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Resource Management in DICE 

R. van Liere, P. J. W. ten Hagen 

Department of Interactive Systems 
Center for Mathematics and Computer Science 

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

A framework is presented for integrating a general resource management 
facility into the dialogue cell language. It is shown that, by using resources as 
the basis for input and output, the coupling of input and output at the physical 
device level can be achieved. By integrating the resource manager in the dialo­
gue cell language, correlations between higher level input and output can be 
defined and maintained. 

Context sensitive resource rules are defined as extensions to the corresponding 
activation rules of dialogue cells themselves. By applying various inheritance 
mechanisms a resource specification can be done virtually. The dialogue run-time 
system dynamically binds these virtual specifications with physical devices. 

The resource manager is implemented by augmenting the dialogue grammar with 
specific resource information. In this way a potentially ambiguous dialogue can 
be unambiguously parsed. An O (n log n)-time algorithm, with n indicating the 
number of overlapping windows, is given which detects ambiguous resource 
configurations. 

CR Categories: 1.3.4 [ Computer graphics ] : Graphics utilities- application and 
graphics packages; 1.3.5 [ Computer graphics ]: Computational geometry and 
object modeling- geometric algorithms; 1.3.6 [ Computer graphics]: Methodol­
ogy and techniques- device independence, languages 

Key Words & Phrases: User Interface Management Systems, dialogue languages, 
resource management, window management 

Note: This report will be submitted for publication elsewhere. 

1. Introduction. 
The dialogue cell specification method, or simply DICE,_ has successfully been used as a 
tool for designing high quality graphical user interfaces. With this method a user inter­
face designer defines the syntax of a dialogue by specifying a context-free like grammar. 
A context-free grammar is capable of defining a large part of the syntax of a typical 
dialogue language, and the existence of a variety of syntax-directed parsing techniques 
has facilitated the construction of efficient parsers for such syntax definitions. 
This form of definition has adequate power to define the syntax of dialogue languages. 
Report CS-R87 46 
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Unfortunately, every context-free dialogue language will need some syntax extensions 
which are context-sensitive. Therefore, a dialogue language syntax definition consists of 
two parts: 

• a context-free grammar which defines the sentence structure of the language. 
• a set of additional rules which impose context constraints on the language. 
Each context-sensitive rule may require some relation to hold among certain elements 
occurring in the dialogue specification. For instance, DICE allows a particular window 
to be shared by two dialogue cells. In which screen area the two cells actually are 
displayed is a part of the dialogue syntax. Therefore, this requirement can be 
represented as a context-sensitive rule which allows the definition of a window to 
depend on a related dialogue cell's window. 

Context sensitive rules are conventionally expressed in an ad hoe fashion, which makes 
it a difficult task for the designer to apply them correctly in a dialogue specification. 
This is in particular true for larger dialogue specifications; i.e. specifications consisting 
of hundreds of dialogue cells in which numerous cells come from predefined libraries. 
In this paper we are concerned with how the dialogue cell system manages the declara­
tion and application of resources, and the impact resource management has on the exe­
cution of a dialogue. We also show that, by using techniques familiar to parsing attri­
buted grammars, the implementation of resource management can be combined with 
other elements of the dialogue specification into one formalism. 

Before going into details of how the DICE system treats context sensitive resource rules 
internally, it is appropriate to describe these rules form a user point of view. The basic 
assumption is that at any time during the dialogue the user has a choice between more 
than one type of input entity. For instance, the user may have the freedom to decide 
whether to input text, select from a menu or to input geometrical data through a 
mouse. This variety of choice may be caused by the following situations: 

• there is more than one input component item being constructed. 

• for the same compound item the order of providing the constituents is immaterial. 
• there is a choice between alternatives of different types. 
In each of these situations the possibility arises that there is more than one 'request' for 
the same input token; for instance, when the mouse is used for more than one purpose. 
This confronts both the system and the user with an ambiguous situation since it is not 
known which 'request' will be given the input token. By adding additional context­
sensitive syntax to the syntax rule it is possible to make clear to the user which token 
goes where. The basis for adding this extra syntax is to dynamically differentiate the 
mechanisms which provide these tokens. The differentiation is provided by the resource 
manager who controls all output and input mechanisms including the screen manage­
ment. Differentiation can thus result from different output presentations, different 
input devices or a combination of both. As we will see, this implies that the resource 
manager also handles the window management. For this reason, it is our firm believe 
that window managers should be incorporated in resource managers rather than only 
provide a variety of windowing functions. 
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Within the dialogue system itself every dialogue cell has associated with it a resource; 
i.e. a description of the physical resources that are assigned to the corresponding dialo­
gue cell. The dialogue cell's resource provides the link which allows a device indepen­
dent dialogue cell specification to be mapped onto physical resources of the worksta­
tion. 
Resource specification is done in terms of virtual device classes which are (partial) static 
descriptions of device independent resources. The collection of resource specifications 
results in an underlying resource model. There are two advantages for using such a 
resource specification scheme. Firstly, since the activation environment of a dialogue 
cell is statically unknown, a dialogue designer does not know on which part of the 
display a dialogue cell is activated. This resource specification scheme allows the dialo­
gue designer to specify resources relatively with regard to its parent resource. Secondly, 
this resource specification scheme allows the designer to partially define a resource. By 
inheritance, the activation environment information of a parent cell can be used to 
complete the resource specification. 
For instance, the window component of the resource can be specified in terms of the 
parent dialogue cell's resource. This (partial) resource specification is filled in at run 
time by inheriting the parent cell's resource. 

The resource manager will take information from the resource model to make decisions 
concerning the allocation (and reallocation) of resources. Basically, the responsibilities 
of the resource manager are twofold : 

• To ensure that various predefined language dependent criteria, in particular those 
which disallow so-called ambiguous situations, are obeyed whenever a resource 
request is granted. Ambiguous situations occur in parallel systems when more 
than one reaction to a specific user input is possible. Clearly, ambiguities should 
be avoided since they leave the user in a confused state. 

• To ensure that the resource model is always in a consistent state. Operations on 
the resource model do not only include those when resource specifications are ela­
borated (i.e; resource allocation), but also those done by the user when the window 
layout is changed. 
For instance, if a user moves a window to another area of the display, all other 
related windows must also be moved. Similarly, if a window is reshaped, all other 
related windows must also be reshaped accordingly. 

