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1. Introduction: 

The problem of predicting the value of some future observable random 

quantity on the basis of available data has received considerable attention in 

the statistical literature. The time series literature abounds with derivations 

of minimum mean squared error predictions, while the prediction of a future 

response, given values of covariates, is a classical problem in linear model 

theory which is ordinarily attacked via mean squared error considerations. No 

less attention is afforded the prediction problem in the Bayesian world, 

although the emphasis is somewhat different. Given a probabilistic model and a 

prior distribution, the Bayesian solution to the prediction problem is just the 

conditional distribution of the quantity to be predicted, given the data and the 

prior. This conditional distribution is called the predictive distribution and 

is discuss-e·' at length in the basic text by Aitchison and Dunsmore ( 1975). It 

has been argued in the literature that prediction, as opposed to say parametric 

estimation, is the proper activity of statisticians--partly because prediction 

is often the scientific question of interest, and partly because the ability of 

statisticians to predict can actually be checked, unlike the popular parametric 

estimation--confidence set activity. For an introduction to this point of view, 

and further references, see Geisser (1980). 

In this paper, the prediction problem is studied from a Bayesian-decision 

theoretic viewpoint. To describe the philosophical underpinnings of the 

formulation of the problem, first consider the simplest situation in which a 

random variable Z is to be predicted on the basis of some observed data X, and 

the joint distribution of X and Z is completely known. In this case the 

,. 
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inferential solution to the prediction problem is giveD by the conditional 

distribution of Z given X = x, say Q(•lx), because "Q(•lx) contains everything 

we known about Z after seeing x". From the Bayesian point of view the above 

statement is true virtually by definition, while from a decision theory point of 

view its truth derives from the observation that all decision problems involving 

Z are solved by choosing the action which minimized the expected loss computed 

under QC· Ix). Hence Q(· jx) is "sufficient" in the Bayesian sense for all 

decision problems. That Q(•jx) is the correct solution to the prediction 

problem is assumed in what follows. 

Next assume that the joint distribution of X and Z depends on an unknown 

parameter e, but e has a known prior distribution ir. In this case the Bayesian 

solution is again the conditional distribution of Z given X = x, 

( 1. 1 ) Q <·Ix> 
1f 

f Q( • Ix, eh ( cte) 

where Q(• lx,e) is the conditional distribution of Z given X = x and e. However, 

a complete solution to the inferential problem is provided by the conditional 

distribution of (Z,8) given X = x from which Q (·Ix) is easily obtained. This 
1f 

observation is quite explicit in the proof of the basic Lemma 4.1. 

The point of the above discussion is that under certain circumstances, 

namely when the prior w is known, the solution to the inferential problem 

regarding the prediction of Z is a p!t.,[aJ:r.1.. the predictive distribution Q (•Ix). 
. 1f 

This revealed truth has important consequences for the decision theoretic 

formulation of the prediction problem to which we now turn. 
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A common technique·for providing predictive distributions which are both 

analytically tractable and often have frequentist interpretations is the use of 

improper prior distributions. However the direct Bayesian interpretation is 

lost and the suitability of such predictive distributions is at issue. One way 

to get at this issue is to compare proposed predictive distributions in a 

decision theoretic framework. Because actions, in the decision theory sense, 

are distributions on the space ~ of possible Z values, an appropriate action 

space is M1 (~)--the set of all probability distributions on~. Thus a decision 

rule (or inference as defined in Eaton (1982)) is a (measurable) function 

defined on the sample space~ taking values in M1 (~). The value of a decision 

rule oat x E ~is ox E M 1 (~). 

With 0 denoting the parameter space of .a probabilistic model for X and Z, 

let L(a,x,z,e) be a loss function where a e M1 (~). x e ~. z e ~. and e e e. The 

risk function of a decision rule o is then 

( 1 • 2) R(o,e) 

Given a proper prior n, recall that o is a Bayes rule for n if 
n 

( 1. 3) 

for all decision rules o. However, it has already been argued that, a pff.i.olt.l, 

the Bayes solution to the prediction problem is the predictive distribution 

Q {•jx) in (1.2). Thus, in order to obtain consistency between the decision 
n 
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theoretic Bayes solution and the "introspective" Bayes solution, it is necessary 

that 

( 1.4) f R(o,e)n(de) ~ { R(Qn,e)n(da) 

for all decision rules o where Q denotes the decision rule whose value at x is 
n 

Q <·Ix). Loss functions for which (1.4) holds for all proper priers n are 
n 

called fair Bayes loss functions--fair in the sense that they give the right 

solution to the Bayes problems whose solutions we claim to know. Examples of a 

large class of such loss functions are given in Section 2. In this paper, 

attention is restricted to prediction problems in which decision rules are 

compared via risk functions obtained from the fair Bayes loss functions defined 

in the next section. 

