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Introduction 

Term Rewriting Systems form an important computational paradigm and applications can be found 

in several fields. Here one can mention many key words and phrases; we will restrict ourselves and 

mention only: proving properties of abstract data type specifications, implementing functional 

languages, computing by means of equations, mechariizing deduction systems. 

The origin of the study of 1RSs dates from half a century ago, when Combinatory Logic and 

Lambda Calculus were developed and deeply studied, in order to formalize the concept of 

computable functions. The first system will also appear below. In more recent days both systems 

made their entrance in Computer Science: Lambda Calculus gave the inspiration for LISP and 

caused a major advance in denotational semantics of programming languages, while Combinatory 

Logic turned out to have its use for implementations of functional languages. This tutorial does not 

dwell on these applications. Rather, we aim to present some of the basic concepts and facts about 

1RSs which are obvious prerequisites for understanding applications as mentioned. 

The topics treated below comprise only an initial part of the theory of Term Rewriting 

Systems. In the first section we have collected many properties valid already for Abstract Reduction 

Systems; this makes these properties also applicable to other rewrite systems, such as string rewrite 

systems, tree replacement systems etc. The second section discusses some basic issues in general 

1RSs; in the third section a powerful termination proof technique (recursive path orderings) is 

explained in a new presentation. Next a short exposition of the Knuth-Bendix completion technique 

is given. The last part is about regular (i.e. left-linear and non-ambiguous) 1RSs and reduction 

strategies for such 1RSs, such as leftmost-outermost reduction, parallel-outermost reduction etc. 

Contents 
Introduction 
1. Abstract Reduction Systems 
2. Tenn Rewriting Systems: basic notions 
3. A termination proof technique 
4. Knuth-Bendix completion 
5. Regular Tenn Rewriting Systems 
6. Reduction strategies for regular Tenn Rewriting Systems 
References 

1. Abstract Reduction Systems 

Many of the basic definitions for and properties of 1RSs (Term Rewriting Systems) can be stated 

more abstractly, viz. for sets equipped with one or more binary relations. As it is instructive to see 

which definitions and properties depend on the term structure and which are more basic, we start 

with a (relatively extensive) section about Abstract Reduction Systems. Moreover, the concepts and ,, 
properties of Abstract Reduction Systems also apply to other rewrite systems than 1RSs, such as 

string rewrite systems (Thue systems), tree rewrite systems, graph grammars. In fact the same 

abstract approach was taken in an earlier tutorial in this Bulletin (JAN1ZEN [86]), where several of 
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the concepts below are defined for 'transformation systems'. (There is a certain amount of 

duplication between the present tutorial and the one just mentioned, as regards some of the basic 

definitions.) First we present a sequence of simple definitions. 

1.1. DEFINITION. (i) An Abstract Reduction System (ARS) is a structure A= <A, (-7~aer> 

consisting of a set A and a sequence of binary relations -7 a on A, also called reduction or rewrite 

relations. Sometimes we will refer to -?a as a. (An ARS with just one reduction relation is called 

'replacement system' in STAPLES [75], and a 'transformation system' in JANTZEN [86].) If for a,b 

E A we have (a,b) e -?a, we write a -?a band call b a one-step (a-)reduct of a. 

(ii) The transitive reflexive closure of -7 a is written as - a· (More customary is the notation 

-7 a*, but we prefer the double arrow notation as we find it more convenient in diagrams.) 

So a - a b if there is a possibly empty, finite sequence of 'reduction steps' a= a0 -?a a1 -?a ... 

-7 a 3.u = b. Here = denotes identity of elements of A. The element b is called an ( a-)reduct of a. 

The equivalence relation generated by -7 a is =a• also called the convertibility relation generated by 

-?a. The reflexive closure of -?a is -?a= . The converse relation of -?a is ~a or -?a-1 . The 

union -7 a u -713 is denoted by -7 al3· The composition -7 a o -713 is defined by: a -7 a o -713 b if 

a-?a c -713 b for some c e A. 

(iii) If a,~ are reduction relations on A, we say that a commutes weakly with ~ if the following 

diagram (see Figure la) holds, i.e. if 'v'a,b,cE A 3dE A (c ~13 a -?a b => c ->>ad <<-13 b), or 

in a shorter notation: ~13 ° -?a k ->>a o <<--13. (This terminology differs from that of 

BACHMAIR & DERSHOWI1Z [86], where a commutes with~ if a-1 o~ k W1oa.) 

Further, a commutes with ~if - a and - 13 commute weakly. 

(iv) The reduction relation -7 is called weakly confluent or weakly Church-Rosser (WCR) if it is 

self-commuting (see Figure lb), i.e. if 'v'a,b,cE A 3dE A (c ~a -7 b => c->> d <<- b). 

(The property WCR is also often called 'local confluence', e.g. in JANTZEN [86].) 

(v) -7 is subcommutative (notation WCR~1) ifthe diagram in Figure le holds, i.e. if 

'v'a,b,cE A 3dE A (c ~a -7 b => c -7= d ~= b). 

(vi) -7 is confluent or is Church-Rosser, has the Church-Rosser property (CR) if it is 

self-commuting (see Figure ld), i.e. 'v'a,b,cE A 3dE A (c <<-a ->>b => c ->> d <<- b). 

In the sequel we will use the terms 'confluent' and 'Church-Rosser' or 'CR' without 

preference. Likewise for weakly confluent and WCR, etc. The following proposition follows 

immediately from the definitions. Note especially the equivalence of (i) and (vi); sometimes (vi) is 

called 'Church-Rosser' and the situation as in Definition 1.1.(vi) 'confluent'. 
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1.2. PROPOSIDON. The following are equivalent: 
(i) -7 is confluent 

(ii) -» is weakly confluent 
(iii) -» is self-commuting 
(iv) -» is subcommutative 
( v) the diagram in Figure 1 e holds, i.e. 

\ta,b,cE A 3dE A (c f- a ->>b :::::} c ->> d <<- b) 

(vi) \ta,bE A 3cE A (a= b :::::} a->> c <<- b) 

(Here'=' is the convertibility relation generated by -7. See diagram in Figure lf) D 

1.3. DEFINITION. Let A =<A, -7> be an ARS. 

(i) We say that a E A is a normal form if there is nob E A such that a -7 b. Further, b E A has 
a normal form if b -» a for some normal form a E A. 

(ii) The reduction relation -7 is weakly normalizing (WN) if every a E A has a normal form. In 
this case we also say that A is WN. 

(iii) A (or -7) is strongly normalizing (SN) if every reduction sequence <lo -7 a1 -7 ... eventually 
must terminate. (Other terminology: -7 is terminating, or noetherian.) If the converse 
reduction relation f- is SN, we say that A (or -7) is SN-1. 

(iv) A (or -7) has the unique normal form property (UN) if 

\ta,b,cE A (a -» b & a-» c & b,c are normal forms:::::} b = c). 

(v) A (or-7) has the normalformproperty (NF) if 

Va,bE A (a is normal form & a= b :::::} b -» a). 

(vi) A (or-7) is inductive (Ind) if for every reduction sequence (possibly infinite) <lo -7 a1 -7 ... 
there is an a E A such that 3n -» a for all n. 

(vii) A (or -7) is increasing (Inc) if there is a map 11: A ..... N such that 

\ta,bE A (a -7 b :::::} lal < lbl). Here N is the set of natural numbers with the usual ordering<. 
(viii) A (or-7) is finitely branching (FB) iffor all a E A the set of one step reducts of a, 

{b E A I a -7 b}, is finite. If the converse reduction relation f- is FB, we say that A (or -7) 
is FB-1. (In HUET [78], FB is called 1ocally finite'.) 

An ARS which is confluent and terminating (CR & SN) is also called complete (other 
terminology: 'canonical' or 'uniquely terminating'). If the ARS has unique normal forms and is 
weakly normalizing (UN & WN, or what is as we shall see equivalent, CR & WN) it will be called 
semi-complete. The former is standard terminology (especially in the field of 'Knuth-Bendix 
completions', see below); the latter is not. 

Before exhibiting several facts about all these notions, let us first introduce some more 
concepts. 

1.4. DEFINITION. Let A= <A, -7r? and '.B = <B, -713> be two ARSs. Then A is a sub-ARS of 
'.B, notation A k; '.B, if: 

(i) A k; B 
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(ii) a is the restriction of (3 to A, i.e. Va,a' E A (a~~ a' <=> a ~a a') 

(iii) Ais closed under (3, i.e. Va E A (a~~ b => b E A). 

The ARS n is also called an extension of A. 

(a) (b) 

(c) (d) 

(e) 

Figure 1 (f) 

Note that all properties introduced so far (CR, WCR, WCR::;;1, WN, SN, UN, NF, Ind, Inc, 

FB) are preserved downwards: e.g. if A~ n and n is CR, then also A is so. 

