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ABSTRACT 

In many distributed computing environments, processes are concurrently exe­

cuted by nodes in a store-and-forward communication network. Distributed con­

trol issues as diverse as name server, mutual exclusion. and replicated data 

management, involve making matches between such processes. We propose a 

formal problem called 'distributed match-making' as the generic paradigm. 

Algorithms for distributed match-making are developed and the complexity is 

investigated in terms of messages and in terms of storage needed. Lower bounds 

on the complexity of distributed match-making are established. Optimal algo­

rithms, or nearly optimal algorithms, are given for particular network topologies. 
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L Introduction 

A distributed system consists of computers (nodes) connected by a communication network. Each 

node can communicate with each other node through the network. There is no other communica­

tion between nodes. Distributed computation entails the concurrent execution of more than one 

process, each process being identified with the execution of a program on a computing node. 

Communication networks come in two types: broadcast networks and store-and-forward net­

works. In a broadcast network a message by the sender is broadcasted and received by all nodes, 
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including the addressee. In such networks the communication medium is usually suited for this, 
like ether for radio. An example is Ethernet. Here we are interested in the latter type, store-and­
forward networks, where a message is routed from node to node to its destination. Such networks 
occur in the form of wide area networks like Arpanet, but also as the communication network of 
a single multicomputer. The necessary coordination of the separate processes in various ways 
constitutes distributed control. We focus on a common aspect of seemingly unrelated issues in 
this area, such as name server, mutual exclusion and replicated data management. This aspect is 
formalized below as the paradigm "Distributed Match-Making." Roughly speaking, the prob­
lem consists in associating with each node v in the network two sets of network nodes, P (\') and 
Q (v ), such that the intersection P (v )nQ (v') for each ordered node pair (v ,v') is nonempty. We 
want to minimize the average of IP (v) I + IQ (v') I, the average taken over all pairs (v ,v' ). This 
average is related to the amount of communication (number of messages) involved in implemen­
tations of the distributed control issues mentioned. We also associate with each node\' in the net­
work a set S ( \') = { v': v E P (v' )} . Then IS ( v) I represents the amount of storage needed in node 
v. We want to minimize the average storage, or worst case storage. over all nodes in the network 
as well. 

As the most important contribution of this paper we regard the insight that there is a com­
mon core in many hitherto unconnected distributed control issues. and the subsequent isolation 
and formalization of this core in the form of the Distributed Match-Making paradigm. Previously, 
for instance in name servers in distributed operating systems, only ad hoe solutions were pro­
posed. Lack of any theoretical foundation necessarily entailed that comparisons of the relative 
merit of different solutions could only be conducted on a haphazard basis. The second contribu­
tion we make is to analyse the formal problem, develop appropriate cost measures. and establish 
optimal lower bounds and trade-offs on the communication and storage complexity. The analysis 
leads to a natural quantification of the distributedness of a match-making algorithm. Our com­
plexity results hold for the full range from centralized via hierarchical to totally distributed algo­
rithms for match-making. For instance, if all nodes play a symmetric role in a match-making 
strategy, then, for any n -node network, the two nodes making a match need to use at least 2,r;; 
messages. The third contribution entails optimal, or nearly optimal, match-making algorithms for 
many different network topologies, including Manhattan networks, binary n -cubes, hierarchical 
networks and the estimated logical topology of Usenet. For instance, we exhibit 2-.J-;; message 
algorithms for node-symmetric match-making in Manhattan networks, binary n -cubes and other 
networks. The fourth contribution consists in detailed suggestions for further research in this 
area, and how to relax the conditions to obtain better scalability of our algorithms. (For a million 
node network, 2000 messages to make a match between a pair of nodes is too much.) The paper 
is organized as follows. In Section 2 we give the formal statement of the problem and analyse its 
complexity. Section 3 contains short outlines of the practical notions of name server, mutual 
exclusion and replicated data management, and the relation with distributed match-making. It 
also contains references to related research. The reader who wants to know what match-making 
is good for, can proceed there first. This section also serves to further enhance Section 4 which 
gives simple algorithms for distributed match-making in networks with various topologies. 
Finally, in Section 5, we give some open-ended suggestions for methods which are unavoidably 
more messy than the deterministic ones analyzed, but which may better serve practical needs. 
These methods involve hashing and randomness. In this initial approach to the problem we 
assume that the systems are failure free. While this makes the problem more pure and easier to 
access, t>bviously extensions involving failures will enhance applicability. 
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2. The Problem 

If U is a set, then I U I denotes the number of elements, and 2u denotes the set of all subsets of 

U. Given a set of elements U = {1,2, ... , n} and total functions 

p .Q: u ~ 2L' 

such that I P (i )nQ U ) I = l for all i ,} , l 5'i .} 5'n . 

Question 1. Find a lower bound on the average of IP (i) I + IQ U) I. the average taken over 

all ordered pairs (i ,j )E U 2. Investigate this lower bound when IP (i) I and IQ U) I can be chosen 

freely, and when either one of IP (i) I or IQ U) I has a prescribed value. 

Question 2. If S (i) = {}: i E P (j )} , then find trade-offs between the lower bound of Ques­

tion I, and the average number of elements (or worst case number of elements) in S (i).the aver­

age taken over all i in U. 

If the elements of P (i) and Q U) are randomly chosen then the probability for any one ele­

ment of U to be an element of P (i) (or Q U )) is IP (i) I In (or IQ (j) I In). If P (i) and Q (j) are 

chosen independently then the probability for any one element of U to be an element in both 

P (i) and Q (j) is IP (i) I IQ (j) I In 2• Since there are n elements in U, the expected size of 

P (i )nQ (j) is given by 

E (IP (i )nQ (j) I)= Ip (i) I I QJ1ll_ . 
n 

Therefore, to expect precisely one element in P (i )nQ (j ), we must have IP (i) I+ IQ U) I ;?: 2-v'n . 

The above analysis holds for each ordered pair (i ,j) of elements of U, since all nodes are inter­

changeable. Consequently, the minimal average value of IP (i) I+ IQ (j) I over all ordered pairs 

(i ,}) in u 2 is 2,r;; . 
By deliberate choice of the sets P (i) and Q (j ), as opposed to random choice, the result may 

improve in two ways. 

( l) The intersection of P (i) and Q (j) with certainty contains one element, as opposed to one 

element expected, and 

(2) IP (i) I+ I Q (j) I < 2..J; suffices, for selected pairs, or even on the average. 

Option (2) is suggested by the fact that the elements of U need not be treated as symmetric. 

For instance, with one distinguished element in U we can get by with IP (i) I+ IQ (j) I = 2 on the 

average (see below and Example 3 in the Appendix). 

2.1. Complexity 

Denote the singleton set P (i )nQ (j) by ri .j, and call r; .j the rende::-vous element. (For conveni­

ence, identify a singleton set with the element it contains.) 

