
Centrum voor Wiskunde en lnformatica 
Centre for Mathematics and Computer Science 

P.J. van der Houwen, B.P. Sommeijer, G. Pontrelli 

A comparative study of Chebyshev acceleration and residue smoothing 
in the solution of nonlinear elliptic difference equations 

Department of Numerical Mathematics Report NM-R8723 November 



The Centre for Mathematics and Computer Science is a research institute of the Stichting 
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by 
the Dutch Government through the Netherlands Organization for the Advancement of Pure 
Research (Z.W.0.). 

Copyright © Stichting Mathematisch Centrum, Amsterdam 
"' 



A comparative study of Chebyshev acceleration and residue smoothing 
in the solution of nonlinear elliptic difference equations 

P.J. van der Houwen & B.P. Sommeijer 
Centre for Mathematics and Computer Science 

P.O. Box4079, 1009 AB Amsterdam, The Netherlands 

G. Pontrelli 
/nstituto per le applicazioni del calcolo 

Viale del policlinico 137, Rome, Italy 00161 

We compare the traditional and widely-used Chebyshev acceleration method with an acceleration technique 

based on residue smoothing. Both acceleration methods can be applied to a variety of function iteration 

methods and allow therefore a fair comparison. The effect of residue smoothing is that the spectral radius 

of the Jacobian matrix associated with the system of equations can be reduced substantially, so that the 

eigenvalues of the iteration matrix of the iteration method used are considerably decreased. Comparitive 

experiments clearly indicate that residue smoothing is superior to Chebyshev acceleration. For a model 

problem we show that the rate of convergence of the smoothed Jacobi process is comparable with that of 

ADI methods. 
The smoothing matrices by which the residue smoothing is achieved, allow for a very efficient 

implementation, thus hardly increasing the computational effort of the iteration process. Another feature of 

residue smoothing is that it is directly applicable to nonlinear problems without affecting the algorithmic 

complexity. Moreover, the simplicity of the method offers excellent prospects for execution on vector and 

parallel computers. 
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1. FUNCTION ITERATION .METHODS 

In [2] a Jacobi-type iteration method for solving nonlinear elliptic difference equations f(u)=O is described 

which is essentially based on function evaluation without requiring the solution of linear systems during the 

successive iterations. The function values to be evaluated are smoothed residue values Sf, where S is a smoothing 

matrix. This function iteration method (smoothed Jacobi iteration method) is extremely simple to implement on a 

computer and highly vectorizable on vector computers. The numerical experiments reported in [2] show that 

smoothed Jacobi iteration is many times faster than conventional Jacobi iteration, indicating that it may be a 

competitor to other, more sophisticated, function iteration methods for solving nonlinear elliptic difference equations. 

It is the purpose of this paper to show that smoothed Jacobi iteration is really faster than function iteration 

methods with a comparable algorithmic complexity. As a reference method we chose the Chebyshev acceleration 

method applied to Jacobi iteration with automatic estimation of the dominant eigenvalue in order to provide the 

eigenvalue interval of the Jacobian matrix of/ou needed by the method. Like smoothed Jacobi iteration, 

Chebyshev-aecelerated Jacobi iteration vectorizes well on vector computers. However, its implementation is more 

complicated and it turns out that smoothed Jacobi iteration is much faster both for linear and nonlinear problems. 
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We have tried to accelerate Chebyshev-accelerated Jacobi iteration by applying a technique for eliminating 

dominant eigenvectors from the iteration error. Since the dominant eigenvalue is automatically determined, such an 

elimination technique does not complicate the method further. Although we found a reduction of the number of 

iterations compared with the Chebyshev method without elimination, smoothed Jacobi iteration is still markedly 

faster. 

We then tried to improve the smoothed Jacobi iteration method by applying Chebyshev acceleration, to obtain 

Chebyshev-accelerated smoothed Jacobi iteration. The results were disappointing. The generally small reduction of 

the number of iterations does not justify the increased implementational complexity. 

Finally, we investigated whether it pays to replace Jacobi iteration by SSOR iteration, to obtain smoothed 

SSOR iteration. This method requires the evaluation of the Jacobian matrix and is therefore not a true function 

iteration method any more. Consequently, the convergence improvement should be sufficiently large in order to 

justify the increased complexity of the method. We found that, when compared with the smoothed Jacobi method, the 

smoothed SSOR iteration (provided with optimal relaxation parameters) is slighter faster; however, the price to be 

paid seems not worth the additional effort, and we refrained from a comparison of the Chebychev-accelerated SSOR 

and the smooted SSOR methods. 

Our conclusion is that smoothed Jacobi iteration is an extremely attractive and efficient method, particularly on 

vector computers, and that nonlinearities in the system to be solved neither destroy the high rate of convergence, nor 

increase the algorithmic complexity. We do not claim that this method is faster than, e.g., multigrid methods. 

However, such methods, even when the underlying relaxation method is based on function iteration, require 

considerably more implementational effort and are less vectorizable than smoothed Jacobi iteration. In a forthcoming 

paper we will report on a performance evaluation of smoothed Jacobi iteration on vector computers. 

In the remainder of this section we shall briefly describe Chebyshev acceleration with automatic eigenvalue 

estimation and elimination of doniinant eigenvector components in the iteration error, and the idea of residue 

smoothing. In the Sections 2 and 3 we illustrate these techniques for a few linear and nonlinear examples. 

1.1. Chebyshev acceleration 

Consider a stationary, linearly convergent one-step iteration method 

(1.1) un+l = F(un), n ~ 0, 

where F(u) = u, for f'mding the solution u of the equation 

(1.2) f(u) = 0. 

It is explicitly assumed that the iteration function F does not depend on n, and that oF/ou essentially has a real 

eigenvalue spectrum. By applying the well-known Chebyshev acceleration method to (1.1) we obtain the two-step 

semi-iterative method (cf. ,e.g., [1]) 

(1.3) vn+l = Pn vn + qn F(vn) + rn vn-l , n ~ 0, 

where the coefficients are defined by: 



(1.4) 

PO= wo I (wo + wl), Pn = 2wo Tn(wo+w1) I Tn+l( wo+w1), n ~ 1; 

qO = 1 - Po• qn = 2w1 Tn(w0+w 1) I Tn+l( w0+w 1), n ~ 1; 

r0 = 0, rn = 1 - Pn - qn, n ~ 1. 