Of particular interest is the sub-ARS determined by an element a in an ARS: 

1.5. DEFINITION. Let A= <A, ~>be an ARS, and a E A. Then fi(a), the reduction graph of a, 

is the smallest sub-ARS of A containing a. So fi(a) has as elements all reducts of a (including a 

itself) and is structured by the relation ~ restricted to this set of reducts. 

We will now collect in one theorem several implications between the various properties of 

ARSs. The first part (i) is actually the main motivation for the concept of confluence: it guarantees 

unique normal forms, which is of course a desirable state of affairs in (implementations of) 

algebraic data type specifications such as we will consider later. Apart from the fundamental 

implication CR => UN, the most important fact is (ii), also known as Newman's Lemma. 
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1.6. THEOREM. 

(i) CR => NF => UN 

(ii) SN & WCR => CR (Newman's Lemma) 

(iii) UN & WN => CR 

(iv) UN & WN => Ind 

(v) Ind & Inc=> SN 

(vi) WCR & WN & Inc=> SN 

(vii) CR {::} CP for countable ARSs. o 

Most of the proofs of (i)-(vii) are easy. For Newman's Lemma a short proof is given in HUET 

[78]. Proposition (v) is from NEDERPELT [73]; (vi) is proved in KLOP [80]; for (vii) see Ex.1.7 

(13). The propositions in the statement of the theorem (and some more - for these see Ex. 1.7 

(1-17)) are displayed also in Fi~e 2; here it is important whether an implication arrow points to 

the conjunction sign &, or to one of the conjuncts. Likewise for the tail of an implication arrow. 

(E.g. UN & WN =>Ind, SN & WCR =>UN & WN, Inc=> SN-1, FB-1 & SN-1 =>Inc, CR=> 

UN but not CR=> UN & WN.) 

WCR~l 

i 
T~ ~CR~CP 
4 consistency 

(semi-complete) UN & WN 

Figure2 

~ 
SN & WCR (complete) 

JOOL' 
~ 

FB-1& SN-l 

WCR 

WN 
Inc 

It does not seem possible to reverse any of the arrows in this diagram of implications. An 
" instructive counterexample to WCR =>CR is the TRS in Figure 3 (given by R. Hindley, see also 

HUET [78]). 
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Figure3 

1.6.1. PUZZLE. Find a counterexample to the implication WCR & WN => Ind. (A solution can be found at the end 

of this paper, before the References.) 

There are several other facts about ARSs which often are very helpful e.g. in proving 
properties of algebraic data type specifications. We present them in the fonn of the following series 

Ex. 1.7 (1-17); here 'Ex.' stands for Exercise or Extension of the preceding theory. For an 

understanding of the sequel these additional facts are not necessary. 

1.7. EX. 

(1) (Rosen [73]) If <A,-> 1,-> 2> is an ARS such that "'* l = __,. 2 and -+ 1 is subcommutative, then -+ 2 is 

confluent. 

(2) (Hindley [64) Let <A,(-+ a.)a.el> be an ARS such that for all a.,{3 e I,-+ a. commutes with -+ 13. Then the 

union-+ = ua.el -+a. is confluent. 

(3) (Hindley [64]) Let <A,-+ 1,-+2> be an ARS. Suppose: 

Va,b,ce A 3de A (a -+ 1 b & a -+2 c => b __,. 2 d & c -+ 1 = d). (See Figure 4a.) Then -+ 1, -+2 commute. 

(4) (Staples [75]) Let <A,-+ 1,-+2> be an ARS. Suppose: 

Va,b,ceA 3deA (a -+ 1 b & a ..... 2 c => b ..... 2 d &c "'*l d). (SeeFigure4b.) Then -+ 1,-+2 commute. 

(5) (Rosen [73]) Let <A,-+ 1,-+ 2> be an ARS. 

DEFINITION: -+ 1 requests -+2 if Va,b,ceA 3d,eeA (a "'*lb & a ..... 2 c => b _,. 2 d& c "'*le _,.2 d)). 

(See Figure 4c.) To prove: if -+ 1,-+2 are confluent and if-+ 1 requests -+2, then-+ 12 is confluent. 

(6) (Rosen [73]) Let <A,-+ 1,-+2> be an ARS such that -+2 is confluent and: 

Va,b,ceA 3d,ee A (a"'* lb & a -+2 c => b ..... 2 d & c "'* l e ..... 2 d). (See Figure 4d.) Then-+ 1 requests -+2. 

(/) (Staples [75]) Let <A,-+1,-+2> be an ARS such that -+2 is confluent and -+ 1 requests -+2. Let -+3 be the 

composition of "'* l and ..... 2, i.e. a _,3 b iff 3c a"'* l c ..... 2 b. Suppose moreover that 

Va,b,ceA 3deA (a "'*lb & a"'* i c => b -+3 d & c -+3 d).Then -+ 12 is confluent. 

(8) (Staples [75]) DEFINITION: In the ARS <A, -+1, -+2> the reduction relation ->2 is called a refinement of 

-+ 1 if -+ 1 ~ ..... 2. If moreover Va,beA 3ceA (a ..... 2 b => a "'*l c & b "'*l c), then -+2 is a compatible 

refinement of -> 1. 

" Let in the ARS <A,-> 1,-+ 2> the reduction relation -> 2 be a refinement of -+ 1. Prove that -> 2 is a 

compatible refinement of -> 1 iff 'v'a,b,ceA 3deA (a ->2 b & b "'*l c => c "'*l d & a "'*l d). 
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(9) (Staples [75]) Let <A,-+ 1,-+2> be an ARS where -+2 is a compatible refinement of-+ 1. Then: 

-+ 1 is confluent iff -+ 2 is confluent. 

(10) (Huet [80]) DEFINITION: Let <A, -+>be an ARS. Then-+ is called strongly confluent (see Figure 4e) if: 

V' a,b,ce A 3de A (a -+ b & a -+ c ~ b _,. d & c -+ = d). Prove that strong confluence implies confluence. 

(11) Let <A,(-+ a>aei> be an ARS such that for all a,p e I,-+ a commutes weakly with -+p· 

DEFINITION: (a) -+a is relatively terminating if no reduction ao -+ a1 -+ 32 -+ ... (where -+ = U ae I -+a) 

contains infinitely many a-steps. 

(b) -+a has splitting effect if there are a,b,c, e A such that for every d e A and every p e I with a -+a b, 

a -+ p c, c _,.a d, b _,. p d, the reduction b _,. p d consists of more than one step. 

To prove: if every -+ a (a e I) which has splitting effect is relatively terminating, then -+ is 

confluent. (Note that this strengthens Newman's Lemma.) 

(a) (b) 

(c) (d) 

(e) (f) 

Figure4 
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(12) (Le Chenadec [86]) Let <A, ->, > > be an ARS where the 'reduction' relation > is a partial order and SN. 

Suppose a -> b implies a > b. Then the following are equivalent: 

(a) -> is confluent, (b) whenever a -> b and a -> c, there is a ->-conversion b = d1 ++ di ++ ••• ++ ~ = c (for 

some n ~ 1) between b,c such that a> di (i = l, ... ,n). Here each ++ is -> or +--. (See Figure 4f.) 

(Note that this strengthens Newman's Lemma.) 

(13) (Klop [80]) Let A= <A, ~>be an ARS. Let B s;;; A. Then B is cofinal in A if Va e A 3b e B a __,. b. 

Furthermore, A is said to have the cofinality property (CP) if in every reduction graph CI(a), a e A, there is a 

(possibly infinite) reduction sequence a=ao ~ a1 ~ ... such that{~ In~ O} is cofinal in CI(a). 

Then, for countable ARSs: A is CR <=> A has CP. 

(14) Let A= <A,~> be an ARS. Define: A is consistent if not every pair of elements in A is convertible. 

Note that if A is confluent and has two different normal forms, A is consistent. Further, let A= <A, ~a>, 

:B = <B, ~13> be ARSs such that A s;;; :B. Then we define: :Bis a conservative extension of A if 

Va,a' e A (a =l3 a' <=> a =a a'). Note that a conservative extension of a consistent ARS is again consistent. 

Further, note that a confluent extension :B of A is conservative. 

(lS) (Newman [42]) Let WCR1 be the following property of ARSs <A,~>: 
Va,b,ceA 3deA (c~ a~ b ~ c~d~ b). (See Figure Sa.) ProvethatWCR1 &WN ~SN, and give a 

counterexample to the implication WCR~1 & WN ~ SN. 

(16) (Bachmair & Dershowitz [86)) Let <A, ~a• ~13> be an ARS such that Va,b,c e A 3d e A (a ~a b ~13 c 

~ a ~13 d __,. a.13 c). (In the terminology of Bachmair & Dershowitz [86]: 13 quasi-commutes over a.) (See 

Figure Sb.) Prove that a is SN iff 13 is SN. 