Here is the main problem with which this paper deals. Let v be a improper 

prior distribution on the parameter space 0. In many standard situations it is 

possible to define a formal posterior distribution for Z given X = x using the 

improper prior v. The existence of such a posterior distribution, say Q (•Ix), 
v 

is discussed in Section 4. Assuming Q <·Ix), exists, the main result of this v 

paper, Theorem 4.1, provides conditions under which the decision rule Qv (whose 

value at x is Q (•Ix)) is almost v-admissible for a variety of fair Bayes Loss 
v 

functions. A version of Stein's (1955) sufficient condition for admissibility 

is coupled with some inequalities discussed in Section 3 to provided the proof 

of Theorem 4.1. 

In Section 5, Theorem 4.1 is applied to the one dimensional translation 
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parameter problem with e = R1 when the improper prior is Lebesgue measure de on 

R
1

• The results here show that under very weak conditions, the formal posterior 

obtained from de is almost de-admissible. Conditions under which almost v-

admissibility implies admissibility are briefly touched on in Section 6. 

The sufficient condition for almost v-admissibility involves a function 

defined on 0x0 which is rather interesting. To describe this function, let 

p(xle) be the marginal density of X given e with respect to a fixed a-finite 

measure A. Given the improper prior v, set 

( 1 • 5) m(x) f p(x le )v(de). 

Under the assumption that 

A {xjo < m(x) < +m} 

has p(•le)-measure one for each e, the function 

( 1 • 6 ) t ( e ) = f p ( x I e ) P ( x I n ) A ( dx ) ,n m(x) 

is well defined. Since p(xje)/m{x) can be interpreted as the conditional 

density of e given x obtained from the improper prior v, t(e,n) is the expected 

value of this conditional density ate when the data X has been sampled from 

p(•ln). The condition for almost v-admissibility involves the behavior oft 

interpreted as a linear transformation on the space L2 (v) of square integrable 
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functions on (8,v). More precisely, for h £ L2 (v), define the linear 

transformation A by 

( 1 • 6) (Ah) (6) f t(e,n)h(n)v(dn). 

The condition for almost v-admissibility of Q can be described as follows. Let 
\) 

(·,·)denote the usual inner product on L2
(v) and for each set C of positive v 

measure, let 

H(C) {h £ L
2

(v)jh ~ 0, f h
2 (e)v(d8) > o}. 

c 

Theorem 4.2 shows that if 

( 1 • 7) inf 
he:H (C) 

(h,(I-A)h) 

j h
2 (e)v(d8) 

c 

0 

for each set C of positive v-measure, then Q is almost v-admissible for the 
\) 

class of loss functions described in Section 2. In 1.7, I is the identity 

linear transformation. It is condition (1 .7) which leads to a connection 

between Markov chains and almost v-adrnissibility which is discussed briefly in 

Section 6. 

Here is an outline of the paper. Section 2 contains notation and a 

discussion of a class of fair Bayes loss functions. The inequality in 

Proposition 2.2 is an important upper bound on the average risk difference of 
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any decision rule and a Bayes decision rule. A sufficient condition for almost 

v-admissibility is given in Section 3. Section 4 contains the main theorem of 

this paper. In Section 5, the conditions for almost v-admissibility are applied 

to the one-dimensional translation problem. Section 6 contains some discussion 

of the main theorem. 

2. Assumptions and Notation: 

In this section, notation is set and a decision theoretic prediction problem 

is formulated. In addition, fair Bayes loss functions are described and some 

preliminary results are established. 

Consider three measurable spaces (~,8 1 ), (4>,82 ) and (e,8
3

). The three 

spaces are assumed to be Polish and the associated o-algebras are those 

generated by the open sets. The problem under consideration is the prediction 

of the unobserved variable Z E ~ on the basis of data X E ~. For each parameter 

value e E 8, a joint distribution for (X,Z) is given in the form 

(2.1) P(dxlz,e)S(dzle> 

where P(• lz,e) is the conditional distribution of X given Z z and 9, and 

S(• le> is the conditional distribution of Z given e. 