The context-sensitive rules applying to resource manag~ment are implemented as func­
tions which evaluate attributes in the -so-called attributed dialogue grammars. In general, 
attributed dialogue grammars are automatically derived by augmenting the original 
dialogue grammars with various predefined attributes. Using attributed dialogue gram­
mars allows semantical issues of the resource manager to be validated as the evaluation 
of attributes in the attributed dialogue grammar. This has two advantages over the 
more traditional procedural approach: (i) the semantics is expressed applicatively. Pro­
pagation of attributes through the derivation tree· is implicit in the formalism and need 
not be specified imperatively on a case-by-case basis and (ii) the specification is modu­
lar; the arguments to each semantic function are local to one production. 
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1.1. Format of this paper. 
Section 2 first gives an overview of dialogue cell languages and informally states the 
parsing problem inherent to these languages. This leads to the definition of a number 
of simple criteria that must be obeyed in order to be able to parse these languages. 
Section 3 gives a description of the underlying resource model and shows in which way 
the resource model must be constrained in order to meet the criteria laid upon the sys­
tem by the parser. 
Section 4 gives an overview of how such a resource model and the resulting (static as 
well as dynamic) operations on it can be implemented. 
Appendix 1 shows how, given a dialogue cell grammar, a context-free grammar can be 
constructed. Appendix 2 gives an overview of the definition of attributed dialogue 
grammars. Appendix 3 reviews the logical input device model. 

1.2. Related work. 

Specifying user interfaces by regular I context-free grammars and using parsing tech­
niques to execute the resulting dialogues is not new. Pioneers in this area have been 
Newman ([12)) and Olsen ([13)) who were the first to build such systems. 
Dialogue cell type grammars have been studied by van den Bos ([20)), Holt et. al. ([7]) 
and Lewi ([2]); the last two studies have been in the field of specification languages 
suited for the construction of compilers. Van den Bos was one of the first to recognize 
the merits of non-determinism in dialogue languages. 
Defining the semantics of a context-free language by means of an attribute grammar 
was introduced by Knuth ([9], [10)). The first paper considers various criteria which 
ensure that attributes in a grammar are correctly evaluated. Considerable research has 
been done in the area of attribute grammars and (re)evaluation of attributes. Recently, 
novel algorithms for incremental evaluation of attributes have been developed by 
Demers, Reps and Teitelbaum ([3]) in the domain of syntax directed editing. These 
algorithms have also been used as a basis for error recovery schemes in a user interface 
management system ((8)). 
To our knowledge, using incremental evaluation techniques have not been applied to 
resource management. Introductions to dialogue cells can be found in ([l] , [19)). The 
impact that non-determinism has on feedback is given in ([15] , [14)). Finally, ([18)) 
presents dialogue cells in a somewhat more fundamental way by defining a general 
model for graphical interaction. 

2. Dialogue cell languages. 
A dialogue cell grammar is characterized as the 4-tuple: 

G = <"2w, LT, P, S > 
where LN and LT are the disjoint finite sets of dialogue cell symbols ( = non-terminals) 
and basic dialogue cell symbols ( = terminals) respectively, P is the set of symbol expres­
sions and S E LN is the root cell symbol. 

LT is the union of the basic input symbol set and the combining operator set (denoted 
as LT1 U LT0 ) in which 

LT
1 

= { Locator, String, Choice, Pick, Valuator} 
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is the set of terminal symbols, and 

~To = { ;, /\, V, case,*,+} 

is the set of combining operators. 

Symbol expressions are written in the form: 

A ~ fJ (E 1, · · · , En) 

Resource management in DICE. 

where A is the dialogue cell symbol; () is a combining operator and E; are the symbol 
subexpressions which are, analogous to expressions in conventional programming 
languages, factorized into simpler forms until eventually a so-called subcell is obtained. 
Subcells belong to the the set ~N U ~T1 • 

Operators define the order in which the subcell results are to be accepted. The 
sequence operator, 11

; ", indicates that the order in which subcell results are accepted is 
sequential. The parallel operators, 11 V 11 and 11 

/\ ", allow subcell results to be accepted 
in any order. In the case of the "V 11 operator, only one of results is necessary whereas 
the 11

/\
11 operator requires that all results must be accepted before the complete subex­

pression is reduced. The iterator operators 11 +11 and 11 *" allow iteration. In this case, 
the resulting value of the subcell determines the stop condition. Similarly, the case 
operator allows for a branch depending on the result of the first operand. The iterator 
and case operators are special cases of a more general scheme in which result values of 
symbols can influence shift I reduce parsing decisions. 

All dialogue cells are strongly typed in the sense that the use of result values must 
correspond to the definition. In particular, basic dialogue cells deliver (in some works­
tation dependent way) result values of predefined types; i.e. 
Locator, Choice, Pick, Valuator, String. Higher order dialogue cells can return values 
of arbitrary user defined types. 

Finally, user defined semantic actions can be associated to each symbol subexpression 
in the form of so-called echo and value trigger actions. These are, analogous to syntax 
directed translation schemes, executed each time a symbol subexpression is parsed. 
Echo trigger actions are denoted as 

Ae (E;) : erulen, erulei2, ... , erule;n 

In this case, A is the name of the dialogue cell, E; is the trigger expression and erule; 
are the echo mapping rules. In this way arbitrary (even application dependent) feed­
back can be given. Similarly, 

Av (E;) : vrulen, vrulei2, ... , vrule;n 

denotes a value trigger action. Specifying value actions allow input values to be inter­
preted as soon as they are consumed by a cell. 

Triggering value actions followed by echo actions in this way provides the dialogue pro­
grammer with a mechanism that guarantees a certain synchronization between what the 
user sees on the screen and how the the dialogue has interpreted the internal values; i.e. 
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"what you see is what you get". Alternatively, triggering an echo action followed by 
value action provides the dialogue programmer with a mechanism that allows to visual­
ize the result of an action even before it has been executed internally. 

Conceptually, the dialogue is executed as follows. Each basic dialogue cell is simulated 
by a physical input device. After reading the physical input device triggered by the 
user, the corresponding basic dialogue cell produces a result symbol. The produced 
result is input for another cell, which, in tum, will eventually produce a result. This 
process continues until the root cell symbol produces a result. Each time a result is 
produced, it is dumped in a storage pool. A scheduler will examine the results in the 
storage pool to determine which result must be processed. A scheduler is necessary 
since dialogue cells run in parallel. t Result passing is depicted in the followillg figure. 
Since the parse tree defines the flow of the dialogue, the source and destination of each 
cell result is known to the scheduler. 

result storage parse tree 

D···D 

In the context of resource management it is important to note that, in order to produce 
a result, a dialogue cell must first be activated. Activation consists of the initialization 
of the cell plus (depending in the mode) of the activation of the subcells. In particular, 
all resources that are needed by a dialogue cell are requested at initialization time. 
Using such a synchronous activation scheme in conjunction with the resource model, 
deadlock situations are easily detected. 