(17) (Klop [80]) Let A= <A, ~a> and :B = <B, ~13> be ARSs. Lett: A ~ B and ic: B ~ A be maps such that 

(i) ic(t(a)) = a for all a e A, 

(ii) Va,a' e A 'rib e B 3b' e B (b ~Ka' ~a a' ~ b ~13 b' ~Ka') (Reductions in A can be 'lifted' to 

:B.) See Figure Sc. 

Prove that :B is SN implies that A is SN. 

f3 

f3 K'. K'. 

~ ' ~ t 

af3 a 

(a) (b) (c) 

Figures 
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2. Term Rewriting Systems: basic notions 

2.1. Syntax of Term Rewriting Systems. 

A Term Rewriting System (TRS) is a pair (E,R) of an alphabet or signature 1: and a set of 

reduction rules (rewrite rules) R. The alphabet 1: consists of: 

(i) a countably infinite set of variables x1,x2,x3, ... also denoted as x,y,z,x',y', ... 

(ii) a non-empty set of function symbols or operator symbols F,G, ... , each equipped with an 

'arity' (a natural number), i.e. the number of 'arguments' it is supposed to have. We not only 

(may) have unary, binary, ternary, etc., function symbols, but also 0-ary: these are also called 

constant symbols. 

The set of terms (or expressions) 'over' 1: is Ter(E) and is defined inductively: 

(i) x,y ,z, ... E Ter(1:), 

(ii) if Fis an n-ary function symbol and t1, ... ,1n E Ter(E) (n;;?: 0), then F(t1, ... ,1n) E Ter(E). 

The lj_ (i = l,. .. ,n) are the arguments of the last term. 

Terms not containing a variable are called ground terms (also: closed terms), and Ter0(S) is 

the set of ground terms. Terms in which no variable occurs twice or more, are called linear. 

Contexts are 'terms' containing one occurrence of a special symbol o, denoting an empty 

place. A context is generally denoted by C[ ]. If t E Ter(1:) and t is substituted in o, the result is 

C[t] E Ter(E); t is said to be a subterm of C[t], notation t ~ C[t]. Since o is itself a context, the 

trivial context, we also have t ~ t. Often this notion of subterm is not precise enough, and we have 

to distinguish occurrences of subterms (or symbols) in a term; it is easy to define the notion of 

occurrence formally, using sequence numbers denoting a 'position' in the term, but here we will be 

satisfied with a more informal treatment. 

2.1.1. EXAMPLE. Let 1: = {A,M,S,0} where the arities are 2,2,1,0 respectively. Then 

A(M(x,y),y)) is a (non-linear) term, A(M(x,y),z)) is a linear term, A(M(S(0),0),S(O)) is a ground 

term, A(M(o,O),S(O)) is a context, S(O) is a subterm of A(M(S(0),0),S(O)) having two 

occurrences: A(M(S(0),0),S(O) ). 

A substitution a is a map from Ter(E) to Ter(1:) satisfying cr(F(t1, ... ,1n)) = F(cr(t1), ... ,0'(1n)) 

for every n-ary function symbol (here n;;?: 0). So, a is determined by its restriction to the set of 

variables. We also write t° instead of cr(t). 

A reduction rule (or rewrite rule) is a pair (t,s) of terms E Ter(1:). It will be written as t -7 s. 

Often a reduction rule will get a name, e.g. r, and we writer: t -7 s. Two conditions will be 

imposed: 

(i) the LHS (left-hand side) t is not a variable, 

(ii) the variables in the right-hand sides are already contained in t 

A reduction rule r: t -7 s determines a set of rewrites t0 -7r s0 for all substitutions cr. The LHS t0 is 

called a rf!dex, more precisely an r-redex. A redext0 may be replaced by its 'contractum' s0 inside a 

context C[ ]; this gives rise to reduction steps (or one-step rewritings) 
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We call -7r the one-step reduction relation generated by r. Concatenating reduction steps we have 

(possibly infinite) reduction sequences to -7 t1 -7 ti -7 ... or reductions for short. Ift0 -7 ... -7 tn 
we also write to _.,. tn• and tn is a reduct of t0, in accordance with the notations and concepts 

introduced in Section 1. 

2.1.2. EXAMPLE. Consider Las in Example 2.1.1. Let (l:,R) be the TRS (specifying the natural 

numbers with addition, multiplication, successor and zero) with the following set R of reduction 

rules: 

r1 A(x,O) -7 x 

r2 A(x,S(y)) -7 S(A(x,y)) 

r3 M(x,O) -70 

r4 M(x,S(y)) -7 A(M(x,y),x) 

Table 1 

Now M(S(S(O)), S(S(O))) _.,. S(S(S(S(O)))), since we have the following reduction: 

M(S(S(O)),S(S(O))) -7 

A(M(S(S(O) ),S(O) ),S(S(O))) -7 

S( A(M(S(S(O)),S(O)),S(O)) ) -7 

S( S( A(M(S(S(O)),S(0)),0))) -7 

S( S( M(S(S(O)),S(O)) ) ) -7 

S(S(A(M(S(S(0)),0),S(S(O))))) -7 

S(S(A(O,S(S(O))))) -7 

S(S(S(A(O,S(O))))) -7 

S(S(S(S(A(0,0))))) -7 

S(S(S(S(O)))). 

Here in each step the bold-face redex is rewritten. Note that this is not the only reduction from 

M(S(S(O)), S(S(O))) to S(S(S(S(O)))). 

Obviously, for each TRS (L,R) there is a corresponding ARS, namely (Ter(L), (-7r)reR). 

Here we have to be careful: it may make a big difference whether one discusses the TRS (l:,R) 

consisting of all terms, or the TRS restricted to the ground terms (see the next example). We will 

adopt the convention that (L,R) has as corresponding ARS the one mentioned already, and we 

write (l:;R)0 if the ARS (Ter0(L), (-7 r)re R) is meant. Via the associated ARS, all notions 

considered in Section 1 (CR, UN, SN, ... ) carry overto TRSs. 
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2.1.3. EXAMPLE. Let (l:,R) be the TRS of Example 2.1.1 and consider (l:,R') where R' = R u 

{A(x,y) ~ A(y,x) }; so the extra rule expresses commutativity of addition. Now (l:,R') is not WN: 

the term A(x,y) has no nonnal fonn. However, (L,R')0 (the restriction to ground terms) is WN. 

Whereas (1:,R)0 is SN, (L,R')0 is no longer so, as witnessed by the infinite reductions 

possible in the reduction graph in Figure 6. The 'bottom' term in that reduction graph is a nonnal 

form. 

Figure6 

2.1.4. Many-sorted Tyrm Rewriting Sysrems. 

TRSs (l:,R) as we have defined in 2.1 are sometimes called homogeneous (GANZINGER & 

GIEGERICH [87]), as they correspond to algebraic data type specifications (by replacing ·~· by '=' 

in R) where the signature 1: has just one sort (which therefore was not mentioned). 

It is straightforward to extend our previous definitions to the heterogeneous or many-sorted 

case. The definition of tenn fonnation is as usual in many-sorted abstract data type specifications, 

and is left to the reader. We will stick to the homogeneous case, but note that 'everything' extends 

at once to the heterogeneous case. 

2.1.5. Semi-Thue systems. 

Semi-Thue Systems (STSs), as defined e.g. in JANTZEN [86], can be 'viewed' in two ways as 

TRSs. We demonstrate this by an example of a STS occurring in JAN1ZEN [86]: 

(1) Let T = {(aba, bab)} be a one-rule STS. Then T corresponds to the TRS R with unary 

function symbols a,b and a constant o, and the reduction rule a(b(a(x))) ~ b(a(b(x))). Now a 

reduction step in T, e.g.: bbabaaa ~ bbbabaa, translates in R to the reduction step 

b(b(a(b(a(a(a(o))))))) ~ b(b(b(a(b(a(a(o))))))). It is easy to see that this translation gives an 

'isomorphism' between T and R (or more precisely (R)0, the restriction to ground terms). 

(2) The second way to let a STS correspond to a TRS is by introducing an associative 

concatenation operator ., and letting the symbols of the STS correspond to constant symbols in the 

TRS. In fact, a 'natural' correspondence in this way requires that we introduce equational TRSs, 

which we 'Will not do here. (See e.g. BACHMAIR & PLAISTED [85] or PLAISTED [85].) 

2.1.6. PUZZLE. Find a one rule TRS which is weakly normalizing (WN), but not strongly normalizing (SN). An 
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answer can be found just before the References. 