Definition. Then xn matrix, R, with entries n .j (1:5:i ,} 5'n) is the rende::-vous matrix (Figure 

1). Note that: 

n II 

ur; .j <;;;, p (i ) & ur; .j <;;;, Q (j) 
j=I r=I 

(Ml) 

By choice of P(i)'s and Q(j)'s we can always replace the inclusions in (Ml) by equalities. We 

also say that R represents a match-making strategy between each ordered pair (i ,j) of nodes in 

U. The <interpretation is that i sends messages to all elements in P (i ), and j sends messages to all 

elements in Q (j ), to effect a match of the ordered pair (i ,j) at r; .j. In many applications we can 
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assume that a node needs to send no messages to itself, which corresponds to empty elements r; ,; 
on the main diagonal. This gives minor changes in the results below. For simplicity we do not 
make this assumption. 

I 
2 

i 

I 
n I 

I 2 . . . j ... n 

r I.I ,. 1.2 Q r l.n 

rz.1 

p r· . 
I ,j 

I 

l'n, I 

Figure 1. Rendez-vous matrix 

Examples of rendez-rous matrices for different strategies, ranging from centralized via hierarchi­
cal to distributed, are given in the Appendix. The reader may find it useful to look at the exam­
ples before continuing. 

2.1.1. Lower Bound 

The number of messages m (i ,j) involved in the match-making instance associated with (i ,j) is: 

m(i,j)= IP(i)I + IQ(j)I . (M2) 

In Example 7 in the Appendix we see that, for different pairs (i ,j ), the number of messages 
m (i ,j) for a match-making instance can, in a single rendez-vous matrix, range all the way from a 
minimum of 2 to a maximum of 2n. We can determine the quality and complexity of a match­
making strategy by the minimum of m (i ,j ), or the maximum of m (i ,j ). But the most significant 
measure appears to be the average of m (i ,j ), for i ,j ranging from 1 to n . 

Definition. The average number of messages m of a match-making strategy (as determined 
by the rendez-vous matrix R) is: 

1 n n .. 
m = ~ )' )' m (l ,J) . 

n f=tf;;'I 
(M3) 

We call m the communication complexity of R. We denote by m(n) the optimal commwiication 
complexity, i.e., m (n) equals the minimum value of m associated with R, where R ranges over 
all n xn rendez-vous matrices. 

Generalizing the examples in the Appendix, we see that Example 1and2 have m=n+l, and 
Example 3 has m=2. Thus, the method in Example 3 is more efficient. However, it is centralized. 
The method of Examples 1 and 2 is less efficient but is distributed. The symmetric method of 
Exampl'e 4 (m ='l;;) is more efficient than that of Example 1,2 and in some sense as distributed. 
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Distributed methods are preferable since they can tolerate failures and distribute the message load 

better than centralized ones. A question is how to express the trade-off between communication 

efficiency and distributedness of these algorithms? It appears that communication efficiency is 

intimately tied up with the frequencies with which the respective nodes occur in the rende:-\·ous 

matrix. 

Define the frequency k; of i in R as the number of times element i occurs as an entry in R . 

i.e., how often i is used as rende:-vous for an ordered pair U ,k) of elements (l=s;i ,j ,k~n ). 

Clearly, 

n ., 
}k; =n- . 
I~ 

(M4) 

We call then -tuple (k 1, . .• , kn) the distribution vector of R, and we consider it as a meas­

ure for the distributedness of strategy R . Looking at two extremes we see that this makes sense. 

If there is an i such that k; =n 2 and kr=O for j :#, 1=::;; .j 91 , then the strategy is centralized (Exam­

ple 3 with m=2). If k;=n for all i. l=s;i=:;n, then we call the strategy distributed (Examples 1 and 

2 with m =11+1. and Examples 4 and 8 with m ='r;; ). Intuitively. the statistical variation of the k; ·s 

measures the distributedness of a strategy in a single figure. We derive a lower bound (Proposi­

tion 2) on m (n) expressed in terms of the k; 's. We show that this lower bound optimal for distri­

bution vectors (n, ... , n) and (0, ... ,0,11 2,0, ... ,0), by exhibiting strategies R which achieve it. We 

conjecture that the lower bound is optimal for all distribution vectors. To prove Proposition 2, it 

· is us_eful to proceed by way of Proposition 1. Not only is Proposition 1 combinatorially more 

interesting than Proposition 2, which is an easy corollary, but it also quantifies the optimal trade­

off between the sizes of the P -sets and the Q -sets. It has already been useful elsewhere in ana­

lysing many-dimensional and weighted versions of distributed match-making in [ 11]. 

Proposition l. Consider the rendez-vous matrix R as defined above. Then, 

f f IP (i ) I I Q U) I ~ i f -J k;J 
2 

I~]~ L'~ 
(MS) 

Proof. The sum above is minimized if, for each element i of U, all entries of i in R occur 

in a '1 k; x-.J k; rectangle. We make this intuition precise as follows. First observe that while P and 

Q determine the number of distinct entries of i e U in each row and column, it is more con­

venient to consider the number of different rows and columns in which each element i of U 

occurs. Let r; [c;] be the number of different nodes in row i [column i] (l=s;f=:;n ). Then 

n n 
n = I ur; ,j I & Cj = I ur; ,j I . 

1=1 1=1 

(1) 

Let R; be the number of different rows containing node i, and let C; be the number of different 

columns containing node i o=s;i· =:;n ). Let p; ,j=l if node i occurs in row j and else p; .j =O, and let 

'Y;.j=l if node i occurs in column j and else y;,j=O, (l~i ,j=:;n ). Then, 

n n n n 
}rj =} "5"p;,j = "5"R; 
)~ }~I~ I~ 

(2) 

n n n n 
}cj =} "5"y;,j = }C; 
}~ j~l~ I~ 

The clbsest the occurrences of a particular element of U can be packed in the matrix is as a rec­

tangle. This gives rise to the inequality: 
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R;C; "?:.k; , (3) 

for all i (1!5;i91 ). We only need one other inequality. Using the fact that the square of a differ­
ence must be nonnegative: 

' _ /- ., -,- ,- ' kjR;--2"Vk;kjR;Rj+k;Rj = (-vkjR; -'lk;Rj )-

"?:. 0' 

for all i ,j (1!5;i ,j91 ), we obtain immediately: 

kjRi k;Rj > 2 'k·k· 
R j + R; - " I J ' 

from which it follows that: 

This gives us the required result, since 

n n n n 

1~1~ IP(i)l IQU)I "?:. 1~1:fur;cj (by (Ml) & (1)) 

which yields the Proposition. • 

Proposition 2. 

n n = }r; X }Cj 
,";1 ,";1 

n n 
"?:. 1~R; 1:fukjR{1 (by (3)) 

., [ .t ,/k,r (by (4)). 

m (n)-;::, 1- f-{14 . 
n ,";1 

(4) 

Proof. Define everything as in the proof of Proposition 1. Use the fact that the square of a 
difference is nonnegative to derive: 

n 
2 

n ., n 
}r; +>c;-"?:.2_~ r;cj 
,";1 ,";1 I ·1 =I 

(5) 

Assume, by way of contradiction, that the Proposition is false, that is, 

(6) 

Divide both sides of inequality (6) by n, and square the results. Substitute for the sum of squares 
in the r~ulting lefthand side, using (5), and divide by 4. Then we are left with 
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which contradicts Proposition 1. • 

It is not difficult to see that Propositions 1 and 2 hold mutatis mutandis for nonsquare 

matrices R. For totally distributed strategies they specialize to: 

Corollary. LetR bearende::.-vousmatrixsuclztlzatk 1=k2= ···=kn =11. Tlzen: 

The second inequality is the same lower bound we saw in the probabilistic analysis. Note 

that in the latter case the elements were also symmetric in the sense of interchangeable. Singling 

out one element gives centralized match-making as follows: 

Corollary. Let R be a rendeZ-\'OUS matrix such that k2=k3= ···=kn =O and k 1 =n 2, that 

is, I is the central element. Then: 

n n 
,~ 1~ I P (i ) I I Q U ) I ?:. n 2 , and m ?:. 2 . 