Let M
1

(4>) be the space of all probability measures defined on (4>,82). When 

* equipped with the weak topology, M1(4>) is a separable metric space. Theo-

* algebra generated by this topology is denoted by B • A decision rule or 

inference is a measurable function defined on (~.B 1 ) taking values in 
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* (M1($),B ). This definition of decision rule coincides with the usual notion of 

a randomized decision rule (see Dubins and Freedman (1964) and Eaton (1982)). 

The value of o at x E ~is ox e M1($). 

For any probability measure v on (e,B
3

), the model (2.1) together with v 

determines a joint distribution on ~x9x8 and thus a marginal distribution on 

~x$. Since ~and $ are Polish, there then exists a conditional distribution of 

Z given X = x (see Parthasarathy (1967), Chapter 5). This conditional 

distribution is denoted by Q (•jx). Note that Q <·Ix> defines a decision rule, 
~ v 

say Q , whose value at x is Q (•Ix>. As remarked in the previous section, Q is v v v 

the Bayesian solution to the problem of predicting Z when the prior is TI. 

A loss structure is now introduced into the problem. Let k(•,•) be a 

bounded symmetric bimeasurable function defined on $x$. The function k defines 

a bilinear function of bounded signed measures, say ~, and ~2 , via 

(2.2) 

The bilinear function function<•,•> satisfies 

(2.3) 

because k is symmetric. It is also assumed that<·,·> is non-negative definite-

-that is, <·,·> satisfies 

(2.4) 
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for all bounded signed measures ~. A simple way to construct symmetric k's so 

that (2.3) and (2.4) hold is to set 

s 
(2.5) k(z

1
,z

1
) l ui(z1 )ui(z2 ) 

where u
1 

, ••• , u are s bounded measurable functions defined on <I>. 

For z e: <I> let e: e: Ml ( $) denote the probability measure with z 

Also, let Qe ( • Ix) be the conditional distribution of Z given X = 

parameter value is e. Given a bilinear function<·,·> as above, 

functions L
1 

and L
2 

by 

L
1

(a,z) 

(2 .6) 

<a-e: a-e: > z' _ z 

mass one at 

x when the 

define loss 

where a e: M
1

(<I>). The loss function L
1 

is more appropriate when Z is best 

regarded as some unknown constant and the problem is to guess the value of Z. 

z. 

For example, if <I>= 0, B2 = a
3

, and S(·le> is the probability measure degenerate 

at e, then we simply have the classical estimation problem. In this case L
1 

and 

L
2 

coincide. However, if Z is the future value of some random quantity which we 

do not know, then the inference Q8 <·1x) is most appropriate when we know e and X 

= x. It is possible to allow the function k defining<·,·> to depend on both e 

and x as long as k remains bounded and (2.4) holds. This extension only 
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complicates the notation and is omitted. 

The result below shows that the loss functions L1 and L2 define fair Bayes 

decision problems in the sense that for each proper prior TI, the Bayes rule is 

the posterior Q (•Ix> defined above. See Eaton (1982) for a formal definition 
TI 

and discussion of fair Bayes decision problems. 

For any loss function L defined on M 1 (~)x~x$x0, the risk function of a 

decision rule o is defined to be the expected loss under L with S fixed. In 

symbols, the risk function is 

where the expectation is computed under the joint distribution of X and Z with 6 

fixed. Naturally, sufficient conditions on Lare assumed so that the above 

expression makes sense. 

Proposition 2.1: Given any proper prior distribution TI on (0,B
3

), the Bayes 

rule for the decision problem with loss functions L
1 

or L
2 

is the posterior 

distribution Q <·Ix). In other words, 
TI 

(2. 7) inf f Ri(o,S)TI(dS) 
0 f R.(Q ,8)TI(d8) 

l TI 

where the risk function Ri(o,e) is the expected loss under Li when the parameter 

value is e. i = 1 .2. 
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Proof: The proof is given first for loss function L
2

• For any decision rule o, 

consider the average risk difference 

(2 .8) l:l2 

Using the definition of L2 , l:l2 can be written 

(2. 9) fff <o -Q <·Ix), o -Q <·lx)>P(dxle,z)S(dzje)lT(de) x 1T x 1T 

+ 2f ff <Q1T(·lx>-Qe(· Ix>. oX-Qlf(•jx)>P(dxle.z)S(dzle)lT(de) 

l:l3 + 2/:l4. 