2.2. Applicative Term Rewriting Systems. 

In some important TRSs there is a very special binary operator, called application (Ap). E.g. 
Combinatory Logic (CL), based on S,K,I, has the rewrite rules 

Ap(Ap(Ap(S,x),y),z) ~ Ap(Ap(x,z), Ap(y,z)) 

Ap(Ap(K,x),y) ~ x 

Ap(I,x) ~x 

Table2 

Here S,K,I are constants. Often one uses the infix notation (t.s) instead of Ap(t,s), in which case 
the rewrite rules of CL read as follows: 

((S.x).y).z 

(K.x).y 

I.x 

Table3 

~ (x.z).(y.z) 

~x 

~x 

As in ordinary algebra, the dot is mostly suppressed; and a further notational simplification is that 
many pairs of brackets are dropped in the convention of association to the left. That is, one restores 
the missing brackets choosing in each step of the restoration the leftmost possibility. Thus the three 
rules become: 

Sxyz ~ xz(yz) 

Kxy ~x 

Ix ~x 

Table4 

Note that xz(yz) restores to (xy)(yz), not to x(z(yz)). Likewise Kxy restores to (Kx)y, not K(xy). 
Of course not all bracket pairs can be dropped: xzyz is when restored ((xz)y)z, which is quite 
different from xz(yz). Note that e.g. Six does not contain a redex Ix. 

It is a convenient fiction to view the S,K,I in the last three equations as "operators with 
variable 'lllity" or varyadic operators, since they may be followed by an arbitrary number of 
arguments t1 , ... ,1Ji (n ~ 0). But it needs, in the case of S, at least three arguments to use the rewrite 
rule for S; e.g.: St1 tit3t4t5t6 ~ t1 t3(tit3)t4t5t6. 



13 

2.2.1. EXAMPLE. SII(SII) ~ I(SII)(l(SII)) ~ SII(l(SII)) ~ SII(SII). The term SII(SII) has many 

more reductions, which constitute an interesting reduction graph (see Figure 7). 

SII(SII) 

Figure? 

The 1RS CL has 'universal computational power': every (partial) recursive function on the 

natural numbers can be expressed in CL. This feature is used in TURNER [79], where CL is used to 

implement functional languages. Actually, an extension of CL is used there, called SKIM (for 

S,K,1-Machine); it is also an applicative 1RS: 

SKIM 

Sxyz ~ xz(yz) 

Kxy ~x 

Ix ~x 

Cxyz ~xzy 

Bxyz ~ x(yz) 

Yx ~x(Yx) 

Uz(Pxy) ~zxy 

~1r!Exy ~x 

~~xy ~y 

~nm ~n+m 

times nm ~n.m 

~nn ~lrlE 

~nm ~~ ifn:;e m 

Tables 
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In fact, the extra constants in SKIM are there for reasons of efficient implementation; they 
can all be defined using only S and K. E.g. defining B as S(KS)K we have: 

Bxyz = S(KS)Kxyz ~ 

KSx(Kx)yz ~ 

S(Kx)yz ~ 

Kxz(yz) ~ 

x(yz) 

as we should have. Likewise, defining C as S(BBS)(KK), we have Cxyz _,, xzy as the reader may 
check. For the other definitions one may consult BARENDREGT (81] or HINDLEY & SELDIN (86]. 

It is harmless to mix the applicative notation with the usual one, as in the following 1RS, CL 
with test for syntactical equality: 

Sxyz 

Kxy 

Ix 

D(x,x) 

Table6 

~ xz(yz) 

~x 

~x 

~E 

However, some care should be taken: consider the following 1RS 

Sxyz ~ xz(yz) 

Kxy ~x 

Ix ~x 

Dxx ~E 

Table? 

where D is now a constant (instead of a binary operator) subject to the rewrite rule, in full notation, 
Ap(Ap(D,x),x) ~ E. These two 1RSs have very different properties, as we shall see later (the first 
1RS is confluent, the second is not). 

Another interesting example of a 1RS in such a mixed notation is Weak Categorical 
Combinatory Logic in Table 8, which plays an important role in implementations of functional 
languages (see CURIEN [86]). Here Id, Fst, Snd, App are constants, 0 , < , > and ( , ) are binary 
function symbols and A is an unary function symbol. Note that Fst, Snd are not binary symbols 
and that App is not the 'underlying' application operator which was called in CL above Ap. 
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Idx =x 
(xoy)z = x(yz) 

Fst(x,y) =x 

Snd(x,y) =y 

<x,y>z = (xz,yz) 

App(x,y) =xy 

A(x)yz = x(y,z) 

Table8 

2.3. Direct sums of Term Rewriting Systems. 

In view of the need for modularisation of abstract data type specifications, it would be very helpful 

if some properties of a 1RS could be inferred from their validity for 'parts' of that 1RS. The 

simplest possible definition of 'parts' is that obtained by the concept of 'direct sum' of 1RSs: 

2.3.1. DEFINITION. Let R1,R2 be 1RSs. Then the direct sum R 1 E9 R2 of R1,R2 is the 1RS 

obtained by taking the disjoint union ofR1 and Ri· That is, if the alphabets of R1,R2 are disjoint 

(R1,R2 have no function or constant symbols in common), then the direct sum is the ordinary 

union; otherwise we take renamed copies R1',R2' of R1,R2 such that these copies have disjoint 

alphabets and define R1 E9 R2 to be the union of these copies. 

We have the following useful fact from TOY AMA [87]: 

2.3.2. THEOREM. R1 E9 R2 is confluent lf!R1 and R2 are confluent. 

So, confluence is a 'modular' property. One might think that the same is true for termination (SN), 

but TOY AMA [87] gives a simple counterexample: take 

R1 = {f(O,l,x) ~ f(x,x,x)} 

Ri = {m:(x,y) ~ x, m:(x,y) ~ y} 

then R1 ,R2 are both SN, but R1 E9 R2 is not, since there is the infinite reduction: 

f(m:(O,l), m:(O,l), m:(0,1)) ~ f(O, m:(O,l), m:(0,1)) ~ 

f(O, 1, m:(0,1)) ~ f( m:(0,1), m:(O,l), m:(0,1)) ~ .... 

In this counterexample R2 is not confluent and thus one may conjecture that 'confluent and 

terminati'hg' (or CR & SN, or complete) is a modular property (i.e. R1 E9 Riis complete iff R1,R2 
are so). Again this is not the case, as a counterexample given by Barendregt and Klop (adapted by 

Toyama, see TOY AMA (86]) shows: R1 has the eleven rules 



F(4,5,6,x) ~ F(x,x,x,x) 

F(x,y,z,w) ~ 7 

7 

and R2 has the three rules 

G(x,x,y) ~x 

G(x,y,x) ~x 

G(y ,x,x) ~ x. 
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(Similar counterex,amples with the additional property of being 'reduced' or 'irreducible' -
meaning that both sides of every rule are normal forms w.r.t. the other rules - are given in 
TOY AMA (86] and GANZINGER & GIEGERICH (87]. A correction to the last reference: there the 
diagram on p.23 has one arrow too many, namely b ~ k(O); otherwise R is not terminating as 
shown by the term f(b,b,b,g(O,b)), reducing to itself.) 

Now R1 and R2 are both complete, but R1 E9 R2 is not: 

F(G(l,2,3), G(l,2,3), G(l,2,3), G(l,2,3)) -
F(G(4,4,3), G(5,2,5), G(l,6,6), G(l,2,3)) -
F( 4, 5, 6, G(l,2,3)) ~ 
F(G(l,2,3), G(l,2,3), G(l,2,3), G(l,2,3)). 

2.3.3. EXAMPLE. (i) Consider CL E9 {D(x,x) ~ E}, Combinatory Logic with binary test for 
syntactic equality as in Table 6. Note that this is indeed a direct sum. As we shall see in Section 5, 
CL is confluent. Trivially, the one rule TRS {D(x,x) ~ E} is confluent. Hence, by Toyama's 
theorem (2.3.2) the direct sum is confluent. 
(ii) By contrast, the union CL u {Dxx ~ E}, Combinatory Logic with 'varyadic' test for 
syntactic equality as in Table 7, is not confluent. (See KLOP (80].) Note that this combined TRS is 
merely a union and not a direct sum, since CL and {Dxx ~ E} have the function symbol Ap in 
common, even though hidden by the applicative notation. 
(iii) Another application of Toyama's theorem (2.3.2): let R consist of the rules 



if true then x else y ~ x 

if~thenxelse y ~ y 

ifzthenx~x ~ x. 
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(Here~. ~are constants and if -~ -~is a ternary function symbol.) Then CL E9 R is 
confluent. 

In this introduction to TRSs we will not consider termination properties of combined TRSs 
R1 u Rz which are not direct sums. For results in that area see DERSHOWI1Z [81,85], BACHMAIR 

& DERSHOWITZ [86]' TOY AMA [86] and, for heterogeneous TRSs, GIEGERICH & GANZINGER 
[87]. 

2.4. Semantics of Term Rewriting Systems. 

Although we do not enter the subject of semantics of TRSs (see e.g. BOUDOL [85]), there is one 

simple remark that should be made. It concerns a semantical consideration that can be of great help 
in a proof of UN or CR: 

2.4.1. THEOREM. Let A. be an algebra 'for' the TRS R such that for all normal forms t,t' of R: 

A. I= t = t' => t = t'. 

Then R has the property UN (uniqueness of normal forms). 