Remark. The constraints (Ml)-(M5) and Proposition 1 give a trade-off between the P (i )'s 

and Q U )'s, which is much stronger than the one implied by Proposition 2. We can illustrate this 

by a simple example. If P (i )=p and Q (i )=q for t::;;i ::;;n, then by Proposition 1 we have pq ?:.n. If 

we set p=n 114, then it follows that q?:.11 314 , which gives p+q?:.n 314+n 114• Proposition 2 gives, for 

p=n 114 only q?:.2n 112-n 114, while p+q >2n 112 does not change. As suggested by this example, we 

can use the trade-off in Proposition 1 to adjust distributed match-making strategies so as to 

minimize the weighted overall number of messages. For instance, in many applications as in Sec­

tion 3, we are actually interested in minimizing m with (M2) replaced by (M2'): 

m (i ,j) = IP (i) I +a; ,j I Q U) I (M2') 

This question is treated in [11 ]. 

2.1.2. Upper Bound 

The lower bounds can be matched by upper bounds, modulo integer round-off. E.g., 

Proposition 3. Let U = {1. ... , n} be as above. (i) If n is an square integer, then there 

exist functions P , Q as required, with distribution vector (n , ... , n ), such that, for all 1 ::;;i ,j ::;;n , 

IP (i) I IQ U) I = n, and IP (i) I+ IQ U) I = 2'1n. (ii) There exist functions P, Q as required, with 

distribution vector (0, ... ,0,n 2,0, ... ,0), such that, for all l::;;i ,j ::;;n, IP (i) 11 Q U) I = 1, and 

IP(i)l+IQ(j)I =2. 

Proof. (i) Arrange the rendez-vous matrix R as a checker board consisting of '1n x'1n 

squares, of n entries each. Each square contains n copies of a single element of U, a different 

one for each square; cf Example 4 in the Appendix. 

(ii) By Example 3 in the Appendix. • 

There is a way to scale up any solution so that it becomes asymptotically distributed and 

optimal. 

Proposition 4. Let R be the rendez-vous matri.x for an n element set U. Let k; (l::;;i ::;;n) be 

the multiplicity of element i in R, and let m be associated with R. We can lift this match-making 
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strategy to a 4n -element set by constructing a 4n x4n rendez-\'OUS matrix R' with kj '=4kj modn is 
the multiplicity of element j in R' (l::;;j~n J and the associated communication complexity 
m' = 2m. (I.e., iterating tlzis process, the associated communication complexity as a function of 
the number n of nodes asymptotically approaches 2-J-;;, while the distrihution \'ector approaches 
(n, ... , n ).) 

Proof. Replace each entry r; .j of R by a 2x2 submatrix consisting of 4 copies of r; .j. The 
resulting 2nx2n matrix is M. Let R; {i=l,2,3,4) be four, pairwise element disjoint, isomorphic 
copies of M. Consider the 4n x 4n matrix R ': 

R' = l( R 1 R2l 
R3 R.iJ · 

The number of distinct elements in R' is 16 times that in R, and k/=4kjmodn (1:-s;;j~n ). It is 
easy to see that the (2i mod 2n )th column [row] of R' contains twice as many distinct elements as 
the (i modn )th column [row] of R (Is;;:-;;;211 ). Therefore. the average match-making cost associ­
ated with R' ism '=2m. • 

2.2. Storage-Communication Trade-off 

The Examples suggest a trade-off between storage and average number of messages. Let R be a 
rendez-vous matrix over a set U = {1 . ... , n}. Define the storage set associated with each i E U 
as S (i) = {j: i E P (j ), 1:-s;i ,j :s;n}, and IS (i) I is the storage complexity of i. Let 
s = max{ IS (i) I: i EU} denote the worst-case storage needed in strategy R. Let m be the com­
munication complexity of R . 

Proposition 5. For a rendez-rous matrix R over an n -element set we lzai·e s (m-1);::: n . 

Proof. Let the number v of rende=-vous elements in R be 
v = I {k: kE P (i )nQ (j ),l:s;i ,j ,k:s;n} I. Form a graph, with 2n +v nodes called a (1), ... , a (n ), 
b (1), ... , b (n ), r (1), ... , r(v ). Think of the a (i) as the arguments of P, the b (i) as the argu­
ments of Q, and the r(i) as the rendez-vous elements. Whenever j is the rendez-vous element 
P (i )nQ (k ), put an edge from a (i) to r (j) and an edge from r (j) to b (k ). Let d (j) be the 
number of edges from a nodes to r (j ), and let e (j) be the number of edges from b nodes to r (j ). 
Clearly m equals (d(l)+ · · · +d(v)+e(l)+ · · · +e(v))ln, since d(l)+ · · · +d(v)+e(l)+ · · · +e(v) 
is the sum of the IP (i) I 's and the IQ (i) I 's. By definition s =max{ d (j ): 1 :s;j ::;;v}. Thus each r (j) 
has at most s edges to a nodes. We know that for any i and k there is some j such that r (j) is 
adjacent to both a (i) and b (k ). Call such a triple (i ,k ,j) a good triple. Now there are at least n 1 

good triples. On the other hand it is obvious that for any j there are at most d (j )e (j) good tri­
ples with j as the last entry. Thus, 

yield 

m = d(l)+· · ·+d(v)+e(l)+· · ·+e(v) 
n ' 

s (e (l)+ ... +e (v )) ;;:: e(l)d(l)+ · · · +e (v)d(v);;:: n 2 , and 

sm ;;::n+s(d(l)+· · ·+d(v)) 
n 
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Obviously, the graph we constructed is not necessary for the proof but it helps in visualizing 

what is going on. In centralized match-making as in Example l we have m =2 and therefore s ?!n . 

For broadcasting in Examples 1,2 we have m =n + 1, and therefore s ~ 1. For a distributed method 

like Example 4, we have m =2;/;, and therefore s > ;J; 12. 

Another indication of storage requirements is the average storage. The m·erage storage s0 ..,! 

for a particular strategy is 

Sm·e = _!_ f I S (i ) I = _!_ f IP (i ) 1 
n,~ n,~ 

Therefore, it follows straightaway from Proposition l that 

Proposition 6. Let everything be as above. Tlzen: 

= n 
n 1~ (m-1 P (i) I) 

3. Three Distributed Control Issues 

Below we give three distributed control issues exhibiting match-making features. These are name 

server, mutual exclusion and replicated data management. Since some form of distributed 

match-making is required in all of them, algorithms for these problems are subject to the limita­

tions analysed in the previous section. We assume throughout that we are dealing with a set of 

computers connected by a network. The network is a communication graph G =( U ,E ), where U 

is the set of nodes (computers), and E is the set of edges. Each edge represents two-way nonin­

terfering communication channels between the nodes it connects. Nodes communicate only by 

messages and do not share memory. The underlying communications network G is error-free, 

and supports the message transfers in which the delivery time may vary but messages between 

two nodes are delivered in the order sent. We will identify the idealized distributed match­

making subproblems below, by exhibiting P and Q functions. In each case it will tum out that 

there is a requirement P (i )nQ U) * 0, for each pair (i ,j) of nodes in U 2• To obtain the lower 

bounds in in the previous section, w .l.o.g. we used a minimal requirement IP (i )nQ U) I = l. 

