
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.A. Bergstra, J.W. Klop

ACP"' : A universal axiom system for process specification

Computer Science/Department of. Software Technology Report. CS-R872S May

-- - Biblioth9ek
~VOOl'Wrsku.nMen lnfor1'1111itica

Amsterd!!lm

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the· Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

1. "
b"'!

Copyright © Stichting Mathematisch Centrum, Amsterdam

ACP 't: A UNIVERSAL AXIOM SYSTEM FOR PROCESS SPECIFICATION

J .A. Bergstra
University of Amsterdam, Department of Computer Science

P.O. Box 19268, 1000 GG Amsterdam;
State University of Utrecht, Department of Philosophy,

P.O. Box 8810, 3508 TA Utrecht.

J.W. Klop
Centre for Mathematics and Computer Science,

P.O. Box4079, 1009ABAmsterdam;
Free University, Department of Mathematics and Computer Science,

De Boele/aan 1081, 1081 HV Amsterdam.

ABSTRACT
Starting with Basic Process Algebra (BPA), an axiom system for alternative
composition(+) and sequential composition(·) of processes, we give a presentation
in several intermediate stages leading to ACP 't' Algebra of Communicating
Processes with abstraction. At each successive stage an example is given showing
that the specification power is increased. Also some graph models for the
respective axiom systems are informally presented. We conclude with the Finite
Specification Theorem for ACP 't' stating that each finitely branching, effectively
presented process (as an element of the graph model) can be specified in ACP't by
means of a finite system of guarded recursion equations.

Key words and phrases: communicating processes, process algebra, bisimulation
semantics, graph models, recursive specifications.
1985 Mathematics subject classification: 68010, 68055, 68045, 68N15.
1982 CR Categories: F.1.2, F.3.2, F.4.3, D.3.3.
Note: Partial support received from the European Communities under ESPRIT
contract 432, An Integrated Formal Approach to Industrial Software Development
(Meteor).

Report CS-R8725
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Introduction.

Following R. Milner's development of his widely known Calculus of Communicating Systems,

there have been in the last decade several approaches to an algebraic treatment of communicating

processes, or process algebra. In this paper we give a short and informal presentation of some

developments in process algebra which started five years ago at the Centre for Mathematics and

Computer Science, since two years in cooperation with the University of Amsterdam and the State

University of Utrecht. Most of the present paper can be found in the more complete survey

BK[86b] of this work, where the subjects of specification and verification of processes are treated

in so-called bisimulation semantics. Here, we adopt a further restriction by concentrating on the

specification issue. We start with a very simple axiom system for processes called Basic Process

Algebra, in which no communication facilities are present. This system is interesting as it is a

nucleus for all process axiom systems that are devised and analyzed in the 'Algebra of

Communicating Processes', and also because it provides a link with the classical and successful

theory of formal languages, in particular where regular languages and context-free languages are

concerned. In Section 2 we explain this link. Next, we introduce more and more operators, leading

first to the axiom system ACP (Algebra of Communicating Processes) where communication

between processes is possible, and finally to ACP 't (Algebra of Communicating Processes with

abstraction). Examples are given showing that the successive extensions yield more and more

specification power; and a culmination point is the Finite Specification Theorem for ACP 't' stating

that every finitely branching, effectively presented process can be specified in ACP't by a finite

system of recursion equations. Of course, an algebraic system for processes is only really

interesting and useful if also sufficient facilities for process verification are present. These require

an extension with some infinitary proof rules which will not be discussed here; for these, see the

full version of this paper BK[86b]. We refer also to the same paper for a more extensive list of

References than the one below.

1. Basic Process Algebra.

The kernel of all axiom systems for processes that we will consider, is Basic Process Algebra. Not

only for that reason an analysis of BPA and its models is worth-while, but also because it presents

a new angle on some old questions in the theory of formal languages, in particular about

context-free languages and deterministic push-down automata. First let us explain what is meant by

'processes'.

The processes that we will consider are capable of performing atomic steps or actions

a,b,c,. . ., with the idealization that these actions are events without positive duration in time; it takes

only one moment to execute an action. The actions are combined into composite processes by the

operations+ and ., with the interpretation that (a+b)·c is the process that first chooses between

executing a orb and, second, performs the action c after which it is finished. (We will often

suppress the dot and write (a+b)c.) These operations, alternative composition and sequential

composition (or just sum and product), are the basic constructors of processes. Since time has a

direction, multiplication is not commutative; but addition is, and in fact it is stipulated that the

options (summands) possible at some stage of the process form a set. Formally, we will require

2

that processes x,y, ... satisfy the following axioms:

BPA

x+y=y+x

(x+y)+z = x+(y+z)

x+x=x

(x+y)z = xz+yz

(xy)z = x(yz)