Here, Tn denotes the first-kind Chebyshev polynomial of degree n and 

(1.5) w0 := -(b +a)/ (b-a), w1 :=2/ (b- a), 
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where, usually, [a,b] denotes the eigenvalue interval of the Jacobian matrix oF!ou. One of the end points, say a, of 

the eigenvalue interval corresponds to the spectral radius of oF!ou, and can be estimated by Gerschgorin's disk 

theorem. The estimation of b is discussed in the next subsection. 

1.2. Dominant eigenvectors 

In this subsection, we discuss the estimation of the eigenvalue corresponding to the dominant eigenvector. 

This dominant eigenvalue will provide us with an estimate of b. Furthermore, we consider the elimination of the 

dominant eigenvector in an attempt to speed up the Chebyshev acceleration process. 

1.2.1. Estimation of dominant eigenvalues 

Introducing the iteration error 

(1.6) En= vn - u, 

and substitution into (1.3) yields, in first approximation, 

(1.7) En= Pn(oF/ou) Eo, Pn(x) := Tn<wo + w1x) I Tn(w0 + w1), 

where oF!ou denotes the Jacobian matrix ofF evaluated at the solution u; we shall assume that oF!ou exists in the 

neighbourhood of u and does not vanish, and that the initial approximation is already close enough to the true 

solution, so that second order terms can be neglected. 

Suppose that we choose the interval [a,b] such that all eigenvalues of oF!ou are in [a,b] except for one 

eigenvalue A* > b, with eigenvector e*. Then, for sufficiently large n, all eigenvector components occurring in the 

eigenvector expansion of the initial iteration error will be significantly reduced in magnitude, except for the 

eigenvector e*; this eigenvector component will dominate the iteration error, i.e., 

(1.8) 

We shall call the above procedure where all eigenvectors but one are reduced in magnitude the reduction phase of the 

iteration method. 

From relation (1.8), an estimate for the eigenvalue A* can be derived (we shall call A* the dominant 

eigenvalue). In the following, division of vectors is always understood to be carried out componentwise. 

Theorem 1.1.Let w0, w1 be defined by (1.5), and let the vector R be defined by 

R := (wo + wl + [(wo + w1)2 - 1]112)A vn I A vn-1• 

where A denotes the forward difference operator. Then, a vector of A* values is provided by 

' A.* "' [R/2 + l/(2R) - w0t]/w 1' 

where 1 denotes the unit vector (1, 1, ... , 1) T. 
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Proof. From the definition of Chebyshev polynomials we derive, for A.* > b, 

(1.9) Pn{J .. *) = [W(A.*)/W(l)]n, W(x) := w0 + w1x + [(w0 + w1x)2 - 1] 112. 

By rewriting (1.8) for n-1 and n+l, forming the expression 

[en+l - en]/[ en - en-1), 

and by using (1.9), we fmd that A.* approximately satisfies the relation 

(1.10) W(A.*) 1 = W(l) D.. Vn I D.. Vn-1 = R. 

Solving relation (1.10) for A.* yields the estimate given in the theorem.[] 

When this theorem is applied in actual computation, we obtain as many estimates to the dominant eigenvalue 

A.* as there are equations. The spread D..A.* of the interval [A.*-D..A.*, A.*+D..A.*] of these estimates can be used as an 

indication to what extent the iteration error is indeed dominated by e*. The actually used approximation to the 

dominant eigenvalue might be the arithmetic mean of the available estimates. 

1.2.2. Elimination of dominant eigenvectors 

Having found an approximation to the dominant eigenvalue during the reduction phase of the iteration method, 

we can proceed with the elimination of the corresponding eigenvector e* from the iteration error (we shall call this 

process the elimination phase of the iterative method). Below, we briefly discuss a few possibilities for eliminating 

dominant eigenvectors. 

One possibility is to apply again the Chebyshev acceleration process (1.3) - (1.4) with the last computed 

iterate as new initial approximation and with modified values for the parameters w 0 and w 1. 

Theorem 1.2. Let in (1.4) the parameters w0 and w1be defined by 

(1.11) w0 =[a cos(1t/(2n)) +A.*] I [a-A.*], w1= (cos(1t/(2n)) + 1) I (A.* - a), a< A.*, 

where A.* is the eigenvalue of oF/ou corresponding to the eigenvector e* dominating the iteration error e0. 

(a) Then the Chebyshev method (1.3) - (1.4) eliminates e* from the iteration error after exactly n iterations. 

(b) If the number of iterations is sufficiently large, i.e., if 
(l.12) n ~ 1t [2 arccos([2A. * - a~ 1) I [1 - a])]-1, 

then the method is stable in the sense that no eigenvector components of the iteration error are amplified. 

Proof. The expressions (l.11) immediately follow from the conditions that the polynomial P n(x) should satisfy the 

relations: 

Pn(a) = ± 1/ Tn(w0 + w1), Pn(A.*) = 0. 

From these requirements we deduce 

w0 + w1 a= -1, w0 + w1 A.*= cos(1t/(2n)), 

resulting in (1.11). 

The stability condition (1.12) follows from the requirement w0 + w1~1. [] 
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A disadvantage of the above elimination procedure is the computational effort involved by forming a new set of 

iterates. This leads us to a procedure based on iterates already computed during the reduction phase of the iteration 

method. 

Consider the k+l iterates vn-j+l' j = 0, ... , k computed by (1.3), and define 

(1.13) v* = Q(E) vn-k+l' 

where Eis the forward shift operator and Q is a polynomial of degree k satisfying the condition Q(l) = 1. For this 

k-step extrapolation formula the following theorem holds: 

Theorem 1.3. Let A be the matrix defined by A:= diag (A vn/A vn_1), and define£* := v* - u; then 

1ie*ll2 :S p(Q(A)) llen-k+llii, 

where 11112 denotes the spectral norm and p the spectral radius. 

Proof. Using Q(l)=l we find from (1.13) that 

(l.14) e* = v* - u = Q(E) vn-k+l - u = Q(E) vn-k+l - Q(E) u = Q(E) en-k+l' 

and using (1.7), 

(l.15) e* ""Q(E) Pn-k+i<oF/ou) e0. 

If e* dominates the iteration error, then it follows from (1.8) that 

e* ""Q(E) Pn-k+l (/\.*) e*, 

so that, by virtue of (1.9), we obtain 

e*"" [W(l\.*)/W(l)]n-k+l Q(W(l\.*)/W(l))e* ""P n-k+l (A*) Q(W(l\.*)/W(l))e*. 