3.l. Name Server 

In the object model of software design, the system deals with abstract objects, each of which has 

some set of abstract operations that can be performed on it. At the user level, the basic system 

primitive is performing an operation on an object, rather than such things as establishing connec­

tions, sending and receiving messages, and closing connections (14]. For example, a typical 

object is the file, with operations to read and write portions of it. A major advantage of the object 

or abstract data type model is that the semantics are inherently location independent, and there­

fore convenient for multicomputer systems. The concept of performing an operation on an object 

does not require the user to be aware of where objects are located or how the communication is 

actually implemented. This property gives the system the possibility of moving objects around to 

position them close to where they are frequently used. It is convenient to implement the object 

model in terms of clients (users) who send messages to seniices [21]. Each service is handled by 

one or more server processes that accept messages from clients, carry out the required work. and 

send back replies. A process can be a client, a server, or both. A specific service may be offered 
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by one, or by more than one server process. In the latter case, we asswne that all server processes 
that belong to one service are equivalent: a client sees the same result, regardless which server 
process carries out its request. 

A process resides in a network node Each node has an address and we asswne that, given 
an address, the network is capable of routing a message to the node at that address. Before a 
client can send a request to a server which provides the desired service, the client has to locate 
that server. Each service is identified by a name. A client asks the system for a particular service 
by its name. The mechanism that translates the name of a service into a location or address in the 
network is called a name sen1er. Thus, the name server offers yet another service in the system, 
be it the primus inter pares. A centralized name server must reside at a well-known address 
which does not change and is known to all processes. (Clearly, the name server cannot be used to 
locate itself. You can't call the telephone directory assistance server to obtain the nwnber of tele­
phone directory assistance, if you don't know it.} When the host of a centralized name server 
crashes, the entire network crashes. A centralized name server also requires excessive amount of 
storage at the host site. and causes message overload (hot spot) in the host's neighborhood. These 
disadvantages can be overcome by distributing the name server. One way to distribute the name 
server, is to have clients broadcast for services with "where are you" messages. This solution is 
more robust than the centralized one. But in large store-and-forward networks, where messages 
are forwarded from node to node to their destination, broadcasting costs at least as many message 
as there are nodes in the network. 

If processes never move, than the name for a service can encode the address where an 
appropriate server resides. We asswne that processes are mobile, but we make the simplifying 
asswnption that during a locate of a server by a client, the process/processor allocation does not 
change. Leth (p) be the current address of process p 's host. Since processes may migrate, die or 
be created, lz (p) can change, become empty or nonempty. Locate of services by the processes is 
achieved by the following procedure. Each server s selects a set P (s) of nodes and posts at these 
nodes the availability of the service it offers and the address h (s) where it resides. (Each node in 
P (s) stores this information in its individual cache.) When a client c wants to request a service it 
selects a set Q (c) of nodes and queries each node in Q (c) for the required service. When 
P (s )nQ (c) is not empty the node (or any node) in P (s )nQ (c) will be able to return a message 
to c stating the address h (s) at which the service is available (recall that this information is 
already stored in the caches of all the nodes in P (s )). For example, a centralized name-server 
corresponds to 

P(s)= {x}, Q(c)= {x}, 

for all servers s and clients c with lz (s ),h (c) e U, and a fixed x e U (Example 3 in the Appen­
dix). As another example, broadcasting corresponds to 

P (s) = {h (s )} , Q (c) = U, 

for all servers s and clients c with lz (s ),h (c) e U (Example l in the Appendix). In the formal 
set-up, we restricted ourselves to methods where the sets P (s) and Q (c) depend on the respective 
hosts h (s) and lz (c) only. It therefore makes more sense to talk about P (h (s )) and Q (h (c )) 

instead of P (s) and Q (c ). The relation with match-making is now established. 

The research reported in this paper started from design considerations of the name server in 
the Am~ba operating system [22]. In an early version of this paper [16], the focus was only on 
algorithms for a distributed name server in computer systems with mobile processes. Essentially 
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the Manhattan topology method (cf. later) has been used before in the torus-shaped Stony Brook 

Microcomputer Network [8]. ln [6] the name server is implemented by broadcasting. ln the 

Cosmic Cube processes run on fixed processors [19]. Other system designers have chosen for 

mobile processes, but use the crash-vulnerable solution of a centralized name server [ 17]. A 

detailed proposal for a hierarchical name server is contained in [13]. Methods which maintain a 

tree of forwarding addresses in the network, for each mobile process, have been used in [18], and 

analysed [7]. 

3.2. Mutual Exclusion 

Another application of the match-making paradigm is distributed mutual exclusion. Suppose 

processes can compete for a single resource in the system, while this resource can be granted to 

only one of them at a time. An example is a printer which can be accessed by several processes 

from different hosts. The problem consists in designing a protocol which ensures that only one 

process is granted access to the resource at a time, while satisfying certain "niceness" conditions 

such as absence of deadlock. This problem was originally formulated by Dijkstra [4]. The 

assumption of the availability of mutual exclusion underlies much of the work in concurrency. 

For a thorough treatment see [ 12]. Assume that each network node can issue a mutual exclusion 

request at an arbitrary time. In order to arbitrate the requests, any pair of two requests must be 

known to one of the arbitrators. Since these arbitrators must reside in network nodes, any pair of 

two requests originating from different nodes must reach a common node. Assume that each node 

i must obtain a permission from each member of a subset S (i) of U before it can proceed to enter 

its critical section. Then for each pair (i ,j )E U 2 we must have S (i )nS U ):;e0 so that the node in 

the intersection can serve as arbitrator. The complexity of a distributed mutual exclusion strategy 

is the average number of messages involved in a mutual exclusion request from a node i, with the 

average taken over all nodes. ln [15] the situation is analysed where each node in the network 

serves as arbitrator equally often, that is, I U I times. The actual algorithm presented uses at most 

5 · IS (i) I messages, where for some K, IS (i) I =K for all i, i E U. It is clear that at least 2K mes­

sages are required: K messages to query a set S (i ), and K answers from every member of S (i) to 

i . The overhead of 3K messages arises from additional locking and unlocking protocols to 

guarantee mutual exclusion, absence of deadlock, and so on. Here, we may view a strategy for 

distributed mutual exclusion as a mapping 

and view it as a restricted case of match-making for which the symmeny condition P (i )=Q U) 

(=S (i )) holds for all i EU. One way to achieve this symmetry is to let the functions P, Q be as in 

the original definition, and set S (i )=P (i)uQ (i) for all i, i E U. ln [ 15] the particular match­

making algorithm for the projective plane topology is investigated, cf. also Section 4. 

