
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

R. van Liere, P.J.W. ten Hagen

Resource management in DICE

11111111111111111111111m~1;~r111m1111111111111111111111
3 0054 00063 4890

Department of Computer Science Report CS-R87 46 October

Biblioth@@k
Cootrumvoor Wis.!{u.nd~ en lnform$1:ica

Am$ terdam

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

I

y :b

~ .
Copyright © Stichting Mathematisch Centrum, Amsterdam

Resource Management in DICE

R. van Liere, P. J. W. ten Hagen

Department of Interactive Systems
Center for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A framework is presented for integrating a general resource management
facility into the dialogue cell language. It is shown that, by using resources as
the basis for input and output, the coupling of input and output at the physical
device level can be achieved. By integrating the resource manager in the dialo­
gue cell language, correlations between higher level input and output can be
defined and maintained.

Context sensitive resource rules are defined as extensions to the corresponding
activation rules of dialogue cells themselves. By applying various inheritance
mechanisms a resource specification can be done virtually. The dialogue run-time
system dynamically binds these virtual specifications with physical devices.

The resource manager is implemented by augmenting the dialogue grammar with
specific resource information. In this way a potentially ambiguous dialogue can
be unambiguously parsed. An O (n log n)-time algorithm, with n indicating the
number of overlapping windows, is given which detects ambiguous resource
configurations.

CR Categories: 1.3.4 [Computer graphics] : Graphics utilities- application and
graphics packages; 1.3.5 [Computer graphics]: Computational geometry and
object modeling- geometric algorithms; 1.3.6 [Computer graphics]: Methodol­
ogy and techniques- device independence, languages

Key Words & Phrases: User Interface Management Systems, dialogue languages,
resource management, window management

Note: This report will be submitted for publication elsewhere.

1. Introduction.
The dialogue cell specification method, or simply DICE,_ has successfully been used as a
tool for designing high quality graphical user interfaces. With this method a user inter­
face designer defines the syntax of a dialogue by specifying a context-free like grammar.
A context-free grammar is capable of defining a large part of the syntax of a typical
dialogue language, and the existence of a variety of syntax-directed parsing techniques
has facilitated the construction of efficient parsers for such syntax definitions.
This form of definition has adequate power to define the syntax of dialogue languages.
Report CS-R87 46
Centre for Maglematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Resource management in DICE. -2- Resource management in DICE.

Unfortunately, every context-free dialogue language will need some syntax extensions
which are context-sensitive. Therefore, a dialogue language syntax definition consists of
two parts:

• a context-free grammar which defines the sentence structure of the language.
• a set of additional rules which impose context constraints on the language.
Each context-sensitive rule may require some relation to hold among certain elements
occurring in the dialogue specification. For instance, DICE allows a particular window
to be shared by two dialogue cells. In which screen area the two cells actually are
displayed is a part of the dialogue syntax. Therefore, this requirement can be
represented as a context-sensitive rule which allows the definition of a window to
depend on a related dialogue cell's window.

Context sensitive rules are conventionally expressed in an ad hoe fashion, which makes
it a difficult task for the designer to apply them correctly in a dialogue specification.
This is in particular true for larger dialogue specifications; i.e. specifications consisting
of hundreds of dialogue cells in which numerous cells come from predefined libraries.
In this paper we are concerned with how the dialogue cell system manages the declara­
tion and application of resources, and the impact resource management has on the exe­
cution of a dialogue. We also show that, by using techniques familiar to parsing attri­
buted grammars, the implementation of resource management can be combined with
other elements of the dialogue specification into one formalism.

Before going into details of how the DICE system treats context sensitive resource rules
internally, it is appropriate to describe these rules form a user point of view. The basic
assumption is that at any time during the dialogue the user has a choice between more
than one type of input entity. For instance, the user may have the freedom to decide
whether to input text, select from a menu or to input geometrical data through a
mouse. This variety of choice may be caused by the following situations:

• there is more than one input component item being constructed.

• for the same compound item the order of providing the constituents is immaterial.
• there is a choice between alternatives of different types.
In each of these situations the possibility arises that there is more than one 'request' for
the same input token; for instance, when the mouse is used for more than one purpose.
This confronts both the system and the user with an ambiguous situation since it is not
known which 'request' will be given the input token. By adding additional context­
sensitive syntax to the syntax rule it is possible to make clear to the user which token
goes where. The basis for adding this extra syntax is to dynamically differentiate the
mechanisms which provide these tokens. The differentiation is provided by the resource
manager who controls all output and input mechanisms including the screen manage­
ment. Differentiation can thus result from different output presentations, different
input devices or a combination of both. As we will see, this implies that the resource
manager also handles the window management. For this reason, it is our firm believe
that window managers should be incorporated in resource managers rather than only
provide a variety of windowing functions.

Resource management in DICE. -3- Resource management in DICE.

Within the dialogue system itself every dialogue cell has associated with it a resource;
i.e. a description of the physical resources that are assigned to the corresponding dialo­
gue cell. The dialogue cell's resource provides the link which allows a device indepen­
dent dialogue cell specification to be mapped onto physical resources of the worksta­
tion.
Resource specification is done in terms of virtual device classes which are (partial) static
descriptions of device independent resources. The collection of resource specifications
results in an underlying resource model. There are two advantages for using such a
resource specification scheme. Firstly, since the activation environment of a dialogue
cell is statically unknown, a dialogue designer does not know on which part of the
display a dialogue cell is activated. This resource specification scheme allows the dialo­
gue designer to specify resources relatively with regard to its parent resource. Secondly,
this resource specification scheme allows the designer to partially define a resource. By
inheritance, the activation environment information of a parent cell can be used to
complete the resource specification.
For instance, the window component of the resource can be specified in terms of the
parent dialogue cell's resource. This (partial) resource specification is filled in at run
time by inheriting the parent cell's resource.

The resource manager will take information from the resource model to make decisions
concerning the allocation (and reallocation) of resources. Basically, the responsibilities
of the resource manager are twofold :

• To ensure that various predefined language dependent criteria, in particular those
which disallow so-called ambiguous situations, are obeyed whenever a resource
request is granted. Ambiguous situations occur in parallel systems when more
than one reaction to a specific user input is possible. Clearly, ambiguities should
be avoided since they leave the user in a confused state.

• To ensure that the resource model is always in a consistent state. Operations on
the resource model do not only include those when resource specifications are ela­
borated (i.e; resource allocation), but also those done by the user when the window
layout is changed.
For instance, if a user moves a window to another area of the display, all other
related windows must also be moved. Similarly, if a window is reshaped, all other
related windows must also be reshaped accordingly.

The context-sensitive rules applying to resource manag~ment are implemented as func­
tions which evaluate attributes in the -so-called attributed dialogue grammars. In general,
attributed dialogue grammars are automatically derived by augmenting the original
dialogue grammars with various predefined attributes. Using attributed dialogue gram­
mars allows semantical issues of the resource manager to be validated as the evaluation
of attributes in the attributed dialogue grammar. This has two advantages over the
more traditional procedural approach: (i) the semantics is expressed applicatively. Pro­
pagation of attributes through the derivation tree· is implicit in the formalism and need
not be specified imperatively on a case-by-case basis and (ii) the specification is modu­
lar; the arguments to each semantic function are local to one production.