Once activated, dialogue cells can execute either synchronously or asynchronously. 
Considerable flexibility is achieved by allowing cells to be activated asynchronously 

t The overhead required to do scheduling can be constrained by introducing processing priori­
ties in the semantics of the language (see [17]). Such a scheduler can be viewed as a generaliza­
tion of a,Jexical analyzer. This execution scheme has many similarities with event-driven sys­
tems, such as [5] and [6]. 
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since it allows a user to determine the moment of giving an input. It must, however, be 
emphasized that asynchronous activation differs significantly from the non-deterministic 
operators in the symbol expressions. Operators within a symbol expression determine 
the order in which the results of the subcells are parsed whereas the activation mode 
merely determines the moment in which a subcell may start producing a result. 

For every dialogue language there exists an equivalent context-free language. Appendix 
1 gives an algorithm which converts a dialogue grammar into a context-free grammar. 
Unfortunately, the process of parsing a particular dialogue differs significantly from 
parsing a string belonging to a context-free language. The problem of parsing a dialo­
gue is the subject of the next section. 

2.1. The parsing problem. 
The major differences between parsing a dialogue and parsing a string in a context-free 
language are summarized as: 

• A dialogue requires a LR (0) type parser since every trigger action must be exe­
cuted as soon as an input is received; i.e. a user cannot be expected to give k 
inputs before getting feedback from the first input, as is the case of LR (k ), k ~ 1 
parsers! 

• In contrast to conventional LR (k), k~O parsers, dialogue parsers obtain tokens 
from multiple input streams. This is due to the various parallel operators and the 
asynchronous activation modes. Hence, the dialogue parser is simultaneously pars­
ing multiple input expressions. Parallelism results in extra ambiguous situations 
since it cannot be determined to which stream a particular input token belongs. 
These situations cannot be resolved by only using techniques familiar to conven­
tional LR (k), k~O parsers. 

Ambiguous situations can be brought down to the following two canonical forms : 

• Symbol expressions which have the form : 

A~ fJ (B, C) fJ E { /\, V}, C E ~TI (1) 

B~ C (2) 

These two symbol expressions will cause an ambiguous situation when the device 
belonging to basic dialogue cell C is triggered. 

• The symbol expression of a dialogue cell has the form : 

A~() (B, B) () E {;, case}, B E ~TI (1) 

This unambiguous symbol expression causes ambiguous situations when subcell B 
is activated asynchronously. 

For instance, assume two dialogue cells have the symbol expressions 
ffe 

A~ /\ (B, locator) , B ~ /\ (locator, locator) 
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with locator E ~T· In this case, three dialogue cells with the name locator are simul­
taneously active. When a token with the type locator is received by the parser, it can­
not be determined which input stream is implied. 

We now, informally, summarize the approach taken by the dialogue cell parser to parse 
a dialogue. Conceptually, during the activation of every subcell, a unique input stream 
is created in which the subcell stores its results. Since each input stream is unique, the 
correspondence between a subcell and it's parent cell is also unique. The input stream 
is removed as soon as the subcell is deactivated. Each input stream is typed with the 
type indicated in the specification the subcell and is uniquely labeled. By augmenting 
tokens with the input stream identification, the parser can uniquely determine the 
corresponding production rule. This scheme avoids the ambiguous situations stated 
above since the correspondence between the input stream and the dialogue cell that 
processes the token is now unique. · 

This can be formalized somewhat by defining an input token to be a triple, denoted as 
<type, value, id >, consisting of a dialogue cell result type, dialogue cell result value 
and a stream identification. For every token that is ready to be processed, the follow­
ing relation must hold (we use the notation X [Y;] to indicate the projection of element 
Y; from the n-tuple X = <Y1, · · · , Yn>): 

'V token;, tokenj, i=/=j : token;[id] =I= tokenj[id] (1) 

Associated with each dialogue cell A is a set of open input streams, denoted as 
InStreamA = { i I StreamOf (A, i) = true} in which the predicate 

StreamOf : Cel/Name X Stream ~ Boolean 

determines if an active dialogue cell contains a particular open input stream. The 
scheduling function for active dialogue cell A is denoted as: 

schedule A ( {token; I U i token;}) = tokenj 

i.e. return a token for dialogue cell A, given the set of possible input tokens. The 
scheduled token will obey the relation 

token; [id] E InStreamA 

At the lowest level of the derivation tree the workstation provides a predefined number 
of typed input streams, corresponding to the result types of the basic dialogue cells. 
This is denoted as the set : 

BasicStreams = { i I StreamOf (A, i) = true /\ A E ~T1 } 

The cardinality of BasicStreams is bounded by a predefined, workstation dependent 
number: 

I BasicStreams I < BasicStreams1sMax (2) 

in which BasicStreams1sMax is the maximum number of ipput streams provided by the 
workstation. 
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Implementing such a scheme is fairly straightforward. The strategy taken by the dialo­
gue cell system is to augment each dialogue cell production rule with a set of predefined 
attributes. Attributed dialogue grammars are very similar to attributed context-free 
grammars t in the sense that functions are provided with each attribute that associate a 
value to that attribute. Moreover, as in the case in conventional attribute grammars, 
attributes can also be inherited and synthesized. The general idea of using attributes is 
that various context sensitive conditions at one level in the parse tree can be used at 
another level. New context conditions can be determined by traversing the tree and 
(re)evaluating the attribute values at that particular node. As is the case of attribute 
grammars, a major problem is how attributes can be efficiently (re)evaluated. Attribute 
reevaluation is achieved in the dialogue cell system by constraining the "scope" of the 
attributes in a language dependent way. In this way, only (small) portions of the tree is 
traversed in order to reevaluate the corresponding attribute values. 

3. Resources. 
In the previous section we have shown which restrictions are implied on the execution 
of a dialogue in order to allow a non-ambiguous parse. We now define a scheme for 
managing resources which, when applied to dialogue grammars and languages, serves as 
an implementation of these restrictions. 

A resource is a logical description of the physical hardware resources, consisting of a 
window description, an input stream description and a priority. Associated with every 
dialogue cell is a resource. The exact value of the resource is determined at activation 
time of the dialogue cell and cannot be changed during the lifetime of the cell. Since 
the order of activation is defined by the semantics of the dialogue cell system, it is pos­
sible to define predicates that avoid deadlock situations. The notation used is : 

r = <w, i, p > 
where r is the name of the resource, w the window description, i the input stream 
description, and pa priority. 

The total screen space can, through an appropriate overlap strategy, become a much 
larger virtual screen space. Each of these virtual screen spaces are defined to be a win­
dow. How window descriptions are eventually mapped onto the physical screen space 
depends on scope rules that are laid upon the instantiation of a window (these rules are 
discussed in section 4.1. l ). 