Here the phrase 'A is an algebra for the TRS R' means that A. has the same signature as R, and 

that reduction in R is sound w.r.t. A., i.e. t ""*R s implies A. I= t = s. The terms t,s need not be 
ground terms. 

More 'semantic confluence tests' can be found in PLAISTED [85], in the setting of equational 
TRSs. 

2.5. Decidability of properties in Term Rewriting Systems. 

We adopt the restriction in this subsection to TRSs R with finite alphabet and finitely many 
reduction rules. It is undecidable whether for such TRSs the property confluence (CR) holds. (This 

is so both for R, the TRS of all terms, and (R)0, the TRS restricted to ground terms.) 

For ground TRSs, i.e.TRSs where in every rule t ~ s the terms t,s are ground terms (not to 
be confused with (R)0 above), confluence is decidable (DAUCHET & 1lSON [84]). 

For the termination property (SN) the situation is the same. It is undecidable for general 

TRSs, even for TRSs with two rules only (see for a proof DERSHOWITZ [85]); for one rule TRSs 

the question is open. For ground TRSs termination is decidable (HUET & LANKFORD [78]). 

For particular TRSs it may also be undecidable whether two terms are convertible, whether a 
term has a normal form, whether a term has an infinite reduction. A TRS where all these properties 

are undecidable is Combinatory Logic (CL), in Table 4. 
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We mention a recent result which is as far as we know new: let R1,R2 be left-linear TRSs 
(see for 'left-linear' section 5), and let NF0(Ri) (i = 1,2) be their sets of ground normal forms. 
Then it is decidable whether NF0(R1) = NF0{Rz) (see WIEDIJK [87]). Work in progress indicates 
that the condition ofleft-linearity can be removed. 

3. A termination proof technique 

As Newman's Lemma (WCR & SN=::} CR) shows, termination (SN) is a useful property. In 
general, as noted in 2.5, it is undecidable whether a TRS is SN; but in many instances SN can be 
proved and various techniques have been developed to do so. (See HUET & OPPEN [80], 
DERSHOWITZ [85].) We will present in this section one of the most powerful of such termination 
proof techniques: the method of recursive path orderings, as developed by Dershowitz on the basis 
of a beautiful theorem ofKruskal. In fact we will use the presentation ofBERGSTRA & KLOP [85], 
where the rather complicated inductive definitions of the usual presentation are replaced by a 
reduction procedure which is to our taste easier to grasp. 

3.1. DEFINITION. (i) Let 1' be the set of commutative finite trees with nodes labeled by natural 
numbers. Example: see Figure 8a. This tree will also be denoted by: 3(5,7(9),8(0(1,5))). 
Commutativity means that the 'arguments' may be permuted; thus 3(8(0(5,1)),5,7(9)) denotes the 
same commutative tree. 

(ii) Let 1'* be the set of such trees where some of the nodes may be marked with (a single)*. So 
'][' ~ 1'*. Example: see Figure 8b; this tree will be denoted by 3*(5,7(9*),8*(0(1,5))). 

3.2. NOTATION. n(t1, ... ,tiJ will be written as n(t). The ti (i = 1, ... ,k) are elements of 1'*. Further, 
ift = n(t1, ... ,tk) then t* stands for n*(t1, ... ,tk). 

3.3. DEFINITION. On T* we define a reduction relation~ as follows. 
(i) place marker at the top: 

n(t) ~ n*(t) 

(ii) make copies below lesser top: 
if n > m, then n*(t) ~ m(n*(t), ... ,n*(t)) 

(iii) push marker down: 
n*(s,t) ~ n(s* , ... ,s* ,t) 

(iv) selectargument: 

n*(t1, ... ,tk) ~ ti 

( v) in context: 

if t ~ s, then n(---,t,---) ~ n(---,s,---) 

We write~+ for the transitive (but not reflexive) closure of~. 

G ~ 0 copies of n*(t)) 

G ~ 0 copies of s*) 

(i E { 1, ... ,k}, k ~ 1) 
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(b) 

4 + 

/I~--> 
s* s* s* 

/\ /\ /\ 
I I I 
8 8 8 

3.4. EXAMPLE. Figure 9 above displays a reduction in 'r*. 

Clearly, the reduction....+ is not SN in 'r*; for, consider the second step in Figure 9: there the 

right hand side contains a copy of the left-hand side. However: 

3.5. THEOREM. The relation....++, restricted to 'r, is a well-founded partial ordering. Or, 

rephrased, the relation....++, restricted to 'r, is SN. 

So there is no infinite sequence t0 ....+ + t1 ....+ + tz ....+ + ... of terms lj (i ~ 0) without markers. The 

proof of Theorem 3.5 is based on Kruskal's Tree Theorem; we will give the main argument 

3.6. DEFINITION. Let t,s E 'f. We say that s is homeomorphically embedded in t, notations C t, 

if there is an injection <p: NODES(s) ....+ NODES(t) which is an order-preserving isomorphism and 

such that for all nodes ex. e NODES(s) we have: label(cx.)::;; label(<p(cx.)) where::;; is the usual 

ordering on N. 
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3.7. EXAMPLE. 2(9,7(0,4)) C 1(3(8(0(5,1)),9,5(9)),2) as the embedding in Figure 10 shows. 

Figure 10 

Clearly, C is a partial order on T. Moreover it satisfies the following property (for a short proof 

see DERSHOWITZ [79]): 

3.8. K.RUSKAL'S TREE THEOREM. Lert0,t1,12, ... be a sequence of trees in T. Then/or some i <j: 

tic tj. 

It is not hard to prove the following proposition: 

3.9. PROPOSITION. (i) ~+is a strict partial order on T, (ii) ifs C t, then t ~+ s. 

Combining 3.8 and 3.9, we have Theorem 3.5. For, suppose there is an infinite sequence 

t_ + t + t_ + + t + + t + "U ~ 1 ~ -.l. ~ ••• ~ i ~ ... ~ j ~ ... 

then for some i < j we have ti C tj, hence tj ~ + ti which is impossible as ~ + is a strict partial 

order. 

3.10. APPLICATION. Let a TRS R as in Table 9 be given. To prove that R is SN. 

••x ~x 

•(xv y) ~ (•X /\ •y) 

•(x A y) ~ (•x v •y) 

x A (y v z) ~ (x A y) v (x A z) 

(y v z) A x ~ (y A x) v (z A x) 

Table9 
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Choose a 'weight' assignment v-+ 1, A .... 2,--, -+ 3. Now a reduction in R corresponds to a--++ 

reduction in 'Jr (and hence it is also SN) as follows: 

3(3(t)) --++ t 

3(1(t,s)) --++ 2(3(t),3(s)) 

3(2(t,s)) --++ 1(3(t),3(s)) 

2(t,l(s,r)) --++ 1(2(t,s),2(t,r)) 

2(l(s,r),t) --++ 1(2(s,t),2(r,t)) 

E.g. the second rule: 

3(1(t,s)) --+ 3*(1(t,s)) --+ 2(3*(1(t,s)), 3*(1(t,s))) --++ 

2(3(1*(t,s)),3(1 *(t,s))) --+ + 2(3(t),3(s)). 

3.11. REMARK. (i) The termination proof method above does not work when a rule is present of which the left-hand 

side is embedded (in the sense of Definition 3.6) in the right-hand side, as in f(s(x)) ~ g(s(x), f(p(s(x)))). For an 

extension of Kruskal's Theorem, leading to a method which also can deal with this case, see PUEL [86]. 

(ii) Another example where the method above does not work directly, is found in the TRSs corresponding to 

process algebra axiomatisations as in BERGSTRA & KLOP [84,85]. For instance in the axiom system PA there are 

the rewrite rules 

x II y 

(x+y) 11. z 

(a.x) 11. y 

~ (x 11. y)+(y 11. x) 

~ (x 11. z) + (y 11. z) 

~ a.(x II y). 

Here one wants to order the operators as follows: II> 11. > .,+,but then we get stuck at the third rule with the 

re-emergence of the 'heavy' operator II. In BERGSTRA & KLOP [85] the solution was adopted to introduce infinitely 

many operators lln and 11.n• where n refers to some complexity measure of the actual arguments of the operators in a 

reduction. In fact, the operator + does not contribute to the problem, and forgetting about it and writing x II y as 

g(x,y), x 11. y as h(x,y), a.x as f(x), we have exactly Example 16 in DERSHOWTIZ [85] where the same problem is 

noted and solved by a lexicographical combination of recursive path orderings: 

g(x,y) ~ 

h(f(x),y) ~ 

h(x,y) 

f(g(x,y)). 