Resource management in DICE. -4- Resource management in DICE.

1.1. Format of this paper.
Section 2 first gives an overview of dialogue cell languages and informally states the
parsing problem inherent to these languages. This leads to the definition of a number
of simple criteria that must be obeyed in order to be able to parse these languages.
Section 3 gives a description of the underlying resource model and shows in which way
the resource model must be constrained in order to meet the criteria laid upon the sys­
tem by the parser.
Section 4 gives an overview of how such a resource model and the resulting (static as
well as dynamic) operations on it can be implemented.
Appendix 1 shows how, given a dialogue cell grammar, a context-free grammar can be
constructed. Appendix 2 gives an overview of the definition of attributed dialogue
grammars. Appendix 3 reviews the logical input device model.

1.2. Related work.

Specifying user interfaces by regular I context-free grammars and using parsing tech­
niques to execute the resulting dialogues is not new. Pioneers in this area have been
Newman ([12)) and Olsen ([13)) who were the first to build such systems.
Dialogue cell type grammars have been studied by van den Bos ([20)), Holt et. al. ([7])
and Lewi ([2]); the last two studies have been in the field of specification languages
suited for the construction of compilers. Van den Bos was one of the first to recognize
the merits of non-determinism in dialogue languages.
Defining the semantics of a context-free language by means of an attribute grammar
was introduced by Knuth ([9], [10)). The first paper considers various criteria which
ensure that attributes in a grammar are correctly evaluated. Considerable research has
been done in the area of attribute grammars and (re)evaluation of attributes. Recently,
novel algorithms for incremental evaluation of attributes have been developed by
Demers, Reps and Teitelbaum ([3]) in the domain of syntax directed editing. These
algorithms have also been used as a basis for error recovery schemes in a user interface
management system ((8)).
To our knowledge, using incremental evaluation techniques have not been applied to
resource management. Introductions to dialogue cells can be found in ([l] , [19)). The
impact that non-determinism has on feedback is given in ([15] , [14)). Finally, ([18))
presents dialogue cells in a somewhat more fundamental way by defining a general
model for graphical interaction.

2. Dialogue cell languages.
A dialogue cell grammar is characterized as the 4-tuple:

G = <"2w, LT, P, S >
where LN and LT are the disjoint finite sets of dialogue cell symbols (= non-terminals)
and basic dialogue cell symbols (= terminals) respectively, P is the set of symbol expres­
sions and S E LN is the root cell symbol.

LT is the union of the basic input symbol set and the combining operator set (denoted
as LT1 U LT0) in which

LT
1

= { Locator, String, Choice, Pick, Valuator}

Resource management in DICE. -%-

is the set of terminal symbols, and

~To = { ;, /\, V, case,*,+}

is the set of combining operators.

Symbol expressions are written in the form:

A ~ fJ (E 1, · · · , En)

Resource management in DICE.

where A is the dialogue cell symbol; () is a combining operator and E; are the symbol
subexpressions which are, analogous to expressions in conventional programming
languages, factorized into simpler forms until eventually a so-called subcell is obtained.
Subcells belong to the the set ~N U ~T1 •

Operators define the order in which the subcell results are to be accepted. The
sequence operator, 11

; ", indicates that the order in which subcell results are accepted is
sequential. The parallel operators, 11 V 11 and 11

/\ ", allow subcell results to be accepted
in any order. In the case of the "V 11 operator, only one of results is necessary whereas
the 11

/\
11 operator requires that all results must be accepted before the complete subex­

pression is reduced. The iterator operators 11 +11 and 11 *" allow iteration. In this case,
the resulting value of the subcell determines the stop condition. Similarly, the case
operator allows for a branch depending on the result of the first operand. The iterator
and case operators are special cases of a more general scheme in which result values of
symbols can influence shift I reduce parsing decisions.

All dialogue cells are strongly typed in the sense that the use of result values must
correspond to the definition. In particular, basic dialogue cells deliver (in some works­
tation dependent way) result values of predefined types; i.e.
Locator, Choice, Pick, Valuator, String. Higher order dialogue cells can return values
of arbitrary user defined types.

Finally, user defined semantic actions can be associated to each symbol subexpression
in the form of so-called echo and value trigger actions. These are, analogous to syntax
directed translation schemes, executed each time a symbol subexpression is parsed.
Echo trigger actions are denoted as

Ae (E;) : erulen, erulei2, ... , erule;n

In this case, A is the name of the dialogue cell, E; is the trigger expression and erule;
are the echo mapping rules. In this way arbitrary (even application dependent) feed­
back can be given. Similarly,

Av (E;) : vrulen, vrulei2, ... , vrule;n

denotes a value trigger action. Specifying value actions allow input values to be inter­
preted as soon as they are consumed by a cell.

Triggering value actions followed by echo actions in this way provides the dialogue pro­
grammer with a mechanism that guarantees a certain synchronization between what the
user sees on the screen and how the the dialogue has interpreted the internal values; i.e.

Resource management in DICE. -6- Resource management in DICE.

"what you see is what you get". Alternatively, triggering an echo action followed by
value action provides the dialogue programmer with a mechanism that allows to visual­
ize the result of an action even before it has been executed internally.

Conceptually, the dialogue is executed as follows. Each basic dialogue cell is simulated
by a physical input device. After reading the physical input device triggered by the
user, the corresponding basic dialogue cell produces a result symbol. The produced
result is input for another cell, which, in tum, will eventually produce a result. This
process continues until the root cell symbol produces a result. Each time a result is
produced, it is dumped in a storage pool. A scheduler will examine the results in the
storage pool to determine which result must be processed. A scheduler is necessary
since dialogue cells run in parallel. t Result passing is depicted in the followillg figure.
Since the parse tree defines the flow of the dialogue, the source and destination of each
cell result is known to the scheduler.

result storage parse tree

D···D

In the context of resource management it is important to note that, in order to produce
a result, a dialogue cell must first be activated. Activation consists of the initialization
of the cell plus (depending in the mode) of the activation of the subcells. In particular,
all resources that are needed by a dialogue cell are requested at initialization time.
Using such a synchronous activation scheme in conjunction with the resource model,
deadlock situations are easily detected.

Once activated, dialogue cells can execute either synchronously or asynchronously.
Considerable flexibility is achieved by allowing cells to be activated asynchronously

t The overhead required to do scheduling can be constrained by introducing processing priori­
ties in the semantics of the language (see [17]). Such a scheduler can be viewed as a generaliza­
tion of a,Jexical analyzer. This execution scheme has many similarities with event-driven sys­
tems, such as [5] and [6].

Resource management in DICE. -7- Resource management in DICE.

since it allows a user to determine the moment of giving an input. It must, however, be
emphasized that asynchronous activation differs significantly from the non-deterministic
operators in the symbol expressions. Operators within a symbol expression determine
the order in which the results of the subcells are parsed whereas the activation mode
merely determines the moment in which a subcell may start producing a result.

