evar(S’y,) and n =a,
=o(x)(n), otherwise

{6,: aEBHC)=0(C).

Let X be a set of pairs <a,S>>. Suppose we are given for each « €B a program R,.
We define:

X{R,: a€EB}= {<a,S>: (@€BA<a,S>€EX)V (@€BNS=S5.))},

where

&

29

S.=R,, if R, =nil
=before(R,,S,,) otherwise

We will show with induction to the length of &, & the history of the above mentioned computation
¢, that: .

h
<X0,oo>;> <X{R,: a€EA}, o’{0,: aEA}>., for some k’.
It is easily checked that this suffices. '

Basis:the length of 4 is zero:

In this case the computation ¢ consists only of an activation of §), no other processes being
activated and so no communications being executed.

We conclude 4 ={<1,1>}

(o(C1)=1, 6(C)=0, 1<k<n).

R<y1> is a normal subprogram so:
nil=[hl<y,1> =po'(h D=0 Y D=0<1,1>r)D=plh <1151 15+

€ B

Thus: <X,,00> — <X{R,: a€A}, o’{o,: aEA}> equals c;,1>.
h=h'o<a,B>:
It can be shownh that we may assume that (see appendix 2.):
d=<X,,00 >? <Xy,01>,

éa,ﬁ>
d,=<X,,60> ;) <X,06'>, such that
<a,before(R,8’,)> € X,
R=x:=new(Cp,) and all the k, steps are taken by a or B.
We distinguish the following four cases:

. a, B&A:
Ind.Hyp.: y

<X0,oo>;> <X;{R,: aEA}, 0,{0,: a EA}>, for some k'.
But:
<a,f>
<X {R,: aEB} ,0,{0,: aEA}> i <X{R,: a€EA}, d'{0,: aEA}>.
And we are done.

. a €A, BEA; say a=<p,q>:
Let
',
dsz= < X,00> ;-’) <Y,,0,> and
P
d4=<Y1,02> ;7) <Xa:0a>’
such that:
<a,before(R,S",)> € X}, R"_-:.x:=new(Cpl);hP:=hp°<l,self,x >,_h’1°h'2=ha,
and o5 (h,)(q) =01(%,)(q)-

Ind.Hyp.: y
<Xo,00>~k',> <X {R'y: €A}, 0,{0',: aEA}>, for some k’.
Where

R’,=R,, v¥#a

&

30

=R, otherwise.
o', =0, YFa
=g0,, otherwise.

Now proceed from this last configuration by executing o along the lines of d,y and B of d,.

Note that because [h,], =v 0(h,)(q) (Ry being a normal program) [h;] = <<a, B>
3. a&4, BeA:

Ind.Hyp.: y

<X0,oo>—’? <X{R,: aEA /{B}}, 01{0.: a EA / {B}}>, for some k'.

Proceed from this last configuration by executing « along the lines of d, and B of cg.
Note that nil =[h]g=y0'(hpg,) (B2)=0g(hp, YBy) =ylh B]B’ because Ry is normal.

4. a, BEA.:
Similar to case 2.

h=h'o<d,a,B>:
Let (see appendix 2.):
hl
d1 = <X0,Uo>-;><X1,O'] >,

<d,a,8>
d,=<X,,00> ;—) <X,0'>,
2

such that computation d, consists only of steps taken by a or B, and in <X,,0,> a, B are to
enter the bracketed sections execution of which consists of the transfer of the value d from a to B.
We, again , distinguish four cases:

1. a, B&A: apply the same reasoning as used in the above mentioned case 1..
2. a€A, B&EA: say:a=<p,q>.
Let
"
di=<Xy,09 >k_’)< Yi,00>,
i
dy=<7Y,,0, >;><Xa,0'a >,
where,
<a,before(R,S’,)>€EY,, R, a bracketed section corresponding with the communication record
<d,a,nil> or <d,a,f>, depending on whether the last record of o'(h,)(q) equals <d,a,nil> or
<d’ a,B>’
furthermore, o, (h,)(q)=01(h,)(q), and h'yoh’y =h,.
Ind.Hyp.: y
<X0,0’0>—,:'> <X1 {R’a: a€EA }, a1 {O’,al acA }>
Where
R',=R,, v#a
=R, otherwise.
o', =0y, YFa

=0,, otherwise.

