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Introduction. 

Following R. Milner's development of his widely known Calculus of Communicating Systems, 

there have been in the last decade several approaches to an algebraic treatment of communicating 

processes, or process algebra. In this paper we give a short and informal presentation of some 

developments in process algebra which started five years ago at the Centre for Mathematics and 

Computer Science, since two years in cooperation with the University of Amsterdam and the State 

University of Utrecht. Most of the present paper can be found in the more complete survey 

BK[86b] of this work, where the subjects of specification and verification of processes are treated 

in so-called bisimulation semantics. Here, we adopt a further restriction by concentrating on the 

specification issue. We start with a very simple axiom system for processes called Basic Process 

Algebra, in which no communication facilities are present. This system is interesting as it is a 

nucleus for all process axiom systems that are devised and analyzed in the 'Algebra of 

Communicating Processes', and also because it provides a link with the classical and successful 

theory of formal languages, in particular where regular languages and context-free languages are 

concerned. In Section 2 we explain this link. Next, we introduce more and more operators, leading 

first to the axiom system ACP (Algebra of Communicating Processes) where communication 

between processes is possible, and finally to ACP 't ( Algebra of Communicating Processes with 

abstraction). Examples are given showing that the successive extensions yield more and more 

specification power; and a culmination point is the Finite Specification Theorem for ACP 't' stating 

that every finitely branching, effectively presented process can be specified in ACP't by a finite 

system of recursion equations. Of course, an algebraic system for processes is only really 

interesting and useful if also sufficient facilities for process verification are present. These require 

an extension with some infinitary proof rules which will not be discussed here; for these, see the 

full version of this paper BK[86b]. We refer also to the same paper for a more extensive list of 

References than the one below. 

1. Basic Process Algebra. 

The kernel of all axiom systems for processes that we will consider, is Basic Process Algebra. Not 

only for that reason an analysis of BPA and its models is worth-while, but also because it presents 

a new angle on some old questions in the theory of formal languages, in particular about 

context-free languages and deterministic push-down automata. First let us explain what is meant by 

'processes'. 

The processes that we will consider are capable of performing atomic steps or actions 

a,b,c,. . ., with the idealization that these actions are events without positive duration in time; it takes 

only one moment to execute an action. The actions are combined into composite processes by the 

operations+ and ., with the interpretation that (a+b)·c is the process that first chooses between 

executing a orb and, second, performs the action c after which it is finished. (We will often 

suppress the dot and write (a+b)c.) These operations, alternative composition and sequential 

composition (or just sum and product), are the basic constructors of processes. Since time has a 

direction, multiplication is not commutative; but addition is, and in fact it is stipulated that the 

options (summands) possible at some stage of the process form a set. Formally, we will require 
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that processes x,y, ... satisfy the following axioms: 

BPA 

x+y=y+x 

(x+y)+z = x+(y+z) 

x+x=x 

(x+y)z = xz+yz 

(xy)z = x(yz) 

Table 1 

In the Introduction we used the term 'process algebra' in the generic sense of denoting the area of 

algebraic approaches to concurrency, but we will also adopt the following technical meaning for it: 

any model of these axioms will be a process algebra. The simplest process algebra is the term 

model of BPA, whose elements are EPA-expressions (built from the atoms a,b,c, ... by means of 

the basic constructors) modulo the equality generated by the axioms. The term model itself (let us 

call it 1I') is not very exciting: it contains only finite processes. In order to specify also infinite 

processes, we introduce recursion variables X,Y,Z, .... Using these, one can specify the process 

aaaaaa .... (performing infinitely many consecutive a-steps) by the recursion equation X = aX; 

indeed, by 'unwinding' we have X = aX = aaX = aaaX = .... . In general, we will admit 

simultaneous recursion, i.e. systems of recursion equations; a non-trivial example is the following 

specification of the process behaviour of a Stack with data 0, 1: 

STACK 

Figure 1 

x = oJ..YX + 1J..zx 

Y = 01' + OJ..YY + lJ..zy 

z = 1 t + OJ.. YZ + 1 J..zz 

Table2 

Stack 
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Here oj, and oi are the actions 'push O' and 'pop O', respectively; likewise for 1. To see that this 

system of recursion equations (or rather, its first component X) really specifies a stack behaviour, 

one may consider Figure 1. It is not hard to imagine how such a process graph (a rooted, directed, 

connected, labeled graph) can be associated to a system of recursion equations; we will not give a 

formal definition here. Actually, one can use such process graphs and build various models (graph 

models) for BPA from them; this will be discussed now. 