For every dialogue language there exists an equivalent context-free language. Appendix
1 gives an algorithm which converts a dialogue grammar into a context-free grammar.
Unfortunately, the process of parsing a particular dialogue differs significantly from
parsing a string belonging to a context-free language. The problem of parsing a dialo­
gue is the subject of the next section.

2.1. The parsing problem.
The major differences between parsing a dialogue and parsing a string in a context-free
language are summarized as:

• A dialogue requires a LR (0) type parser since every trigger action must be exe­
cuted as soon as an input is received; i.e. a user cannot be expected to give k
inputs before getting feedback from the first input, as is the case of LR (k), k ~ 1
parsers!

• In contrast to conventional LR (k), k~O parsers, dialogue parsers obtain tokens
from multiple input streams. This is due to the various parallel operators and the
asynchronous activation modes. Hence, the dialogue parser is simultaneously pars­
ing multiple input expressions. Parallelism results in extra ambiguous situations
since it cannot be determined to which stream a particular input token belongs.
These situations cannot be resolved by only using techniques familiar to conven­
tional LR (k), k~O parsers.

Ambiguous situations can be brought down to the following two canonical forms :

• Symbol expressions which have the form :

A~ fJ (B, C) fJ E { /\, V}, C E ~TI (1)

B~ C (2)

These two symbol expressions will cause an ambiguous situation when the device
belonging to basic dialogue cell C is triggered.

• The symbol expression of a dialogue cell has the form :

A~() (B, B) () E {;, case}, B E ~TI (1)

This unambiguous symbol expression causes ambiguous situations when subcell B
is activated asynchronously.

For instance, assume two dialogue cells have the symbol expressions
ffe

A~ /\ (B, locator) , B ~ /\ (locator, locator)

Resource management in DICE. -8- Resource management in DICE.

with locator E ~T· In this case, three dialogue cells with the name locator are simul­
taneously active. When a token with the type locator is received by the parser, it can­
not be determined which input stream is implied.

We now, informally, summarize the approach taken by the dialogue cell parser to parse
a dialogue. Conceptually, during the activation of every subcell, a unique input stream
is created in which the subcell stores its results. Since each input stream is unique, the
correspondence between a subcell and it's parent cell is also unique. The input stream
is removed as soon as the subcell is deactivated. Each input stream is typed with the
type indicated in the specification the subcell and is uniquely labeled. By augmenting
tokens with the input stream identification, the parser can uniquely determine the
corresponding production rule. This scheme avoids the ambiguous situations stated
above since the correspondence between the input stream and the dialogue cell that
processes the token is now unique. ·

This can be formalized somewhat by defining an input token to be a triple, denoted as
<type, value, id >, consisting of a dialogue cell result type, dialogue cell result value
and a stream identification. For every token that is ready to be processed, the follow­
ing relation must hold (we use the notation X [Y;] to indicate the projection of element
Y; from the n-tuple X = <Y1, · · · , Yn>):

'V token;, tokenj, i=/=j : token;[id] =I= tokenj[id] (1)

Associated with each dialogue cell A is a set of open input streams, denoted as
InStreamA = { i I StreamOf (A, i) = true} in which the predicate

StreamOf : Cel/Name X Stream ~ Boolean

determines if an active dialogue cell contains a particular open input stream. The
scheduling function for active dialogue cell A is denoted as:

schedule A ({token; I U i token;}) = tokenj

i.e. return a token for dialogue cell A, given the set of possible input tokens. The
scheduled token will obey the relation

token; [id] E InStreamA

At the lowest level of the derivation tree the workstation provides a predefined number
of typed input streams, corresponding to the result types of the basic dialogue cells.
This is denoted as the set :

BasicStreams = { i I StreamOf (A, i) = true /\ A E ~T1 }

The cardinality of BasicStreams is bounded by a predefined, workstation dependent
number:

I BasicStreams I < BasicStreams1sMax (2)

in which BasicStreams1sMax is the maximum number of ipput streams provided by the
workstation.

Resource management in DICE. -9- Resource management in DICE.

Implementing such a scheme is fairly straightforward. The strategy taken by the dialo­
gue cell system is to augment each dialogue cell production rule with a set of predefined
attributes. Attributed dialogue grammars are very similar to attributed context-free
grammars t in the sense that functions are provided with each attribute that associate a
value to that attribute. Moreover, as in the case in conventional attribute grammars,
attributes can also be inherited and synthesized. The general idea of using attributes is
that various context sensitive conditions at one level in the parse tree can be used at
another level. New context conditions can be determined by traversing the tree and
(re)evaluating the attribute values at that particular node. As is the case of attribute
grammars, a major problem is how attributes can be efficiently (re)evaluated. Attribute
reevaluation is achieved in the dialogue cell system by constraining the "scope" of the
attributes in a language dependent way. In this way, only (small) portions of the tree is
traversed in order to reevaluate the corresponding attribute values.

3. Resources.
In the previous section we have shown which restrictions are implied on the execution
of a dialogue in order to allow a non-ambiguous parse. We now define a scheme for
managing resources which, when applied to dialogue grammars and languages, serves as
an implementation of these restrictions.

A resource is a logical description of the physical hardware resources, consisting of a
window description, an input stream description and a priority. Associated with every
dialogue cell is a resource. The exact value of the resource is determined at activation
time of the dialogue cell and cannot be changed during the lifetime of the cell. Since
the order of activation is defined by the semantics of the dialogue cell system, it is pos­
sible to define predicates that avoid deadlock situations. The notation used is :

r = <w, i, p >
where r is the name of the resource, w the window description, i the input stream
description, and pa priority.

The total screen space can, through an appropriate overlap strategy, become a much
larger virtual screen space. Each of these virtual screen spaces are defined to be a win­
dow. How window descriptions are eventually mapped onto the physical screen space
depends on scope rules that are laid upon the instantiation of a window (these rules are
discussed in section 4.1. l).

Input streams are typed by the values that are returned from the dialogue cell. At the
lowest level of the cell hierarchy input streams are simulated by logical input devices t
by using logical input class types as primitive input stream types. Higher level input
stream types are defined as the composition of lower level streams types. The input
stream description contains both the type of the input stream as well as the

t A summary of attributed dialogue grammars and the used notation for these is given in Ap­
rendix 2.

A summaty of the concept of logical input devices is given in appendix three.

Resource management in DICE. -10- Resource management in DICE.

identification of the stream; i.e. i = <lnputStreamType, lnputStreamld >.

Basically, there are two aspects relevant to resource management: resource organization
and resource allocation I deallocation. We first introduce both of these aspects before
going into each of them in more detail.

• Resource organization follows directly from the specification of resources in the
dialogue cell and the environment of the parent dialogue cell's resource. Resource
specification is done in so-called virtual window and input device classes. A vir­
tual window class is a static description of a set of windows in a virtual coordinate
space. Similarly, a virtual input device class is a description of a set of logical
input devices. Classes are instantiated during run-time, by mapping the virtual
spaces onto the physical spaces of parent resources. 1hls results in a resource
model.