3.3. Replicated Data Management 

We describe a variant originating from [ 1, 24]. This is related to replication methods as in 

(9, 10]. Contrary to the latter references, we assume that the system is failure free. A replicated 

object is implemented by a collection of versions of the object. Here, let the replicated object be a 

variable which is shared by several users. The operations are reads and writes. A read returns the 

variable's current value, and a write assigns a new value to the variable. Reads and writes by dif­

ferent JlSers are allowed to occur concurrently, but we do not allow concurrent operations by dif­

ferent users to wait for one another. Our objective is to manage the shared variable such that it 
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appears atomic. Atomicity means that each operation execution can be thought to happen in an 

indivisible instant of time, a different instant for each operation, such that the reads and writes are 

totally ordered. This ordering should be internal consistent in the sense that each read returns the 
value assigned by the last write that precedes it in the order. To have external consistency. the 

time instant the operation appears to take place must be within the actual duration of the opera­

tion execution. We implement an atomic shared variable by maintaining several versions of it. 
Each version can be written by each user out of an associated set of writers, and read by each user 

out of an associated set of readers. Call the operations on the versions subreads and subwrites. 

Each read or write by a user comprises many subreads and subwrites. Each version resides at a 
user. We assume that the subreads and subwrites to a version are executed atomically, i.e., that a 

version is itself an atomic shared variable. Our goal is to implement an atomic variable, which is 
shared by a set of users, using atomic variables which are shared by subsets of users only. Below 
we give a family of algorithms which reduces the problem to match-making. 

A quorum T (u) for an operation by user u on the shared variable. is a set of versions whose 

cooperation is sufficient to execute that operation. lt is convenient to divide the quorum in an ini­

tial quorum Q (u) and a final quorum P (u ). Each version has an attached 1·ersion number, to 
identify the order in which the versions were created. A version number is a pair (t ,u ), where t is 

a nonnegative integer and u a user identifier. Let the user identifiers be l through n if there are n 
users. 

To read the variable. a user. say v, reads the versions from its initial quorum Q (v ), and 
determines the version with the lexicographic greatest version number, say (t ,u ). Let this version 
contain value M. Then v writes value M together with version number (t .u) to the versions in 

its final quorum P (i' ). (Note that u may be unequal v .) The value returned by 1· is M. 

To write value N to the shared variable, a user. say u. first reads the version numbers of its 
initial quorum Q (u ). It determines the greatest first coordinate of the version numbers, say t. 

Then u writes value N together with new version number (t+l.u ), to the versions in its final 

quorum P (u ). 

For the method to implement an atomic shared variable, quorums are subject to the follow­
ing constraint: each final quorum must intersect each initial quorum. I.e .• P (u )nQ (v) i:- 0, for 
each ordered pair (u ,v) of users in U2• The proof of correctness of this algorithm is by no means 

simple, but outside the scope of this paper. (It is essentially given in [ l, 24]. ) The important 

issue here is that we have established yet another case of match-making, as follows. W.l.o.g., 

assume P (i)nQ U )={v; ,j}, for each pair (i .j) of users in U. Let the entry r; ,j in the i th row and 

j th column of the rende::-vous matrix be the user node where version v; ,j resides. 

Example. Let there be n users which can read and write an atomic shared variable, as 
above. If each user occurs with the same frequency in the rende::-vous matrix, then the average 
number of messages between users to read or write the shared variable is ;::.2..Jn, by Proposition 2. 

A strategy achieving an average of 2-./n messages to read or write the shared variable, is imple­

mented by Example 4. That is, each node hosts a version which is itself an atomic shared vari­
able, and which can be written by ..Jn writers and read by -Jn readers. 
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4. Match-Making Algorithms 

The topology of a network G =( U ,£) in Section 3 determines the overhead in message passes 

needed for routing a message to its destination. For complete networks, the number of message 

passes for match-making between node i and node j equals the number of messages nz (i ,j ). If 

the subgraph induced by the sets P (i), Q U) (l-s;;f ,j 5:n) is connected, and i E P (i) and j E Q U ), 

and we broadcast the messages over spanning trees in these subgraphs, then the number of mes­

sage passes equals the number of messages m (i ,j ). Otherwise, there is an overhead of message 

passes for routing messages from node i to P (i ), and from node j to Q U ). For this reason, in a 

ring network, no match-making algorithm can do significantly better than broadcasting (i.e., the 

average number of message passes involved in matching a pair of nodes is Q(n ) ). 

4.1. General Networks 

Let -G =( U ,E ) be an arbitrary network. We assume that each node has a table containing the 

names of all other nodes, together with the minimum cost to reach them, and the neighbor at 

which the minimum cost path starts. It is not difficult to give a construction to cover every con­

nected graph with orl;;) connected subgraphs of -s:;-i-;; nodes each. The subgraphs can not 

always be chosen pairwise disjoint as is shown by the counterexample of an 11-node star graph 

with 11 -1 nodes of degree 1 and l node of degree 11 -1. If the original graph has node degree 

bounded by a constant then the covering subgraphs can be constructed pairwise disjoint (Proposi­

tion 7). Either way, label the nodes in each subgraph 1 through -i--;;. If the subgraph has less than 

-i--;; nodes, then use up the excess numbers by labelling some nodes more than once. Then, the 

shortest path, between the each pair of nodes labelled i in two adjacent connected subgraphs, is 

not longer than 2-.r;;. Let there_be ke 0 ('1-;;) subgraphs Gj, 1-:::;j-s:;k. Denote a node labelled i in a 

subgraph Gj by (i ,j), 1-:::;;-s:;.Jn and 1-s:;j-s:;k. Let P((i ,j)) consist of all ~des labelled i in G1, 

1-s;;/-::;k. To access all nodes in P ((i ,j)) from the original node takes O(-ln ) messages, but O(n) 

message passes. Size ocJ--;;) suffices for the cache of each node. 

Figure 2. 

Let Q ((i ,j )) equal the set of all nodes in Gj. To access all these nodes in Q ((i ,j )) from (i ,j ), 

takes at most ..r,;; messages (or message passes along a spanning tree of Gj ). 

The algorithm has communication complexity 0('1--;;) messages, but cannot guaranty a 

better upper bound than 0 (n) message passes. However, for application to the nameserver, we 

can make the assumption that clients need to locate services usually far more frequently than 

servers need to post their whereabouts. Then this scheme is fairly optimal in message passes too. 

It for some reason we want the connected subgraphs to be pairwise disjoint, then this is not 

always possible, as shown above. However, 
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Proposition 7. Let G be a connected graph with a spanning tree of bounded node degree. 
Then G can be divided in or.Jn) disjoint connected subgraphs. containing or/;) nodes each. 

Proof. Consider a rooted spanning tree T (of G) with node degree :s;c, c a constant. Let v 
be a node farthest from the root with ?.d descendants. By the bounded degree of T it follows that 
v has :s;cd E O(d) descendants. Take v and its subtree from the tree as the first connected sub­
graph of 0(d) nodes. Repeat the procedure on the remainder of T. As long as ?.d nodes remain 
we can separate off another cluster of 0(d) nodes. The final remainder can be attached to the 
preceding cluster. Therefore, we obtain a division of G in O(n Id) disjoint connected subgraphs 
of 0(d) nodes each. Setting d ="'n yields the proposition. • 

If we settle for the subgraphs having diameter 0 ('1; ), as opposed to number of nodes 
0 ('1; ), then we can use a result due to [5]. 