Table 1

In the Introduction we used the term 'process algebra' in the generic sense of denoting the area of

algebraic approaches to concurrency, but we will also adopt the following technical meaning for it:

any model of these axioms will be a process algebra. The simplest process algebra is the term

model of BPA, whose elements are EPA-expressions (built from the atoms a,b,c, ... by means of

the basic constructors) modulo the equality generated by the axioms. The term model itself (let us

call it 1I') is not very exciting: it contains only finite processes. In order to specify also infinite

processes, we introduce recursion variables X,Y,Z, Using these, one can specify the process

aaaaaa (performing infinitely many consecutive a-steps) by the recursion equation X = aX;

indeed, by 'unwinding' we have X = aX = aaX = aaaX = In general, we will admit

simultaneous recursion, i.e. systems of recursion equations; a non-trivial example is the following

specification of the process behaviour of a Stack with data 0, 1:

STACK

Figure 1

x = oJ..YX + 1J..zx

Y = 01' + OJ..YY + lJ..zy

z = 1 t + OJ.. YZ + 1 J..zz

Table2

Stack

3

Here oj, and oi are the actions 'push O' and 'pop O', respectively; likewise for 1. To see that this

system of recursion equations (or rather, its first component X) really specifies a stack behaviour,

one may consider Figure 1. It is not hard to imagine how such a process graph (a rooted, directed,

connected, labeled graph) can be associated to a system of recursion equations; we will not give a

formal definition here. Actually, one can use such process graphs and build various models (graph

models) for BPA from them; this will be discussed now.

2. Graph models for BPA.

Let G be the set of all at most countably branching process graphs g,h, ... over the action alphabet

A = {a,b,c, ... }. (I.e. a node in such a graph may have at most countably many one-step

successors.) On G we define operations +and·: g·h is the result of appending (the root of) hat

each termination node of g, and g + h is the result of identifying the roots of g and h. (To be more

precise, we first have to unwind g,h a little bit so as to make their roots 'acyclic', otherwise the

sum would not have the intended interpretation of making an irreversible choice.) Letting a be the

graph consisting of a single arrow with label a, we now have a structure G. = G(+; ,a,b,c, ...)

which corresponds to the signature of BP A. But it is not a model of BP A. For instance the law

x + x = x does not hold in G., since a + a is not the same as a; the former is a graph with two

arrows and the latter has one arrow.

Here we need the fundamental notion of D. Park, called bisimulation equivalence or

bisimilarity. Two graphs g,h are bisimilar if there is a matching between their nodes (i.e. a binary

relation with domain the set of nodes of g, and codomain the set of nodes of h) such that (1) the

roots are matched; (2) if nodes s,t in g,h respectively are matched and an a-step is possible from s

to some s' then in h an a-step is possible from t to some t' such that s' and t' again are matched; (3)

likewise with the roles of g,h reversed. A matching satisfying (1-3) is a bisimulation. An example

is given in Figure 2, where (part of) the matching is explicitly displayed; another example is in

Figure 3 where the matching is between each pair of nodes on the same horizontal level.

g:

Figure2

g:

a

c b

a d

(a)

Figure3

4

(b)

We use the notation g ti h to express that g,h are bisimilar. Now one proves that ti is not only an

equivalence on G, but even a congruence on et. Thus the quotient G = G./ti is well-defined, and it

is a model of BPA. (G has constants a= a/ti etc., and operations+,· defined by g + lln = (g +

h)/ti for g = g/ti and lln = h/ti; likewise for·. Henceforth we will confuse the syntactic+,. and

the semantic +,·.)

Even more, G is a very nice model of BP A: all systems of recursion equations in the syntax

of BPA have a solution in G, and systems of guarded recursion equations like in Table 1 have

moreover a unique solution. 'Guarded' means that in the right-hand sides of the recursion

equations no recursion variable can be accessed without passing an atomic action. (E.g. X = a + X

is not a guarded equation; it has many solutions.)

Some submodels (all satisfying the axioms of BP A) of G are of interest: Gfb, built from

finitely branching process graphs; R, built from finite (but possibly cycle-containing) graphs; and

JF, built from finite and acyclic graphs. Also Gfb has the property of providing unique solutions for

systems of guarded recursion equations. Without the condition of guardedness, there need not be

solutions: the equation

X=Xa+a

cannot be solved in Gfb. In the model R of regular processes one can always find unique solutions

for guarded recursion equations provided they are linear, that is, the expressions (terms) in the

equations may only be built by sum and a restricted form of product called prefix multiplication a·s

('a' an atom, s a general expression) which excludes products of recursion variables as in Table 1.

For a complete proof system for regular processes, see Ma[87].

Example: {X = aX + bY, Y = cX + dY} is a linear system; {X = aXX + bY, Y = cX + dYXY} is

not.