• Resource allocation is done in run-time by binding resource descriptions onto phy­
sical resources; i.e. a window onto a screen portion and (at the lowest level of the
cell hierarchy) a virtual input device onto a particular logical input device. There
are two issues that must be considered with respect to resource allocation :

E9 Fast changing contexts, which are typical in interaction, require dynamic
redistribution of resources. By constraining class definitions, the ambiguity
resolution algorithm should only have to consider competing resources that
are local to the requested resource. In particular, by defining the resource
model to be strictly hierarchical, resource allocation requires only the travers­
ing of one branch in the class hierarchy.

E9 The user must be given the ability to dynamically overrule decisions made by
the resource allocation scheme. For instance, the window layout may be
altered or the mapping of virtual to physical input devices may be altered.
However, when the user alters a resource configuration, it must be assured
that the resource ambiguity criteria are not violated. Note that, by altering
the window layout, not only will various logical input device echo areas be
altered, but also all windows which depend on the altered window.

The restrictions laid upon a dialogue in the section 2.1 can be translated into criteria
that must be satisfied by a resource. Intuitively, this can be justified by considering the
augmented token identification to be a resource. Showing that a resource is unique will
then be sufficient to guarantee that the token produced by the dialogue cell can be
uniquely identified. A resource, r;, is defined to be unique if one of the following con­
ditions is satisfied :
(i) v rj' i =I= j : r; [w] n rj [w] = 0
(ii) v rj, i =I= j: (r; [w] n rj [w] =I= 0) /\ (r; fp] = rj fp]) ~ (r; [i] =I= rj [i])

(iii) v rj' i =I= j : (r; [w] n rj [w] =I= 0) /\ (r; [i] = rj [i]) ~ (r; fp] =I= rj fp])
Condition (i) assures resource uniqueness if the windows are non-overlapping. Condi­
tion (ii) assures that two resource are unique if they have overlapping windows and
identical priorities but have different input descriptions. Condition (iii) states that if

Resource management in DICE. -11- Resource management in DICE.

two resources have overlapping windows and identical input descriptors, then they must
have different priorities. By including a window description in the resource description
allows the non-ambiguity criteria to be applied to each window.

For the logical input streams the following relation holds:

I lsw I < BasicStreams1sMax

where: lsw = IsLocw + IsPickw + IsChoicew + IsStringw + IsValuatorw and
W E { w; I WindowExists (w;) = true} ; i.e. the number of open basic input streams
in one window is bounded by a workstation dependent maximum. The total number of
open basic input streams is the sum of the open basic input streams for each class.

4. Implementation.

Implementing the concepts of resources, classes and inheritance is done by merging
them into the parsing process of dialogue languages and treating them as attributes in
the corresponding augmented dialogue grammar. Resource allocation is expressed in
terms of the evaluation of attributes during the activation of a dialogue cell. Redistri­
bution of resources can be expressed as the reevaluation of the corresponding attributes
by traversing the derivation tree and marking the effected attributes and their depen­
dencies. Only these marked attributes will then have to be reevaluated. This process is
similar to the ones described by Reps [3] and by Hudson [8]. As stated before, the
resource model will constrain the amount of reevaluation that has to be done.

Note, finally, that this (re)evaluation scheme is still valid even if logical input devices
are not used as input stream descriptions. For instance, if the measure and trigger
processes of an logical input device were simulated by two basic dialogue cells,
(re)evaluation of attributes would still allow the correct resource management.

We first show, by constraining the resource organization in a particular way, how the
criteria laid upon the resource manager by the parser can be fulfilled. Second, we show
how resource (re)allocation can be done. Algorithms are given that can detect ambigu­
ous situations.

4.1. Resource organization.

4.1.1. Window organization.
Every window belongs to a so-called window class which is declared as a set of tiled
window descriptions in a virtual coordinate space; i.e.

we = { W; I v Wj ' i =I= j ==> W; n Wj =I= 0}

in which we is the name of the window class and w; are the names of the window
descriptions. Window class declarations must be instantiated before a window is used.
Instantiation is done by mapping the class declaration onto an already existing window
(this window is called the anchor window of the class; thus w; J_ wciwc denotes that

" n
the window class instance of window class wcn is anchored to window w;). By having a
predefined root window class, the collection of instantiations results in a hierarchy in

Resource management in DICE. -12- Resource management in DICE.

which every node represents an instantiation of a window class.

A window class instance path is defined to be the set of window class instances starting
form a particular reference window to the root class instance; i.e. t :

WindowClassl nstanceP ath w,,1 = {Wein, Wein - I , · · · , wei o}

where Wref E weiwcn and Vwciwc; 3wj I Wj E weiwc; A Wj J_ weiwc;+i ·

Furthermore, we name the set of window class instances that are anchored to a particu­
lar window the AnchoredBy set of window class instances; i.e.

AnchoredBy wref = { wciwc; }

where Vwciwc; J_ Wref .

The motivation for such a window class organization scheme is three fold :

• By using window classes, a dialogue cell can specify the screen position of its sub­
cells. The resources of these subcells can be specified in terms of the inherited
window class.

• Tiled windows within a window class ensures the execution of conceptually
different subcells on non-overlapping portions of the screen.

• Anchoring window classes to windows ensures that all windows within these
classes are related. In particular, moving and resizing an anchor also effects the
anchored window class instances.

4.1.2. Logical input device organiz-ation.
Similar to windows and window classes, a logical input device belongs to a so-called
input class which is declared as a set of logical input class type descriptions; i.e.:

ic={ijlJ=l, ··· ,n, ijE{L,V,P,C,S}}

where L, V, P, C,S denote the locator, valuator, pick, choice and string input class
types. Instantiation of the input cless is done by associating the class declaration onto
an already existing window instance (which, in this case, is also called the anchor and is
denoted as wei; J_ ici;cn).

An input class instance path is defined to be the set of input class instances starting from
a particular reference window to the root window class instance; i.e.:

InputClasslnstancePath wref = { ici;c; }

with

'tlici;c; 3wcij E WindowClasslnstancePathw,,
1
I wcij J_ ici;c;

t The notation wciwc
0

denotes the window class instance of the predefined root window.

Resource management in DICE. -13- Resource management in DICE.

The motivation for such an input class organization is two-fold :

• Constraining the set of input devices provides the dialogue designer with a finer
control over the distribution of physical input devices during execution.

• Associating input classes with a window ensures that the activation of the input
device is restricted to a particular window.

Implementing such a scheme on top of GKS is not possible. A shortcoming of the
GKS input model is that the association of measure and trigger processes is fixed by a
particular GKS implementation; the application has no control over the way measure
and trigger processes are configured to form logical input devices. Additional func­
tionality to the input device model has been defined which allows the run-time system
to explicitly configure logical input devices. The key idea is to augment the workstation
description table with the number of measure processes of some input class and a
number of trigger process. Each measure and trigger process is named and is made
visible to the run-time system. Functions are provided for defining a logical input dev­
ice configuration by specifying which measure and trigger are to used when the device
is initialized. Furthermore, inquiry functions allow the details of a particular
configuration to be obtained.