To show l:l2 ~ O, it suffices to show l:l4 = 0 since l:l
3 

~ 0 due to the non-negative 

definiteness of<·,·>. However, l:l 4 is the expectation (over the joint 

distribution of X, Z, e) of 

(2. 10) F(x,e) <Q <·lx)-Q <·Ix> o -Q <·Ix)>. 
1T e • x 1T 

Conditioning on X and using the bilinearity of<·,·> yields 

However, since Q (• jX) is the conditional distribution of Z given X, it is clear 
1T 
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that 

Q (. IX) 
1T 

Thus 64 = 0 so (2.7) holds for i = 2. 

When i = 1, the proof is essentially that given above with Q8 (· Jx) replaced 

by Ez throughout. The verification that 6 4 = 0 derives from the identity 

which is easily verified. o 

Equation (2.9) yields 

Corollary 2.1: Given a prior ir and a decision rule o, the difference in average 

risks under both loss functions L1 and L2 is 

(2.10) Iff<o -Q (·Ix), o -Q (·jx)>P(dxle,z)S(dzje)n{d6). x 1T x 1T 

We end this section with an upper bound on 6 in (2.10) which is used in the 

next section. Give two probability measures, say P1 and P2 , defined on a common 

probability space, V(P
1 

,P2 ) denotes the variation distance between P1 and P2 
defined by 
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V(P
1 

,P 2) = supjP
1

(B)-P2 (B)I. 
B 

The sup ranges over the relevant a-algebra. For any a-finite measure AO which 

dominates P
1 

and P2 , let 

be the density of P., i 
l 

1,2. It is well known that 

(2.11) 

For a proof, see Billingsley (1968), p. 224. To apply this to the problem at 

hand, let a
1 

and a 2 be two probabilities on (~,B2 ), and let p1 = da
1

1dA 0 where 

AO dominates a 1 , i = 1,2. Then 

(2.12) <a1-a2 ,a1-a2> = f fk(z 1,z2)(a 1-a2)(dz 1)(a 1-a2)(dz2) 

f fk(zl ,z2><P1<z,>-p2(z1))(p1(z2)-p2(z2))Ao(dzl)Ao(dz2) 

~ff lk<z,,z2>llP1<z,>-p2(z,>llP1<z2)-p2(z2)IAo(dz1)Ao(dz2) 

[ ,2 
~ 4K V(a

1 
,a

2
) J 

where K is an upper bound on I k I . Applying this inequality to ( 2. 10) with ·::t
1 

o and a 2 = Q (• jx) yields x 1T 
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Proposition 2.2: For loss functions L1 and L2 • and il given by (2.8), 

Remark 2.1: Inequality (2.13) forms the basis for all the results in succeeding 

sections. Thus. if L is any fair Bayes loss function yielding an average risk 

difference il in (2.8) which satisfies (2.13). then the results in the remainder 

of this paper are valid for that L. o 

3. Preliminary Results: 

The notion of almost admissibility for decision rules was introduced by 

Stein (1965). Here, we describe one version of a sufficient condition for 

almost admissibility which is closely related to Stein's (1955) necessary and 

sufficient condition for admissibility. 

Consider a decision theoretic problem with a space of decision rules D and a 

measurable parameter space (o,B
3
). The risk function for the p~oblem is R(o,G), 

o ED and e Ee. For each o ED, R(o,•) is assumed to be bounded and 

measurable. Fix a a-finite measure Yon (e,B
3

). 

Definition 3.1: A decision rule 5
0 

is almost Y-admissible if for each 6 E D 

which satisfies R(o,e) ~ R(o 0 ,e), the set 
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has Y measure zero. 

In what follows, g denotes a non-negative measurable function defined on e. 

Given a g ~ 0 which satisfies 

f g{8)Y(d6) 1, 

a decision rule o is a Bayes rule for the prior distribution ~(de) g 

if 

{ R(o,e)g(e)Y(de) ~ { R(og,e)g(e)Y(de). 

g(e)'r(ds) 

for all o £ D. Bayes rules are assumed to exist for each such density function 

g. 

For each set C of positive Y measure, let 

(3 .1) G(C) {gjg ~ 0, fg(S)Y(dO) 1, f g(6)Y(d8) > O}. 
c 

Here is a sufficient condition for a0 £ D to be almost Y-admissible. 