Proposition 8. Each connected graph of n nodes can be divided into 0('1n) connected 
subgraplzs of diameter 0('1;) each. 

Proof. Consider a rooted spanning tree T of the original graph G. Choose d and divide T 
in layers of d levels each. Take the subtrees rooted at level id (i 2:0) which reach to level 
(i +l )d-l. If a subtree does not reach to that level (has depth <d) then attach it to the subtree just 
above it. (Thus, resulting subtrees may have up to 2d-l levels.) The set of such subtrees induces 
a covering of the original graph by pairwise disjoint connected subgraphs of diameter :s;4d and 
each ?.d nodes (separate argument for top part). This yield O(nld) subgraphs of diameter O(d) 
and yields the mentioned result for d=-'1;. • 

4.2. Manhattan Networks 
' 

The network G =( U ,£ ) is laid out as a p xq rectangular grid of nodes, U ={ (i ,j ): l :s;i ::;;µ • l :=;;j ::;;q} 
and there is an edge in E between (i ,j) and (i' ,j') if either I i-i' I =1 or I j-j' I =l. but not both. 
P ( (i ,j) )=((i ,k ): t:s;k ::;;q} is the set of nodes in row i, and Q ((i ,j) )={(k ,}): I:s;k ::;;p} is the set of 
nodes in column j. Caches are of size O(q) and number of messages (=message passes) for each 
match-making instance is O(p+q). For p=q we have m=2"1; and caches of size '1n. For the 3x3 
network below, 

Figure3. 

the corresponding 9x9 rendez-vous matrix is given as Example 8 in the Appendix. Wrap-around 
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versions of the method can also be used in cylindrical networks, or torus-shaped networks. It is. 

in fact, the method used in the torus-shaped Stony Brook Microcomputer Network [8]. In the 

obvious generalization to d -dimensional meshes the method takes 2n (d-I )td message passes. 

However, at the cost of shifting the load of being a rende::-vous node from the interior of the 

mesh to the surface we can improve matters. Take as example a name server in a 3-dimensional 

mesh. A server at (x5 ,y5 ,;:5 ) sends its advertisement by a shortest path parallel to the x axis to the 

surface and next circumnavigates the surface of the mesh in the plane ::=::5 • The client at 

(xc .Ye ,::c) sends its query along a shortest path parallel with they axis to the surface and next cir­

cumnavigates the surface in the plane x=xc. The re11de:-\·ous nodes are the two nodes on the 

mesh surface which are incident on the intersection line of the planes :: ==s, x =xc. If the mesh has 

n nodes, 11 113 to a side, then this method takes 911 113 message passes in the worst case to make a 

match. 

4.3. Multidimensional Cubes 

A binary d -cube is a network G =( U ,E ). such that the nodes have addresses of d bits and edges 

connect nodes of which the addresses differ in a single bit. n =I U I =2" and I E I =d 2J-I. Assume 

that d is even. (An obvious modification works for d is odd.) Let node s have address 

S tS.2 • • · SJ. 

For each pair (s ,c )e {l, ... , 11 f-, the rende::-vous node is given by 

P (s)nQ<c) = {c 1c2 ... c JS d ... sJ} . 
7 7+l 

The number m (s ,c) of messages is the same for each pair (s ,c) of nodes, and therefore 

m = m (s ,c) = IP (s) I+ IQ (c) I = 2.J;. 

m (s ,c) equals the number of message passes along spanning trees in the two binary d 12-

cubes induced by P (s) and Q (c ), respectively. The nodes need -.r;; -size caches. Variants of the 

algorithm are obtained by splitting the comer address used in the algorithm not in the middle but 

in pieces of ed and (1-e)d bits. Cf Example 6. For instance, in the case of the name-server we 

may want to adapt the method to take advantage of relative immobility of servers, to get lower 

average. Excessive clogging at intermediate nodes may be prevented by sending messages to a 

random address first, to be forwarded to their true destination second [23]. 

4.4. Fast Permutation Networks 

For various reasons [2] fast permutation networks like the Cube-Connected Cycles network are 

important interconnection patterns. An algorithm similar to that of the d-dimensional cube yields, 

appropriately tuned, for an n-node CCC network m E 0(.../n log n ) and caches of size ..Jn /log n . 
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4.5. Projective Plane Topology. 

The projective plane PG (2, k) has n = k 2+ k + 1 points and equally many lines. Each line con­
sists of k + 1 points and k + 1 lines pass through each point. Each pair of lines has exactly one 
point in common. For each node s. P (s) and Q (s) comprise all nodes on an arbitrary line 
incident on its host node. The common node of two lines is the rende=-1·ous node. Since the 
nodes are symmetric, it is easy to see that 

,-
m = IP(s)l+IQ(s)I =2(k+1)=2"in 

This combination of topology and algorithm is resistant to failures of lines, provided no 
point has all lines passing through it removed. The average necessary cache size is '1;; but the 
price we have to pay for the fault tolerance of this method is expressed in the worst-case cache 
size N. 

4.6. Hierarchical Networks 

Hierarchy of networks. Local-area networks are often connected, by gateway nodes. to wide­
area networks, which, in tum, may also be interconnected.* Consider a tree T of k levels, with 
the root at level k. A node of T at level i consists of a level i network. A level i network con­
sists of n; nodes. called gateways, connecting n; level i -1 networks, for each l~i ::;!(. A level 0 
network is a node. The obvious strategy for match-making puts the rendez-vous node for a pair 
of nodes in the least common ancestor network of the two. Suppose, we using a 2-J n; strategy. as 
described in the previous sections, in each level i network, l~i ~k. Let s be a node in a level j 
network Gj, l~j::;k. Let Gj+l• ... , Gk be the chain of networks between Gi and the root network 
Gk. We define P(s) and Q(s) inductively. Base: if <!J.=(Uj,Ej), sEUj, then P(s)nUi and 
Q (s )nUj are chosen such that it takes an average of 2-Jni messages to make a match between a 
pair of nodes in Gj. Induction: ifs' E Uj+t is the gateway node through which G1 is connected in 
its ancestor network Gj+t=(Uj+J.Ej+t). then 

p (s )nUj+I = p (s' )nUj+I ' 

Q (s )nUj+J = Q (s' )nUj+I . 