The approach of self configurable logical input devices allows the run-time system to
maintain its own strategy to associate trigger processes with measure processes. This
approach is somewhat similar to the one proposed by Duce [4] as an extension to the
GKS logical input device model.

4.2. Resource allocation.

4.2. 1. Resource creation.
Resource creation is done by binding each component of the virtual resource descrip­
tion with a particular physical resource. Scope rules are applied to determine which
class instantiation is used to select a particular resource component. These rules are
determined by examining the resource model in conjunction with the position of the
requesting dialogue cell within the derivation tree.

The following scope rules apply to all resource requests:

• The window class instantiation of the requesting window class must belong to the
window class instance path of its parent resource; i.e.
wciwc E WindowClasslnstancePath,P[w] with rp being the parent cell's resource.

• Similarly, the input class instantiation of the requesting input class must belong to
the input class instance path of its parent resource; i.e.
iciic E lnputClasslnstancePath,P[w] with rp being the parent cell's resource.

Scope rules ensure that resource ambiguity resolution can be done efficiently by restrict­
ing all other (potential) ambiguous resources to belong in the scope of the resource in
question. We now give the ambiguity resolution algorithm in two steps. The first step

Resource management in DICE. -14- Resource management in DICE.

detects the set of all overlapping windows; i.e. overlap : window ~ window+ . The
second step detects, given a reference resource and the set of resources with overlapping
windows, if an ambiguous situation occurs; i.e.
is _ambiguous : resource X resource+ ~ boolean

01)
02)
03)
04)
05)
06)
07)
08)
09)
10)
11)

12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)

]

]

S ~overlap J, (wref, Wref)
foreach wei; E WindowClasslnstancePathw,eJ
[

foreach wl· E wei; - l
if Wj Wei; =/= 0

S ~ S LJ overlap J, (wj , Wref)
]
return S

S ~ Wref
foreach wei; E AnchoredByw,.

1
[

]

foreach wj E wei;
if Wj n W =fa 0

S ~ S U overlap J, (wj , w)

return S

Function overlap t checks, for all window class instances in the the path of the reference
window (line 04), if the anchoring window (line 06) contains descendent windows that
overlap the reference window (line 07). Function overlap J, recursively checks, for all
window class instances that are anchored by a reference window (line 14), if any win­
dow in that particular class instance contains an overlapping window (line 16).

Conceptually, overlapt finds all overlapping windows "higher" than a particular refer­
ence window while overlap J, finds all "lower" overlapping windows. The efficiency of
this algorithm lies in the fact that

• Only one window per class instance can anchor another class instance (line 06).
This is due to the restriction that all windows within the class instance are tiled.

• All descendents of non-overlapping windows do not have to examined (line 16).
This is due to the fact that all windows that belong to a particular class instance
intersect completely with the anchor; i.e. W<fescendent n W J_ = Wdescendent Where
Wdescendent E wei /\ wei J_ w J_. Thus, if an anchor does not intersect with a

Resource management in DICE. -15- Resource management in DICE.

particular window, all descendent windows of that anchor will not either.

The heart of the function is ambiguous is centered around the function has thickness
which determines if a K-intersection exists within a set rectilinear-oriented rectangles.
A K-intersection is defined to be point in which at least K rectangles intersect.
Has thickness solves the ambiguity problem since, if there exists an
BasU:Stream1sMax + I-intersection, then input tokens from the basic input streams can­
not be uniquely distinguished.

The algorithm that implements has thickness is based on the line sweeping paradigm
which is very common in the field of computational geometry. The basic idea of line
sweeping is to sweep a vertical line from the left of all objects in question to the right
of these objects. Each time the sweep line collides with an object an (administrative)
calculation can be carried out on the sweep line. In this way a static two-dimensional
problem can be reduced into a dynamic one dimensional problem. In this particular
case, a so-called weighted segment tree is constructed during the sweep. Each external
node in the segment tree contains information about the intersection area of a rectangle
and the sweep line. A K-intersection can be easily verified by examining the weight
factors of the nodes in the tree.

The next section will sketch the K-intersection algorithm applied to rectangles and
analyze the resulting order complexities. A generic version of this algorithm which
determines is an arbitrary set of polygons has a K-intersection is due to D. Wood [21].

4.2.1.1. Detennining a k-intersedion within a set of rectangles.
The basic idea is to sweep a vertical line from the leftmost rectangle to the end of the
rightmost rectangle. At each position of the sweep line there are rectangles which it
intersects (active rectangles), rectangles completely to its left (dead rectangles) and rec­
tangles completely to its right (inactive rectangles). The intersections of each active rec­
tangle with the sweep line results in a number of disjoint intervals (active intervals).
Two observations can be made:

• There are at most 2N different sets of active intervals, since the set of active inter­
vals only changes when the sweep line meets a vertical edge of a rectangle. This
reduces a continuous sweep of the sweep line to 2n discrete jumps.

• Two rectangles intersect if and only if there is a position of the sweep line for
which their corresponding active intervals intersect. This reduces the (two­
dimensional) k-intersection problem to a (one-dimensional) sweep-line query prob­
lem.

Calling the x-projections of the vertices in ascending sorted order as sweep points, we
can sketch the intersection algorithm as follows:

foreach sweep point x do
if is a left vertical edge (x)
then- - -

query active intervals with the edge for intersections,

Resource management in DICE. -16- Resource management in DICE.

else

and insert the edge in the active interval yielding an extended
active interval or two disjoint active intervals.

delete the edge from its corresponding active interval
yielding zero, one or two new active intervals.

The K-intersection algorithm maintains a segment tree which will allow the insert, delete
and query operations to be realized in optimal time. A segment tree is a balanced
binary search tree with keys as external nodes and internal nodes contain routers which
lead the search to a particular key. In this particular tree, the keys are y-values
corresponding to the endpoints of vertical edges. Moreover, each external node not
only represents a point in the key space, but also the interval in the key space defined
by the successor in the tree. This implies that each interval, specified by a pair of keys,
is associated with a unique node of the tree. Within the segment tree, an external node
Yi represents the interval [yi,Yi+I) for O~i<n and Yn represents the interval [yn,Yn1·
An internal node represents the interval defined by the union of its children intervals.

Example
The following figure depicts four rectangles, resulting in eight vertical edges and
giving eighty-values. The corresponding segment tree is given on the right. Exter­
nal nodes are labeled as Yi. The interval of node u in the previous example,
denoted as interval (u), is the interval [y4,y7).

Y1
Y6
Ys

YI

Yo

D
jj

Window layout.

End Of Example.

A

LJ

Yo

Segment tree.

Associated with each node u is a set of intervals which cover interval (u); i.e.

cover (u) = { i I interval (u) ~ i /\ interval ('1Tu) g: i}

where 'ITU is the parent of u. Before the sweep begins cover (u) = 0, for all nodes u in
the tree. In contrast to binary search trees the structure of the tree does not change
during insertions and deletions of active intervals. Only the cover sets of the nodes are

Y1

Resource management in DICE. -17- Resource management in DICE.

updated.