5

The model R contains the finite-state processes; hence the notation R for 'regular' as in formal

language theory. Finally, lF contains only finite processes and is in fact isomorphic to the term

model '1r.

Some systems of recursion equations should be taken as equivalent. Clearly, X = aX and X

= aaX specify the same process in G. Less clearly, the two systems

E1 = {X =a+ bYX, Y = c + dXY}

E2 = {X= a+ bU, U=cX+ dZX, Y=c+ dZ, Z= aY + bUY}

are equivalent in this sense: E1 specifies the process graph in Figure 3a above, and Ez specifies the

graph in Figure 3b. Moreover, as we already saw, these two graphs are bisimilar. So E1 and E2

denote the same process in G. So the question arises: Is equivalence of recursion equations over

BP A , relative to the graph model G, decidable? At the moment this question is wide open. There

is an interesting connection here with context-free languages, as follows. A guarded system of

recursion equations over BPA corresponds in an obvious way (for details see BBK [86]) to a

context-free grammar (CFG) in Greibach Normal Form, and vice versa. Hence each context-free

language (CFL) can be obtained as the set of finite traces of a process in G denoted by a system of

guarded recursion equations. (A finite trace is the word obtained by following a path from the root

to a termination node.) In fact, to generate a CFL it is sufficient to look at certain restricted systems

of recursion equations called 'normed'. A system is normed if in every state (of the corresponding

process) there is a possibility to terminate. E.g. X = aX is not normed, but X = b + aX is. There is

a simple syntactic check to determine whether a system is normed or not. Clearly, the property

'normed' also pertains to process graphs. In BBK [86] it is proved that the equivalence problem

stated above is solvable for such normed systems. This is rather surprising in view of the

well-known fact that the equality problem for CFLs is unsolvable. The point is that the process

semantics in G of a CFG bears much more information than the trace set semantics, which is an

abstraction from the process semantics.

The link with deterministic context-free languages resides in the following observation from

BBK [86]:

2.1. THEOREM. Let g,h E G be two normed and deterministic process graphs. Then g ~ h if! g

and h have the same sets of finite traces.

Here a graph is 'deterministic' if two arrows leaving the same node always have different label.

The CFL (i.e. the set of finite traces) determined by a normed and deterministic graph,

corresponding to a system of guarded recursion equations in BP A, is known as a simple CFL; the

simple CFLs form a proper subclass of the deterministic CFLs.

Summarizing, we can state that BPA and its graph model obtained via the concept of

bisimulatiC'Jn provide a new angle on some problems in the theory of formal languages, concerned

with context-free languages. Here we think especially of deterministic context-free languages

(DCFLs), obtained by deterministic push-down automata, with the well-known open problem

whether the equality problem for DCFLs is solvable. Thus, even in the absence of the many

6

operators for parallellism, abstraction etc. which are still to be introduced below, we have in BPA
and its models an interesting theory with potential implications for the DCFL problem.

3. Deadlock.
After the excursion to semantics in the preceding section we return to the development of more
syntax for processes. A vital element in the present set-up of process algebra is the process o,
signifying 'deadlock'. The process ab performs its two steps and then terminates, succesfully; but
the process abo deadlocks after the a- and b-action: it wants to do a proper (i.e. non-o) action but it
cannot. So o is the acknowledgement of stagnation. With this in mind, the axioms to which o is
subject, may be clear:

o+x=x
O·X= 0

Table3

The axiom system of BPA (Table 1) together with the present axioms for o is called BP A0. We are
now in a position to motivate the absence in BPA of the 'other' distributive law: z(x+y) = zx+zy.
For, suppose it would be added. Then ab = a(b + o) = ab + ao. This means that a process with
deadlock possibility is equal to one without, conflicting with our intention to model also deadlock
behaviour of processes.

The essential role of the new process o will only be fully appreciated after the introduction of
communication, below.

4. The merge operator.
If x,y are processes, their 'parallel composition' x II y is the process that first chooses whether to
do a step in x or in y, and proceeds as the parallel composition of the remainders of x,y. In other
words, the steps of x,y are interleaved or merged. Using an auxiliary operator lL (with the
interpretation that x lL y is like x II y but with the commitment of choosing the initial step from x)
the operation II can be succinctly defined by the axioms:

xlly = x[Ly+y[Lx
ax lL y = a(x II y)

a lL y = ay
(x + y) lL z = x lL z + y lL z

Table4

The system of nine axioms consisting of BP A and the four axioms for merge will be called PA.
Moreover, if the axioms for o are added, the result will be PA0. The operators II and lL will also be

7

called merge and left-merge respectively.

The merge operator corresponds to what in the theory of formal languages is called shuffle.