2. Graph models for BPA. 

Let G be the set of all at most countably branching process graphs g,h, ... over the action alphabet 

A = {a,b,c, ... }. (I.e. a node in such a graph may have at most countably many one-step 

successors.) On G we define operations +and·: g·h is the result of appending (the root of) hat 

each termination node of g, and g + h is the result of identifying the roots of g and h. (To be more 

precise, we first have to unwind g,h a little bit so as to make their roots 'acyclic', otherwise the 

sum would not have the intended interpretation of making an irreversible choice.) Letting a be the 

graph consisting of a single arrow with label a, we now have a structure G. = G( +; ,a,b,c, ... ) 

which corresponds to the signature of BP A. But it is not a model of BP A. For instance the law 

x + x = x does not hold in G., since a + a is not the same as a; the former is a graph with two 

arrows and the latter has one arrow. 

Here we need the fundamental notion of D. Park, called bisimulation equivalence or 

bisimilarity. Two graphs g,h are bisimilar if there is a matching between their nodes (i.e. a binary 

relation with domain the set of nodes of g, and codomain the set of nodes of h) such that ( 1) the 

roots are matched; (2) if nodes s,t in g,h respectively are matched and an a-step is possible from s 

to some s' then in h an a-step is possible from t to some t' such that s' and t' again are matched; (3) 

likewise with the roles of g,h reversed. A matching satisfying (1-3) is a bisimulation. An example 

is given in Figure 2, where (part of) the matching is explicitly displayed; another example is in 

Figure 3 where the matching is between each pair of nodes on the same horizontal level. 

g: 

Figure2 



g: 

a 

c b 

a d 

(a) 

Figure3 
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(b) 

We use the notation g ti h to express that g,h are bisimilar. Now one proves that ti is not only an 

equivalence on G, but even a congruence on et. Thus the quotient G = G./ti is well-defined, and it 

is a model of BPA. (G has constants a= a/ti etc., and operations+,· defined by g + lln = (g + 

h)/ti for g = g/ti and lln = h/ti; likewise for·. Henceforth we will confuse the syntactic+,. and 

the semantic +,·.) 

Even more, G is a very nice model of BP A: all systems of recursion equations in the syntax 

of BPA have a solution in G, and systems of guarded recursion equations like in Table 1 have 

moreover a unique solution. 'Guarded' means that in the right-hand sides of the recursion 

equations no recursion variable can be accessed without passing an atomic action. (E.g. X = a + X 

is not a guarded equation; it has many solutions.) 

Some submodels (all satisfying the axioms of BP A) of G are of interest: Gfb, built from 

finitely branching process graphs; R, built from finite (but possibly cycle-containing) graphs; and 

JF, built from finite and acyclic graphs. Also Gfb has the property of providing unique solutions for 

systems of guarded recursion equations. Without the condition of guardedness, there need not be 

solutions: the equation 

X=Xa+a 

cannot be solved in Gfb. In the model R of regular processes one can always find unique solutions 

for guarded recursion equations provided they are linear, that is, the expressions (terms) in the 

equations may only be built by sum and a restricted form of product called prefix multiplication a·s 

('a' an atom, s a general expression) which excludes products of recursion variables as in Table 1. 

For a complete proof system for regular processes, see Ma[87]. 

Example: {X = aX + bY, Y = cX + dY} is a linear system; {X = aXX + bY, Y = cX + dYXY} is 

not. 
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The model R contains the finite-state processes; hence the notation R for 'regular' as in formal 

language theory. Finally, lF contains only finite processes and is in fact isomorphic to the term 

model '1r. 