For instance, given the empty segment tree in the previous example, inserting the edge
[y4,y5] of rectangle C causes cover (u) := {C}, cover (v) := {C}, cover (w) := {C}.
The latter assignment does not satisfy the rule given above since
interval (w) = [Y5, J6). However, because interval. (w) n [y5, J6) =/:= 0 and w is an
external node we assign C to cover (w) anyway.

Disregarding the technical details of maintaining the active intervals of each rectangle
in the segment tree, consider now the K-intersection problem at a particular sweep
point. This is equivalent to the query "is there a position on the sweep line with k
intersecting active intervals ? " By maintaining the cardinality of each cover set in an
extra field (denoted as #cover (u)), the algorithm to determine the thickness is now
straightforward. The thickness of each node is given as

thickness (u) = max (thickness (A.u), thickness (pu)) + #cover (u)

where A.u (respectively pu) denote the left (respectively right) child of node u. The
thickness is synthesized throughout the segment tree after each insertion and deletion.

If a segment tree has n external nodes then its height is bounded by r1og n 1 · Insertion
only affects the cover sets of at most 4 r1og n l nodes. Deletion is somewhat more
tricky, but can still be carried out by maintaining an additional table to pointers.
Hence, the complete K-intersection algorithm can be realized in 0 (n log n) time.

4.2.2. Resource redistribution.
Resource redistribution is characterized by the amount of flexibility the user has in
dynamically changing resource descriptions. We consider only two cases of resource
redistribution: 1) a simple form of window redistribution in which the user can change
the window layout and 2) input device redistribution in which the user can change the
mapping between logical and physical devices.

Resource redistribution is done in synchronous mode, ensuring that all other operations
using resources are temporally disabled. In all cases, however, resource redistribution
must result in a non-ambiguous resource model so that all operations are able to con­
tinue without having the knowledge that the resource model has changed.

4.2.2.1. Window :redistribution.
In this section we only consider the moving of a window and the impact of this on the
resource model and the segment tree. Other window operations, such as resizing ,
exposing, hiding and closing can be realized similarly.

As was shown in a previous section, the resource model defines a hierarchy of windows.
Due to the many-to-one relation between the resource hierarchy and the dialogue cell
hierarchy, moving a particular window implies moving all descendent windows belong­
ing to the resources of descendent cells. This is desirable since the resources of each
descendent dialogue cell are defined in terms of their parent resources. However, in

Resource management in DICE. -18- Resource management in DICE.

order to be able to keep the resource model intact, two restrictions are laid upon the
move operation:

• The window in question must stay within the bounds of the anchoring window.
Restricting window movement in this way is not as bad as one suspects. The
rationale behind this is that since a (grand)parent dialogue cell is active in the
anchoring window, the pictorial output of the window in question is related to that
of the anchoring window.

• The intersection of neighboring windows within the window class instance must
stay empty. One of the main reasons for specifying two distinct windows in one
class is to ensure that unrelated dialogue cells are active in disjunct screen spaces.
By restricting the intersection of unrelated windows to be empty, this relationship
is maintained.

After every move operation the segment tree is reconstructed. Fortunately, the struc­
ture of the segment tree does not change. Only the y-values of those external nodes
which lie within the interval of the anchor window obtains new values, and hence, only
the cover sets of that portion of the tree has to be reevaluated.

For instance in the example given in section 4.2.11, moving window B is restricted to
the interval [y0,y1). In this particular example, moving window B implicitly means
that window C . be also be moved. In this case, the external nodes with values
y3,y4,y5,y6 obtain new values.

Since only a sweep from xo to Xn is needed, reconstructing the segment tree and deter­
mining if the move results in an ambiguous situation can be done in 0 (n log n)-time
where n is the number of windows that intersect the anchoring window.

4.2.2.2. Input device redistribution.
A second form of resource redistribution allows a user to dynamically change the the
mapping from a logical to physical input device. Although the resource model is
expressed in terms of logical input devices, somewhere the mapping onto physical input
devices takes place. Since this mapping is done outside the resource model it is an
implementation issue how it is realized. However, the functionality of the resource
manager is such that the user is allowed to overrule this mapping.

For instance, assume that a logical locator device and a logical pick device are mapped
onto two different physical buttons. The user must be able to dynamically change this
mapping by indicating another button configuration.

It is the resource manager's responsibility to ensure that ambiguous situations do not
occur. This can imply that other mappings will have to be changed as well. However,
since an unambiguous situation is possible before the input device redistribution, an
unambiguous configuration also exists thereafter.

Resource management in DICE. -19- Resource management in DICE.

5. Conclusions.
In this paper we have discused the role of a resource management scheme within a
dialogue language. Using resources as the basis for input and output results in the cou­
pling of input and output at the physical device level. By integrating the resource
manager in the dialogue language, correlations of higher level input and output can be
defined and maintained.

Scope and ambiguity rules are defined for resources as natural extensions to the
corresponding activation rules of dialogue cells themselves. Moreover, by relying on
the concept of inheritance, it has been shown how partial resource specifications are
elaborated.

From the resource specifications, a resource model is constructed. This model can also
be dynamically manipulated by the user. Changes at one level of the resource model
are implicitly propagated towards lower levels. However, the resource manager must
ensure that the constraints laid upon the model by the dialogue specification are
satisfied.

Parallelism is a key issue in dialogue cell languages. Since multiple transactions can
take place within one window, ambiguous situations can occur when an input device is
triggered. An 0 (n log n)-time algorithm is given which detects if a resource request
results in such a situation.

Future work will include the generalization of the resource concept to include for
instance, CPU time and memory capacity. Moreover, the resource model will be
expanded to include all type and object descriptions within the dialogue language.
Here too, the user must be able to dynamically change the type and object
specifications whenever possible. This is the first step to truly interactive systems in
which the user is in command of the program.

At the implementation level, work still has to be done on mapping the resource
manager onto arbitrary "off-the-shelf" window managing packages and comparing the
resulting efficiency of these mappings. Currently, the resource manager is implemented
on top of a local version of GKS which includes some primitive support for window
management [16].

Resource management in DICE. -20- Resource management in DICE.

Appendix 1.
Constructing an equivalent context-free grammar from a dialogue grammar.
Here we show how an equivalent context-free grammar can be constructed from a
dialogue grammar. The two grammars are defined to be equivalent if the corresponding
languages are equivalent.

Suppose a dialogue grammar is given by :

GA = <~NA' ~TA' PA, ZA>

The derivation algorithm applies one of the following primitive cases :
1. Assume that PA contains the production rule X ~; (Ei, ···,En). Each Ei is a

well-formed symbol subexpression. The symbol expression X can be be rewritten
into the set of n + 1 rules:

{X~ Hi··· Hn ,Hi~ Ei, · · · ,Hn~ En}

2. Assume that PA contains the production rule X ~ V (E i, · · · , En). The sym­
bol expression X can be be rewritten into the set of n + 1 rules:

{X~ Hi ,Hi~ Ei, · · · ,Hi~ En}

3. Assume that GA contains the production rule X ~ /\ (E i, · · · , En). The sym­
bol expression X can be be rewritten into the set of 1 + n rules:

n n
{X~ Xi, ~Xi~ IT (Hi,··· Hi), Hi~ E1, · · · ,Hn~ En}

i=l i=l
n

In this case, IT (H l; · · · H l;) indicates a permutation over the symbols
i=l

H; , i = 1 · · · n. The expression
n n
~x1~ IT (H;, · · · H;J

i=l i=l

indicates the set of production rules having Z 1 as left hand side and a permutation
of X;j as a right hand side.