Again using ( 1.8), and replacing W (A *)/W (1) by a diagonal matrix A with elements defined by the components of the 

vector A vJA vn-l• we arrive at the relation 

e* "" Q(A) en-k+l' 

The assertion of the theorem is now immediate. (] 

This theorem suggests that we should choose Q such that its magnitude is. small in the interval 

(1.16) [a*-Aa*, a*+Aa*] := [min{A vn/A vn_1}, max{A vn/A vn_1}]. 

We remark that, if k=l, then, by requiring Q(a*)=O, we obtain the famous one-step extrapolation formula of 

Lyustemik [4]. 

It follows from the recursion (1.14) that the extrapolation formula (1.13) is stable if the characteristic 

polynomial xk+l - Q(x) has its roots on the unit disk, those on the unit circle being simple. It can be shown that, 

for formulas based on only a few back iterates and for a* close to 1, this requirement is easily violated if we require 

at the same time that Q is small in magnitude in the interval (1.16). More stable formulas can be constructed by 

increasing k. However, this means that more storage is needed to store the necessary iterates. 

In actual computation, instabilities introduced by a possible unstable extrapolation formula (1.13) are usually 

compensated' by "overstability" of the reduction phase. To be more precise, we consider the eigenvalues of the 

amplification matrix occurring in (1.15), i.e. the matrix 
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Q(E)Pn-k+1<aF1au) = Q(E)[Tn-k+1<wo + W1 aFtau )/Tn-k+1<wo + w1)J. 

Let Q* be the polynomial obtained from Q by replacing all the coefficients of Q by their absolute values. Then, all 

eigenvalues ex. of this amplification matrix corresponding to eigenvalues of (}F/(}u lying in [a,b] satisfy the inequality 

la.I~ Q*(E)[l/Tn-k+l<wo + w 1)] =- 2 w - (n-k+l) Q*(l/w), w := W(t), 

where W(l) is defined as in (1.9). From this inequality we deduce that the eigenvector components of the initial error 

are certainly not amplified at the end of the reduction/elimination phase if 

(1.17) n ~ k - 1 + logw(2 Q*(l/w)). 

The following theorem presents the lower bound on n obtained when this result is applied to the case where Q has all 

its zeros at ex.*. 

Theorem 1.4. Let Q be given by 

Q(x) = [(x - cx.*)/(1 - cx.*)]k, 

where a.* is defined in (1.16) and is assumed to be less than 1. Then, at the end of the reduction/elimination phase, 

no eigenvector components of the initial error are amplified if 
n ~ k logw((l + wlcx.*I) I (1 - ex.*))+ logw(2) - 1, w := W(l), 

where W(l) is defined in (1.9). 

Proof. It follows from the definition of Q that 

Q*(x) = [(x + lcx.*I) I (1 - cx.*)]k. 

Substitution into (l.17) yields the lower bound on n stated in the theorem. [] 

In our experiments, we employed two-step extrapolation formulas because we need already three iterates for 

estimating the dominant eigenvalue. 

1.3. Residue smoothing 

In [2] iteration methods employing residue smoothing have been analysed for solving nonlinear elliptic 

systems f(u) = 0. Here, we apply the same technique to a more general class of iteration methods. Given a difference 

matrix D, a set of nonnegative integers r e JR, a set of relaxation parameters ror, and some basic iteration method 

with iteration function 

G(u) := u + M f(u), 

where M is the characterizing matrix. Then, we define the class of smoothed iteration methods 

(1.18a) un+l = F(un), n ~ O; F := II Gr, 

(1.18b) 

(1.18c) 

r E JR 

Gr(u) := u + ror M Sr f(u), 

· Sr:= 4-r [T2r(I+2D) - I] (2Df1, Tm(x) := cos(m arccos(x)), 

where Sr is the so-called smoothing matrix (notice that Sr reduces to the identity matrix if r=O). 

Thus, the iteration formula (1.18) may be interpreted as a cycle of smoothed basic iteration steps. 
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1.3.1. The smoothing matrix 

The smoothing matrix Sr is a polynomial in D and completely defined as soon as D is specified. We remark 

that D is allowed to be a singular matrix because, in spite of our notation, its inverse does not need to exist In order 

to simplify the notation we shall continue to write o-1 in the various formulas without actually requiring that it 

exists. 

The matrix Dis a difference matrix the eigenvalues of which are assumed to be in the interval [-1,0). As a 

consequence, the eigenvalues of the smoothing matrices are in the interval [0,1]. In one-dimensional problems 

(two-point boundary value problems), one may consider the difference matrix 

(1.19) D := (114) 

0 

1 - 2 1 

1 - 2 1 

0 

This matrix generates smoothing matrices which leave the first and last component of the vector to which they are 

applied unchanged. Therefore, they are suitable in cases where the first and last component of the vector to be 

smoothed should not change. For example, we mention the case of a residue vector of which the first and last 

component vanish, that is, the case where the first and last equation of the system f(11) = 0 represent Dirichlet 

boundary conditions (we observe that in such situations the first element of the first row and the last element of the 

last row in D may be replaced by any value, so that D becomes nonsingular). 

In actual computation, it is generally not feasible to pr~ompute the smoothing matrix because of storage 

requirements. On the other hand, in the case where Dis defined by (1.19), the matrix Sr exhibits a regular pattern 

which can be exploited for a an efficient implementation. For example, the first three smoothing matrices are 

respectively given by S0=I, 

4 

I 2 I 

s1 = (114) 

I 2 1 

4 

and 
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16 

9 2 2 2 

4 2 4 3 2 

S2 = (1116) I 2 3 4 3 2 1 

0 I 2 3 4 3 2 l 

0 0 I 2 3 4 3 2 1 

These examples suggest the precomputation of the first few rows of the smoothing matrices until the pattern 

becomes regular. Alternatively, we can generate the smoothing matrices by exploiting factorization properties of 

Chebyshev polynomials. This approach seems to be more attractive. By using the identity 

T2r+l(z) =T2(T2r(z)), 

we derive from (l.18c) the recursion 

Sr+! = (I + 4r D Sr) Sr. 

By writing Sr+! =Fr+! Sr we arrive at the following theorem which expresses the smoothing matrix Sr as a product 

of r factor matrices Ff 

Theorem 1.5. Let D be any difference matrix and define the factor matrices F1 :=I+ D, Fj+l :=(I - 2Fj)2,j;;?: 1. 