Proceed from this last configuration by first performing the communication between a and B and

&

3

after that executing a along the lines of d4 and B of d;.
3. a €A, B&EA:
analoguosly to the previous case.
4, a, BEA (let a=<p,q>, <B=<rs>):
Let
R, 4
ds= <X0,00>;-,><Y1,02>,.

k',
d4: <Y1,0’2>;,><Xa,0'a>.
2

where,

<a,before(R,8',)>€Y,, R, a bracketed section corresponding with the communication record
<d, a,nil> or <d,a,B>, depending on whether the last record of o’(h,)(q) equals <d,a,nil> or
<d,o,p>,

furthermore, o,(%,)(q)=01(A)(q); and h'1oh'> =h,,

and
oo
d5 =< Xg,00>>< Y, ,62>,
ky
_ ks
dg=<Y,0,>>><Xg,08>.
k,
where,

<PB,before(R',S’,)EY,, R, a bracketed section corresponding with the communication record
<d,nil, B> or <d,a,B>, depending on whether the last record of o’(h,)(s) equals <d,nil, B> or
<d,a,p>, o

furthermore, 6, (h,)(s)=0,(h,)(s), and h;°hy=hg.

Ind.Hyp.: y

<X0"’°>? <X {R'y: a€EA}, 6{0's: aEA}>. Where

R, =R,,yé¢{a.B}
=R, y=a
=R’, y=B

o, =0,, Y& {a,B)
=03, Y—Q

252’ Y=B

Now proceed from this last configuration by first transfering d from a to B and then executing «
along the lines of d4 and Bofdg.

32

Appendix 2

h h
In this sextion we will write <X, 6>—<X’,0'> in stead of <X,6>-—><<X’,0’> for some k.
k

LEMMA :
B

Let <Xg,00>—><X,6> be a computation (transition) w.rt. a bracketed unit
=<C;81,...,ChS,>, h=ho<a,f>, then there exists four computations: V
hl

<X0,00>——> <X1 .0 >,

<a,f>
<X1,0’1> - d <X2,0’2>,

€
<X5,00>— <X3,0,>,

€
<X3,03 > <)(, o>

such that <a,before(R,S,)>€E€X,, a is about to enter the backeted section execution of which
consists of the activation of B, <a,after(R,S,)>€X,, and in the second and third computation
only « is performing, in the last one only 8 is performing.

Proor :
h' <a,f> _— €

Let <Xy,00>— <X,0'> - <Xo>—o <X,0>,

such that <a,before(R,S,)> € X’ and <a,after(R,S,)EX.

Let X, =X /{<Yy,S>: <v,8>€EX NvyE{a,B}} U{<a,before(R,S,)>},
o, such that:

61(x)(m)=d'(x)}(m), if (x Evar (S,) \m =)V (x Evar(Sg) \m =p,)
=o0(x)(m) otherwise

01(C)=0'(C)

€
Then: <X’,0'>— <X;,0,>,

&

33

because from <X’,6’> to <X,o> all the pl;gooesses but « are involved in some internal action,
<a,ff>

formally: induction to k, where <X',0'> 7: <X, 0>.
h’
Thus: <X,,00>— <X;,01>.
Let X, =X, / {<a,before(R,S,)>}U {<a,after(R,S,)>, <B,Sp >},
o, such that: '

ox(x)(m)=w, if x Evar(Sg) \m =B,
=3(x)(m), if x Evar(sa,)/\m —03
=6y (x)(m) otherwise

0,(C)=0(C)
<a, B>
Then: <X1,01> —> <X2,0'2>,
<af>
because executing « starting from <<X;,0,> along the lines of <X’,0’'> — <X,0>> results in

<X3,0,>,
<a,p> -
formally: induction to k, where <X’,0’> -;) <X,0>..