Some systems of recursion equations should be taken as equivalent. Clearly, X = aX and X 

= aaX specify the same process in G. Less clearly, the two systems 

E1 = {X =a+ bYX, Y = c + dXY} 

E2 = {X= a+ bU, U=cX+ dZX, Y=c+ dZ, Z= aY + bUY} 

are equivalent in this sense: E1 specifies the process graph in Figure 3a above, and Ez specifies the 

graph in Figure 3b. Moreover, as we already saw, these two graphs are bisimilar. So E1 and E2 

denote the same process in G. So the question arises: Is equivalence of recursion equations over 

BP A , relative to the graph model G, decidable? At the moment this question is wide open. There 

is an interesting connection here with context-free languages, as follows. A guarded system of 

recursion equations over BPA corresponds in an obvious way (for details see BBK [86]) to a 

context-free grammar (CFG) in Greibach Normal Form, and vice versa. Hence each context-free 

language (CFL) can be obtained as the set of finite traces of a process in G denoted by a system of 

guarded recursion equations. (A finite trace is the word obtained by following a path from the root 

to a termination node.) In fact, to generate a CFL it is sufficient to look at certain restricted systems 

of recursion equations called 'normed'. A system is normed if in every state (of the corresponding 

process) there is a possibility to terminate. E.g. X = aX is not normed, but X = b + aX is. There is 

a simple syntactic check to determine whether a system is normed or not. Clearly, the property 

'normed' also pertains to process graphs. In BBK [86] it is proved that the equivalence problem 

stated above is solvable for such normed systems. This is rather surprising in view of the 

well-known fact that the equality problem for CFLs is unsolvable. The point is that the process 

semantics in G of a CFG bears much more information than the trace set semantics, which is an 

abstraction from the process semantics. 

The link with deterministic context-free languages resides in the following observation from 

BBK [86]: 

2.1. THEOREM. Let g,h E G be two normed and deterministic process graphs. Then g ~ h if! g 

and h have the same sets of finite traces. 

Here a graph is 'deterministic' if two arrows leaving the same node always have different label. 

The CFL (i.e. the set of finite traces) determined by a normed and deterministic graph, 

corresponding to a system of guarded recursion equations in BP A, is known as a simple CFL; the 

simple CFLs form a proper subclass of the deterministic CFLs. 

Summarizing, we can state that BPA and its graph model obtained via the concept of 

bisimulatiC'Jn provide a new angle on some problems in the theory of formal languages, concerned 

with context-free languages. Here we think especially of deterministic context-free languages 

(DCFLs), obtained by deterministic push-down automata, with the well-known open problem 

whether the equality problem for DCFLs is solvable. Thus, even in the absence of the many 
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operators for parallellism, abstraction etc. which are still to be introduced below, we have in BPA 
and its models an interesting theory with potential implications for the DCFL problem. 

3. Deadlock. 
After the excursion to semantics in the preceding section we return to the development of more 
syntax for processes. A vital element in the present set-up of process algebra is the process o, 
signifying 'deadlock'. The process ab performs its two steps and then terminates, succesfully; but 
the process abo deadlocks after the a- and b-action: it wants to do a proper (i.e. non-o) action but it 
cannot. So o is the acknowledgement of stagnation. With this in mind, the axioms to which o is 
subject, may be clear: 

o+x=x 
O·X= 0 

Table3 

The axiom system of BPA (Table 1) together with the present axioms for o is called BP A0. We are 
now in a position to motivate the absence in BPA of the 'other' distributive law: z(x+y) = zx+zy. 
For, suppose it would be added. Then ab = a(b + o) = ab + ao. This means that a process with 
deadlock possibility is equal to one without, conflicting with our intention to model also deadlock 
behaviour of processes. 

The essential role of the new process o will only be fully appreciated after the introduction of 
communication, below. 

4. The merge operator. 
If x,y are processes, their 'parallel composition' x II y is the process that first chooses whether to 
do a step in x or in y, and proceeds as the parallel composition of the remainders of x,y. In other 
words, the steps of x,y are interleaved or merged. Using an auxiliary operator lL (with the 
interpretation that x lL y is like x II y but with the commitment of choosing the initial step from x) 
the operation II can be succinctly defined by the axioms: 

xlly = x[Ly+y[Lx 
ax lL y = a(x II y) 

a lL y = ay 
(x + y) lL z = x lL z + y lL z 

Table4 

The system of nine axioms consisting of BP A and the four axioms for merge will be called PA. 
Moreover, if the axioms for o are added, the result will be PA0. The operators II and lL will also be 
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called merge and left-merge respectively. 