The shuffle of the words ab and cd there is the set of words { abcd, acbd, cabd, acdb, cadb, cdab}.

Merging the processes ab and cd yields:

abllcd = ab!Lcd + cd!Lab = a(bllcd) + c(dllab) = a(b!Lcd + cd!Lb) + c(d!Lab + ab!Ld) =

a(bcd + c(dllb)) + c(dab + a(blld)) = a(bcd + c(db+bd)) + c(dab + a(bd+db)),

a process having as trace set the shuffle above.

An example of a process recursively defined in PA, is: X = a(bllX). It turns out that this

process can already be defined in BP A, by the system of recursion equations

{X=aYX, Y=b+aYY}.

To see that both ways of defining X yield the same process, one may 'unwind' according to the

given equations:

X = a(bllX) = a(blLX + X!Lb) = a(bX + a(bllX) IL b) = a(bX + a((bllX)llb))

= a(bX +a ...),

while on the other hand

X = aYX = a(b + aYY)X = a(bX + aYYX) = a(bX +a ...).

So at least up to level 2 the processes are equal. By further unwinding they can be proved equal up

to each finite level.

Yet there are processes definable in PA but not in BPA. An example (from BK[84]) of such

a process is given by the recursion equation

x = oi-coi II x) + 1 J--(1 i II X)

describing the process behaviour of a Bag (or multi.set), in which arbitrarily many instances of the

data 0,1 can be inserted (the actions OJ-, 1J, respectively) or retrieved (Oi, 1 i), with the restriction

that no more O's and 1 's can taken from the Bag than first were put in. The difference with a Stack

or a Queue is that all order between incoming and outgoing O's and 1 's is lost. The process graph

corresponding to the process Bag is as in Figure 4.

We conclude this section about PA by mentioning the following fact (see BK[84]), which is

useful for establishing non-definability results:

4.1.THEOREM. Every process which is recursively defined in PA and has an infinite trace, has an

eventually periodic trace.

8

ot ot

1t

Bag

Figure4

5. Communication.
So far, the parallel composition or merge (II) did not involve communication in the process xlly:
one could say that x and y are 'freely' merged. However, some actions in one process may need an
action in another process for an actual execution, like the act of shaking hands requires
simultaneous acts of two persons. In fact, 'hand shaking' is the paradigm for the type of
communication which we will introduce now. If A= {a,b,c, ... ,o} is the action alphabet, let us
adopt a binary communication function I : A x A ~ A satisfying the axioms in Table 5.

alb=bla

(alb)lc=al(blc)

ola=o

Table5

Here a,b vary over A, including o. We can now specify merge with communication; we use the
same notation II as for the 'free' merge in Section 4 since in fact 'free' merge is an instance of
merge with communication, by choosing the communication function trivial, i.e. a I b = o for all a,b
E A. There are now two auxiliary operators, allowing a finite axiomatisation: left-merge <IU as
before and I (communication merge or simply 'bar'), which is an extension of the communication
function in Table 5 to all processes, not only the atoms. The axioms for II and its auxiliary
operators are given in Table 6. ,,

g

x 11 y = xlly + yllx + x I y

ax lL y = a(xlly)

a lL y = ay

(x + y)[J_z = xllz + y[J_z

ax lb= (alb)x

al bx= (alb)x

ax lby = (alb)(xlly)

(x+y) I z = x I z + y I z

x I (y+z) = x I y + x I z

Table6

We also need the so-called encapsulation operators aH (for every H ~ A) for removing

unsuccessful attempts at communication:

aH (a) = a if a ~ H

aH (a)= ()if a EH

aH (x+y) = aH (x) + aH (y)

aH (xy) = aH (x)·dH (y)

Table?

These axioms express that aH 'kills' all atoms mentioned in H, by replacing them with o. The

axioms for BPA, DEADLOCK together with the present ones in Tables 5-7 constitute the axiom

system ACP (Algebra of Communicating Processes). Typically, a system of communicating

processes Xi····•xn is now represented in ACP by the expression aH(x1ll ... ll~). Prefixing the

encapsulation operator says that the system x1, ... ,~ is to be perceived as a separate unit w.r.t. the

communication actions mentioned in H; no communications between actions in H with an

environment are expected or intended.

A useful theorem to break down such expressions is the Expansion Theorem (first

formulated by Milner, for the case of CCS; see Mi[80]) which holds under the assumption of the

handshaking axiom x I y I z = o. This axiom says that all communications are binary. (In fact we

have to require associativity of 'II' first- see Table 8.)

5.1. EXPANSION THEOREM.

Here xki denotes the merge of x1 , ... ,xk except xi, and xki,j denotes the same merge except xi,xj (k

2 3). For instance, fork = 3:

10

xllyllz = xll_(y!lz) + yll_(xllx) + zll_(x!ly) + (y lz)ll_x + (z lx)ll_y + (x ly)ll_z.