Input streams are typed by the values that are returned from the dialogue cell. At the 
lowest level of the cell hierarchy input streams are simulated by logical input devices t 
by using logical input class types as primitive input stream types. Higher level input 
stream types are defined as the composition of lower level streams types. The input 
stream description contains both the type of the input stream as well as the 

t A summary of attributed dialogue grammars and the used notation for these is given in Ap­
rendix 2. 

A summaty of the concept of logical input devices is given in appendix three. 
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identification of the stream; i.e. i = <lnputStreamType, lnputStreamld >. 

Basically, there are two aspects relevant to resource management: resource organization 
and resource allocation I deallocation. We first introduce both of these aspects before 
going into each of them in more detail. 

• Resource organization follows directly from the specification of resources in the 
dialogue cell and the environment of the parent dialogue cell's resource. Resource 
specification is done in so-called virtual window and input device classes. A vir­
tual window class is a static description of a set of windows in a virtual coordinate 
space. Similarly, a virtual input device class is a description of a set of logical 
input devices. Classes are instantiated during run-time, by mapping the virtual 
spaces onto the physical spaces of parent resources. 1hls results in a resource 
model. 

• Resource allocation is done in run-time by binding resource descriptions onto phy­
sical resources; i.e. a window onto a screen portion and (at the lowest level of the 
cell hierarchy) a virtual input device onto a particular logical input device. There 
are two issues that must be considered with respect to resource allocation : 

E9 Fast changing contexts, which are typical in interaction, require dynamic 
redistribution of resources. By constraining class definitions, the ambiguity 
resolution algorithm should only have to consider competing resources that 
are local to the requested resource. In particular, by defining the resource 
model to be strictly hierarchical, resource allocation requires only the travers­
ing of one branch in the class hierarchy. 

E9 The user must be given the ability to dynamically overrule decisions made by 
the resource allocation scheme. For instance, the window layout may be 
altered or the mapping of virtual to physical input devices may be altered. 
However, when the user alters a resource configuration, it must be assured 
that the resource ambiguity criteria are not violated. Note that, by altering 
the window layout, not only will various logical input device echo areas be 
altered, but also all windows which depend on the altered window. 

The restrictions laid upon a dialogue in the section 2.1 can be translated into criteria 
that must be satisfied by a resource. Intuitively, this can be justified by considering the 
augmented token identification to be a resource. Showing that a resource is unique will 
then be sufficient to guarantee that the token produced by the dialogue cell can be 
uniquely identified. A resource, r;, is defined to be unique if one of the following con­
ditions is satisfied : 
(i) v rj' i =I= j : r; [ w] n rj [ w] = 0 
(ii) v rj, i =I= j: (r; [w] n rj [w] =I= 0) /\ (r; fp] = rj fp]) ~ (r; [i] =I= rj [i]) 

(iii) v rj' i =I= j : (r; [ w] n rj [ w] =I= 0) /\ (r; [i] = rj [i]) ~ (r; fp ] =I= rj fp ]) 
Condition (i) assures resource uniqueness if the windows are non-overlapping. Condi­
tion (ii) assures that two resource are unique if they have overlapping windows and 
identical priorities but have different input descriptions. Condition (iii) states that if 
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two resources have overlapping windows and identical input descriptors, then they must 
have different priorities. By including a window description in the resource description 
allows the non-ambiguity criteria to be applied to each window. 

For the logical input streams the following relation holds: 

I lsw I < BasicStreams1sMax 

where: lsw = IsLocw + IsPickw + IsChoicew + IsStringw + IsValuatorw and 
W E { w; I WindowExists (w;) = true} ; i.e. the number of open basic input streams 
in one window is bounded by a workstation dependent maximum. The total number of 
open basic input streams is the sum of the open basic input streams for each class. 

4. Implementation. 

Implementing the concepts of resources, classes and inheritance is done by merging 
them into the parsing process of dialogue languages and treating them as attributes in 
the corresponding augmented dialogue grammar. Resource allocation is expressed in 
terms of the evaluation of attributes during the activation of a dialogue cell. Redistri­
bution of resources can be expressed as the reevaluation of the corresponding attributes 
by traversing the derivation tree and marking the effected attributes and their depen­
dencies. Only these marked attributes will then have to be reevaluated. This process is 
similar to the ones described by Reps [3] and by Hudson [8]. As stated before, the 
resource model will constrain the amount of reevaluation that has to be done. 

Note, finally, that this (re)evaluation scheme is still valid even if logical input devices 
are not used as input stream descriptions. For instance, if the measure and trigger 
processes of an logical input device were simulated by two basic dialogue cells, 
(re)evaluation of attributes would still allow the correct resource management. 

We first show, by constraining the resource organization in a particular way, how the 
criteria laid upon the resource manager by the parser can be fulfilled. Second, we show 
how resource (re)allocation can be done. Algorithms are given that can detect ambigu­
ous situations. 

4.1. Resource organization. 

4.1.1. Window organization. 
Every window belongs to a so-called window class which is declared as a set of tiled 
window descriptions in a virtual coordinate space; i.e. 

we = { W; I v Wj ' i =I= j ==> W; n Wj =I= 0} 

in which we is the name of the window class and w; are the names of the window 
descriptions. Window class declarations must be instantiated before a window is used. 
Instantiation is done by mapping the class declaration onto an already existing window 
(this window is called the anchor window of the class; thus w; J_ wciwc denotes that 

" n 
the window class instance of window class wcn is anchored to window w; ). By having a 
predefined root window class, the collection of instantiations results in a hierarchy in 
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which every node represents an instantiation of a window class. 

A window class instance path is defined to be the set of window class instances starting 
form a particular reference window to the root class instance; i.e. t : 

WindowClassl nstanceP ath w,,1 = {Wein, Wein - I , · · · , wei o} 

where Wref E weiwcn and Vwciwc; 3wj I Wj E weiwc; A Wj J_ weiwc;+i · 

Furthermore, we name the set of window class instances that are anchored to a particu­
lar window the AnchoredBy set of window class instances; i.e. 

AnchoredBy wref = { wciwc; } 

where Vwciwc; J_ Wref . 

The motivation for such a window class organization scheme is three fold : 

• By using window classes, a dialogue cell can specify the screen position of its sub­
cells. The resources of these subcells can be specified in terms of the inherited 
window class. 

• Tiled windows within a window class ensures the execution of conceptually 
different subcells on non-overlapping portions of the screen. 

• Anchoring window classes to windows ensures that all windows within these 
classes are related. In particular, moving and resizing an anchor also effects the 
anchored window class instances. 

4.1.2. Logical input device organiz-ation. 
Similar to windows and window classes, a logical input device belongs to a so-called 
input class which is declared as a set of logical input class type descriptions; i.e.: 

ic={ijlJ=l, ··· ,n, ijE{L,V,P,C,S}} 

where L, V, P, C,S denote the locator, valuator, pick, choice and string input class 
types. Instantiation of the input cless is done by associating the class declaration onto 
an already existing window instance (which, in this case, is also called the anchor and is 
denoted as wei; J_ ici;cn ). 