The merge operator corresponds to what in the theory of formal languages is called shuffle. 

The shuffle of the words ab and cd there is the set of words { abcd, acbd, cabd, acdb, cadb, cdab}. 

Merging the processes ab and cd yields: 

abllcd = ab!Lcd + cd!Lab = a(bllcd) + c(dllab) = a(b!Lcd + cd!Lb) + c(d!Lab + ab!Ld) = 

a(bcd + c(dllb)) + c(dab + a(blld)) = a(bcd + c(db+bd)) + c(dab + a(bd+db)), 

a process having as trace set the shuffle above. 

An example of a process recursively defined in PA, is: X = a(bllX). It turns out that this 

process can already be defined in BP A, by the system of recursion equations 

{X=aYX, Y=b+aYY}. 

To see that both ways of defining X yield the same process, one may 'unwind' according to the 

given equations: 

X = a(bllX) = a(blLX + X!Lb) = a(bX + a(bllX) IL b) = a(bX + a((bllX)llb)) 

= a(bX +a ... ), 

while on the other hand 

X = aYX = a(b + aYY)X = a(bX + aYYX) = a(bX +a ... ). 

So at least up to level 2 the processes are equal. By further unwinding they can be proved equal up 

to each finite level. 

Yet there are processes definable in PA but not in BPA. An example (from BK[84]) of such 

a process is given by the recursion equation 

x = oi-coi II x) + 1 J--(1 i II X) 

describing the process behaviour of a Bag (or multi.set), in which arbitrarily many instances of the 

data 0,1 can be inserted (the actions OJ-, 1J, respectively) or retrieved ( Oi, 1 i), with the restriction 

that no more O's and 1 's can taken from the Bag than first were put in. The difference with a Stack 

or a Queue is that all order between incoming and outgoing O's and 1 's is lost. The process graph 

corresponding to the process Bag is as in Figure 4. 

We conclude this section about PA by mentioning the following fact (see BK[84]), which is 

useful for establishing non-definability results: 

4.1.THEOREM. Every process which is recursively defined in PA and has an infinite trace, has an 

eventually periodic trace. 
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Figure4 

5. Communication. 
So far, the parallel composition or merge (II) did not involve communication in the process xlly: 
one could say that x and y are 'freely' merged. However, some actions in one process may need an 
action in another process for an actual execution, like the act of shaking hands requires 
simultaneous acts of two persons. In fact, 'hand shaking' is the paradigm for the type of 
communication which we will introduce now. If A= {a,b,c, ... ,o} is the action alphabet, let us 
adopt a binary communication function I : A x A ~ A satisfying the axioms in Table 5. 

alb=bla 

(alb)lc=al(blc) 

ola=o 

Table5 

Here a,b vary over A, including o. We can now specify merge with communication; we use the 
same notation II as for the 'free' merge in Section 4 since in fact 'free' merge is an instance of 
merge with communication, by choosing the communication function trivial, i.e. a I b = o for all a,b 
E A. There are now two auxiliary operators, allowing a finite axiomatisation: left-merge <IU as 
before and I (communication merge or simply 'bar'), which is an extension of the communication 
function in Table 5 to all processes, not only the atoms. The axioms for II and its auxiliary 
operators are given in Table 6. ,, 
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x 11 y = xlly + yllx + x I y 

ax lL y = a(xlly) 

a lL y = ay 

(x + y)[J_z = xllz + y[J_z 

ax lb= (alb)x 

al bx= (alb)x 

ax lby = (alb)(xlly) 

(x+y) I z = x I z + y I z 

x I (y+z) = x I y + x I z 

Table6 

We also need the so-called encapsulation operators aH (for every H ~ A) for removing 

unsuccessful attempts at communication: 

aH (a) = a if a ~ H 

aH (a)= ()if a EH 

aH (x+y) = aH (x) + aH (y) 

aH (xy) = aH (x)·dH (y) 

Table? 