4. Assume that PA contains the production rule X ~ * (E). The symbol expression
X can be be rewritten into the set of 3 rules:

{X~ t:, x~ X Ho, Xo~ E}

5. Assume that PA contains the production rule X ~ + (E). The symbol expression
X can be be rewritten into the set of 3 rules:

{X~XHo,Ho~E}

6. Assume that GA contains the production rule X ~ case (E 1, • • ·, En). The sym­
bol expression X can be be rewritten into the set of n rules:

{X~ H1, H1~ EiE2, H1~ E1E3, · · · ,H2~ E1En}

Resource management in DICE. -21- Resource management in DICE.

Intuitively, is derivation algorithm recursively applies the six different cases to the root
production rule ZA until only symbols in set "l,NA U "2.r

1 are on the right hand side of
the generated production rules. This process eventually results in the equivalent
context-free grammar, denoted as

GJF = <"2.N~, "2.f~, PJF, z5F>

Assuming that the root symbol expression of the original dialogue grammar (without
combining operators) has the form A~ A 1 • • • An, then production rules of G5F are
the set:

PJF = PJ~ LJ . · · LJ PJ: LJ { . . . }
Here P5:" are the productions of the grammar which was derived from the dialogue
grammar GA; and { · · · } indicates the set of productions which are derived by recur­
sively applying the six cases to the root symbol expression. Furthermore,
"2.~~ = "2.NA U { H;j} and "2.f~ = "l.rA. Hij are the extra non-terminal help symbols
that were introduced while deriving the context-free productions.

Semantic actions are associated to the corresponding help non-terminals 1!_y:_ These are
evaluated whenever the parser reduces the corresponding non-terminal. Whenever the
context-free production rule corresponding to the dialogue symbol expression z5F is
reduced, a semantic action produces a value. This value can be used in the semantic
actions of the rules which use z5F. In the special case that the production rules
derived from derivation rule 4, 5 or 6, the value determines if the parser is to make a
shift or a reduce decision.

A second aspect of the derivation algorithm concerns the activation mode in which a
dialogue cell was activated. A dialogue cell activated in an asynchronous mode (viz.
sample or event) can produce can produce a result a number of times before it is deac­
tivated. This can be expressed in a context-free grammar as follows: assume that the
dialogue cell , A, is activated in asynchronous mode and that the dialogue grammar is
denoted by

GA = <"2.NA' "2.rA' PA, ZA>

The equivalent context-free grammar is written as (in this case an extra subscript is
used to indicate that A is activated in asynchronous mode) :

6 cF = <"2.cF "2.cF pcF zcF> Aa NAa ' TAa ' Aa ' Aa
in which

P5; = P5F U {z5; ~Ho, Ho~ z5FH0 , Ho~ z5F}

and "2.N~ = "2.N~ U {Z5; +Ho}.

Resource management in DICE. -22- Resource management in DICE.

Appendix 2.
Attributed dialogue grammars.
Attribute grammars ([9] , [10]) allow the semantics of a language to be specified along
with its syntax. Underlying an attributed dialogue grammar is its dialogue grammar

G = <LN, LT, P, S>

where LN and LT are the disjoint finite sets of dialogue cell symbols (= non-terminals)
and basic dialogue cell symbols (= terminal), respectively; P is the set of symbol expres­
sions and S E'2.N is the root cell symbol.

With each cell symbol we associate two finite disjoint sets; a set of inherited attributes
and a set of synthesized attributes. Inherited attributes obtain values from the immedi­
ate parent node and its production in the derivation tree. Synthesized attribute values
are computed from the attribute values of the immediate descendents in the derivation
tree. Rules are associated with the context free productions for the evaluation of the
attribute values.

The inherited attributes on the left hand side and the synthesized attributes on the ele­
ments of the right hand side represent values obtained from the surrounding nodes in
the derivation tree. In this sense, inherited attributes represent information that is
passed down from the root node towards the leaves. Synthesized attributes of a node
represent information which is derived in the subtree of the node and passed up
towards the root node of the derivation tree.

With each production p : Ao-? A 1 , • • • , Ak we associate a set of semantic func­
tions. Each semantic function defines a value for a synthesized attribute of Ao or an
inherited attribute of A; ,i ~ k. The functions can be defined in terms of (other) attri­
butes of Ao, Ai, · · · , Ak.

A derivation tree node, labeled A, defines a set of attribute instances corresponding to
the attributes of A. A semantic tree is a derivation tree together with an assignment of
either a value or the special token w to each attribute instance of the tree. To deter­
mine the "meaning" of a dialogue, one first constructs its semantic tree with an assign­
ment of w to each attribute instance, and then evaluates the semantic functions of as
many attribute instances as possible. The latter process is termed attribute evaluation.
The order in which attributes are evaluated is arbitrary, but is subject to the constraint
that a particular semantic function can be evaluated only when all of the argument
attributes are available; i.e. non-w. A semantic tree is fully attributed if a value is asso­
ciated with each of its attribute instances; it is partially evaluated if the value of at
least one attribute instance is unavailable. An attribute grammar is well-formed if
every complete derivation tree can be fully attributed.

Knuth stated ([9]) the conditions that attributes must obey in order to evaluate these
semantic functions. Relationships among attributes in a given derivation tree are
represented by a dependency graph. Nodes in the dependency graph represent an attri­
bute instance and there is a directed edge from node a to b if the semantic function for
the attribute corresponding to instance b has attribute a as an argument. The basic

Resource management in DICE. -23- Resource management in DICE.

idea of Knuth is to show that the dependency graph is acyclic if and only if the attri­
bute grammar is well-formed.

The concept of attribute grammars is not a complete method for making formal
definitions. For general use, it must be combined with a method for the specification of
its evaluation rules. A more formal approach to specifying semantics of context free
grammars can be found in [11].

In this paper we will consider only attributes that influence the management of
resources.

Resource management in DICE. -24- Resource management in DICE.

Appendix 3.
Logical input devices.
The GKS input model is based on the concept of logical input devices. Logical input
devices provide the application program with an interface which abstracts physical
input devices from a particular hardware configuration.

A logical input device consists of:

• a class.
The class of a logical input device defines the type of the input value which is
returned. The six different classes are given in the following table :

eVIce
ocator

choice
pick
valuator
string
stroke

return type
c, tran

Choice
Pickid
Value
String
We [l, · · · , n], Ntran

The GKS logical input classes.

The actual amount of logical devices belong to each class is workstation depen­
dent. Each individual logical input device within a class is distinguished by a
unique number.