Then Sr = F1. F2 ..... Fr. (] 

From this theorem we conclude that, if the factor matrices are precomputed, then the smoothing matrix can be 

generated by r matrix-vector multiplications. For a number of difference matrices D and for r not too large (in a 

typical case r should not exceed log2(1/Ax) where Ax is the mesh size), it turns out that the corresponding factor 

matrices are 'almost as sparse as D itself,· so that the application of the smoothing matrix involves only r 

matrix-vector multiplications with matrices of similar complexity as D. For larger values of r one may proceed as 

follows. Let Sq be the smoothing matrix which can 'conveniently' be generated by means of Theorem 1.5. Then, by 

employing the factorization formula 

T 2q+j(z) = T zj(T 2q(z)), 

we find that 

s . ·= 4-q-j [T2i(I+22q+Io s >- 11 (2or1. 
q~· q 

This formula expresses Sq+j in terms of a polynomial of degree at most 2j of D and Sq. In this way it is in principle 

possible to generate smoothing matrices of higher indices. 

The precomputation of the factor matrices is relatively easy in the case of one-dimensional problems and can 

often be done by hand. In higher dimensional elliptic problems with irregular geometries, this is less attractive. 

However, by considering the problem as a system of coupled two-point boundary-value problems, one may apply 

one-dimensio11al smoothing operators (e.g., based on ( 1.19)) to the successive problems (cf. [2]). 
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1.3.2. The matrix M 

By means of the matrix M, several basic iteration methods can be selected. Let the matrix Clf/Clu be split 

according to 

Clf/Clu = C + L + U or Clf/Clu = H + V, 

where C is diagonal, Land U are lower and upper triangular, and H, V correspond to the ADI splitting of A(or any 

other 'convenient' splitting). In terms of these splitting matrices, various matrices M may be defined. In Table 1.1, a 

few examples are listed. Here, m, mH and mv are parameters which depend on the spectrum of Clf/Clu (cf. [1]). 

Jacobi-type: 

Gauss-Seidel: 

SOR: 

SSOR: 

ADI: 

Table 1.1. Possible M matrices. 

M := diagonal, e.g., M = - c-1 

M := - (C + L)-l 

M := - (C/m + Lr1 

M := - (2/m - 1) (C/m + ur1 C (C/m + Lr1 

M := - (mH + mv) cv + mvir1 (H + mHir1 

We observe that instead of solving f(u) = 0, we can alternatively solve the preconditioned system Pf(u) = 0. If 

we replace the matrix MSr by MS~, then the resulting iteration method is given by (1.18). In particular, we may set 

M = I and P equal to one of the matrices specified above. 

1.3.3. The model situation 

The choice of the relaxation parameters in (1.18) will be based on the model case where D equals the difference 

matrix defined by the normalized Jacobian off: 

(1.20) D := p-l ClftClu, 

with p denoting the spectral radius of ClftClu. However, we emphasize that the matrix D actually used in practice is a 

very rough approximation to this normalized Jacobian; for example, the matrix defined in (1.19) turned out to be 

rather effective in the case of smoothed Jacobi iteration of Dirichlet problems (cf. [2]). The damping of the iteration 

error, is largely determined by the Jacobian matrix ClFtClu in (l.18): 

(1.21) ClFtClu = IT ClG!Clu = IT [I + cor M Sr ClftClu]. 

r r 

Substitution of (1.20) into (l.18c) and the resulting expression for Sr into (1.21) yields 

(1.22) ClFtClu =IT [I+ p cor 4-rM [T2r(I+2D) - I]/2]. 

r 

Thus, given the matrices M and D, we are faced with the problem of choosing a set of relaxation parameters { ror} 

such that the"eigenvalues of ClFtClu are small in magnitude. These eigenvalues will be called damping factors of the 

iteration method. In Section 3 we will derive suitable relaxation parameters for the Jacobi case. The resulting 
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iteration scheme belongs to the class of function iteration methods, which, essentially, only require the evaluation of 

values of f. In Section 4 we describe a numerical approach to obtain relaxation parameters for the SSOR method. 

Formally, these schemes do not belong to the class of function iteration methods, although the amount of linear 

algebra for these schemes is rather modest. Still further away from this class is the ADI case, which involves the 

solution of tridiagonal systems. We did not consider this method; an analysis of smoothed ADI iteration may be 

found in [5]. 

First, however, for the sake of comparison, we give results obtained by Chebyshev-accelerated Jacobi iteration 

which still belongs to the most efficient conventional function iteration methods available in the literature for 

solving elliptic equations. 

2. CHEBYSHEV ACCELERATION OF JACOBI ITERATION 

We shall present numerical experiments with the Chebyshev acceleration method of conventional Jacobi-type 

iteration with automatic estimation of the dominant eigenvalue. The most simple choice of the matrix M 

characterizing a Jacobi-type iteration method is M = 21/p, where p is the spectral radius of oflou. Alternatively, one 

may choose M = - [diag(of/ou)r1= - c-1. We emphasize that, updating the matrix M during the iteration may result 

in an iteration function F which is n-dependent, contradicting our assumption that Fis stationary (see Section 1.1). 

If no Chebyshev acceleration is applied, then, at the cost of some additional computational effort, this strategy may 

improve the convergence (see Section 3.2). However, if Chebyshev acceleration is used, t!Jen the matrix M should be 

evaluated in the first step of the reduction phase. 

First, we apply the Chebyshev-accelerated Jacobi method without elimination of the dominant eigenvectors. In 

the next subsection we shall illustrate the effect of the elimination process. 

2 .1. Chebyshev acceleration with automatic estimation of the dominant eigenvalue 

The following strategy was applied: 

(i) Initial approximation: linear interpolation of the boundary values. 

(ii) Chebyshev reduction phase: application of the Chebyshev acceleration process { (1.3) - ( 1.5)} where 

F is defined by (l.18) with R={O}, roo=ll2, a=O, and where the value of b occurring in {(1.3) -

(1.5)} is such that the dominant eigenvalue 'A* is outside the interval [a,b] (observe that this choice 

of R results in a conventional iteration method because the only smoothing matrix Sr= So= I). In 

our experiments we chose b=0.95. 

(iii) Restart criterion: restart of the reduction phase with adjusted value of b as soon as the 'A *-estimates 

obtained in two successive iterations (cf. Theorem 1.1 and the discussion following this theorem) 

satisfy the condition iii..* 
0

- 'A* 
0

_1 1<11 'A* n· The new value of bis defined by b='A* 
0
+0(1- 'A* 

0
). The 

strategy parameters 11 and o are specified in the tables of results. 