These axioms express that aH 'kills' all atoms mentioned in H, by replacing them with o. The 

axioms for BPA, DEADLOCK together with the present ones in Tables 5-7 constitute the axiom 

system ACP (Algebra of Communicating Processes). Typically, a system of communicating 

processes Xi····•xn is now represented in ACP by the expression aH(x1ll ... ll~). Prefixing the 

encapsulation operator says that the system x1, ... ,~ is to be perceived as a separate unit w.r.t. the 

communication actions mentioned in H; no communications between actions in H with an 

environment are expected or intended. 

A useful theorem to break down such expressions is the Expansion Theorem (first 

formulated by Milner, for the case of CCS; see Mi[80]) which holds under the assumption of the 

handshaking axiom x I y I z = o. This axiom says that all communications are binary. (In fact we 

have to require associativity of 'II' first- see Table 8.) 

5.1. EXPANSION THEOREM. 

Here xki denotes the merge of x1 , ... ,xk except xi, and xki,j denotes the same merge except xi,xj (k 

2 3). For instance, fork = 3: 
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xllyllz = xll_(y!lz) + yll_(xllx) + zll_(x!ly) + (y lz)ll_x + (z lx)ll_y + (x ly)ll_z. 

In order to prove the Expansion Theorem, one first proves by simultaneous induction on term 

complexity that for all closed ACP-terms (i.e. ACP-terms without free variables) the following 

axioms of standard concurrency hold: 

(xll_y)ll_z = xll_(yllz) 

(x I y)ll_z = x I (yll_z) 

xly=ylx 

xlly = yllx 

xl(ylz)=(xly)lz 

x!l(y!lz) = (xlly)llz 

Table8 

As in Section 2 one can construct graph models G, Gfb, JR., lF for ACP; in these models the 

axioms in Table 8 are valid. (We will discuss the construction of these models in Section 7.) It is 

however also possible to construct 'non-standard' models of ACP in which these axioms do not 

hold. We will not be interested in such pathological models. 

The defining power of ACP is strictly greater than that of PA. The following is an example 

(from BK[84]) of a process U, recursively defined in ACP, but not definable in PA: let the alphabet 

be {a,b,c,d,C>} and let the communication function be given by clc =a, did= b, and all other 

communications equal to C>. Let H = {c,d}. Now we recursively define the process U as in Table 9: 

U = dH (dcYllZ) 

X=cXc+d 

Y=dXY 

Z=dXcZ 

Table9 

for~ l, a.straightforward computation shows that 



11 

By Theorem 4.1, U is not definable in PA, since the one infinite trace of U is not eventually 

periodic. 

We will often adopt a special format for the communication function, called read-write 

communication. Let a finite set D of data d and a set { l ,. . .,p} of ports be given. Then the alphabet 

consists of read actions ri(d) and write actions wi(d), for i = 1,. . .,p and de D. The interpretation 

is: read datum d at port i, respectively write datum d at port i. Furthermore, the alphabet contains 

actions ci(d) for i = 1,. . .,p and de D, with interpretation: communicated at i. These actions will 

be called transactions. The only non-trivial communications (i.e. not resulting in o) are: wi(d) I ri(d) 

= ci(d). Instead of wi(d) we will also use the notation si(d) (send d along i).Note that read-write 

communication satisfies the hand-shaking axiom: all communications are binary. 

5.1. EXAMPLE. Using the present read-write communication format we can write the recursion 

equation for a Bag B12 (cf. Section 4) which reads data de D at port 1 and writes them at port 2 as 

follows: 

B12 = LcteD rl(d)(w2(d) II B12). 

6. Abstraction. 

A fundamental issue in the design and specification of hierarchical (or modularized) systems of 

communicating processes is abstraction. Without having an abstraction mechanism enabling us to 

abstract from the inner workings of modules to be composed to larger systems, specification of all 

but very small systems would be virtually impossible. We will now extend the axiom system ACP, 

obtained thus far, with such an abstraction mechanism. 