Theorem 3.1 (Stein): L ·'.t o0 £ D and for each density function g, let 

(3 .2) A (g) 



For each set C of positive Y-measure, assume that 

(3.3) inf A(g) 
gEG(C) j g(B)Y(dS) 

c 

Then o0 is almost Y-admissible. 

o. 
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Proof: Assume o0 is not almost Y-admissible. Then there exists a decision rule 

o1 which satisfies R(o 1 ,e) ~ R(c 0 ,e) for all e and the set 

has positive Y-measure. Hence there exists and E > 0 such that the set 

has positive Y-measure. Thus, for g E G(C2), 

A(g) = f [RCo 0 ,e)-R(og,e)]g(e)Y(cte) 

;:: f [RCo 0 ,e)-R(o 1 ,e)]g(e)Y(cte) 
c2 

;:: f [RCo 0 ,e)-R(o 1 ,c>]g(e)Y(cte) 

;:: Ef g(0)Y(d9). 
c2 

Thus (3.3) cannot hold for C c2 , so o0 is almost Y-actmissible. o 
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In applications, the goal is to find analytically tractable upper bounds for 

~(g) in (3.3) which yield checkable conditions in concrete problems. The 

results in the next section are directed to this goal for the fair Bayes 

prediction problem. 

Finally, an inequality relating variation distance and Hellinger distance 

due to Kraft (1955) is needed. 

Lemma 3.1: (Kraft (1955)). Let P1 and P2 be probabilities defined on d common 

space and suppose AO dominates P
1 

and P
2

• 

(3 .4) 

Let p. = dP.ldAo· i = 1 ,2. 
l l 

Then 

Proof: The proof consists of two applications of thd Cauchy-Schwarz inequality. 

Using (2.11) with A0 (ctx) omitted for notational convenience, 

[v<P1,P2)]2 = [~flp1-P2IJ2 = [~fj/p1--/p2jJIP,°+lp2l]2 
~ ~[f c1~-lp2)2][f c1~+/p2)2] = [1 - f <P1P2)1/2]L1 + f <P1P2)1/2] 

~ 2(1 - f (p1p2)1/2]. 0 

4. A condition for Almost Admissibility: 

The notation used in Section 2 is to hold throughout this section. It is 

assumed that A is a a-finite measure on (Y,B1 ) whicn dominates P(• !G,z). The 
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density of P(• le,z) with respect to A is p(• le,z). Hence the conditional 

density of x given e is 

( 4. 1 ) P<. I e > f p(o lz,e)S(dzle>. 

We are now ready to discuss the main problem of this paper--namely, to 

provide some conditions under which the formal posterior distribution of Z 

derived from an improper prior distribution is an almost admissible decision 

rule. To give a more precise description of the problem, let v be a fixed a-

finite measure on (e,B
3

) such that v(0) = +00 • With 

(4.2) 

let 

It is assumed that 

(4.3) 

m(x) = f pCxle)v(d9), 

A { X I 0 ( m ( x) ( +co} • 

f p(xje)A(dx) 
c A 

O, 8 E 0. 

Under assumption (4.3), the formal posterior distribution of Z given X is 

defined as follows. First let µ be the a-finite measure on ($x0,B2xB
3

) defined 
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by 

(4.4) µ ( dx, d6) s c dz I e) v< de) • 

Let r
0

(z,e) be an arbitrary density with respect toµ, and let 

{ p(xjz,a) if x m(x} 
(4.5) r(z,e Ix> = 

r
0

(z,6) if x 

For each x, r(•,• Ix) is a density on ~xe with 

the probability measure on $x0 defined by the 

c:: A 

; A • 

respect 

density 

to 

in 

µ. Let Q (•Ix) denote 
\} 

(4.5) and let Q (•Ix> 
\} 

be the induced marginal probability on~ obtained from Q <·Ix). The measure 
\} 

Q (•Ix> is what is called the formal posterior distribution of Z given X = x. 
\} 

The main result in this section gives a sufficient condition that the decision 

rule (inference) Q be almost v-admissible. 
\} 

Now, let g be any density on 0 with respect to v so 

( 4 .6) mg(x) = f p(xl6)g(6)v(d6) 

is the marginal density of X with respect to A. With 

( 4. 7) A 
g 

{xlO < m (x) < + 00 }, 
g 



it is clear that 

( 4 .8) r (z,elx) 
g ~ 

p(x!z,9)g(S) 
m (x) 

g 

r
0

(z,e) 

x e: A 
g 

x 1- A g 

21 

is a version of the conditional density of (Z,e) given X = x, with respect toµ. 