The termination proof as in BERGSTRA & KLOP [85] amounts to the following. Define a norm I I on terms by: 

ltl = the length oft in symbols; then introduce normed operators ~ and~ (n;?: 2); order the operators thus: 

~ > ~ > f, ~+l >~·Then replace in a term t every subterm h(s,r) by hlsl+lrJ(s,r) and likewise for g(s,r). Now 

the recursive path ordering as before is applicable. 
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(iii) A third example were the proof method above does not work, is when an associativity rule 

(x.y).z ~ x.(y.z) 

is present. The same problem occurs in the TRS for Ackermann's function: 

A(O,x) 

A(S(x),O) 

A(S(x),S(y)) 

~ S(x) 

~ A(x,S(O)) 

~ A(x,A(S(x),y)) 

What we need here is the lexicographic path ordering of Kamin and Levy, see DERSHOW11Z [85]. Essentially this 

says that a reduction in complexity in the first argument of A outweighs an increase (strictly bounded by the 

complexity of the original term) in the second argument. In fact, an ordering with the same effect can easily be 

described in the framework of reduction with markers * as explained above: all one has to do is give up the 

commutativity of the trees in 'll' and 'll'* and require that an embedding (Definition 3.6) respects also the left-right 

ordering; Kruskal's Tree Theorem works also for this case of noncommutative trees. Next, the rules in Definition 

3.3. are restricted such that the arities of the operators are respected; in Definition 3.3. the operators were treated 

'varyadic'. So rule (iii) becomes: n*(t1 , .... lj_ •••• ,tk) ~ n(t1 , ... ,1i_*, ... ,t0 (1 ::;; i::;; k). Further, we add to the rules in 

Definition 3.3 (with (iii) amended) the rule 

(vi) simplify left argwnent 

Example: 

n*(t) ~ n(t1 *, n*(t), ... , n*(t)) ( t = t1 , ... ,tk (k :<:: 1); k-1 copies of n*(t) ) 

A(S(x),S(y)) ~ A *(S(x),S(y)) ~ A(S*(x),A *(S(x),S(y))) ~ A(x,A *(S (x) ,S (y))) 

~ A(x,A(S(x),S*(y))) ~ A(x,A(S(x),y)). 

4. Knu.t.h~Bendix completion 

Complete lRSs, i.e. lRSs that have the properties SN and CR, are important to solve the word 

problem of equational specifications. E.g. consider the equational specification E of groups : 

E 

e.x =x 

I(x).x = e 

(x.y).z = x.(y.z) 

Table 10 

The word problem (for the closed term algebra of E, that is the algebra whose elements are the 
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ground terms modulo equality derivable from E) is the decision problem for the set of equations 

t = s between ground terms which can be derived from the equations in E. If there is an algorithm 

to determine whether such an equation is indeed derivable, the word problem is called solvable. 

Now suppose that a complete TRS can be found such that for all ground terms t,s: 

(*) 

(Here =R is convertibility in R.) Then the word problem for Eis solvable; the algorithm is simple: 

reduce t,s to their normal forms t* ,s* and compare. If and only if t* = s* we have E I- t = s. 

We are now faced with the question how to find a complete TRS R for a given set of 

equations E such that(*) holds. In general this is not possible, since not every E has a solvable 

word problem. The most famous example of such an E with unsolvable word problem is the set of 

equations obtained from CL, Combinatory Logic, in Tables 2,3,4 above after replacing·~· by'=': 

Sxyz = xz(yz) 

Kxy =x 

Ix =x 

Table 11 

(The TRS CL itself does not qualify, as it is not complete.) 

4.0.1. REMARK. Even if E has a decidable word problem for ground terms, there does not always exist a finite 

complete TRS R using the same alphabet equivalent to E (in the sense of(*) ). 

Cf. the similar situation for Semi-Thue Systems (see 2.1.5): according to KAPUR & NARENDRAN [85], 

there is no finite complete STS over :E= {a,b} equivalent to the STS {(aba, bab)}, which easily can be seen to have a 

decidable word problem. Jn KAPUR & NARENDRAN [85] it is stated that this result is also pertinent to TRSs, but 

the result does not seem to transfer to TRSs immediately, in the correspondence of 2.1.5 (1). (It does transfer 

immediately to ETRSs or equational TRSs, not treated here.) The problem is the constant o. Translated to TRSs (as 

in 2.1.5 (1)) the result of Kapur and Narendran reads: there is no finite complete TRS R with unary functions a,b and 

constant o equivalent (in the sense of(*)) to the TRS { a(b(a(x))) ~ b(a(b(x))) } , if R is forbidden to have reduction 

rules where LHS and RHS are ground terms (i.e. all the terms in the rules must end in x, not o). (Rules where LHS 

and RHS end in o, would correspond in the STS to rules where the LHS may only be replaced in some word w by 

the RHS if the LHS is a postfix of w.) 

Nevertheless, also for the TRS case there are examples of E with decidable word problem but without finite 

complete TRS over the same signature as E. A two-sorted example given by J.A. Bergstra (personal 

communication): let E be the specification of finite multisets of integers, as follows. The signature contains 0 and 

successor ~for the sort of integers, and for the sort of multisets the constant 0 (the empty multiset) and the 

operation ins (insertion of an integer into a multiset). The set of equations E consists of the single commutativity 

axiom ins(x, ins(y,X)) = ins(y, ins(x,X)). 
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But for many E's, including the one in Table 10, a complete TRS satisfying (*) can be 

found. To illustrate the idea of the 'completion' algorithm, first described in KNuTH & BENDIX 

[70], we embark on a 'naive' attempt to complete the set of equations E for groups by hand. (For 

an explanation of a similar completion procedure on STSs, see JANTZEN [86].) We start with 

giving the equations a 'sensible' orientation: 

1. 

2. 
3. 

e.x 

I(x).x -? 

(x.y).z -? 

x 

e 
x.(y.z) 

These rules are not confluent, as can be seen by superposition of e.g. 2 and 3. Redex I(x).x can be 

unified with a non-variable subterm of redex (xsl.z (the underlined subterm), with result 

(I(x).x).z. This term is subject to two possible reductions: (I(x).x).z -?2 e.z and (I(x).x).z -?3 
I(x).(x.z). The pair of reducts 

<e.z, I(x).(x.z)> 

is called a critical pair . After reduction e.z -? z we have the problematic pair of terms z, I(x).(x.z); 

problematic because their equality is derivable from E, but they have no common reduct w.r.t. the 

reduction available so far. Therefore we adopt a new 

rule 

4. I(x).(x.z) -? z 

Now we have a superposition of rule 2 and 4: I(I(y)).(I(y).y) -? 4 y and I(I(y)).(I(y).y) -?2 
I(I(y)).e. This yields the critical pair <y, I(I(y)).e> which cannot further be reduced. Adopt new 

rule: 

5. I(I(y)).e -? y callllceUed Rater 

As it will tum out, in a later stage this last rule will become superfluous. We go on searching for 

critical pairs: 

Superposition of 4,1: I(e).(e.z) -?4 z and I(e).(e.z) -?1 I(e).z. 

Adopt new rule: 

6. I(e).z-? z callll.ceUed later 

Superposition of 3,5: (I(Iy)).e).x -?3 I(I(y)).(e.x) and (I(Iy)).e).x -?5 y.x. 

Adopt new rule: 

7. I(Iy)).x -? y.x callll.ceUed fater 

Superposition of 5,7: I(I(y)).e -?7 y.e and I(I(y)).e -?5 y. 

Adopt new rule: 

8. y.e-? y 

Superpe1Sition of 5,8: I(I(y)).e -?5 y and I(I(y)).e -?g I(I(y)). 

Adopt new rule 

9. I(I(y))-? y 
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(Rule 5 is now no longer necessary to ensure that the critical pair <y, I(I(y)).e> has a common 

reduct, because: I(I(y)).e ~9 y.e ~8 y. Likewise for rule 7.) 

Superposition of 6,8: I(e).e ~6 e and I(e).e ~8 I(e). 

Adopt new rule 

10. I(e) ~ e canceU 6 

Superposition of 2,9: I(I(y)).I(y) ~2 e and I(I(y)).I(y) ~9 y.I(y). 

Adopt new rule 

11. y.I(y) ~ e 

Superposition of 3,11: (y.I(y)).x ~3 y.(I(y).x) and (y.I(y)).x ~11 e.x. 

Adopt new rule 

12. y.(I(y).x) ~ x 

Superposition (again) of 3,11: (x.y).I(x.y) ~11 e and (x.y).I(x.y) ~3 x.(y.I(x.y)). 

Adopt new rule 

13. x.(y.(y.I(x.y)) ~ e cancele«ll later 

Superposition of 13,4: I(x).[x.(y.I(x.y))] ~4 y.I(x.y) and I(x).[x.(y.I(x.y))] ~13 I(x).e. 

Adopt new rule 

14. y.I(x.y) ~ I(x) canceUe«ll Rater cancel 13 

Superposition of 4,14: I(y).(y.I(x.y)) ~4 I(x.y) and I(y).(y.I(x.y)) ~14 I(y).I(x). 