Consider two Bags B12, B23 (cf. Example 5.1) with action alphabets {rl(d), s2(d) I de D} 

and {r2(d), s3(d) I de D}, respectively. That is, B12 is a bag-like channel reading data d at port 1, 

sending them at port 2; B23 reads data at 2 and sends them to 3. (That the channels are bags means 

that, unlike the case of a queue, the order of incoming data is lost in the transmission.) Suppose the 

bags are connected at port 2; so we adopt communications s2(d) I r2(d) = c2(d) where c2(d) is the 

transaction of d at 2. 

l••· .............. ·.·····~.······.·.~f .....•...... ························•·.! 3 
·•/<< 'k3 -

transparent Bag lB\ 
13 

Figures 

The composite system IBl13 = ()H(B 12 ll B 23) where H = {s2(d), r2(d) I deD}, should, intuitively, 

be again a.)3ag between ports 1,3. However, some (rather involved) calculations learn that 

JB\13 = LcteD rl(d)·((c2(d)-s3(d)) II IB113). 
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So JB13 is a 'transparent' Bag: the passage of d through 2 is visible as the transaction event c2(d). 
(Note that this terminology conflicts with the usual one in the area of computer networks, where a 
network is called transparent if the internal structure is not visible.) 

How can we abstract from such internal events, if we are only interested in the external 
behaviour at 1,3? The first step to obtain such an abstraction is to remove the distinctive identity of 
the actions to be abstracted, that is, to rename them all into one designated action which we call, 
after Milner, 't: the silent action. This renaming is realised by the abstraction operator 't1, 
parameterized by a set of actions I k A and subject to the following axioms: 

't1 ('t) = 't 

't1 (a)= aif a~ I 

't1 (a) = 't if a E I 

't1 (x+y) = 't1 (x) + 't1 (y) 

't1 (xy) = 't1 (x)·'t1 (y) 

Table 10 

The second step is to attempt to devise axioms for the silent step 't by means of which 't can be 
removed from expressions, as e.g. in the equation a'tb = ab. However, it is not possible to remove 
all 't's in an expression if one is interested in a faithful description of deadlock behaviour of 
processes (at least in bisimulation semantics, the framework adopted in this paper). For, consider 
the process (expression) a+ 'tO; this process can deadlock, namely if it chooses to perform the 
silent action. Now, if one would propose naively the equations 'tX = x't = x, then a + 'tO = a + o = a 
, and the latter process has no deadlock possibility. It turns out that one of the proposed equations, 
x't = x, can safely be adopted, but the other one is wrong. Fortunately, R. Milner has devised some 
simple axioms which give a complete description of the properties of the silent step (complete w.r.t 
a certain semantical notion of process equivalence called no-bisimulation, which does respect 
deadlock behaviour; this notion is discussed in the sequel), as follows. 

X't =x 

'tX='tx+x 

a('tx + y) =a( 'tX + y) + ax 

Table 11 

To return to our example of the 'transparent' Bag JB13, after abstraction of the set of transactions I 

= { c2( d) ! dE D} the result is indeed an 'ordinary' Bag: 

't1ClB13) = 

't1(LdeD rl(d)(c2(d).s3(d) II JB13)) = (*) 
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LcteD rl(d)( 't·s3(d) II 't1(1B13)) = 
L, deD (rl(d)· 't·s3(d)) !L 't1(IB13) = 
L, deD (rl(d).s3(d))ll_ -c1(1B 1:;) = 
L deD rl(d)(s3(d)ll 't1(1B13)) 

from which it follows that 't1(1B 13) = B13 (**),the Bag defined by 

B13 = L, deD rl(d)(s3(d) 11 B13). 

Here we were able to eliminate all silent actions, but this will not always be the case; for instance, 
'chaining' two Stacks instead of Bags as in Figure 5 yields a process with 'essential' 't-steps. 
Likewise for a Bag followed by a Stack. (Here 'essential' means: non-removable in bisimulation 
semantics.) In fact, the computation above is not as straightforward as was suggested: to justify 
the equations marked with (*) and (**) we need additional proof principles. As to (**), this 
equation is justified by the Recursive Specification Principle (RSP) stating that a guarded system of 
recursion equations in which no abstraction operator -c1 appears, has a unique solution. We will not 
discuss the justification of equation (*) here. The justification of a principle like RSP is that it is 
valid in all 'sensible' models of our axioms; however note that for formal computations one has to 
postulate such a principle explicitly. 