This density defines the prob3bility measure Q (·Ix) on ~xG which in turn g 

induces the marginal distribution Q (• jx) on ~. Thus Q (·Ix) is the conditional g g 

distribution of Z given X = x, so the decision rule Q is the Bayes rule g 

corresponding to the prior distribution p(cte) = g(O)v(dJ) (for the loss 

functions L
1 

and L
2

). In order to apply Theorem 3.1, let 

( 4. 9) Mg) f [R(Q ,e)-R(Q ,a))g(a)v(d8) v g 

where the risk function R is computed under either loss function L
1 

or L
2

• The 

function 

(4.10) t(a,n) f 
p(x!O)p(xjn) A(dx) 

m(x) 

plays an important role in Nhat follows. Because of assumption (4.3), (4.10) is 

well defined. 

Lemma 4.1: If the density g is strictly positive one, then 
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(4.11) 6(g) ~ 8Kp(g) 

where 

(4.12) p(g) = 1 - ff /g(e)t(e,n)/g(n)v(dS)v(dn) 

and K is the constant in Proposition 2.2. 

Proof: With V denoting variation distance, first observe that 

(4.13) 

since Q (•jx) [resp. Q (•jx)] is the marginal distribution of Q <·Ix) [resp. 
v g v 

Qg(• Ix)]. Now, apply Proposition 2.2 with 6 = 6(g), ox= Qv{· jx) and Qn(· jx) 

Q (•Ix). This and (4.13) yield 
g 

(4.14) 

For x £ AOA , Lemma 3.1 yields 
g 



(4.15) [V(Q (•jx),Q (· jx))] 2 ~ 2[1 - ff p(xjz,e)/g{OT µ(dz,de)] 
v g lm(x)m (x) 

g 

2[1 - f p(x!e)lg('6T v(de). 
/m(x)m (x) 

g 

However, assumption (4.3) together with the assumption that g is strictly 

positive implies that 

(4.16) J p(xle).\(dx) 
AflA 

1 , e e: e. 
g 
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Thus the upper bound in (4.15) may be substituted into the right most expression 

in (4.14) to yield 

(4.17) A(g) ~ 8K(1 - fff p(xjn)/g[Ti) p(xje)g(e)v(de)v(dn),\(dx)] 
/m(x)m (x) 

g 

= 8K[1 - f.f p(xln>li[Ti) lm(x)m (x) v(dn).l.jdx)). 
m{x) g 

However, the Cauchy-Schwarz inequality gives 

(4.18) J /g(S) p(xle)vd(e) ~ lm(x)m {x). 
g 

Substitution of the lower bound in (4.18) into the final expression in (4.17) 

yields 
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(4.19) 8(g) ~ 8K[1 - ff f /g(e) p(xl!~~;xln> /g{n) A(dx)v(de)v(dn)] 

= 8Kp(g). 

This completes the proof. o 

For a set C of positive v measure, define G(C) by 

(4.20) G(C) {gjg ~ o, f g(e)v(d9) 1, f g(e)v(dv) > O}. 
c 

Also, observe that 

" 

(4.21) 
+ 

G {gjg(e) > o, e e: e; { g(e)v(de) 

is a subset of G(C). 

Theorem 4.1: If for each set C of positive v measure, 

{4.22) inf 
ge:G(C) 

then Qv is almost v-admissible. 

p (g) 

J g{e)v(de) 
c 

Proof: First consider the condition 

0, 

1} 



(4.23) 

+ 

p(g) 

j g(e)v(dS) 
c 

o. 

Since G ~ G(C), (4.23) implies (4.22). Conversely, if (4.22) holds, then 

25 

(4.23) holds. To see this, let e: > O be given so there exists a g
0 

e: G(C) such 

that 

(4.24) 
p(go) 

< e:/2. 

+ 
Fix g0 e: G and consider 

( 1 - .!.)g + ~ 
n 0 n°0. n = 2,3, •••• 

+ 
Then g e: G for all n and an easy application of the Dominated Convergence n 

Theorem shows that 

lim 
n->oo J g (G)v(dB) 

C n 

Thus the inf in (4.23) is bounded above by e:. Hence (4.23) holds. 

+ 
For g e: G , Lemma 4.1 shows that A(g) ~ 8Kp(g). Therefore, 
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inf 
geG(C) 

ti ( g) 

J g(0)v(d0) 
c 

a (g) 

j g(B)v(dB) 
c 

8Kp(g) 

J g(B)v(dS) 
c 

That Q" is almost v-admissible follows from Theorem 3~1. a 

o. 