(iv) Stopping criterion: termination of the iteration process as soon as the residue satisfies the condition 

, llf(u
0

)11
00 

::;;; 10-2 (.!\x)2, where L\x denotes the mesh size of the grid defining the elliptic difference 

equations. 
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Consider the model problem uxx= g(x) with Dirichlet bo_undary conditions at x=O and x=l, that is the system 

-2 

(2.1) 

- 2 

where .1x := l/(m+l), gj := g(j.1x), and where u(O) and u(l) are prescribed boundary values. 

We start with this model problem where 

(2.2) g(x) = 6x, u(O) = 0 and u(l) = 1. 

For future reference, we first give the results of the conventional Jacobi method for a few values of .1x. The numbers 

of iterations needed to satisfy the stopping criterion (iv) are given in Table 2.1. 

Table 2.1. Conventional Jacobi method for the model problem with M= (.1x)2 I/ 2 . 

.1x=lll6 

1190 

.1x= 1/32 .1x= 1/64 

5342 23675 

Next, we apply the Chebyshev acceleration, following the above mentioned strategy. For a few values of .1x, T\ and o, 
the numbers of iterations are listed in Table 2.2. The smallest number on each grid is printed in bold type. 

Table 2.2. Chebyshev-accelerated Jacobi method for the model problem {(2.1)-(2.2)} with M = (.1x)2 I12. 

.1x=1116 

&,() O=.l 0=.25 

10-2 159 148 131 

10-3 72 67 78 

10-4 74 66 79 

10-5 79 66 

10-6 71 

llx=l/32 

0=.I 

658 

265 242 

198 160 

166 158 

173 161 

0=.25 

199 

163 

175 

180 

983 

694 

554 

402 

Ax=l/64 

0=.1 0=.25 

643 

501 

394 

555 

388 

417 
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The second example is a nonmodel problem originating from the nonlinear problem 

(2.3) (exp(u))xx - 5 x3 (4 + 5u) exp(u) = 0, u(O) = 0, u(l) = 1, 

the exact solution of which is given by u(x)=x5. This problem is discretized on the grid points UAx} using 

symmetric differences. 

Again, we start with the results obtained by the conventional Jacobi method: 

Table 2.3. Conventional Jacobi method for problem (2.3) with M= (Ax)2 I I (2e). 

Ax=l/16 

1925 

Ax=l/64 

38117 

The effect of the Chebyshev acceleration on this problem is shown in Table 2.4. 

10-2 

10-3 

10-4 

10-5 

10-6 

Table 2.4. Chebyshev-accelerated Jacobi method for problem (2.3) with M = (Ax)2 I I (2e). 

Ax=l/16 

0=.1 0=.25 

415 1417 

415 392 356 1222 

151 137 98 1235 

151 137 98 1235 

212 191 213 389 

Ax=l/32 

0=.1 0=.25 

1169 1064 

1169 1064 

359 278 

2917 

2417 

1177 

Ax=l/64 

0=.1 0=.25 

2763 

2289 

2513 

2081 

1001 

In performing the above experiments, we observed that the estimates A.* n converged from below to the true value. 

This explains why the best results are obtained by slightly overestimating (i.e., by setting 0>0) the final estimate. 

Furthermore, the convergence of A.* n happened to be very slow. Therefore, it is not surprising that a rather stringent 

restart criterion (e.g.11E [lo-6, 10-5)) results in an optimal performance. 

2.2. Chebyshev acceleration with automatic elimination of dominant eigenvectors 

Instead of the restart criterion (iii) of the preceding subsection we now use: 

(iii) Elimination phase: application of a three-step elimination formula of the form (l.13) with 

characteristic polynomial defined according to Theorem 1.4, and restart of the reduction phase (ii) 

with adjusted value of b. The elimination formula is applied as soon as (1.17), with k=3, is 

satisfied, and if the A. *-estimates obtained in two successive iterations satisfy the 

condition IA.* n - A.* n- l I < 11 A.* 0 • The new value of b is defined by b = y A.* 
0

, where the strategy 

parameter y is specified in the tables of results. 
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The analogues of the Tables 2.2 and 2.4 are given below. The numbers in brackets denote the number of times that a 

dominant eigenvector has been eliminated~ A comparison of the results listed in these tables with those of the Tables 

2.2 and 2.4 reveals that the reduction of the number of iterations is rather modest and does not seem worth the 

additional implementational effort. 

Table 2.5. Chebyshev-accelerated Jacobi method for the model problem {(2.1)-(2.2)} with M = (llx)2 I/ 2. 

~x=l/16 ~X=l/32 ~X=l/64 

"(=.95 "(=.99 "(=.95 "(=.99 "(=.95 "f=.99 

10-2 55(5) 75(3) 141(10) 174(8) 483(23) 438(12) 

10-3 52(3) 71(3) 135(7) 188(7) 445(21) 435(11) 

10-4 49(2) 66(2) 212(7) 156(5) 856(21) 456(9) 

10-5 49(2) 57(1) 192(4) 135(3) 1074(10) 477(7) 

10-6 62(2) 56(1) 209(3) 129(3) 

Table 2.6. Chebyshev-accelerated Jacobi method for problem (2.3) with M = (llx)2 I I (2e). 

~x=l/16 ~X=l/32 ~X=l/64 

"(=.95 "(=.99 "(=.95 "(=.99 "(=.95 "(=.99 

10-2 96(6) 124(5) 303(16) 265(8) 611(31) 622(14) 

10-3 137(6) 121(4) 298(14) 261(8) 656(30) 640(14) 

10-4 109(4) 100(3) 463(14) 263(6) 1258(31) 673(14) 

10-5 130(4) 94(2) 590(6) 392(4) 1963(19) 1025(13) 

10-6 130(4) 183(1) 491(4) 401(3) 

3. SMOOTHED JACOBI ITERATION 

As we have seen, if M is chosen to be a diagonal matrix, then the basic iteration method is of the Jacobi-type. 

In the previous section, we selected :R = {0}, resulting in Sr= I, i.e., an unsmoothed process. In this section we 

shall exploit the matrix Sr, that is we consider a smoothed Jacobi-type iteration method. 