Let
X3=X, / {<a.after(R,S,)>}VU {<a,§>: <a,S>€EX} and
o5 such that:

o3(x)(m)=o0(x), if x Evar(S,) \m =ay
=g,(x)(m), otherwise

03(C)=0(C).

€ €
Then: <X2,02>-—><X3,03> -><X,0>,
because from <X,,0,> to <X3,03> resp. <X3,03>> to <X,0> one gets by executing a resp.
€

B along the lines of <X,5>>-><X,0>, during which both are involved in some internal action.

LemMMA :

h
Let <X,,00>—><<X,6> be a computation w.r.t. a bracketed unit 4, A =h'o<d,a,f>, then there

exists the following computations:
hl

<X0,0'0 >— <X1,0’] >,

<d,a,p>
<X1,0'1> -> <X2,02>,

€
<X5,0,>— <X;,03>,

€
<X;3,03>—><X,0>,

such that .

before(R,S,), before(R’,Sg) €X,, a, B are to enter the bracketed sections execution of which
consists the tansfer of d from a to B,

and after (R,S,,), after(R’,Sp) €X,,

and, finaly, from <X,,0,> to <X3,03> only « is performing and from <X3,03> to <X,0>
only B is performing.

&

Jidic
b

A

RN

Z e

S

R

SR
T
=

i
i

R

s

g

4

R

i

= >

R

orouEg

s

i

Analoguosly to the proof of the previous lemma.

mm. .
|

E

o Q

| ,

%5 foas s

3

35

Appendix 3
Let u=<C,<S1, . . .,Co«S,>, p, q such that e{p}u{q} and FV(p, q)ﬂPvarC U Pvar G,
1<i<n
Let Y;={x}, ... ,xk } =Var(S)U(FV (p,q)N Pvar '), I<i<n.

We assume some coding of our programming language: for statement S , S denotes the natural
number encoding S

Let p, denote the n* pnme number.

We define for n €N, n=p7*1, and for <m,m>€ENXN, <nm> =pit1 xpptl

Furthermore: <ay, ...,a,>= Hlp, , o, €EDU{w},

where w=0.
Next we define for state o, oEN:

O’—— H[Pa' X Han +i
where:

k
H [pm and

aim = H ‘p , k=0(C;) and

ai™ =o(<x!,,l>) and
bi ZU(C,').
We define for every configuration <X,¢>:

<X,6>=0X II & i

where

k -
d= .H‘pj!, k=0o(C), =S, s.t. <<i,j>S>€X
j=

36

Now let h€{<a,f>,<a,B,y> : a, B, YED}".
We define:

h=esh=1
h=hjo<<a,B>>—sh=hy Xp§ .12 Xpb 13
h =h1°<<a,B,Y>>—>’_l=’1_1XPk+1 X P42 ><P£+3 Xpl +4

Where k =max{n :p, divides A } (max(2)=0).
Next we give our basic definition:

DEFINITION :

transition(n,, n,, nz, ny) iff .

n=<X,01>, ny,=<X,,00>, n3=l_1, <X,,0i,>—> <X,,0,> for some configurations
. ny

<X;,00>, X;,0,> and history h.
LemMMa

Transition is a recursive predicate and thus representable in Peano Arithmetic.
PROOF : omitted (straightforward , but tedious)

To proceed we need the following list of predicates which are easily shown to be recursive.

_® init(n) iff n =<X,06>, <X,0> a initial configuration (w.r.t. u).
‘@ state(n)=m iff n =<X,0>, m=o.

® int(n) iff n =p7, m>0.

® proc(n) iff n =p'f Xpé, k,1>0.