In some applications it is useful to have condition (4.22) expressed in 

2 terms of element in the Hilbert space L (v) of square integrable functions on 

(e,s
3

,v). The inner product and norm on L2 (v) are (•,•)and I l·I I. For a set C 

of positive v-measure, let 

( 4 .25) H(C) {hjh ;:: O, 
2 

he: L (v), 

Also, for h e: L
2 (v), h ~ 0, define $(h) by 

J h2(6)v(d6) > O}. 
c 

(4.26) $(h) I lhl 1
2 

- ff h(S)t(e,n)h(n)v(dS)v(dn) 

where t is given in (4.10). 

Theorem 4.2: If, for each set C of positive v measure, 

(4.27) inf 
he:H(C) 

then Q is almost v-admissible. 
\) 

0 
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Proof: A routine argument shows that (4.27) and (4.22) are equivalent. o 

5. The 1-Dimensio:ial Translation Parameter Case: 

In this section, Theorem 3.1 is applied to a special problem involving a one 

dimensional translation parameter problem. When the improper prior distribution 

v(de) is Lebesgue measure on R1 
(= 0), sufficient conditions are given so that 

the induced posterior distribution is almost v-admissible. 

With G = R1 and ~=Rn, suppose X e Rn has a marginal density (given 6) 

(5. 1 ) p(xle) f(x-ee), n 
x e R 

Where e l·s the vector of ones i·n Rn. Th d · t· ' · d t e om1na~1ng measure A is assume o 

satisfy 

(5.2) A(S+ee) ). (B), 

for all Borel sets B c Rn. n For example, A might be Lebesgue measure on R • 

The improper prior under consideration is ).(de) = de--Lebesgue measure on 

R 
1• Thus 

( 5. 3) m(x) f f(x-0e)d0 

and the set 
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A { x I 0 < m ( x) < +m} 

is assumed to satisfy 

(5.4) J f(x-ee)A(dx) 
Ac 

O, 1 
8 E R • 

Because 

(5.5) m(x) m(x+ae), Cl E R 
1 

• 

(5.5) is equivalent to 

(5 .6) f f(X)A(dx) = 0. 
Ac 

This condition needs to be checked in each example, but is satisfied in all the 

interesting examples that I know. 

Equation (5.5) implies that 

(5. 7) 

satisfies 

t(8,n) I f(x-ee}f(x-ne) A(dx) 
m(x) 



{5 .8) 

so that 

(5. 9) 

Thus, set 

(5.10) 

t(e+a,n+a) = t(e,n), 1 a e: R 

t( e, n) t(e-n,O). 

1 u e: R 

so t 0 (e-n) = t(e,n). Since t is a symmetric function of its arguments, it 

follows that t
0

(u) = t 0 (-u). Also, it is easily verified that 

( 5. 11 ) f t 0 < e) de> = 1 • 

Theorem 5.1: If 

(5.12) 

then (4.27) holds. 

+co 
' 
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Proof: Let C be a set of positive Lebesgue measure, and consider the sequence 
2 of elements r e: L (v) defined by n 
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(5.13) 

where B(u) 

shows that 

r ( 8) 
n 

2 -1 { 1 +u ) • Since r (e )P'l as n--7<", the Monotone Convergence Theorem n . 

lim J r~(a)d9) 
n-><» C 

f d9 > 0. 
c 

Thus, to verify (4.27), it is sufficient to show that 

(5.14) a 
n llr 11 2 

- f{r (0)t0 (e-n)r (n)dSdr, n , n n 

converges to zero. A bit of algebra and a change of variable show that 

(5.15) a 
n 

But for all n, 8, and u, the inequality 

where K0 is a constant, is easily verified. Since 

lim n[s(o)-B(e+~)j -uB'(fl), 
n~ n 
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the Dominated Convergence Theorem yields a ~O. This completes the proof. o n 

Usable sufficient conditions so that (5.12) holds, expressed in terms off, 

can be given. For example, suppose x
1

, ••• , Xn are i.i.d. from a one dimensional 

translation family. Then 

(5.16) f(x-Ge) 

where f
0 

is a density on R1 • Assume that A.(dx) = cx-·Lebesgue measure on Rn. 

Let k be the greatest integer in (n+l)/2 and let X(k) be the kth coordinate of 

the order statistic X(l)'···• X(n)' Define W s Rn-l by 

(5.17) 

-

w. 
1 

i = 1 •••• ' k-1 

i = k, ••• , n-1 • 

Let X(k) and X(k) be conditionally independent given W, both with th~ 

conditional distribution of X(k) given W. Then, by just looking at the 

integrals involved, 

(5.18) 

which is bounded above by 
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(5.19) 2Ejx(k)I. 