Adopt new rule 

15. I(x.y) ~ I(y).I(x) canceU 14 

The rewrite system is complete now: 

1. e.x ~ x 

2. I(x).x ~ e 

3. (x.y).z ~ x.(y.z) 

4. I(x).(x.z) ~ z 

8. y.e ~ y 

9. I(I(y)) ~ y 

10. I(e) ~ e 

11. y.I(y) ~ e 

12. y.(I(y).x) ~ x 

15. I(x.y) ~ I(y).I(x) 

Table 12 

This completion procedure by hand was naive, since we were not very systematic in searching for 

critical pairs, and especially since we were guided by an intuitive sense only of what direction to 

adopt when generating a new rule. In most cases there was no other possibility (e.g. at 4: z ~ 

I(x).(x.z) is not a reduction rule due to the restriction that the LHS is not a single variable), but in 
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case 15 the other direction was at least as plausible, as it is even length-decreasing. However, the 

other direction I(y)J(x) ~ I(x.y) would have led to disastrous complications (described in KNUTH 

& BENDIX [70]). 

The problem of what direction to choose is solved in the actual Knuth-Bendix algorithm and 

its variants by preordaining a monotonic well-founded partial ordering > on the terms. 

('Monotonic' means: t > s ==> C[t] > C[s] for all contexts C[ ]; 'well-founded' means that there is 

no infinite descending sequence t > t' > t" > .... ) Then we only generate a new rule t ~ s if 

t > s. This guarantees that in each stage the reduction rules generated thus far, are SN. If the 

procedure of generating new rules terminates succesfully, then we have also a confluent set of 

reduction rules, basically by the following theorem: 

4.1. THEOREM (KNUTH & BENDIX [70]). Let the TRS R be SN. Then R is confluent if! each 

critical pair has a common reduct. 

For the example above, leading to the ten rules in Table 12 (which occur also in KNUTH & 

BENDIX [70]) one can prove SN by a 'Knuth-Bendix ordering' (not treated here) or by the 

recursive path ordering explained in Section 3. (In fact we need the extended lexicographic version 

of Remark 3.11 (iii), due to the presence of the associativity rule.) Further, Knuth and Bendix 

proved that CR follows because all the critical pairs have a common reduct; e.g.: 

I(y.I(y)) ~15 I(I(y)).I(y) 

.J-9 
!11 y.I(y) 

.J,11 
I(e) ~10 e 

(As the finitely many rules generate only finitely many critical pairs it is not hard to check this for 

Table 12.) 

Actually, Theorem 4.1 is a corollary of Newman's Lemma and a theorem of Huet who 

eliminated the assumption of SN: 

4.2. THEOREM (HUET [80]). A TRS is weakly confluent if! each critical pair of terms has a 

common reduct. 

Since the proof (also in LE CHENADEC [86]) gives a good insight in what happens in terms, we 

will spend some words (and figures) on it. In checking weak confluence, we have two 'diverging' 

one step reductions given. The two redexes involved in those steps can be in three cases, as in 

Figure 11. In the first two cases (disjoint redexes and nested redexes) there is no problem to find 

'converging' reductions as required for weak confluence. The only problem is the third case, 

overlapping redexes; but there the hypothesis that each critical pair of terms has a common reduct, 

does the work. 
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(a) disjoint redexes (b) nested redexes 

( c) overlapping redexes 

Figure 11 (after LE CHENADEC [86]) 

Knuth and Bendix gave an algorithm to do what was done above by hand, to compute a 

complete TRS from the given set of equations E - if possible. (The algorithm may fail.) There are 

several ve;sions around at present; for a correctness proof of some versions see HUET [81]. We 

now give a simple version, as in DERSHOWI'IZ [85a], in Table 13. 
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Knuth-Bendix completion algorithm 

The procedure has as input 

a finite set R of rules 

a finite set E of equations 

a program to compute a well-founded monotonic ordering >on the terms. 

The reduction rules in Rare 'sound' w.r.t. E. 

The critical pairs <t,s> of R are present in E as equations t = s. 

The procedure now generates new rules, again sound w.r.t. E. 

======================================================== 
Repeat while E is not empty. If E is empty, we have successful termination. 

(1) Remove an equation t = s (ors= t) from E such that t > s. If such an 

equation does not exist: failure. 

(2) Add the rule t --t s to R. 

(3) Use t --t s (and other rules in R) to nonnalize the RHSs of the present rules. 

( 4) Extend E with all critical pairs in R caused by t --t s. 

(5) Remove all old rules from R whose LHS contains an instance oft. 

(6) Use R to nonnalize both sides of equations in E. 

Remove each equation that becomes an identical equation. 

Table 13 

5. Regular Term Rewriting Systems 

We will now consider a restricted (but for many purposes sufficiently large) class of TRSs with 

pleasant properties: the regular TRSs. 

5.1. DEFINITION. A TRS R is regular if the reduction rules of R are left-linear and there are no 

critical pairs . 
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A reduction rule t -7 sis left-linear if t is linear, i.e. no variable occurs twice or more in t. E.g. the 

rule D(x,x) -7 Eis not left-linear; nor is the rule ifx then y else y -7 y. A TRS R without critical 

pairs is also called non-ambiguous or non-overlapping. 

One problem with non-left-linear rules is that their application requires a test for syntactic 

equality of the arguments substituted for the variables occurring more than once. As terms may be 

very large, this may be very laborious. Another problem is that the presence of non-left-linear rules 

may destroy the CR property. 

5.2. EXAMPLE. Let R consist of the rules D(x,x) ~ E, C(x) ~ D(x,C(x)), A~ C(A). Then R is WCR, but not 

CR; for, we have reductions C(A) __,. E and C(A) __,. C(E) but C(E), E have no common reduct. There are no critical 

pairs in R. Hence, in view of our later theorem stating that regular TRSs are confluent, the non-confluence of R is 

caused by the non-left-linear rule D(x,x) ~E. 

We will now be somewhat more precise about the definition of 'no critical pairs' or 

'non-ambiguous'. Let R be the TRS as in Table 14: 

r1 F(G(x, S(O)), y, H(z)) -7 x 

r2 G(x, S(S(O))) -7 0 

r3 P(G(x, S(O))) -7 S(O) 

Table 14 

Call the context F(G(o, S(O)), o, H(D)) the pattern of rule r1. (Earlier, we defined a context as a 

term with exactly one hole o, but it is clear what a context with more holes is.) In tree form the 

pattern is the shaded area as in Figure 12. 

Figure 12 

For a left!linear rule it is only its pattern that 'counts'. 

The TRS R in Table 14 has the property that in no term patterns can overlap, i.e. R has the 

non-overlapping or non-ambiguity property. The following figure (13) shows a term in R with all 
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patterns indicated, and indeed they do not overlap. 

Figure 13 

Overlap can already occur in one rule, e.g. in the rule L(L(x))--? O; see Figure 14a. An 

overlap at the root (of the tree corresponding to a term), arising from the rules F(O,x,y) --? 0, 

F(x,1,y)--? 1, is shown in Figure 14b. Another overlap at the root, arising from the rules for the 

non-deterministic or: or(x,y)--? x, m:(x,y)--? y, is shown in Figure 14c. 

x y 

x 

(a) (b) (c) 

Figure 14 

We now have the following important fact: 

5.3. THEOREM. Regular TRSs are confluent. 
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The earliest proof is probably that of ROSEN [73]; but earlier proofs of the confluence of CL 

(Combinatory Logic), work just as well forregularTRSs in general. The theorem is also a special 

case of a theorem of Huet, for which we need a definition first: 

5.4. DEFINITION. (Parallel reduction) t - 11 sift - s via a reduction of disjoint redexes. 

5.5. THEOREM (HUET [80]). Let R be a left-linear TRS. Suppose for every critical pair <t,s> we 
have t - 11 s. Then - 11 is strongly confluent, hence R is confluent. 

(For the definition of 'strongly confluent' see Ex. 1.7 (10) above.) 

5.6. EXAMPLES. (i) Combinatory Logic (Table 4) has rule patterns as in Figure 15; they cannot 

overlap. As CL is left-linear, it is therefore regular and hence confluent. 

Figure 15 

(ii) SKIM, in Table 5, is regular. Likewise for the TRSs CL with test for equality, binary or 

applicative, in Tables 6,7 respectively. Also Weak Categorical Combinatory Logic in Table 8 is 

regular. 

(iii) A Recursive Program Scheme (RPS) is a TRS with 

a finite set of function symbols f' ={F1,. . .,Fn} (the 'unknown' functions), where Fi has 

arity mi ;;? 0 (i = 1,. . .,n), and 

a finite set G.= {G1,. .. ,Gk} (the 'known' or 'basic' functions), disjoint from f', where Gj 

has arity Pj;;? 0 (j = 1,. . .,k). 

The reduction rules of R have the fonn 

(i = 1,. . .,n) 

where all the displayed variables are pairwise different and where 1i. is an arbitrary tenn built 
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from operators in F,a. and the displayed variables. For each Fi (i = l,. . .,n) there is exactly 

one rule. 