Combining all the axioms presented above in Tables l,3,4,5,6,7,10,ll and a few axioms 
specifying the interaction between 't and communication merge I , we have arrived at the system 
ACP 't' Algebra of Communicating Processes with abstraction (see Table 12). 

x+y=y+x Al X't= X Tl 
x + (y + z) = (x + y) + z A2 'tX+X='tX T2 
x+x=x A3 a('tX + y) = a(n + y) + ax T3 
(x + y)z = xz + yz A4 
(xy)z = x(yz) A5 
x+o=x A6 
OX=O A7 

alb=bla Cl 
(a I b) I c =a I (b I c) C2 
ola=o C3 

xlly=x[Ly+y lL x+xJy CMl 
a [Lx=ax CM2 't[LX='tX TMl 
ax lL y = a(xlly) CM3 'tX lL Y = 't(xlly) TM2 
(x + y) lL z = x lL z + y lL z CM4 'tlx=o TCl 
axlb=(alb)x CM5 xl't=o TC2 
albx=(alb)x CM6 uly=xly TC3 
ax I by= (a I b)(xl!y) CM7 xl-ty= xly TC4 
<x + y) I z = x I z + y I z CM8 
x I <Y + z) = x I y + x I z CM9 ~('t)='t DT 

'tl ('t) = 't Tll 
~('a)= a if a~H D1 'tl (a) = a if ad TI2 
~(a)= o ifaeH D2 'tl (a)= 't if ael TI3 
ClH (x+y) = ClH (x) + ClH (y) D3 't1 (x + Y) = 'tl (x) + 'tl (y) TI4 
ClH (xy) = ~ (x)·~ (y) D4 'tl (xy) = 'tl (x)-'tl (y) TIS 

Table 12: ACP't 
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Actually, in spite of our restriction to specification of processes as stated in the Introduction, 

the last computation concerned a very simple process verification, showing that the combined 

system has the desired external behaviour of a Bag. Abstraction, realized in ACP 't by the 

abstraction operator and the silent process 't, clearly is of crucial importance for process 

verification. But also for process specification abstraction is important. Let f: N -7 {a,b} be a 

sequence of a,b, and let Pr be the proces f(O}f(l}f(2} ..... , that is: the unique solution of the 

infinite system of recursion equations {Xn = f(n)-~+1 1 n ~ O}. Now: 

6.1. THEOREM. There is a computable function f such that process Pr is not definable by a finite 

system of recursion equations in ACP 't without abstraction operator. 

7. Graph models for ACP't. 

We will now construct graph models for ACP't, in analogy with the construction of these models 

for BPA in Section 2. Again we start with a domain of at most countably branching process graphs 

G, the only difference being that arrows may now also bear label 't and o. (Par abus de langage we 

use the same notation G.) Next, we define on Gin addition to+; operations II. lL I. 't1, aH 

corresponding to the syntactic operations II, [L, I , 't1, aH. We will only discuss the definition of the 

first operation II. Let ab and cd be two process graphs as in Figure 6, and suppose there are 

communications a Id = f and b I c = g, all other communications being trivial (i.e. resulting in o). 
Then ab II cd is the process graph indicated in Figure 6, a cartesian product with diagonal edges for 

the succesful communications. 

g: a b 

h: gllh: 

c 

d 

0 
Figure6 

We now have a structure G.= G(+;, II, ll_, I, 't1, aH,'t,O,a,b,c, ... ), which is not yet a model 

of ACP 't but becomes so after dividing out the congruence no-bisimilarity (notation: ~rrS)• a 

generalization of 'ordinary' bisimilarity ~ as in Section 2. Here we say that g ~rrs h if there is a 

relation between the nodes of g and the nodes ofh such that (1) the roots are related, (2) a non-root 

node is only related to non-root nodes, (3) if nodes s,t in g,h respectively are related and there is in 
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Example of r ID-bisimulation: nodes of the same colour are related 

Figure? 

g an a-step from s to some s', then there is in g a path 't't't .. :tau .. :t (i.e. zero or more 't-steps 

followed by an a-step followed by zero or more 't-steps) from t to some t' such that s' and t' are 

again related, (4) as (3) with the roles of g,h interchanged. (See for an example of such a 

f'to-bisimulation Figure 7.) Again, this equivalence is a congruence on Ci and putting G = Ci/~rto 
we have a model for ACP -r• in which all systems of guarded recursion equations have a solution, 

and even a unique solution if abstraction operators are absent from the system. 