An input class instance path is defined to be the set of input class instances starting from 
a particular reference window to the root window class instance; i.e.: 

InputClasslnstancePath wref = { ici;c; } 

with 

'tlici;c; 3wcij E WindowClasslnstancePathw,,
1 
I wcij J_ ici;c; 

t The notation wciwc
0 

denotes the window class instance of the predefined root window. 
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The motivation for such an input class organization is two-fold : 

• Constraining the set of input devices provides the dialogue designer with a finer 
control over the distribution of physical input devices during execution. 

• Associating input classes with a window ensures that the activation of the input 
device is restricted to a particular window. 

Implementing such a scheme on top of GKS is not possible. A shortcoming of the 
GKS input model is that the association of measure and trigger processes is fixed by a 
particular GKS implementation; the application has no control over the way measure 
and trigger processes are configured to form logical input devices. Additional func­
tionality to the input device model has been defined which allows the run-time system 
to explicitly configure logical input devices. The key idea is to augment the workstation 
description table with the number of measure processes of some input class and a 
number of trigger process. Each measure and trigger process is named and is made 
visible to the run-time system. Functions are provided for defining a logical input dev­
ice configuration by specifying which measure and trigger are to used when the device 
is initialized. Furthermore, inquiry functions allow the details of a particular 
configuration to be obtained. 

The approach of self configurable logical input devices allows the run-time system to 
maintain its own strategy to associate trigger processes with measure processes. This 
approach is somewhat similar to the one proposed by Duce [4] as an extension to the 
GKS logical input device model. 

4.2. Resource allocation. 

4.2. 1. Resource creation. 
Resource creation is done by binding each component of the virtual resource descrip­
tion with a particular physical resource. Scope rules are applied to determine which 
class instantiation is used to select a particular resource component. These rules are 
determined by examining the resource model in conjunction with the position of the 
requesting dialogue cell within the derivation tree. 

The following scope rules apply to all resource requests: 

• The window class instantiation of the requesting window class must belong to the 
window class instance path of its parent resource; i.e. 
wciwc E WindowClasslnstancePath,P[w] with rp being the parent cell's resource. 

• Similarly, the input class instantiation of the requesting input class must belong to 
the input class instance path of its parent resource; i.e. 
iciic E lnputClasslnstancePath,P[w] with rp being the parent cell's resource. 

Scope rules ensure that resource ambiguity resolution can be done efficiently by restrict­
ing all other (potential) ambiguous resources to belong in the scope of the resource in 
question. We now give the ambiguity resolution algorithm in two steps. The first step 
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detects the set of all overlapping windows; i.e. overlap : window ~ window+ . The 
second step detects, given a reference resource and the set of resources with overlapping 
windows, if an ambiguous situation occurs; i.e. 
is _ambiguous : resource X resource+ ~ boolean 

01) 
02) 
03) 
04) 
05) 
06) 
07) 
08) 
09) 
10) 
11) 

12) 
13) 
14) 
15) 
16) 
17) 
18) 
19) 
20) 
21) 
22) 

] 

] 

S ~overlap J, (wref, Wref) 
foreach wei; E WindowClasslnstancePathw,eJ 
[ 

foreach wl· E wei; - l 
if Wj Wei; =/= 0 

S ~ S LJ overlap J, (wj , Wref) 
] 
return S 

S ~ Wref 
foreach wei; E AnchoredByw,.

1 
[ 

] 

foreach wj E wei; 
if Wj n W =fa 0 

S ~ S U overlap J, (wj , w) 

return S 

Function overlap t checks, for all window class instances in the the path of the reference 
window (line 04), if the anchoring window (line 06) contains descendent windows that 
overlap the reference window (line 07). Function overlap J, recursively checks, for all 
window class instances that are anchored by a reference window (line 14), if any win­
dow in that particular class instance contains an overlapping window (line 16). 

Conceptually, overlapt finds all overlapping windows "higher" than a particular refer­
ence window while overlap J, finds all "lower" overlapping windows. The efficiency of 
this algorithm lies in the fact that 

• Only one window per class instance can anchor another class instance (line 06). 
This is due to the restriction that all windows within the class instance are tiled. 

• All descendents of non-overlapping windows do not have to examined (line 16). 
This is due to the fact that all windows that belong to a particular class instance 
intersect completely with the anchor; i.e. W<fescendent n W J_ = Wdescendent Where 
Wdescendent E wei /\ wei J_ w J_. Thus, if an anchor does not intersect with a 
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particular window, all descendent windows of that anchor will not either. 

The heart of the function is ambiguous is centered around the function has thickness 
which determines if a K-intersection exists within a set rectilinear-oriented rectangles. 
A K-intersection is defined to be point in which at least K rectangles intersect. 
Has thickness solves the ambiguity problem since, if there exists an 
BasU:Stream1sMax + I-intersection, then input tokens from the basic input streams can­
not be uniquely distinguished. 

The algorithm that implements has thickness is based on the line sweeping paradigm 
which is very common in the field of computational geometry. The basic idea of line 
sweeping is to sweep a vertical line from the left of all objects in question to the right 
of these objects. Each time the sweep line collides with an object an (administrative) 
calculation can be carried out on the sweep line. In this way a static two-dimensional 
problem can be reduced into a dynamic one dimensional problem. In this particular 
case, a so-called weighted segment tree is constructed during the sweep. Each external 
node in the segment tree contains information about the intersection area of a rectangle 
and the sweep line. A K-intersection can be easily verified by examining the weight 
factors of the nodes in the tree. 

The next section will sketch the K-intersection algorithm applied to rectangles and 
analyze the resulting order complexities. A generic version of this algorithm which 
determines is an arbitrary set of polygons has a K-intersection is due to D. Wood [21]. 

4.2.1.1. Detennining a k-intersedion within a set of rectangles. 
The basic idea is to sweep a vertical line from the leftmost rectangle to the end of the 
rightmost rectangle. At each position of the sweep line there are rectangles which it 
intersects (active rectangles), rectangles completely to its left (dead rectangles) and rec­
tangles completely to its right (inactive rectangles). The intersections of each active rec­
tangle with the sweep line results in a number of disjoint intervals (active intervals). 
Two observations can be made: 

• There are at most 2N different sets of active intervals, since the set of active inter­
vals only changes when the sweep line meets a vertical edge of a rectangle. This 
reduces a continuous sweep of the sweep line to 2n discrete jumps. 

• Two rectangles intersect if and only if there is a position of the sweep line for 
which their corresponding active intervals intersect. This reduces the (two­
dimensional) k-intersection problem to a (one-dimensional) sweep-line query prob­
lem. 