In order to prove the Expansion Theorem, one first proves by simultaneous induction on term

complexity that for all closed ACP-terms (i.e. ACP-terms without free variables) the following

axioms of standard concurrency hold:

(xll_y)ll_z = xll_(yllz)

(x I y)ll_z = x I (yll_z)

xly=ylx

xlly = yllx

xl(ylz)=(xly)lz

x!l(y!lz) = (xlly)llz

Table8

As in Section 2 one can construct graph models G, Gfb, JR., lF for ACP; in these models the

axioms in Table 8 are valid. (We will discuss the construction of these models in Section 7.) It is

however also possible to construct 'non-standard' models of ACP in which these axioms do not

hold. We will not be interested in such pathological models.

The defining power of ACP is strictly greater than that of PA. The following is an example

(from BK[84]) of a process U, recursively defined in ACP, but not definable in PA: let the alphabet

be {a,b,c,d,C>} and let the communication function be given by clc =a, did= b, and all other

communications equal to C>. Let H = {c,d}. Now we recursively define the process U as in Table 9:

U = dH (dcYllZ)

X=cXc+d

Y=dXY

Z=dXcZ

Table9

for~ l, a.straightforward computation shows that

11

By Theorem 4.1, U is not definable in PA, since the one infinite trace of U is not eventually

periodic.

We will often adopt a special format for the communication function, called read-write

communication. Let a finite set D of data d and a set { l ,. . .,p} of ports be given. Then the alphabet

consists of read actions ri(d) and write actions wi(d), for i = 1,. . .,p and de D. The interpretation

is: read datum d at port i, respectively write datum d at port i. Furthermore, the alphabet contains

actions ci(d) for i = 1,. . .,p and de D, with interpretation: communicated at i. These actions will

be called transactions. The only non-trivial communications (i.e. not resulting in o) are: wi(d) I ri(d)

= ci(d). Instead of wi(d) we will also use the notation si(d) (send d along i).Note that read-write

communication satisfies the hand-shaking axiom: all communications are binary.

5.1. EXAMPLE. Using the present read-write communication format we can write the recursion

equation for a Bag B12 (cf. Section 4) which reads data de D at port 1 and writes them at port 2 as

follows:

B12 = LcteD rl(d)(w2(d) II B12).

6. Abstraction.

A fundamental issue in the design and specification of hierarchical (or modularized) systems of

communicating processes is abstraction. Without having an abstraction mechanism enabling us to

abstract from the inner workings of modules to be composed to larger systems, specification of all

but very small systems would be virtually impossible. We will now extend the axiom system ACP,

obtained thus far, with such an abstraction mechanism.

Consider two Bags B12, B23 (cf. Example 5.1) with action alphabets {rl(d), s2(d) I de D}

and {r2(d), s3(d) I de D}, respectively. That is, B12 is a bag-like channel reading data d at port 1,

sending them at port 2; B23 reads data at 2 and sends them to 3. (That the channels are bags means

that, unlike the case of a queue, the order of incoming data is lost in the transmission.) Suppose the

bags are connected at port 2; so we adopt communications s2(d) I r2(d) = c2(d) where c2(d) is the

transaction of d at 2.

l••· ·.·····~.······.·.~f•...... ························•·.! 3
·•/<< 'k3 -

transparent Bag lB\
13

Figures

The composite system IBl13 = ()H(B 12 ll B 23) where H = {s2(d), r2(d) I deD}, should, intuitively,

be again a.)3ag between ports 1,3. However, some (rather involved) calculations learn that

JB\13 = LcteD rl(d)·((c2(d)-s3(d)) II IB113).

12

So JB13 is a 'transparent' Bag: the passage of d through 2 is visible as the transaction event c2(d).
(Note that this terminology conflicts with the usual one in the area of computer networks, where a
network is called transparent if the internal structure is not visible.)

How can we abstract from such internal events, if we are only interested in the external
behaviour at 1,3? The first step to obtain such an abstraction is to remove the distinctive identity of
the actions to be abstracted, that is, to rename them all into one designated action which we call,
after Milner, 't: the silent action. This renaming is realised by the abstraction operator 't1,
parameterized by a set of actions I k A and subject to the following axioms:

't1 ('t) = 't

't1 (a)= aif a~ I

't1 (a) = 't if a E I

't1 (x+y) = 't1 (x) + 't1 (y)

't1 (xy) = 't1 (x)·'t1 (y)

Table 10

The second step is to attempt to devise axioms for the silent step 't by means of which 't can be
removed from expressions, as e.g. in the equation a'tb = ab. However, it is not possible to remove
all 't's in an expression if one is interested in a faithful description of deadlock behaviour of
processes (at least in bisimulation semantics, the framework adopted in this paper). For, consider
the process (expression) a+ 'tO; this process can deadlock, namely if it chooses to perform the
silent action. Now, if one would propose naively the equations 'tX = x't = x, then a + 'tO = a + o = a
, and the latter process has no deadlock possibility. It turns out that one of the proposed equations,
x't = x, can safely be adopted, but the other one is wrong. Fortunately, R. Milner has devised some
simple axioms which give a complete description of the properties of the silent step (complete w.r.t
a certain semantical notion of process equivalence called no-bisimulation, which does respect
deadlock behaviour; this notion is discussed in the sequel), as follows.