We shall first derive suitable relaxation parameters for the model situation (1.20), and then we shall show, by means 

of numerical'experiments, that these parameters are also effective in nonmodel cases. 
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3.1. Derivation of relaxation parameters 

Let M be the identity matrix (or any diagonal matrix with constant diagonal entries), and letµ, <Xr(µ) and a.(µ) 

denote the eigenvalues of D, aa;au and oF!ou, respectively. An inspection of the zeros and extreme values of the 

functions a.r(µ) reveals that, if the set R contains an integer r, then it should contain the integers 0, ... , r-1, 

otherwise a.(µ) assumes values 1 in the interval [-1,0). This leads us to define the set R by successive integers 

starting with r=O. From the expression (l.22) we obtain the following theorems: 

Theorem 3.1. Let D and of/ou be related according to (1.20), let R := {O, 1, ... , q}, and let pror4-rM =I for 

all r in JR. Then the Jacobian matrix oF!ou of the iteration function in (l.18) and the corresponding damping 

factors are respectively given by sq+ land by 

a.(µ):= 2-(2q+3) µ- 1[T2q+l(l + 2µ)-1], 

where µruns through the eigenvalues of D. 

Proof. On substitution of Rand pror4-rM =I into (1.22) we obtain 

oFlou = fl (I+ T2r(I + 2D)/2 ]. 

r 

Using a factorization formula for Chebyshev polynomials of degree m = 2P (cf. [2]): 

p-1 

Tm(z) = 1 - m(l-z) fl (1 + T2j(z)), 

j=O 

we find that oFtou = Sq+l which yields the assertion of the theorem.[] 

Theorem 3.2. Let the conditions of Theorem 3.1 be satisfied, let the largest value in the interval [-1,0) where the 

function a.(µ) assumes a maximum value be denoted by µb, and let µ
8 

be the largest value in [-1,0) where a.(µ)= 

a.(µb). Then the following assertions hold : 

(a) If the eigenvalues µof D satisfy the inequality -1 ~ µ ~ µ
8

, then the spectrum of the matrix oF!ou is 

contained in the interval [a,b] := [0, a.(µ
8
)]. 

(b) For all q we have the approximation µ
8

"" [cos(1t/2q) - 1)/3"" -4-q1t216. 

Proof. It follows from Theorem 3.1 that the eigenvalues of the matrix {)F/{)u are given by a.(µ), whereµ runs 

through the spectrum of D (see Figure 3.1). From the definition of µb and µ
8 

it follows that 

0 ~a.(µ)~ a. (µb) =a. (µ
8

) for allµ e [-1, µ
8

] 

proving part (a) of the theorem. 

A numerical calculation reveals that 

µ 8 =2µz'3, 

with µz the.largest value in the interval [-1,0) where the function a.(µ) assumes a zero value. This leads to the 

approximation given by part (b). [] 
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Figure 3.1. Behaviour of the function a(µ) for q=3 

Recalling that the eigenvalues of oF!ou are the damping factors of the iteration method, it is of interest to see 

to what extent the eigenvalue interval [a,b] = [0,b] of oF!ou is reduced. In Table 3.1 the numerical values of b for a 

few values of q are given. These values show that for q ~ 3 this interval is almost constant and approximately given 

by [0,.05], provided, of course, that the eigenvalues of D are less than µ
8

• 

Table 3.1. Numerical values of µ
8 

and b = a (µ
8

) 

q 1 2 3 4 5 6 7 8 

- µs = 113 .9710-l .2510-l .6410-2 .1610-2 .4010-3 .9910-4 .2510-4 

b = .0741 .0525 .0485 .0475 .0473 .0472 .0472 .0472 
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The following example, ilustrates this result. 

Example 3.1. Consider the system (2.1) arising from the equation uxx= g(x) with Dirichlet boundary conditions at 

x=O and x=l. Let the matrix D be defined by (l.19), then the condition (1.20) is satisfied with p = 4(axr2. By virtue 

of the Dirichlet boundary conditions incorporated in (2.1 ), we can restrict the space of residue vectors to the subspace 

of vectors with vanishing first and last component. Let D* be the matrix obtained by omitting the first and last row 

and column of D. It is easily verified that, in this subspace, D and D* have the same set of eigenvectors and 

eigenvalues. It is well known that D* possesses eigenvalues given by 

µ/ = - [l - cos(j1t/(m+l))]/2, j = l, ... , m, 

where m is the order of the matrix D*. Thus, the relevant eigenvalues of D are in the interval 

(-1, - [l - COS(1t I (m+l))]/2] ""(-1, -1t2/(4 (m+l)2)]. 

A comparison with the bound µ
8 

given in Theorem 3.2 yields the condition 

m :5: (3 4q/2)112 - 1 = 2q '1 i.s - 1. 

On the other hand, in order to preserve a simple structure of the factor matrices Fj we should require that 

q :5: log2(1/Ax) => m ~ 2q - 1. 

(cf. the discussion of Theorem 1.5). This leads us to the conclusion that smoothed Jacobi iteration has damping 

factors bounded by .05 if q ~ 3 and if m satisfies the above inequalities. For future reference, we list the bounds on m 

for a few values of q (cf. Table 3.2). [] 

Table 3.2. Lower and upper bounds form for the model problem (2.1). 

q= 

m~ 

m'.5: 

3 

7 

8 

4 

15 

18 

5 

31 

38 

6 

63 

77 

7 

127 

155 

8 

255 

312 

Next we consider the average rate of convergence of smoothed Jacobi for the above model problem, or more 

generally, for problems which satisfy the conditions of Theorem 3.1 and 3.2 (a). Then the following theorem holds. 

Theorem 3.3. Let the conditions of Theorem 3.1 be satisfied, let the eigenvalues µ of D satisfy the inequality 

-1 :5: µ :5: µ
8

, and let q=Iog2(11Ax) as .1.x~O, then the average rate of convergence of smoothed Jacobi iteration is 

given by c/ln(l/.1.x) where c =2.1 as Ax~O. 
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Proof. It follows from Table 3.1 that per iteration step the average reduction factor for the iteration error is given by 

r:=bl/(q+l)=.05 11(q+l). Hence, the average rate of convergence is given by R:=-ln (r)=3/(q+l), so that for 

q=log2(11th) we obtain R=2.l/ln (l/Ax). [] 

The condition that q should be as large as log2(llth) without violating the condition -1::;;~µ8 can be satisfied 

in case of the model problem considered in Example 3.1. In the case of two-dimensional model problems, these 

conditions can also be satisfied provided that we base the smoothing procedure on the successive application of 

one-dimensional smoothing matrices. In fact, the value of b will be slightly smaller than .05 resulting in a slightly 

larger value for c. For such problems it is of interest to compare the average rate of convergence of smoothed Jacobi 

with that of ADI methods. For the Peaceman-Rachford version of the ADI method it is known that the average rate of 

convergence is given by R=c/ln (1/ Ax), where c is some constant greater than .777. Thus, we may conclude that 

smoothed Jacobi has the same order of convergence rate as the ADI method, but is much cheaper per iteration step 

because of the absence of implicit relations to be solved. 