Calling the x-projections of the vertices in ascending sorted order as sweep points, we 
can sketch the intersection algorithm as follows: 

foreach sweep point x do 
if is a left vertical edge (x) 
then- - -

query active intervals with the edge for intersections, 
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else 

and insert the edge in the active interval yielding an extended 
active interval or two disjoint active intervals. 

delete the edge from its corresponding active interval 
yielding zero, one or two new active intervals. 

The K-intersection algorithm maintains a segment tree which will allow the insert, delete 
and query operations to be realized in optimal time. A segment tree is a balanced 
binary search tree with keys as external nodes and internal nodes contain routers which 
lead the search to a particular key. In this particular tree, the keys are y-values 
corresponding to the endpoints of vertical edges. Moreover, each external node not 
only represents a point in the key space, but also the interval in the key space defined 
by the successor in the tree. This implies that each interval, specified by a pair of keys, 
is associated with a unique node of the tree. Within the segment tree, an external node 
Yi represents the interval [yi,Yi+I) for O~i<n and Yn represents the interval [yn,Yn1· 
An internal node represents the interval defined by the union of its children intervals. 

Example 
The following figure depicts four rectangles, resulting in eight vertical edges and 
giving eighty-values. The corresponding segment tree is given on the right. Exter­
nal nodes are labeled as Yi. The interval of node u in the previous example, 
denoted as interval (u), is the interval [y4,y7). 

Y1 
Y6 
Ys 

YI 

Yo 

D 
jj 

Window layout. 

End Of Example. 

A 

LJ 

Yo 

Segment tree. 

Associated with each node u is a set of intervals which cover interval (u); i.e. 

cover (u) = { i I interval (u) ~ i /\ interval ('1Tu) g: i} 

where 'ITU is the parent of u. Before the sweep begins cover (u) = 0, for all nodes u in 
the tree. In contrast to binary search trees the structure of the tree does not change 
during insertions and deletions of active intervals. Only the cover sets of the nodes are 

Y1 



Resource management in DICE. -17- Resource management in DICE. 

updated. 

For instance, given the empty segment tree in the previous example, inserting the edge 
[y4,y5] of rectangle C causes cover (u) := {C}, cover (v) := {C}, cover (w) := {C}. 
The latter assignment does not satisfy the rule given above since 
interval (w) = [Y5, J6). However, because interval. (w) n [y5, J6) =/:= 0 and w is an 
external node we assign C to cover (w) anyway. 

Disregarding the technical details of maintaining the active intervals of each rectangle 
in the segment tree, consider now the K-intersection problem at a particular sweep 
point. This is equivalent to the query "is there a position on the sweep line with k 
intersecting active intervals ? " By maintaining the cardinality of each cover set in an 
extra field (denoted as #cover (u)), the algorithm to determine the thickness is now 
straightforward. The thickness of each node is given as 

thickness (u) = max (thickness (A.u), thickness (pu)) + #cover (u) 

where A.u (respectively pu) denote the left (respectively right) child of node u. The 
thickness is synthesized throughout the segment tree after each insertion and deletion. 

If a segment tree has n external nodes then its height is bounded by r1og n 1 · Insertion 
only affects the cover sets of at most 4 r1og n l nodes. Deletion is somewhat more 
tricky, but can still be carried out by maintaining an additional table to pointers. 
Hence, the complete K-intersection algorithm can be realized in 0 (n log n) time. 

4.2.2. Resource redistribution. 
Resource redistribution is characterized by the amount of flexibility the user has in 
dynamically changing resource descriptions. We consider only two cases of resource 
redistribution: 1) a simple form of window redistribution in which the user can change 
the window layout and 2) input device redistribution in which the user can change the 
mapping between logical and physical devices. 

Resource redistribution is done in synchronous mode, ensuring that all other operations 
using resources are temporally disabled. In all cases, however, resource redistribution 
must result in a non-ambiguous resource model so that all operations are able to con­
tinue without having the knowledge that the resource model has changed. 

4.2.2.1. Window :redistribution. 
In this section we only consider the moving of a window and the impact of this on the 
resource model and the segment tree. Other window operations, such as resizing , 
exposing, hiding and closing can be realized similarly. 

As was shown in a previous section, the resource model defines a hierarchy of windows. 
Due to the many-to-one relation between the resource hierarchy and the dialogue cell 
hierarchy, moving a particular window implies moving all descendent windows belong­
ing to the resources of descendent cells. This is desirable since the resources of each 
descendent dialogue cell are defined in terms of their parent resources. However, in 
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order to be able to keep the resource model intact, two restrictions are laid upon the 
move operation: 

• The window in question must stay within the bounds of the anchoring window. 
Restricting window movement in this way is not as bad as one suspects. The 
rationale behind this is that since a (grand)parent dialogue cell is active in the 
anchoring window, the pictorial output of the window in question is related to that 
of the anchoring window. 

• The intersection of neighboring windows within the window class instance must 
stay empty. One of the main reasons for specifying two distinct windows in one 
class is to ensure that unrelated dialogue cells are active in disjunct screen spaces. 
By restricting the intersection of unrelated windows to be empty, this relationship 
is maintained. 

After every move operation the segment tree is reconstructed. Fortunately, the struc­
ture of the segment tree does not change. Only the y-values of those external nodes 
which lie within the interval of the anchor window obtains new values, and hence, only 
the cover sets of that portion of the tree has to be reevaluated. 

For instance in the example given in section 4.2.11, moving window B is restricted to 
the interval [y0,y1 ). In this particular example, moving window B implicitly means 
that window C . be also be moved. In this case, the external nodes with values 
y3,y4,y5,y6 obtain new values. 

Since only a sweep from xo to Xn is needed, reconstructing the segment tree and deter­
mining if the move results in an ambiguous situation can be done in 0 (n log n)-time 
where n is the number of windows that intersect the anchoring window. 

4.2.2.2. Input device redistribution. 
A second form of resource redistribution allows a user to dynamically change the the 
mapping from a logical to physical input device. Although the resource model is 
expressed in terms of logical input devices, somewhere the mapping onto physical input 
devices takes place. Since this mapping is done outside the resource model it is an 
implementation issue how it is realized. However, the functionality of the resource 
manager is such that the user is allowed to overrule this mapping. 

For instance, assume that a logical locator device and a logical pick device are mapped 
onto two different physical buttons. The user must be able to dynamically change this 
mapping by indicating another button configuration. 