Thus, if EIX(k) I < +00
, then (5.12) holds. For example, if fa has a mean then 

EjX(k)I < +00
• However, f 0 may fail to have a mean, but fjX(k)I may be finite. 

In particular, if n ~ 3 and fa corresponds to a Cauchy distribution, then 

E I X ( k) I ( +oo • 

The application of the above results to prediction problems when X e Rn and 

1 Z e R are dependent runs as follows. Assume the joint density of X and Z is 

(5.20) f(x-ee,z-e) 

with respect to AXdz on RnxR 1
• Here A is as above and dz is Lebesgue measure on 

R1 • Now, just apply the previous argument to 

f(x-ee) r f(x-ae,z-a)dz 
-oo 

r f(x-ee,z)dz. 
-co 

For example, assume that (X,Z) is jointly multivariate normal, say 

(5 .21) N(ee,E) 

where 8 e R1 is unknown, e is the vector of ones in Rn+l and E is a known 

(n+1)x(n+1) positive definite covariance matrix. To predict Z e R1 from X e Rn, 
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take the improper prior de. Then, a routine but tedious calculation gives the 

predictive distribution 

(5.22) LCZIX) 2 N(µ(X) ,o ) 

where µ(x) and o
2 can be calculated as follows. First, let 

(5.23) A (n+1)x(n+1) 

and partition A as 

(5.24) 

where A11 is nxn and A
22 

€ (O,=). Then, 

(5 .25) 

and 

(5 .26) 

The decision rule specified by (5.22) is almost "de"-admissible for all of the 
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loss functions of the type L1 and L2 described in Section 2. It follows that 

for such loss functions, if these loss functions are also translation invariant, 

then (5.22) is a minimax decision rule (see Kiefer (1957)). 

6. Discussion: 

There are some special cases of the prediction problem described in Section 

2 which are of particular interest. As mentioned earlier, when (~,82 ) = (8,8
3

) 

and S(•lde) is the probability measure degenerate at 6, then the prediction 

problem is just the estimation problem as described in Eaton (1982). In this 

case, Theorem 4.1 gives a sufficient condition that the posterior distribution 

on e derived from v be almost v-admissible for all loss functions of the type 

Now, assume that given 6, Z and X are independent and Z is to be predicted. 

Then the density of X does not depend on z so the density is (4.1) is just the 

density of the data, p{xle). Thus, the conditions of Theorem 4.1 depend only on 

the density of the data and these conditions are the same as in the estimation 

problem. Hence when X and Z are independent (given 9), the prediction problem 

is no harder, nor easier, than the estima~ion problem. 

The problem of estimating a function of 8, say p(S), is cast into our 

framework by taking ~ to be the range of p and S(• le) to be degenerate at p(S). 

Again, Theorem 4.1 applies directly. 

In a number of interesting examples, the following two conditions hold: 

( 6. 1 ) The risk function R(o,•) is continuous on e for all decision rules 
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0 • 

(6.2) The improper prior gives positive measure to all non-empty open 

subsets of e • 

When (6.1) and (6.2) hold, it is clear that almost v-admissibility implies 

admissibility. A sufficient condition that (6.1) and (6.2) hold for loss 

functions L
1 

and L
2 

is that X and Z are independent (given e), and the 

distributions of X and Z are exponential families. 

The successful application of Theorem 4.1 to problems more complicated than 

those treated in Section 5 depends on obtaining information concerning the 

behavior of the function t(•,•) defined in (4.10). It is possible that the 

theory of Markov chains on general state spaces (see Numinelin (1983)) may be of 

use in this regard. To see this, first observed that T defined on 8
3

xe by 

(6.3) TCC!e) f t(Ei,n)v(dn) 
c 

is a probability measure on 8
3 

for each fixed e and is a measurable function of 

e for each C E 8
3

• Thus T is a '.'1arkov kernel and hence defines a discrete time 

Markov chain on e. Obviously t(·,·) is the transition density of T with respect 

to v. Using that fact the t(•,•) is a symmetric function of its arguments, the 

author has been able to show that under certain regularity conditions, (l~.27) is 

equivalent to the Harris recurrence of the Markov chain (see Nummielin (1983) 
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for a discussion of recurrence). A report on this work is in preparation (see 

Eaton (1987)). The relationship between the above observation and the 

admissibility-Markov process connections for special loss functions established 

in Brown (1971) and Johnstone (1984) is quite unclear at this point. For 

example the Markov chain here occurs naturally on the parameter s~ace 0 where as 

the Markov process which occurs in Johnstone (1984) is constructed on the sample 

space. 
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