@ proc|(n)=m iff (n =p% Xph A k,I>0 Am =p¥)

V (—proc(n) Am =0)

® proc,(n)=m iff (n =pf Xph A k, />0 Am=p})

V (—proc(n)/\m =0)

® mkint (n)=m iff m =p}+!
® mkproc(k,))=m iff (m =pX" Xpy Nk =p§" Nl =p| Nk’ ,k'>0) V(m =0A—(int (k) \int (1))

® proj(k,I,m)=n iff k =h/\n=[h]<; >, for some he{<a,f>,<a,8,y> : a, B, 'yED}'

® |n | =m iff m =max{k :p; divides n}

® clt (k,l)=m iff m =max{n :p] divides k}

® m®n =k iff (m =p\" An=p' A\ m;, n,>0A k=p'1"'+"'_‘)

V (—(int (m)Aint (n)) Nk =0)

® elem(n,m)=k iff (m =pT "' N\ 1sm'<<|n | A elt(n,m")=k)

V((wint(m)V (m=pTt 1A (m'>|n | Vm’'=0))) Ak =0).

@ newarray (k,,m)=n iff (I =p’1'+‘ A U211 Vil elt(k,iy=elt (n.i)/\ elt(n,l"Y=m)

V (—int ()N k =n). _ _ .

® before(k,))=m iff k =S, =S, m =83, before(S,5,)=S3

® gfter(k,)=m iff k =8,,1=8,, m=§; after($1,5,)=S5.

@ conc(k,l)=m iff |m|=|k|+]|I|N Vii<|k| elt(k,i)=elt(m,i)/\
Vk|<i<|m| elt(li)=elt(m,i))

e n=ygmiff n=h; \m=hy\h;=yh,,

for some h € {<a,f>,<a,B,vy> : a, B, YED) .

We call a formula arithmetical if all the terms occurring in it are built from logical variables and
arithmetical operations only.
We are going to associate with each term f and formula p such that FV(f,p)C | J Y, a arithmetical

Iisn

F

37

term Z(z) and formula p(z) such that for arbitrary », o p(¥)o) iff ep(z)(»{o /2z}) and
V{f)Igv)(a)z V(f(z)Xv{o / z}) , where we define
=1I lp,E(_i—), for g EN* >DU {w}, such that Vj=k g(j)=e.

® n-—lztlz +1
ol +in= I, EBItz
e (Pt)l, (Pt)z Er_'ocl(Pt), procz(Pt)
L At[It] =elem(At,It) _
@ ATt[It|=elem(ATt,It)
® Ck__elt(z,n +k)
i Elvar, i=pi*! _
[] <Itl,It2>= mkproc(Itl,Itz)
® nil=0
° x'l:elt (elt(z,i),))
® (At;[It]:Dty=newarra _.L(At It Dt)
® T_t_i_th—“' conc_(]_"{l,th)
® Ti[It|=elem(Tt,1t)
e (A Tt;[It]: D)= newarray (ATt It Dt)
Dr,

® <Dty,...,Dt,>= Hlp

An easy induction on the complexity of the term f shows that V' (f)(»}(o)= V(_f(z)(v{'é /z}), for arbi-
trary » and o.

This translation of terms is extended to formulae in the natural way:

for example, It; =It,= Itl ——It2,

It1<It2—mt(It1)/\ mt(Itz)/\It,<It2,

P A=t Ny

Again a straightforward induction to the complexity of p shows that for arbitrary » and o kp(»)(0) iff
PG / 2)).

Before we are able to give formulations in the assertion language of the assertions I, pre(R), post(R),
we need the following definition:

DEFINITION
Let £, be a data term (f; €Dt) and f, a integer term (/> €It) then _
[L=fo=f1=nil—fr=0A\ Vi j(i=<i,j >>f=<i,j>N\ fi=i-=f=i).
In case f) is a trace term (f, €71)

HELEIAT=ILIAVISIS|fi] filil=el (f2,0).