It is the resource manager's responsibility to ensure that ambiguous situations do not 
occur. This can imply that other mappings will have to be changed as well. However, 
since an unambiguous situation is possible before the input device redistribution, an 
unambiguous configuration also exists thereafter. 
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5. Conclusions. 
In this paper we have discused the role of a resource management scheme within a 
dialogue language. Using resources as the basis for input and output results in the cou­
pling of input and output at the physical device level. By integrating the resource 
manager in the dialogue language, correlations of higher level input and output can be 
defined and maintained. 

Scope and ambiguity rules are defined for resources as natural extensions to the 
corresponding activation rules of dialogue cells themselves. Moreover, by relying on 
the concept of inheritance, it has been shown how partial resource specifications are 
elaborated. 

From the resource specifications, a resource model is constructed. This model can also 
be dynamically manipulated by the user. Changes at one level of the resource model 
are implicitly propagated towards lower levels. However, the resource manager must 
ensure that the constraints laid upon the model by the dialogue specification are 
satisfied. 

Parallelism is a key issue in dialogue cell languages. Since multiple transactions can 
take place within one window, ambiguous situations can occur when an input device is 
triggered. An 0 (n log n )-time algorithm is given which detects if a resource request 
results in such a situation. 

Future work will include the generalization of the resource concept to include for 
instance, CPU time and memory capacity. Moreover, the resource model will be 
expanded to include all type and object descriptions within the dialogue language. 
Here too, the user must be able to dynamically change the type and object 
specifications whenever possible. This is the first step to truly interactive systems in 
which the user is in command of the program. 

At the implementation level, work still has to be done on mapping the resource 
manager onto arbitrary "off-the-shelf" window managing packages and comparing the 
resulting efficiency of these mappings. Currently, the resource manager is implemented 
on top of a local version of GKS which includes some primitive support for window 
management [ 16]. 
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Appendix 1. 
Constructing an equivalent context-free grammar from a dialogue grammar. 
Here we show how an equivalent context-free grammar can be constructed from a 
dialogue grammar. The two grammars are defined to be equivalent if the corresponding 
languages are equivalent. 

Suppose a dialogue grammar is given by : 

GA = <~NA' ~TA' PA, ZA> 

The derivation algorithm applies one of the following primitive cases : 
1. Assume that PA contains the production rule X ~; (Ei, ···,En). Each Ei is a 

well-formed symbol subexpression. The symbol expression X can be be rewritten 
into the set of n + 1 rules: 

{X~ Hi··· Hn ,Hi~ Ei, · · · ,Hn~ En} 

2. Assume that PA contains the production rule X ~ V (E i, · · · , En). The sym­
bol expression X can be be rewritten into the set of n + 1 rules: 

{X~ Hi ,Hi~ Ei, · · · ,Hi~ En} 

3. Assume that GA contains the production rule X ~ /\ (E i, · · · , En). The sym­
bol expression X can be be rewritten into the set of 1 + n rules: 

n n 
{X~ Xi, ~Xi~ IT (Hi,··· Hi), Hi~ E1, · · · ,Hn~ En} 

i=l i=l 
n 

In this case, IT (H l; · · · H l;) indicates a permutation over the symbols 
i=l 

H; , i = 1 · · · n. The expression 
n n 
~x1~ IT (H;, · · · H;J 

i=l i=l 

indicates the set of production rules having Z 1 as left hand side and a permutation 
of X;j as a right hand side. 

4. Assume that PA contains the production rule X ~ * (E). The symbol expression 
X can be be rewritten into the set of 3 rules: 

{X~ t:, x~ X Ho, Xo~ E} 

5. Assume that PA contains the production rule X ~ + (E). The symbol expression 
X can be be rewritten into the set of 3 rules: 

{X~XHo,Ho~E} 

6. Assume that GA contains the production rule X ~ case (E 1, • • ·, En). The sym­
bol expression X can be be rewritten into the set of n rules: 

{X~ H1, H1~ EiE2, H1~ E1E3, · · · ,H2~ E1En} 
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Intuitively, is derivation algorithm recursively applies the six different cases to the root 
production rule ZA until only symbols in set "l,NA U "2.r

1 are on the right hand side of 
the generated production rules. This process eventually results in the equivalent 
context-free grammar, denoted as 

GJF = <"2.N~, "2.f~, PJF, z5F> 

Assuming that the root symbol expression of the original dialogue grammar (without 
combining operators) has the form A~ A 1 • • • An, then production rules of G5F are 
the set: 

PJF = PJ~ LJ . · · LJ PJ: LJ { . . . } 
Here P5:" are the productions of the grammar which was derived from the dialogue 
grammar GA; and { · · · } indicates the set of productions which are derived by recur­
sively applying the six cases to the root symbol expression. Furthermore, 
"2.~~ = "2.NA U { H;j} and "2.f~ = "l.rA. Hij are the extra non-terminal help symbols 
that were introduced while deriving the context-free productions. 

Semantic actions are associated to the corresponding help non-terminals 1!_y:_ These are 
evaluated whenever the parser reduces the corresponding non-terminal. Whenever the 
context-free production rule corresponding to the dialogue symbol expression z5F is 
reduced, a semantic action produces a value. This value can be used in the semantic 
actions of the rules which use z5F. In the special case that the production rules 
derived from derivation rule 4, 5 or 6, the value determines if the parser is to make a 
shift or a reduce decision. 

A second aspect of the derivation algorithm concerns the activation mode in which a 
dialogue cell was activated. A dialogue cell activated in an asynchronous mode (viz. 
sample or event) can produce can produce a result a number of times before it is deac­
tivated. This can be expressed in a context-free grammar as follows: assume that the 
dialogue cell , A, is activated in asynchronous mode and that the dialogue grammar is 
denoted by 

GA = <"2.NA' "2.rA' PA, ZA> 

The equivalent context-free grammar is written as (in this case an extra subscript is 
used to indicate that A is activated in asynchronous mode) : 

6 cF = <"2.cF "2.cF pcF zcF> Aa NAa ' TAa ' Aa ' Aa 
in which 

P5; = P5F U {z5; ~Ho, Ho~ z5FH0 , Ho~ z5F} 

and "2.N~ = "2.N~ U {Z5; +Ho}. 



Resource management in DICE. -22- Resource management in DICE. 

Appendix 2. 
Attributed dialogue grammars. 
Attribute grammars ([9] , [10]) allow the semantics of a language to be specified along 
with its syntax. Underlying an attributed dialogue grammar is its dialogue grammar 

G = <LN, LT, P, S> 

where LN and LT are the disjoint finite sets of dialogue cell symbols ( = non-terminals) 
and basic dialogue cell symbols ( = terminal), respectively; P is the set of symbol expres­
sions and S E'2.N is the root cell symbol. 

With each cell symbol we associate two finite disjoint sets; a set of inherited attributes 
and a set of synthesized attributes. Inherited attributes obtain values from the immedi­
ate parent node and its production in the derivation tree. Synthesized attribute values 
are computed from the attribute values of the immediate descendents in the derivation 
tree. Rules are associated with the context free productions for the evaluation of the 
attribute values. 