• a mode.
The activation mode indicates how the input value is obtained from the logical
input device. Conceptually, there are always two processes running for each active
logical input device; these are the so-called measure process and trigger process. A
particular measure value of a logical input device is defined to be the (eventually
transformed to device coordinates) value of the physical input device.
The measure process always contains the current measure value of the logical input
device. Usually, the measure value is echoed in some way on the screen, for
instance, by echoing a cursor shape in the position that corresponds with the meas­
ure value.
A trigger process is an independent, active process that, when triggered by the user,
sends a message to the measure process. Triggering a logical input device indicates
that the current measure value must be returned to the application.

How the measure value is mapped onto a value returned by a logical input device
is defined differently for every input class. For the locator device the mapping
rules are:

Ea • Transform the measure value (given in device coordinates) back to normalized
device coordinates using the inverse of the current workstation transforma­
tion.

Resource management in DICE. -25- Resource management in DICE.

E9 Select the normalization transformation with the highest viewport input prior­
ity in whose viewport the normalized coordinate lies. The selection of a nor­
malization transformation always succeeds since there is a default normaliza­
tion transformation which covers the complete normalized device coordinate
space.

E9 transform the normalized coordinate back to a world coordinate using the
inverse of the selected normalized transformation.

E9 return the world coordinate and the selected normalized transformation to the
application program.

There are three different activation modes:

E9 request
In the case of request mode, the application program waits until the trigger
process sends a message to the measure process. The value of the measure
process at the moment of triggering is (after the necessary transformations)
passed to the application program.

E9 sample
In the case of sample mode, the value of the measure process will, at the
moment of sampling, be passed to the application program. No triggering is
involved when a logical device is sampled so that the application program will
immediately continue after issuing a sample call.

E9 event.
In the case of event mode, the application program does not wait until the
trigger process sends a message to the measure process. However, when the
logical input device is triggered the value of the measure process at the
moment of triggering is put in a input queue. The contents of the queue can
be acquired by the application program by issuing calls that query and get the
queue elements.

e attributes.
Attributes are used to parameterize the initialization of a logical input device.
Most attributes have to do with how and where input devices produce echos on
the screen. Attributes include initial values, prompt I echo types, activation modes
and echo areas. Data records provide the application program a means to
parameterize the logical input device in a device dependent manner. The layout of
a data record must be precisely specified in the installation guide of a particular
implementation. For instance, an entry in the data record can specify which
mouse button will be used to trigger a locator device.

Example
This ~xample illustrates how a value from locator input device is transformed back
to world coordinates. Suppose an application program has defined two window I
viewport transformations (1j from W; to WW;) and uses the default workstation

Resource management in DICE. -26- Resource management in DICE.

transformation at the moment the locator device is triggered. The following figure
illustrates the different coordinate spaces and the relevant transformations. 1

NTR WTR
~ -...;..

WW1 V1

D
WW

I :: .. 1

- -NTR- 1
WTR- 1

Input transformations.

If the physical locator device triggers at the point de 1 then, in accordance with
rule l, the inverse of the current workstation transformation is used to calculate
point ndc 1• There are now two cases which must be distinguished:

1. viewport input priority (T1) > viewport input priority (T2)
Rule 2 selects T 1 • The inverse of this transformation calculates the point we 11 •
Finally, we 11 and T 1 are returned to the application.

2. viewport input priority (T1) < viewport input priority (T2)
Rule 2 selects T2. The inverse of this transformation calculates the point wc21 •
Finally, wc21 and T 2 are returned to the application.

End of Example

t For simplicity reasons, the default window I viewport transformation is not shown.

Resource management in DICE. -27- Resource management in DICE.

References.

l. H. G. BORUFKA, H. W. KUHLMANN and P. J. W. HAGEN, Dialogue Cells: A
Method for Defining Interactions,, IEEE Computer Graphics and Applications,
2(6), July 1982., pp. 25-37.

2. K. DE VLAMINK and L. LEWI, A programming methodology in compiler
construction, North-Holland, Amsterdam, (1982).

3. A. DEMERS, T. REPS and T. TEITELBAUM, Incremental context-dependent
analysis for language based editors, Trans. Prog. Lang and Systems, 5 , 1983,
pp. 449-477.

4. D. DUCE, Configurable input devices - a discussion paper, Rutherford appleton
laboratory, Chilton, (1987).

5. A. GoLDBERG and D. ROBSON, Smalltalk-80 the language and its implementation,
Addison Wesley, Reading, MA., (1983).

6. M. W. GREEN, The design of graphical user interfaces, University of Toronto
(CSRI-170), Toronto, (1985).

7. R. C. HOLT, J. R. CORDY and D. B. WORTMAN, Introduction to the syntax I
semantics language, Trans. Prog. Lang and Systems, 4(2), 1982, pp. 149-172.

8. S. E. HUDSON and R. KING, The Higgens UIMS and its efficient
implementation of undo, in Foundations of computer sceince., J. EARNSHAW (ed.),
(1986).

9. D. E. KNUTH, Semantics of context-free languages, Mathematical systems theory
journal, 2, 1968, pp. 127-145.

10. D. E. KNUTH, Semantics of context-free languages: correction, Mathematical
systems theory journal, 5, 1971, pp. 95-96.

11. M. MARCOTTY, H. F. LEDGARD and G. V. BOCHMAN, A sampler of formal
definitions, Computer surveys, 8(2), 1968, pp. 191-276.

12. W. M. NEWMAN, A system for interactive graphical programming, J. Computer
and System Sciences, (1968), pp. 38.

13. D. OLSEN and E. DEMPSEY, SYNGRAPH: a graphical user interface generator,
SIGGRAPH'83, (1983), pp. 43.

14. H. J. SCHOUTEN and P. J. W. TEN HAGEN, Parallel graphical output from
dialogue cells, CWI report (CS-R8719), Amsterdam, (1987).

15. P. J. W. TEN HAGEN and J. DERKSEN, Parallel input and feedback in dialogue
cells, CWI report (CS-R8413), Amsterdam, (1985).

16. P. J. W. TEN HAGEN and M. M. DE RUITER, Segment grouping, an extension to
GKS, CWI report (CS-R8623), Amsterdam, (1986).

17. R. VANLIERE, Scheduling in DICE, CWI IS memorandum, Amsterdam, (1986).
18. R. VANLIERE and P. J. W. TEN HAGEN, A model for graphical interaction, CWI

report (CS-R8718), Amsterdam, (1987).
19. R. VANLIERE and P. J. W. TEN HAGEN, Introduction to dialogue cells, CWI

report (CS-R8703), Amsterdam, (1987).

Resource management in DICE. -28- Resource management in DICE.

20. J. VAN DEN Bos, M. J. PLASMEIJER and P. H. HARTEL, Input-Output tools: a
language facility for interactive and real-time systems, IEEE Transactions on
Software Engineering, 9, 1983, pp. 247-259.

21. D. WOOD, An isothetic view of computational geometry, in Computational
geometry, G. T. TOUSSAINT (ed.), North-Holland, Amsterdam, (1985).