X't =x

'tX='tx+x

a('tx + y) =a('tX + y) + ax

Table 11

To return to our example of the 'transparent' Bag JB13, after abstraction of the set of transactions I

= { c2(d) ! dE D} the result is indeed an 'ordinary' Bag:

't1ClB13) =

't1(LdeD rl(d)(c2(d).s3(d) II JB13)) = (*)

13

LcteD rl(d)('t·s3(d) II 't1(1B13)) =
L, deD (rl(d)· 't·s3(d)) !L 't1(IB13) =
L, deD (rl(d).s3(d))ll_ -c1(1B 1:;) =
L deD rl(d)(s3(d)ll 't1(1B13))

from which it follows that 't1(1B 13) = B13 (**),the Bag defined by

B13 = L, deD rl(d)(s3(d) 11 B13).

Here we were able to eliminate all silent actions, but this will not always be the case; for instance,
'chaining' two Stacks instead of Bags as in Figure 5 yields a process with 'essential' 't-steps.
Likewise for a Bag followed by a Stack. (Here 'essential' means: non-removable in bisimulation
semantics.) In fact, the computation above is not as straightforward as was suggested: to justify
the equations marked with (*) and (**) we need additional proof principles. As to (**), this
equation is justified by the Recursive Specification Principle (RSP) stating that a guarded system of
recursion equations in which no abstraction operator -c1 appears, has a unique solution. We will not
discuss the justification of equation (*) here. The justification of a principle like RSP is that it is
valid in all 'sensible' models of our axioms; however note that for formal computations one has to
postulate such a principle explicitly.

Combining all the axioms presented above in Tables l,3,4,5,6,7,10,ll and a few axioms
specifying the interaction between 't and communication merge I , we have arrived at the system
ACP 't' Algebra of Communicating Processes with abstraction (see Table 12).

x+y=y+x Al X't= X Tl
x + (y + z) = (x + y) + z A2 'tX+X='tX T2
x+x=x A3 a('tX + y) = a(n + y) + ax T3
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x+o=x A6
OX=O A7

alb=bla Cl
(a I b) I c =a I (b I c) C2
ola=o C3

xlly=x[Ly+y lL x+xJy CMl
a [Lx=ax CM2 't[LX='tX TMl
ax lL y = a(xlly) CM3 'tX lL Y = 't(xlly) TM2
(x + y) lL z = x lL z + y lL z CM4 'tlx=o TCl
axlb=(alb)x CM5 xl't=o TC2
albx=(alb)x CM6 uly=xly TC3
ax I by= (a I b)(xl!y) CM7 xl-ty= xly TC4
<x + y) I z = x I z + y I z CM8
x I <Y + z) = x I y + x I z CM9 ~('t)='t DT

'tl ('t) = 't Tll
~('a)= a if a~H D1 'tl (a) = a if ad TI2
~(a)= o ifaeH D2 'tl (a)= 't if ael TI3
ClH (x+y) = ClH (x) + ClH (y) D3 't1 (x + Y) = 'tl (x) + 'tl (y) TI4
ClH (xy) = ~ (x)·~ (y) D4 'tl (xy) = 'tl (x)-'tl (y) TIS

Table 12: ACP't

14

Actually, in spite of our restriction to specification of processes as stated in the Introduction,

the last computation concerned a very simple process verification, showing that the combined

system has the desired external behaviour of a Bag. Abstraction, realized in ACP 't by the

abstraction operator and the silent process 't, clearly is of crucial importance for process

verification. But also for process specification abstraction is important. Let f: N -7 {a,b} be a

sequence of a,b, and let Pr be the proces f(O}f(l}f(2} , that is: the unique solution of the

infinite system of recursion equations {Xn = f(n)-~+1 1 n ~ O}. Now:

6.1. THEOREM. There is a computable function f such that process Pr is not definable by a finite

system of recursion equations in ACP 't without abstraction operator.