3.2. Numerical experiments 

In our numerical experiments, we applied Chebyshev acceleration of smoothed Jacobi iteration with prescribed 

interval [a,b] according to the following strategy: 

(i) Initial approximation: linear interpolation of the boundary values; 

(ii) Chebyshev reduction phase: application of the Chebyshev acceleration process {(1.3) - (1.5)} where 

Fis defined by (l.18) and (l.19) with ror=22r-l (r=O, ... ,q). These ror parameters give rise to a zero 

a-value. The value of b is specified in the tables of results and q and m are chosen as allowed by 

Table 3.2. 

(iii) Stopping criterion: termination of the iteration process as soon as the residue satisfies the condition 

l1f(un)ll
00

::;; 10-2 (Ax)2, where Lh denotes the mesh size of the grid on.which the elliptic difference 

equations are defined. 

As in the preceding section, possible choices of the matrix M are M = 21/p, where p is the spectral radius of 

artau, or M = - [diag(aftau)r1. 

Again we start with the model problem defined by (2.1) with g(x) = 6x, u(O) = 0 and u(l) = 1. In Table 3.3 the 

numbers of iterations needed to satisfy the stopping criterion are listed. It turns out that if smoothing is used, then 

the exact solution of the system of equations is obtained after just one cycle of smoothed Jacobi iterations, that is, 

after one single application of the iteration formula (1.18). This means that the value of bis irrelevant, because the 

iteration process stops before the Chebyshev recursion gets started. The reason for this peculiar behaviour is that for 

model prob1ems of the type (2.1) and for the special grids employed in Table 3.3, all damping factors of the 

smoothed Jacobi method (as specified above) vanish. 
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Table 3.3. Smoothed Jacobi method for the model problem with M= (L\x.>2 I I 2. 

Ax=l/16 Ax=l/32 illc.=1164 illc.=11128 illc.=11256 

5 6 7 8 9 

Our second example is the nonmodel problem (2.3). The results of the smoothed Jacobi method without 

acceleration (first row in Table 3.4) show an impressive reduction of the number of iterations when compared with 

conventional Jacobi (see Table 2.3). But also the comparison of smoothed Jacobi and Chebyshev-accelerated Jacobi 

(see the Tables 2.4 and 2.6) clearly shows the superiority of residue smoothing as an acceleration technique. We then 

tried to improve smoothed Jacobi further by applying Chebyshev acceleration to the smoothed Jacobi process. Table 

3.4 indicates only a modest increase of the rate of convergence, especially in cases where the b-value is not optimal. 

Therefore, one may decide to forget about Chebyshev acceleration in the case of residue smoothing. This results in 

one array less for storage and at the same time in an extremely simple algorithm. 

Table 3.4. Smoothed Jacobi method for problem (2.3) with M = (.i\x)2 I I (2e). 

Chebyshev 

acceleration [a,b] Ax=l/16 Ax=l/64 Ax=l/256 

no 73 129 196 

yes [0,.75] 78 137 197 

yes [0,.50] 48 88 125 

yes [0,.40] 46 79 117 

yes [0,.30] 55 96 142 

yes [0,.20] 62 108 162 

Our next experiment illustrates the effect of tuning the matrix M to the diagonal of the Jacobian matrix of/ou. 

Table 3.5 shows that for problem (2.3) some reduction of the number of iterations is obtained, but it is doubtful 

whether it is worth the additional effort for computing the diagonal elements. A second observation is that for 

M = - [of(un)/our 1 the Chebyshev acceleration does not improve the convergence, because the iteration function F 

is non-stationary. 
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Table 3.5. Smoothed Jacobi method for problem (2.3) with alternative M matrices. 

M = - [arcu0)taur1 M = - [af(un)taur l 

Chebyshev 

acceleration [a,b] Ax=l/16 Ax=l/64 ..1x=11256 Ax=l/16 Ax=l/64 Ax=l/256 

no 32 55 87 33 55 80 

yes [0,.75] 99 179 260 124 216 332 

yes [0,.50] 58 102 151 64 104 169 

yes [0,.40] 48 88 125 54 96 134 

yes [0,.30] 43 74 107 44 82 116 

yes [0,.20] 37 62 95 39 69 98 

yes [0,.10] 32 53 79 34 61 89 

4. SMOOTHED SSOR ITERATION 

IfM is chosen according to the SSOR matrix listed in Table 1.1, then the resulting iteration method become~ 

a smoothed SSOR iteration method. We shall first deriv~ suitable relaxation parameters for the model situation 

(1.20), and then we shall show, by means of numerical experiments, that the.se parameters are also effective in 

nonmodel cases. 

4.1. Derivation of relaxation parameters 

Assuming that (l.20) is satisfied, we find, upon substitution of the SSOR matrix in the expression (1.22), the 

matrix 

(4.1) oFtou =IT [I - p O>r4-r (2/m - 1) (C/m + ur1 c (C/m + Lf 1 CT2r(I+2D) - 1112]. 

r E JR. 

In the following we shall allow that m also depends on r, and we shall write 

'Yr := ror4-r. 

From this expression we obtain the following theorem: 

Theorem 4.1. (a) Let D and oflou be related according to (1.20). Then the Jacobian matrix oFtou of the iteration 

function in (1.18) is given by 

(4.2) oFtou =IT [I - 'Yr (2 - mr) (D + Ef1 [T2r(I+2D) - 1]12], E := [mr LC-1u + (1-mr)C/mr]/p. 

r E JR. 
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(b) If ar1au is a tridiagonal matrix with lower diagonal, diagonal and upper diagonal elements respectively given by 

lj, j=2, ... , m, by cj, j=l, ... ,m, and by uj, j=l, ... ,m-1, then Eis a diagonal matrix with entries 

(4.3) ej = [rnr lj uj-l I cj-1 + (1-rnr) cj I rnr] Ip, · j = 1, ... ,m; 11 = 0, 

with e0 and em+l irrelevant. 