DEFINITION :
I can be formulated as follows:

dnq, na, n3, na(transition (nl,nz,n3,n4)/\init(nI)AI-)—’[state(nl)/z]/\

,/G\F xj-[l] =elt (elt (elt (state(n;),i),j). DA ,/E\FVI <k <C,-xj-[k 1= elt (elt (elt (state (n3),i),j), k)N
x, €F x;

A Cp=celt(state(ny),n +k)/\
1<<k<n

N VI<i<CAmh[il=mAm=yproj(ns,k,i))
1<k=<n

R
it

38

where F={h,, ... ,h,} and F'={z,: x €var(S,)}.

DEFINITION :
Pre(R) can be formulated as follows: (we assume that R occurs in the k% component of U)

3n,, n,, na, n4(transition(n1,nz,n3,n4)/\init(nI)A?[state(nl)/z]/\

before (R, S;)=elt (elt (n3,k +2n),)A | /\(S)xf[i]ieIt(eIt(elt(state(nz),k), DDA
. x; Evar (8,
/\F x [1]=elt (elt (elt (state (n3),1), /), 1))
x, EF

where F'={z,: x €var(S).

post{R) is defined analogously.

39

Appendix 4

An example: a parallel prime generator. ,

This program is a translation, modification of a program written in the language POOL by L.
Augusteijn.

The original program generates all prime numbers and is thus a non-terminating program. We have
modified the original program to make it terminating, that is we introduced a variable m such that
the program generates all prime numbers not greater than m. Let u=<C;«S;,C2¢S,> where

Sl:
c:=new(C,)
s ni=2
sdon<m - c'n;n:=n+1od
; ¢10
Sz:
/2
if p5£0 — next:=new(C,)
; do g0 — %

; if ¢ MOD p£0Vg=0 — nextlq
otherwise —> skip
fi

od
p=0-— skip
fi
We want to prove the following partial correctness assertion:
(m[1]1=2}u{V1<<i<C, plil= "' i* prime number' N\C; —1= |{p :prime(p)/\p<m[11}|}.

(for X a set | X | denotes the cardinality of X.)
We extend u to a annotated and bracketed unit u’ as follows:

S'] .

{0
<c:=new(C,)
;bool: = false

ni=2>

&

40

{¢1}

idons<m — {$}
<clnjn:=n+1>
{1}

od

{3}

; <cl0>

{¢4}

Where,

1. po=bool{i}=nil A\m{i]=2,

2. 91=clil=<2,1>Anlil<mli]+ 1 Abool[i }z%nil,
3. gy=nlilsm[i]A\clil=<2,1> NAboolli |5nil,

4. o3=nli]l=mli]+ 1 Acli]l= <2,1> Abool{i }nil,
5. pg=nlil=mli]+ 1 Aboolli J#nil.

S’z:
{0}
<Wp>;
{¥1}
if p£0 - (Yo}
<next:=new(C;)
slast 1= false >
{43}
; do g0 — {¥3}
<;r:=true>
{Ya}
; if g mod p#£A0V g =0— {5}
<nextlq;r:= false >
{43}
otherwise ~> {¥s }skip (s }
fi
{¥3}
od
{¥s}
P=0-> {ds}skip{s}
fi
{¥6}
Where,

L Yo=last{il=rlil=plil=nil,

2. Y =last[il=rli]=nil A\(p[i]=0Vpli1=i" prime number)

3. =lastli]=rlil=nil \p[i 1=i* prime number

4. ys=rlil=true—>—(prime(q[i))V qli]1=0) Anext[i]=<2,i + 1> Nlast[i]|= false,
3. yy=mnext[i]l=<2,i + 1> Ar[i]=true Nlast[i |= false,

6. Ys=@liMqgli1Vqli}=0)Anext[il=<2,i + 1> Alast[i]= false \r[i}=true,

1. Ye=r[il5true Nlast[i}=nil—p[i]=0.

We define for X a finite set of prime numbers NP(X) the least prime number greater than all the
numbers of X. Note that NP (@)=2.
Let n<]NP(X) ff n<NP(X) and Vx €EX n>x.
Next we define our global invariant I.