7. Graph models for ACP't.

We will now construct graph models for ACP't, in analogy with the construction of these models

for BPA in Section 2. Again we start with a domain of at most countably branching process graphs

G, the only difference being that arrows may now also bear label 't and o. (Par abus de langage we

use the same notation G.) Next, we define on Gin addition to+; operations II. lL I. 't1, aH

corresponding to the syntactic operations II, [L, I , 't1, aH. We will only discuss the definition of the

first operation II. Let ab and cd be two process graphs as in Figure 6, and suppose there are

communications a Id = f and b I c = g, all other communications being trivial (i.e. resulting in o).
Then ab II cd is the process graph indicated in Figure 6, a cartesian product with diagonal edges for

the succesful communications.

g: a b

h: gllh:

c

d

0
Figure6

We now have a structure G.= G(+;, II, ll_, I, 't1, aH,'t,O,a,b,c, ...), which is not yet a model

of ACP 't but becomes so after dividing out the congruence no-bisimilarity (notation: ~rrS)• a

generalization of 'ordinary' bisimilarity ~ as in Section 2. Here we say that g ~rrs h if there is a

relation between the nodes of g and the nodes ofh such that (1) the roots are related, (2) a non-root

node is only related to non-root nodes, (3) if nodes s,t in g,h respectively are related and there is in

15

Example of r ID-bisimulation: nodes of the same colour are related

Figure?

g an a-step from s to some s', then there is in g a path 't't't .. :tau .. :t (i.e. zero or more 't-steps

followed by an a-step followed by zero or more 't-steps) from t to some t' such that s' and t' are

again related, (4) as (3) with the roles of g,h interchanged. (See for an example of such a

f'to-bisimulation Figure 7.) Again, this equivalence is a congruence on Ci and putting G = Ci/~rto
we have a model for ACP -r• in which all systems of guarded recursion equations have a solution,

and even a unique solution if abstraction operators are absent from the system.

As before in Section 2, G has submodels JR., lF (regular and finite processes, respectively).

Remarkably, as observed in BBK[85], there is no model Gfb based on all finitely branching graphs

now. (For ACP such a model does exist.) The reason is that there is no structure Cifb, as G fb is not

closed under the operations II. lL I. 1:1. The auxiliary operator I is the culprit here.

8. The finite specification theorem.

ACP -r is a powerful specification mechanism; in a sense it is a universal specification mechanism:

every finitely branching, computable process in the graph model G can be finitely specified in

ACP-r. (We use the word 'specification' for: 'system of recursion equations'.) We have to be more

precise about the notion of' computable process'. First, an intuitive explanation: suppose a finitely

branching process graph g E G is actually given; the labels may include 't, and there may be even

infinite 't-traces. That g is 'actually' given means that the process graph g must be 'computable': g

can be described by some coding of the nodes in natural numbers and recursive functions giving

in-degree, out-degree, edge-labels, etc. This notion of a computable process graph is rather

obvious, and we will not give details of the definition here.

Now even if the computable graph g is an infinite process graph, it can trivially be specified by

an infinite computable specification, as follows. First rename all 't-edges in g tot-edges, for a

'fresh' atom t. Call the resulting process graph: gr Next assign to each nodes of g1 a recursion

variable X
8

and write down the recursion equation for X8 according to the outgoing edges of node

s. Let X80 be the variable corresponding to the root s0 of g1. As g is computable, g1 is computable

and the resulting 'direct' specification

16

is evidently also computable (i.e.: the nodes can be numbered assn (~0), and after coding the
sequence en of codes of equations En: X8n = T8n(X) is a computable sequence). Now the infinite
specification which uniquely determines g, is simply: {Y = 't{t}(X80)} u E. In fact all
specifications below will have the form {X = 't1(X0), ~ = Tn(X) In~ O} where the guarded
expressions Tn(X) (= Tn(Xil•···•Xin)) contain no abstraction operators 'tJ· They may contain all
other process operators. We will say that such specifications have restricted abstraction.

However, we want more than a computable infinite specification with restricted abstraction: to
describe process graph g we would like to find afinite specification with restricted abstraction for
g. Indeed this is possible:

8.1. FINITE SPECIFICATION THEOREM. Let the finitely branching and computable process graph g
determine gin the graph model G of ACP't. Then there is a finite specification with restricted
abstraction E in ACP't such that [E] =g. Here [E] is the solution ofE in G.

The proof in BBK[85] is by constructing a Turing machine in ACP't; the 'tape' is obtained by
glueing together two Stacks as defined in Table 2. There does not seem to be an essential difficulty
in removing the condition 'finitely branching' in the theorem, in favour of 'at most countably
branching'.