Proof. It is easily shown that the matrix (4.1) can be written in the form 

(4.1') aF1au =IT [I - P'Yr (2 - rnr) (ar1au + pEr1 [Tzr(I+2D) - I]/2], 

r E JR 

where E is defined as in (4.2). Hence, using (1.20) yields the representation (4.2). The proof of part (b) of the 

theorem is straightforward by verification. [] 

In order to get some insight into the eigenvalues of the matrix aF1au, we consider the case where ar1au is 

tridiagonal; then the theorem states that E is diagonal. The usual approach now is to apply the frozen coefficient 

technique, that is, to consider the entries of the matrix E to be independent of j, thus simulating the analysis for a 

linear problem. Unfortunately, even in the case of the model problem, the assumption that E is a constant matrix is 

not true. This can be seen from the definition ofE: all entries of E are equal (in the model case), except for the first 

element e1, because the matrix LC-1U gives no contribution for this first element (11 =0). This exception has some 

consequences which will be discussed below. For the moment we ignore this deficiency and continue the analysis. 

Let us write 

ej = d rnr + c (1-rnr) I rnr, j = 1, ... , m, 

with d and c constant (for example, in the model problem (2.1), we have d = - 1/8 and c = - 1/2), then the eigen­

values of aF1au are given by 

(4.4) a.(µ)= IT a.r<µ), a.r<µ) := 1 - 'Yr (2 - rnr) [µ + d rnr + c (1-rnr) I rnr r 1 [Tzr(l + 2µ) - 1]/2. 

r E JR 

Here, as before, µ runs through the eigenvalues of D. 

Using this expression, we performed numerically a minimization process for the maximal value of ja.(µ)I on 

the eigenvalue interval of D. In this minimization process we imposed the constraint 0 < rnr < 2, which is natural in 

the SSOR-context. Furthermore, because of the deficiency discussed above, we examined the eigenvalues of aFJau 

for the first element of the cycle separately (i.e., for r = 0), using the actual value for e1. That is, we considered the 

matrix (D+Ef 1D (cf. (4.2)). It turned out that, for all values ofrn0, this matrix possesses an eigenvalue 1/(2- rn0), 

resulting in an eigenvalue 1 - Yo for aF1au. Hence, convergence of this unsmoothed SSOR process requires 

0 < Yo < 2. The necessity of this requirement was experimentally verified. For this reason, we imposed the additional 

constraint 0 < 'Yr < 2 in the minimization process. 

The eigenvalues ofD defined by (1.19) are known from which we derive -1 :5: µ :5: - [1 - cos(7t/2q)]/2, where we 

have assumed the relation m + 1 = 2q, m + 2 being the dimension of D. In Table 4.1, more or less optimal 

parameters are given, together with the value ofb, denoting the spectral radius of aF1au, i.e., 
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b := maximum of la(µ)I on the interval of eigenvalues µ of D. 

These parameters are determined on the basis of the model problem (2.1 ), where d = - 1/8, c = - 112, R := {0, 1, ... , 

q}, and q = 1until8. These values were produced by the NAG routine E04 JAF for a suitable initial guess which was 

obtained by trial and error. 

Although the above analysis is of restricted value (because of the deficiency in the frozen coefficient approach) 
,., 

and consequently the given parameters Yr and mr will not be optimal, the values of b given in Table 4.1 are 

impressive small. In addition, our numerical experiments show that these parameters considerably increase the rate of 

convergence. We emphasize, however, that the given parameter sets are not unique with respect to minimizing the 

maximum of la(µ)I. We found different sets of parameters which resulted in more or less the same damping factor'b. 

Table 4.1. Smoothed SSOR parameters for the model problem. 

r Yr mr Yr mr Yr mr Yr mr 

0 1.29483 1.16429 1.52664 1.31372 1.43313 1.26135 1.39671 1.23887 

1 0.67942 0.93100 0.83590 0.39225 0.59135 0.73279 0.61539 0.66521 

2 0.49908 0.49426 0.23099 1.30867 0.25340 1.35313 

3 0.19771 0.88092 0.19440 0.95840 

4 0.18481 0.84568 
., .... ,... 

""' q = 1, b = .0066 q = 2, b = .0028 q = 3, b = .0043 q = 4, b = .0043 

0 1.92161 1.46464 1.45986 1.26980 1.29871 1.15502 1.27984 1.12992 

1 0.90909 1.55156 0.76625 1.54084 0.80108 1.55903 0.45913 1.29275 

2 0.24421 1.31166 0.12622 1.45593 0.24561 1.68935 0.31452 1.68786 

3 0.73262 0.73607 0.18459 1.24836 0.16416 1.88198 0.25115 1.06478 

4 0.32470 0.57986 0.09664 1.43038 0.21041 1.10603 0.38700 1.22488 

5 1.24289 0.18750 0.07353 1.29864 0.20718 1.38827 0.10989 1.09238 

6 0.19498 0.78077 0.09785 1.11741 0.21708 0.79981 

7 0.11317 1.04884 0.08668 1.21313 

8 0.09560 1.15921 
,., 

q = 5, b = .0041 
~ 

q = 6, b = .019 q = 7, 'b = .025 q = 8, 'b = .019 

We conclude our analysis of smoothed SSOR with a picture of the behaviour of the function a(µ). In Figure 4.1 

this function is plotted for q=3. 
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Figure 4.1. Behaviour of the function a(µ) for q = 3 . 

4.2. Numerical experiments 

By using residue smoothing employing the parameter values of Table 4.1, we obtain for the model problem the 

results as listed in Table 4.2. If, in addition, the Chebyshev acceleration is applied to this smoothed process, then the 

gain is almost negligible. This behaviour is similar to that observed in the preceding section on smoothed Jacobi 

iteration. 

Table 4.2. Smoothed SSOR method for the model problem. 

Chebyshev 

acceleration [a,b] Ax=l/16 Ax=l/64 Ax=l/256 

no 17 39 64 

yes 
,, .., 

[-b,+b] 18 38 56 

yes [-.01,+.01] 21 39 63 

eyes [-.1,+.1] 27 50 74 
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The conclusion must be that the accelerating effect of the smoothing technique is so strong that the Chebyshev 

acceleration (which was invented to speed up traditional, unsmoothed basic iteration methods) is of no use in this 

case. 

Next, we apply the same methods to the nonmodel problem {2.3). The analoque of Table 3.4 is given by Table 

4.3. The conclusions that can be drawn from this table are the same as mentioned above. Finally, when compared 

with smoothed Jacobi, smoothed SSOR, provided with more or less optimal parameters, is slightly faster; however, 

the price to be paid is a more complicated algorithm. 

Table 4.3. Smoothed SSOR method for problem (2.3). 

Chebyshev 

acceleration [a,b] 

no 
_, N 

yes [-b,+b] 

yes [-.01,+.01] 

yes [-.1,+.1] 

yes [-.2,+.2] 
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