41

1.v1<i<c2(p[z‘]=i”’ prime number V (i =C, A\(pli]=nilVp[i}]=0))),

2. VI<i<Cy(r[i]=true \qli ;40— V1<j<i p[jliqli]),

3.VI<i<C,y(rli]l=1true Aqli 50— qlilANP ({plk:1<k<C,NAprime(p[k])}U
{qlk)i<k<C,NArlk]=true \prime(qlk]}),

4. bool [1}£nil 5>n[1J<INP ({p[i F1<i<C, A prime(p[iD}VU {qlil1<i<CyArlil=true
Aprime(qliD}),

5. bool[1]=nil->C, =0,

6. Cl =1,

7. V1<i<C,(last[i |=nile=i = C,).

I is the conjunction of the formulas 1,...,7.

Next we have to prove that these proof outlines cooperate. We have selected the following two cases,
the others are left to the reader to verify.

We prove that:

{I Ao }(c: =new(Cy);bool : = false ;n : =2)O (I Ny }.

PROOF : ,
a. INGNO<i<C,-C;=1INC,=0Ni =1 Amli]=2,
b.Ci=1AC,=0Ni =1 \m[i]=2—
Ci=1INC,+1=1Ai =1 Am[i]22A(c;[i]:<2,C, +1>)[i]=<2,C + 1> AN
VAN)(x {Co+1niDCy +1]=nil

x Evar(S’,
c. {(IN$gNO<i<C,}
(c:=new(C,))®
(CI=INC=TAI=IAmIZ2AI=<21>A A x[1]=nil) (=20 (application of A4 and

R4),
d. x—x A\ ;[1: D0 }=2/\(bool ;[i }; false)|i 1= false
e. {x}(bool:= false ;n : =2)¥) {x \bool[i|= false \n[i]=2}
(application of Al and R3),
f. {INGeNO<i<C,}(c:new(Cy);bool:= false ;n:= 2)D {xAbool[i]= false An[i]=2}
(application of R3),
g. x/\bool[i|= false Anli]l=2—1/\¢,
h. {I A }(c: =new (C3);bool : = false ;n: =2)D {1 Ay }
(application of R4).

Next we prove that:
{(INYs N3 / i1} (next \q;r = false)D|| (q;r:=true)?) {IN\Ys Aulj /i1}-

PROOF :

Let y;=last[i 1= false and {;=next|[j]=<2,j +1>Nlast /1= false.

a. INYs A\s[j /IINO<i<CoNO<j<Cp Anext[i]=<2,j>—
Il(q;l1:qli D / g, ((r5liY:false);[j :true) / r 1N Ady)

b. (I AYs Adslj / i1} (next \q)ON(2q) {(T[((r;li 1:false);[j 1:true) / A A\ }
(application of A3 and R7) .

c. {I[((r;lil:false);[j 1:true) / rIAg; Ay} (r:=false)® {I[(r;[jLtrue) / r1Ns A}
(application of Al), _

d. {I[(r;lfL:true) / rINGs A} (r:=true)? (I3 Alj / i1}

e. One application of R9 finishes the proof.

Remark:the truth of the implication mentioned in clause a. follows from the following observation; if
rli +1]=true then g[i +1] is not a prime number so

el SRR

42

NP({plk1<k<CyNplkAnil}U {glkl:i<k<CyAr[k]=true A\prime(q[k])})
equals NP({ - - - YU {qlk]:i +1<k<C,Ar[k]=true Nprime(q[k]}).
End of remark.

Applying rule 5. yields:

{IN[l /il}u {INVI<i<C 94 A\VI<i< Coys).

Now the following implications can be shown to hold:

L Ci=1IAC;=0A[1 /i] »IN\gy[1 / i]

2. I/\VIQISCN;IM NAVI<i< C2lll6—)

V1<i<C,p[i]=i" prime number N\Cy—1= |{p prime(p)A\p<m[1]}|.

Applying the rules 11, 12, 13 and 14 in that order gives us the desired result.