9. Concluding remarks.

Even though the Finite Specification Theorem declares the set of operators of ACP 't to be sufficient
for all specifications, in practice one will need more operators to make specifications not only
theoretically but also practically possible. Therefore some additional operators have been defined
and studied in the present branch of process algebra, notably an operator by means of which
different priorities can be given to different atomic actions, and a state operator taking into account
information from a suitable state space. For these developments we refer to BK[86b]. Lately, some
thorough studies have been made about extending ACP 't with some new constants: E for the empty
process and 11 for an alternative to the silent step 't (Vr[86], BG[87]). The typical equation here is 't
= 11 +E.

A substantial amount of effort has been invested in extending ACP 't to a suitable framework
also for process verification, which was hardly discussed in the present paper. Process
verifications have been realized now for several non-trivial protocols (Va[86], KM[86]), and
recently also for some systolic algorithms (KW[87], W[87]).

Finally we mention that bisimulation semantics, as adopted in the present paper, is by no
means the only process semantics. It is possible to identify many processes which are different in
bisimulation semantics while still retaining an adequate description of relevant aspects such as
deadlock behaviour, leading for instance to readiness semantics or failure semantics, embodying
different views on processes. For a study in this area we refer to BK0[86]. For an investigation of
models of ACP 't based on Petri Nets, see GV[87].

17

References.

(For a more extensive list of References see BK[86b].

BBK[85] J.C.M. Baeten, J.A. Bergstra & J.W. Klop, On the consistency of Koomen's Fair Abstraction Rule,
CWI Report CS-R851 l,Amsterdam 1985. To appear in TCS 51 (1/2).

BBK[86] J.C.M. Baeten, J.A. Bergstra & J.W. Klop, Decidability of bisimulation equivalence for processes
generating context-free languages, CWI Report CS-R8632, Centre of Mathematics and Computer
Science, Amsterdam 1986. To appear in the Proceedings of the PARLE conference, Eindhoven 1987.

BG[87] J.C.M. Baeten & R.J. van Glabbeek, Abstraction and empty process in process algebra, CWI Report
CS-R8721, Centre of Mathematics and Computer Science, Amsterdam, 1987. To appear in the
Proceedings of 14th ICALP 87, Karlsruhe.

BK[84] J.A. Bergstra & J.W. Klop, The algebra of recurively defined processes and the algebra of regular
processes, in: Proc. llth ICALP (ed. J. Paredaens), Antwerpen 1984, Springer LNCS 172, p.82-95,
1984.

BK[86a] J.A. Bergstra & J.W. Klop, Algebra of communicating processes, in: CWI Monographs I, Proceedings
of the CWI Symposium Mathematics and Computer Science (eds. J.W. de Bakker, M.Hazewinkel &
J.K.Lenstra), North-Holland, Amsterdam, 1986, p.89-138.

BK[86b] J.A. Bergstra & J.W. Klop, Process algebra: specification and verification in bisimulation semantics, in:
CWI Monograph 4, Proceedings of the CWI Symposium Mathematics and Computer Science II (eds. M.
Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens), North-Holland, Amsterdam 1986, p.61-94.

BK0[86] J.A. Bergstra, J.W. Klop & E.-R. Olderog, Failures without chaos: a new process semantics for fair
abstraction, FVI Report 86-08, Computer Science Department, University of Amsterdam 1986, also
CWI Report CS-R8624, Centre of Mathematics and Computer Science, Amsterdam 1986. To appear in:
Proceedings IFIP Conference on Formal Description of Programming Concepts, Gl. Avemaes 1986 (ed.
M. Wirsing), North-Holland.

GV[87] R.J. van Glabbeek & F .W. V aandrager, Petri net models for algebraic theories of concurrency, to appear
in: Proc. PARLE Conference, Eindhoven 1987, Springer Lecture Notes in Computer Science.

KM[86] C.P.J. Koymans & J.C. Mulder, A modular approach to protocol verification using process algebra,
Logic Group Preprint Series Nr.6, Dept. of Philosophy, State University of Utrecht, 1986.

KW[87] L. Kossen & W.P.Weijland, Correctness proofs for systolic algorithms: palindromes and sorting, Report
FVI 87-04, Computer Science Department, University of Amsterdam, 1987.

Ma[87] S. Mauw, A constructive version of the Approximation Induction Principle, Report FVI 87-09,
Computer Science Department, University of Amsterdam, 1987.

Mi[80] R. Milner, A calculus of communicating systems, Springer LNCS 92, 1980.

Va[86] F.W. Vaandrager, Verification of two communication protocols by means of process algebra, CWl
Report CS-R8608, Centre for Mathematics and Computer Science, Amsterdam 1986.

W[87] W.P.Weijland, A systolic algorithm for matrix-vector multiplication, Report FVI 87-08, Computer
Science Department, University of Amsterdam, 1987.

Vr[86] J.L.M. Vrancken, The A.lgebra of Communicating Processes with empty process, Report FVI 86-01,
Computer Science Department, University of Amsterdam, 1986.