Example: G1 (x,F1 (x),F2(x,x)) 

G2(F2(x,x),F 1 (G3)) 

Every RPS is regular, hence confluent. 

Apart from confluence, many interesting facts can be proved for regular 1RSs. 

5. 7. DEFINITION. (i) A 1RS is non-erasing (NE) if in every rule t -7 s the same variables occur in t 

and in s. (E.g. CL is not NE, due to the rule Kxy -7 x.). 

(ii) A 1RS is weakly innermost normalizing (WIN) if every term has a normal form which can 

be reached by an innermost reduction. (In an innermost reduction a redex may only be 'contracted' 

if it contains no proper subredexes.) 

5.8. THEOREM. Let R be regular and NE. Then: R is WN if!R is SN. 

5.9. THEOREM (O'DONNELL (77]). Let R be a regular TRS. Then: R is WIN if!R is SN. 

The last two theorems can be refined to terms: call a term WN if it has a normal form, SN if 

it has no infinite reductions, WIN if it has a normal form reachable by an innermost reduction. The 

'local' version of Theorem 5.8 then says that for a term in a regular, non-erasing 1RS the 

properties WN and SN coincide. Likewise there is a local version of Theorem 5.9. Thus, if in CL a 

term can be normalized via an innermost reduction, all its reductions are finite. 

5.10. REMARK. STSs (Semi-Thue Systems), viewed as TRSs as explained in 2.1.5 (1), are always non-erasing 

(since LHS and RHS of every rule end in x, in their TRS version). Also, if there are no critical pairs in the STS, it 

is regular in the present sense·of Definition 5.1 (not in the sense of formal language theory or STS theory). So if a 

STS has no critical pairs, the properties SN and WN coincide. This rather trivial observation could have been more 

easily made by noting that for a STS without critical pairs the property WCRl holds, as defined in Ex. 1.7 (15), 

whence WN <=> SN. 

6. Reduction strategies for regular Term Rewriting Systems 

Terms in a 1RS may have a normal form as well as admitting infinite reductions. So, if we are 

interested in finding normal forms, we should have some strategy at our disposal telling us what 

redex to'contract in order to achieve that desired result. We will in this section present some 

strategies which are guaranteed to find the normal form of a term whenever such a normal form 

exists. We will adopt the restriction to regular 1RSs; for general 1RSs there does not seem to be 



33 

any result about the existence of 'good' reduction strategies. 

The strategies below will be of two kinds: one step strategies (which point in each reduction 

step to just one redex as the one to contract) and many step strategies (in which a set of redexes is 

contracted simultaneously). Of course all strategies must be computable. 

Apart from the objective of finding a normal form, we will consider the objective of finding a 

'best possible' reduction even if the term at hand does not have a normal form. 

6.1. DEFINITION. (i) If R is a 1RS, a one step reduction strategy lF for R is a map JF: Ter(R) ~ 
Ter(R) such that 

(1) t = lF(t) 

(2) t ~ lF(t) 

if t is a normal form, 

else. 

(ii) A many step reduction strategy lF for R is a map lF: Ter(R) ~ Ter(R) such that 

(1) t = lF(t) if t is a normal form, 

(2) t ~ + lF(t) else. 

Here ~+is the transitive (but not reflexive) closure of~. 

6.2. DEFINITION. (i) A reduction strategy (one step or many step) lF for R is normalizing if for each 

term tin R having a normal form, the sequence {JFll(t) In~ O} contains a normal form. 

(ii) lF is cofi,nal if for each t the sequence {JFll(t) I n ~ 0} is cofinal in Ci(t), the reduction graph 

oft. (See Ex.1.7 (13) for 'cofinal' and see Figure 16.) 

Figure 16 

A normalizing reduction strategy is good, but a cofinal one is even better: it finds, when 

applied on term t, the best possible reduction sequence starting from t (or rather, a best possible) in 

the following sense. Consider a reduction t ~ s as a gain in information; thus normal forms have 

maximum-information. In case there is no normal form in Ci(t), one can still consider infinite 

reductions as developing more and more information. Now the cofinal reductions t = t0 ~ t1 ~ fi 
~ ... are optimal since for every t' in Ci(t) they contain a 'Ii with information content no less than 
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that oft' (since t' __,. 1ii for some 1ii· by definition of 'cofinal'). In a sense, a cofinal reduction plays 

the role of a kind of 'infinite normal form'. See e.g. BERRY & LEVY [79] and BOUDOL [85], 

where spaces of finite and infinite reductions modulo the so-called permutation equivalence are 

studied; this give rise to cpo's or even complete lattices where the bottom point corresponds to the 

empty reduction oft, i.e. to t itself, and the top point corresponds to the normal form (or rather the 

equivalence clas of reductions to the normal form), if it exists, and otherwise to the equivalence 

class of cofinal reductions. 

We now present some well-known reduction strategies. 

6.3. DEFINITION. (i) The leftmost-innermost (one step) strategy is the strategy in which in each step 

the leftmost of the minimal or innennost redexes is contracted (reduced). 

(ii) The parallel-innermost (many step) strategy reduces simultaneously all innermost redexes. 

Since these are pairwise disjoint, this is no problem. 

(iii) The leftmost-outermost (one step) strategy: in each step the leftmost redex of the maximal (or 

outermost) redexes is reduced. 

(iv) The parallel-outermost (many step) strategy reduces simultaneously all maximal redexes; 

since these are pairwise disjoint, this is no problem. 

(v) The full substitution rule (or Kleene reduction, or Gross-Knuth reduction): this is a many 

step strategy in which all redexes are simultaneously reduced. 

Strategies (i)-(iv) are well-defined for general TRSs. Strategy (v) is only defined for regular 

TRSs, since for a general TRS it is not possible to define an unequivocal result of simultaneous 

reduction of a set of possibly nested redexes. 

It is worth-while to distinguish a class of regular TRSs as follows: 

6.4. DEFINITION. A regular TRS is left-normal if in every reduction rule t ~ s the constant and 

function symbols in the LHS t precede (in the linear term notation) the variables. 

6.4.1. EXAMPLE. (i) CL (Combinatory Logic) is left-normal. (ii) RPSs (Recursive Program 

Schemes) as defined in Examples 5.6 (iii) are all left-nonnal. 

We can now summarize some of the main properties of the reduction strategies in Definition 

6.3; see Table 14. 

regular TRSs regular left-normal TRSs 

leftmost-innermost - -
parallel-innennost - -
leftmost-outermost - + 

parallel-outermost + + 
• full substitution ++ ++ 

Table 14 
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Here'-' means: in general not normalizing, hence in general not cofinal; '+'means normalizing but 

not cofinal, '++'means cofinal, hence normalizing. 

An example showing that the leftmost-outermost strategy is not normalizing in general, is 

given in HUET & LEVY [79]: take the regular 1RS {F(x,B) ~ D, A~ B, C ~ C} and consider 

the term F(C,A). This term has a normal form, D. But the leftmost-outermost reduction is cyclic: 

F(C,A) ~ F(C,A), since it contracts the leftmost-outermost redex C. 

Proofs that leftmost-outermost reduction is normalizing for left-normal regular 1RSs and that 

parallel-outermost reductions is normalizing for all regular 1RSs can be found in O'DONNELL [77]. 

The latter fact is also proved in BERGSTRA & KLoP [86] (Appendix). 

An example showing that parallel-outermost reduction need not be cofinal, can be found in 

CL (in Table 4). Namely, define the term It as SKt, and check that Ir--. x. Furthermore, define 

the term Qt as Sltlt(SltIJ. Now the parallel-outermost strategy, applied on On, yields a cyclic 

reduction sequence On --. Orr which is not cofinal since On --. QI but not QI ""* On. 

As said in the Introduction, this tutorial can only present an initial part of the theory of 1RSs 

and we have to stop short of some very interesting work about sequentiality of 1RSs (in HUET & 

LEVY [79]). Huet and Levy prove that every term tin a regular 1RS has a needed redex, that is a 

redex which has to be contracted in every reduction to the normal form of t. Unfortunately, for 

regular 1RSs in general there is no algorithm to pick out such a needed redex. But Huet and Levy 

go on and define a class of strongly sequential 1RSs where a needed redex can be found efficiently; 

and strong sequentiality is a decidable property. Thus for strongly sequential regular 1RSs there is 

a normalizing reduction strategy. 

ANSWER TO PUZZLE 1.6.1 (by R. van Glabbeek, Centre for Mathematics and Computer Science, Amsterdam): 

ANSWER TO PUZZLE 2.1.6 (by G.J. Akkerman, Free University Amsterdam): 

R = {F(a, F(x,y)) ~ F(x, F(x, F(b,b)))}. R is not SN, as F(a, F(a, F(b,b))) reduces to itself by outermost reduction; 

on the other hand every term has a normal form, e.g. F(a, F(a, F(b,b))) has, by the innermost reduction, normal form 

F(b, F(b, F(b,b))). 
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