The inherited attributes on the left hand side and the synthesized attributes on the ele­
ments of the right hand side represent values obtained from the surrounding nodes in 
the derivation tree. In this sense, inherited attributes represent information that is 
passed down from the root node towards the leaves. Synthesized attributes of a node 
represent information which is derived in the subtree of the node and passed up 
towards the root node of the derivation tree. 

With each production p : Ao-? A 1 , • • • , Ak we associate a set of semantic func­
tions. Each semantic function defines a value for a synthesized attribute of Ao or an 
inherited attribute of A; ,i ~ k. The functions can be defined in terms of (other) attri­
butes of Ao, Ai, · · · , Ak. 

A derivation tree node, labeled A, defines a set of attribute instances corresponding to 
the attributes of A. A semantic tree is a derivation tree together with an assignment of 
either a value or the special token w to each attribute instance of the tree. To deter­
mine the "meaning" of a dialogue, one first constructs its semantic tree with an assign­
ment of w to each attribute instance, and then evaluates the semantic functions of as 
many attribute instances as possible. The latter process is termed attribute evaluation. 
The order in which attributes are evaluated is arbitrary, but is subject to the constraint 
that a particular semantic function can be evaluated only when all of the argument 
attributes are available; i.e. non-w. A semantic tree is fully attributed if a value is asso­
ciated with each of its attribute instances; it is partially evaluated if the value of at 
least one attribute instance is unavailable. An attribute grammar is well-formed if 
every complete derivation tree can be fully attributed. 

Knuth stated ([9]) the conditions that attributes must obey in order to evaluate these 
semantic functions. Relationships among attributes in a given derivation tree are 
represented by a dependency graph. Nodes in the dependency graph represent an attri­
bute instance and there is a directed edge from node a to b if the semantic function for 
the attribute corresponding to instance b has attribute a as an argument. The basic 
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idea of Knuth is to show that the dependency graph is acyclic if and only if the attri­
bute grammar is well-formed. 

The concept of attribute grammars is not a complete method for making formal 
definitions. For general use, it must be combined with a method for the specification of 
its evaluation rules. A more formal approach to specifying semantics of context free 
grammars can be found in [11]. 

In this paper we will consider only attributes that influence the management of 
resources. 
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Appendix 3. 
Logical input devices. 
The GKS input model is based on the concept of logical input devices. Logical input 
devices provide the application program with an interface which abstracts physical 
input devices from a particular hardware configuration. 

A logical input device consists of: 

• a class. 
The class of a logical input device defines the type of the input value which is 
returned. The six different classes are given in the following table : 

eVIce 
ocator 

choice 
pick 
valuator 
string 
stroke 

return type 
c, tran 

Choice 
Pickid 
Value 
String 
We [l, · · · , n], Ntran 

The GKS logical input classes. 

The actual amount of logical devices belong to each class is workstation depen­
dent. Each individual logical input device within a class is distinguished by a 
unique number. 

• a mode. 
The activation mode indicates how the input value is obtained from the logical 
input device. Conceptually, there are always two processes running for each active 
logical input device; these are the so-called measure process and trigger process. A 
particular measure value of a logical input device is defined to be the (eventually 
transformed to device coordinates) value of the physical input device. 
The measure process always contains the current measure value of the logical input 
device. Usually, the measure value is echoed in some way on the screen, for 
instance, by echoing a cursor shape in the position that corresponds with the meas­
ure value. 
A trigger process is an independent, active process that, when triggered by the user, 
sends a message to the measure process. Triggering a logical input device indicates 
that the current measure value must be returned to the application. 

How the measure value is mapped onto a value returned by a logical input device 
is defined differently for every input class. For the locator device the mapping 
rules are: 

Ea • Transform the measure value (given in device coordinates) back to normalized 
device coordinates using the inverse of the current workstation transforma­
tion. 
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E9 Select the normalization transformation with the highest viewport input prior­
ity in whose viewport the normalized coordinate lies. The selection of a nor­
malization transformation always succeeds since there is a default normaliza­
tion transformation which covers the complete normalized device coordinate 
space. 

E9 transform the normalized coordinate back to a world coordinate using the 
inverse of the selected normalized transformation. 

E9 return the world coordinate and the selected normalized transformation to the 
application program. 

There are three different activation modes: 

E9 request 
In the case of request mode, the application program waits until the trigger 
process sends a message to the measure process. The value of the measure 
process at the moment of triggering is (after the necessary transformations) 
passed to the application program. 

E9 sample 
In the case of sample mode, the value of the measure process will, at the 
moment of sampling, be passed to the application program. No triggering is 
involved when a logical device is sampled so that the application program will 
immediately continue after issuing a sample call. 

E9 event. 
In the case of event mode, the application program does not wait until the 
trigger process sends a message to the measure process. However, when the 
logical input device is triggered the value of the measure process at the 
moment of triggering is put in a input queue. The contents of the queue can 
be acquired by the application program by issuing calls that query and get the 
queue elements. 

e attributes. 
Attributes are used to parameterize the initialization of a logical input device. 
Most attributes have to do with how and where input devices produce echos on 
the screen. Attributes include initial values, prompt I echo types, activation modes 
and echo areas. Data records provide the application program a means to 
parameterize the logical input device in a device dependent manner. The layout of 
a data record must be precisely specified in the installation guide of a particular 
implementation. For instance, an entry in the data record can specify which 
mouse button will be used to trigger a locator device. 

Example 
This ~xample illustrates how a value from locator input device is transformed back 
to world coordinates. Suppose an application program has defined two window I 
viewport transformations ( 1j from W; to WW; ) and uses the default workstation 
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transformation at the moment the locator device is triggered. The following figure 
illustrates the different coordinate spaces and the relevant transformations. 1 

NTR WTR 
~ -...;.. 

WW1 V1 

D 
WW 

I :: .. 1 

- -NTR- 1 
WTR- 1 

Input transformations. 

If the physical locator device triggers at the point de 1 then, in accordance with 
rule l, the inverse of the current workstation transformation is used to calculate 
point ndc 1• There are now two cases which must be distinguished: 

1. viewport input priority (T1) > viewport input priority (T2) 
Rule 2 selects T 1 • The inverse of this transformation calculates the point we 11 • 
Finally, we 11 and T 1 are returned to the application. 

2. viewport input priority (T1) < viewport input priority (T2) 
Rule 2 selects T2. The inverse of this transformation calculates the point wc21 • 
Finally, wc21 and T 2 are returned to the application. 

End of Example 

t For simplicity reasons, the default window I viewport transformation is not shown. 
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