This gives m E O(~::f=t -Jn;) for a hierarchical network with a total of n = CTf=t n; nodes. 
Assume for simplicity that n; =a, 1 ~i ::;!(. Then the total number of nodes in the network is 
n = ak, and m e 0(k'1a). Therefore, 

I 
m E O(kn 7K) 

Having the number k of levels in the hierarchy depend on n , the minimum value 

* Service naming preferably should be resolved in a way which is machine-independent and network-address­
independent. Consequently. ways will have to be found to locate services in very large networks of hierarchical struc­
ture. There, the node symmetric .,r;; solutions to the locate problem are not acceptable any more. Fortunately. in net­
work hierarchies, it can be expected that local traffic is most frequent: most message passing between communicating 
entities is intra-host communication (e.g., memory management): of the remaining inter-host communication, most will 
be confined to a local-area network (e.g., temporary file store/swap service), and so on. up the network hierarchy (e.g .. 
mail). For locate algorithms these statistics for the locality of communication can be used to advantage. When a client 
initiates a locate operation. the system first does a local locate at the lowest level of the network hierarchy (e.g .• inside 
the client host). If this fails. a locate is carried out at the next level of the hierarchy. and this goes on until the top level 
is reached': 
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me O(logn) 

is reached for k = 1hlog n. This message complexity is much better than ncl; ), but the cache 

size towards the top of the hierarchy increases rapidly. Essentially, the cache of a node may need 

to hold as many entries as there are nodes in the subtree it dominates. t 

Hierarchy of nodes. Many wide-area computer networks are not completely designed at 

the outset but grow and change dynamically. Some networks resemble an undirected tree with a 

core in which we can imagine the root, and with some additional edges thrown in. The extra 

edges would typically occur between geographically near nodes. Nodes nearer to the core of the 

tree tend to be of higher degree than others. In Usenet, the degree of super-backbone sites like 

ihnp4 is in the order of 1000, of backbone sites like mcvax in the order of 100, and of feeder sites 

in the 10s. 

Suppose we have a balanced tree with n nodes and I levels, with the root at level I and the leaves 

at level 0, and the degree of nodes at the i ~th level is d (i).Then a 'factorial' relation holds: 

d(/)d(/-1) · · · d(l)=n . 

Setting d (I) =cl t+e, for constants c, E > 0, yields c1 (/ !)1+E =n. By Stirling's approximation, we 

get after some calculation: 

1 _ logn 
( 1+£) log log n 

If the exponent 1 +E in the expression for d (m) is doubled then the depth of the tree is halved for 

the same number of nodes. 

Setting d (I)= c 2e1, for constants c ,E>O yields: 

Therefore, 

1 = --J log2c + 2 E logn - loge 
E 

(The logarithms have base 2.) If E is quadrupled then the depth of the tree .is halved for the same 

number of nodes. 

The obvious strategy in such trees is: the rendez-vous node of a pair of nodes is the least 

common ancestor. Thus, if P (i )=Q (i) is the set of nodes on the path from node i to the root. 

then m e 0(1 ). The cache at each node needs to be of the order of the number of elements in the 

subtree of which it is the root. For smaller caches the older and less used entries can be discarded 

in favour of new ones, leading to a Lighthouse Locate like algorithm (Section 5). 

t In a network hierarchy. as we have sketched, services are often exclusively accessed by local clients. It is natural for 

the system to provide a way to restrict the availability of a particular service to some subhierarchy of processes. Then. 

the burden of the processing of locate postings and requests can be distributed more or less evenly over the hosts at 

each level of the network hierarchy. This is essentially the generalization presented later in the section on Hash Locate. 
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5. Conclusion and Further Research 

This paper reports on initial investigations in a new theoretical problem area. We have isolated 

and formalized the problem of 'distributed match-making' as a new paradigm in distributed con­

trol. The complexity analysis gives theoretical limitations to the efficiency of solutions for many 

practical problems in the area. Even the appropriate formulation of such limitations was not pre­

viously understood. The exhibited algorithms, which are optimal or nearly optimal, may serve as 

guidelines for feasibility and design of applied algorithms. Below we indicate a few avenues for 

further research in match-making, like probabilistic algorithms, hashing and fault-tolerance. 

'Lighthouse Locate' actually preceded everything else in this paper. 

5.1. Lighthouse Locate 

We give a probabilistic method for the name server. We imagine the processors as discrete coor­

dinate points in the 2-dimensional Euclidean plane grid spanned by (E,0) and (0, E). The number 

of servers satisfying a particular port in an n -element region of the grid has expected value sn for 

some fixed constants >0. 

Server's Algorithm. Each server sends out a random direction beam of length l every unit 

of time. Each trail left by such a beam disappears instantly at the end of d time units. That is, a 

node discards an address posted by a server after d time units. Assume that the time for a mes­

sage to run through a path of length 1 is so small in relation to d that the trail appears and disap­

pears instantaneously. 

s 

Figure 4. 

Client's Algorithm. To locate a server, the client beams a request in a random direction at 

regular intervals. Originally, the length of the beam is I (l)=l and the intervals are <5(1). After 

each unsuccessful trial, the client increases its effort by doubling the length of the inquiry beam 

and the intervals between them.* Thus, the i th trial has <5(i )=/ (i )=2i- 1, i ~1. 

* Before Lighthouse Locate for the euclidean plane can be converted into a practical algorithm for locating services it 
is necessary to find ways of mapping point-to-point networks onto the euclidean plane in such a way that the euclidean 
plane algorithm can be converted into an algorithm for a point-to-point network. Fortunately. such a mapping can often 

be found. Most point-to-point networks have routing tables that tell each node which outgoing arc to use to get a mes­
sage to its destination. In {3] these tables are used back-to-front to broadcast messages over the network in near op­
timal fashfon. We can use these tables back-to-front to simulate sending messages along "a straight line .. of certain 
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With the clients strategy governed by the integer sequence 012 · · · of exponents, we spend 

exponentially longer lasting trials with exponentially longer beams. while missing a server which 

was nearby all the time, or has migrated to a nearby location. A better strategy is to prevent this 

by an evenhanded treatment of locations far and near, independent of which interval of consecu­

tive trials we consider. To obtain this, we govern the length of the client's locate beam (and its 

duration) by integer sequence 51 in [20]: 

010201030102010401020103010201050102· .. 

This sequence has an interesting property: for each i ~. each uninterrupted subsequence of 

length 2i+I contains precisely one integer i. Let d (i) be the digit in position i, and let in the i th 

trial o(i )=/ (i )=2J(i>. Then, in each subsequence of 2J+I trials there are 2J-j trials with beams of 

length 2j (O~j~). This 'binary carry schedule' can conveniently be maintained by a binary 

counter. A binary counter is initialized with 0. In each step, it is incremented by 1. Digit d (i) 

equals the position of the most significant bit which needs to be changed in the i th step. 

length. The technique is as follows. 

A client (or server) wishing to send a beam of length k (using message passes as the unit of length) chooses a 

random outgoing arc and sends the message along it to its neighbor. This neighbor, upon reception of such a message 

decreases the hop count (in the message) by 1. and sends the message on any one outgoing arc that is used to send mes­

sages from the node at the other end of the arc to the original client (or server) where the beam started from. And so on, 

until the hop count reaches 0. 
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5.2. Hash Locate and Beyond 

Let us consider the name server again. Let in a given network G=(U .E) the set of ports (i.e., 
types of services available) be IT. In Hash Locate we construct hash functions that map service 
names onto network addresses. That is, 

P ,Q: fI--t 2u & P=Q. 