As before in Section 2, G has submodels JR., lF (regular and finite processes, respectively). 

Remarkably, as observed in BBK[85], there is no model Gfb based on all finitely branching graphs 

now. (For ACP such a model does exist.) The reason is that there is no structure Cifb, as G fb is not 

closed under the operations II. lL I. 1:1. The auxiliary operator I is the culprit here. 

8. The finite specification theorem. 

ACP -r is a powerful specification mechanism; in a sense it is a universal specification mechanism: 

every finitely branching, computable process in the graph model G can be finitely specified in 

ACP-r. (We use the word 'specification' for: 'system of recursion equations'.) We have to be more 

precise about the notion of' computable process'. First, an intuitive explanation: suppose a finitely 

branching process graph g E G is actually given; the labels may include 't, and there may be even 

infinite 't-traces. That g is 'actually' given means that the process graph g must be 'computable': g 

can be described by some coding of the nodes in natural numbers and recursive functions giving 

in-degree, out-degree, edge-labels, etc. This notion of a computable process graph is rather 

obvious, and we will not give details of the definition here. 

Now even if the computable graph g is an infinite process graph, it can trivially be specified by 

an infinite computable specification, as follows. First rename all 't-edges in g tot-edges, for a 

'fresh' atom t. Call the resulting process graph: gr Next assign to each nodes of g1 a recursion 

variable X
8 

and write down the recursion equation for X8 according to the outgoing edges of node 

s. Let X80 be the variable corresponding to the root s0 of g1. As g is computable, g1 is computable 

and the resulting 'direct' specification 
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is evidently also computable (i.e.: the nodes can be numbered assn (~0), and after coding the 
sequence en of codes of equations En: X8n = T8n(X) is a computable sequence). Now the infinite 
specification which uniquely determines g, is simply: {Y = 't{t}(X80)} u E. In fact all 
specifications below will have the form {X = 't1(X0), ~ = Tn(X) In~ O} where the guarded 
expressions Tn(X) (= Tn(Xil•···•Xin)) contain no abstraction operators 'tJ· They may contain all 
other process operators. We will say that such specifications have restricted abstraction. 

However, we want more than a computable infinite specification with restricted abstraction: to 
describe process graph g we would like to find afinite specification with restricted abstraction for 
g. Indeed this is possible: 

8.1. FINITE SPECIFICATION THEOREM. Let the finitely branching and computable process graph g 
determine gin the graph model G of ACP't. Then there is a finite specification with restricted 
abstraction E in ACP't such that [E] =g. Here [E] is the solution ofE in G. 

The proof in BBK[85] is by constructing a Turing machine in ACP't; the 'tape' is obtained by 
glueing together two Stacks as defined in Table 2. There does not seem to be an essential difficulty 
in removing the condition 'finitely branching' in the theorem, in favour of 'at most countably 
branching'. 

9. Concluding remarks. 

Even though the Finite Specification Theorem declares the set of operators of ACP 't to be sufficient 
for all specifications, in practice one will need more operators to make specifications not only 
theoretically but also practically possible. Therefore some additional operators have been defined 
and studied in the present branch of process algebra, notably an operator by means of which 
different priorities can be given to different atomic actions, and a state operator taking into account 
information from a suitable state space. For these developments we refer to BK[86b]. Lately, some 
thorough studies have been made about extending ACP 't with some new constants: E for the empty 
process and 11 for an alternative to the silent step 't (Vr[86], BG[87]). The typical equation here is 't 
= 11 +E. 

A substantial amount of effort has been invested in extending ACP 't to a suitable framework 
also for process verification, which was hardly discussed in the present paper. Process 
verifications have been realized now for several non-trivial protocols (Va[86], KM[86]), and 
recently also for some systolic algorithms (KW[87], W[87]). 

Finally we mention that bisimulation semantics, as adopted in the present paper, is by no 
means the only process semantics. It is possible to identify many processes which are different in 
bisimulation semantics while still retaining an adequate description of relevant aspects such as 
deadlock behaviour, leading for instance to readiness semantics or failure semantics, embodying 
different views on processes. For a study in this area we refer to BK0[86]. For an investigation of 
models of ACP 't based on Petri Nets, see GV[87]. 
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