This technique is very efficient. Each servers posts its (service, address) at the node(s) P (7t), if 7t 

is the service offered bys, and a client in need for a service 7t queries the node(s) in Q (ir). Apart 
from redundancy for fault-tolerance, clients and servers need only use one network node each in 
every match-making. (Clearly, the rendez-vous matrix must be interpreted differently in this set­
ting.) Provided the hash function is well-chosen, it distributes the burden of the locate work over 
the network. It suffers from the drawback that, if nodes are added to the network, the hash func­
tion must be changed to incorporate these nodes in the set of potential rendez-vous nodes. More­
over, if all rendez-vous nodes for a particular service crash then this takes out completely that par­
ticular service from the entire network. If the service is indispensable, the entire network crashes. 
In this sense Hash Locate is far more vulnerable to node crashes than the more distributed ver­
sions of of our old method. Examples 1, 2 and 3 may also be viewed as borderline examples of 
Hash Locate. Examples 4, 5 and 6 are not Hash Locate methods, since Hash Locate cannot be 
distributed in this genuine sense. 

Two obvious approaches can make Hash Locate more robust for node crashes. First, the 
hash function can map a service name onto many different network addresses for added reliabil­
ity. Second, when the rendez-vous node for a particular service is down, rehashing can come up 
with another network address to act as a backup rendez-vous node. It then becomes necessary 
that services regularly poll their rendez-vous nodes to see if they are still alive. 

We can define the functions P and Q using both addresses and ports. This generalizes both 
Hash locate and the method in the previous sections. 

P ,Q: UxfI --7 2u . 

If we are dealing with a very large network, where it is advantageous to have servers and clients 
look for nearby matches, we can hash a service onto nodes in neighborhoods. A neighborhood 
can be a local network, but also the network connecting the local networks, and so on. Therefore, 
such functions can be used to implement the idea of certain services being local and others being 
more global, thus balancing the processing load more evenly over the hosts at each level of the 
network hierarchy. 

5.3. Robustness, Fault-Tolerance, and Efficiency 

In computer networks, and also in multiprocessor systems, the communication algorithms must 
be able to cope with faulty processors, crashed processors, broken communication links, 
reconfigured network topology and similar issues. Centralized match-making (Example 3) is very 
efficient, but if the linchpin host crashes then match-making is impossible between any pair of 
nodes. It is one of the advantages of truly distributed algorithms that they may continue in the 
presence of faults. Below we distinguish two distinct criteria for robustness, apart from the prob­
lem of how, or whether it is still possible, to route the match-making messages to their destina­
tions in the surviving subnetwork. 

• Match-making should be distributed in the sense that node crashes do not take out the 
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general facility of match-making in the surviving network (or as little as possible). This 

rules out a centralized match-maker, but the distributed Examples 1, 2, 4, 5, 6 satisfy this 

requirement in various degrees. It is lack of robustness according to this criterion that 

makes the efficient Hash Locate so fragile. 

• The match-maker should be redundant in the sense that a bounded number of node crashes 

cannot prevent individual node pairs from the capability of making a match. For example, 

by chosing P and Q such that, for all l~i ,j ~ , 

IP(i)(lQU)I ~f +1 , 

then the match-maker can tolerate up to f nodes being down at any time in the network. 

Thus, robustness necessitates inefficiency twice: once because we have to distribute the algorithm 

and the next because we have to make it redundant. The most robust solution is, trivially, the 

most inefficient one: P (i)nQ U )= U (l~i ,j ~ ). 
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Appendix: Examples 

l. Broadcasting: m =n + 1, s =s,,..~ = l. 

2 J 4 s 6 7 8 9 

l 1 

2222222222 

J J J J J J J J J J 

4,4 4 4 4 4 4 4 4 4 

s s s s s 5 s 5 5 s 
6 6 6 6 6 6 6 6 6 6 

7777777777 

8888888888 

9;9 9 9 9 9 9 9 9 9 

2. lnverse Broadcasting:m=n+l, s=s,,..,.=I. 



3. Centrali:ed: 111 =2, s =n and s.n-e =l. 

4. Symmetric: m=2._r,;, s=s,,,.,='r;;. 
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2 3 5 6 7 8 9 

2 3 5 6 7 8 9 

2 1 2 3 4 5 6 7 8 9 

3 1 2 3 4 5 6 7 8 9 

4123456789 

5 23456789 

6 1 2 3 4 5 6 7 8 9 

7 1 2 3 4 5 6 7 8 9 

8123456789 

9 23456789 

1 2 3 4 5 6 7 8 9 

3 .3 3 3 3 3 3 3 3 

23333.33333 

3 3 3 3 3 3 3 3 3 3 

4 3 3 3 3 3 3 3 3 3 

s 3 3 3 3 3 3 3 3 3 

6 3 3 3 3 3 3 3 3 3 

7 3 J 3 3 3 3 3 3 3 

8333333333 

9 3 3 3 3 3 3 3 3 3 

1 2 3 4 5 6 7 8 9 

1 1 l 2 2 2 3 3 3 

2 l 1 l 2 2 2 3 3 3 

3 l 1 l 2 2 2 3 3 3 

4 4 4 4 s 5 s 6 6 6 

s 4 4 4 s s s 6 6 6 

6 4 4 4 s s 5 6 6 6 

7 7 7 7 8 8 8 9 9 9 

8 7 7 7 8 8 8 9 9 9 

9 7 7 7 8 8 8 9 9 9 

5. Hierarchical. The elements are ordered by 1,2.3<7: 4.5.6<8: 7,8<9. The rendez-vous element is the least ancestor. 
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123456789 

l 77999799 

2 7 2 7 9 9 9 7 9 9 

3 7 7 3 9 9 9 7 9 9 

4 9 9 9 4 8 8 9 8 9 

5 9 9 9 8 5 8 9 8 9 

6 9 9 9 8 8 6 9 8 9 

7 7 7 7 9 9 9 7 9 9 

8 9 9 9 8 8 8 9 8 9 

9 9 9 9 9 9 9 9 9 9 

6. For all a .b .c E {0.1}. P (abc) ={a.\)' I x .y E {0.l}} and Q (abc) = {xbc I xE {0.l} }: 

OOO 001 OUI 011 100 101 UO 111 

OOO OOO 001 010 OU OOO 001 010 011 

001 OOO 001 010 011 OOO 001 010 till 

010 OOO 001 010 OU OOO 001 010 011 

OU OOO 001 010 011 OOO 001 010 011 

100 100 101 110 Ill 100 101 UO lll 

101 100 101 llO 111 100 101 110 Ul 

110 100 101 llO 111 100 101 UO 111 

7. Variant with m (4.1)=2 and m {3.9)=2n. 

' r- v;; 8. Manhattan: rn=2'<n • s=sm·•= n . 

l 2 3 4 5 6 7 8 9 

l l 2 3 4 5 6 7 8 7 

2123123128 

3 1 2 3 4 5 6 7 8 9 

4 l 1 l 1 1 1 1 1 1 

5 1 5 6 4 5 6 4 5 2 

6 1 5 6 4 5 6 4 5 3 

7189789784 

8189789785 

9 1 8 9 7 8 9 7 8 6 
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2 J 4 5 6 7 8 9 \ 

2 J 2 J 2 J 

l 2 J 2 J 2 J 

J 2 J 2 J 2 J 

4 4 5 6 4 5 6 4 5 6 

s 4 s 6 4 s 6 4 5 6 

6 4 s 6 4 s 6 4 s 6 

7 7 8 9 7 8 9 7 8 9 

8 7 8 9 7 8 9 7 8 9 

9 I 7 8 9 7 8 9 7 8 9 




