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1. INTRODUCTION 

We consider integrals of the form 

which reduces to a modified Bessel function in the case that f is a constant. We have 

1 

(1.1) 

(1.2) 

The integral in (1.1) is considered with a,>. ;::: 0 and large positive values of z. We aim to derive 
asymptotic expansions for F>..(z,a) that hold uniformly with respect to both a and>. in the interval 
[O, oo). To handle the transition of the case a = 0 to a > 0, the modified Bessel function (1.2) is 
needed. Observe that when a = O the essential singularity in the integrand of (1.1) disappears and 
that (1.1) becomes a more familiar Laplace integral, that can be expanded by using Watson's lemma. 

First we consider fixed values of>.. To describe the asymptotic features we introduce the positive 
number f3 defined by 

/3=~. (1.3) 
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The saddle points of exp(-zt - aft) are located at t = ±(3. When (3 is bounded away from zero, 
we can use the familiar Laplace method, since at the point t = (3 the integrand has the form of a 
Gaussian function. When, however, a -+ 0, that is, (3 -+ 0, the internal saddle point coalesces with 
the point t = 0, where the argument of the exponential function has a pole. In addition, there is an 
algebraic singularity (if). :j; 1), but the influence of the essential singularity due to the pole is more 
significant. Observe that in the limit a= 0, as mentioned earlier, the pole disappears; also, both saddle 
points coalesce with the pole. These asymptotic features are typical for certain integrals defining Bessel 
functions. For this reason the modified Bessel function in (1.2) serves as a basic approximant in the 
uniform asymptotic expansions in this paper. In §4 we show how an integral with the same phenomena 
can be transformed into the standard form (1.1). 

The integral in (1.1) is the simplest case with the asymptotic features described above, especially 
when the parameters are in the indicated intervals. We apply the results to a confluent hypergeometric 
function. By allowing different intervals of integration, say a contour in the complex plane, we can also 
consider negative values of a. Then the ordinary Bessel function J,,(z) shows up. This case is more 
difficult, but the applications are very interesting in the theory of special functions. 

Consider as an analogue of (1.1) a loop integral in the form 

( 1.4) 

This notation means that the contour of integration starts from -oo, arg t = -11", describes a circle 
counter-clockwise around the origin, and returns to -oo, argt = +11". The integral (1.4) has the modified 
Bessel function I:>.(2.;;:;z) as approximant. When f = 1 we have 

G;1.(z, a)= (z/a)J..f 2 h(2...;c;;). (1.10) 

When a is negative this function is an ordinary J-Bessel function. In [2] and [6] integrals of the type 
(1.4) are treated and the method is used for obtaining a uniform expansion of Laguerre polynomials. 
We plan to return to this problem in a future paper. 

The starting point (1.1) is of interest since it has a real interval of integration. So the transformation 
to the standard form (1.1) involves a real mapping. This makes the first steps of the analysis rather 
simple, since we do not need to trace the transformed contour in the complex plane. For studying the 
asymptotic nature of the expansion, we use complex variables, however. 

The plan of the paper is as follows. In §2 we construct a series expansion based on an integration 
by parts procedure, and we give estimates for the remainder in the expansion. In §3 we consider an 
expansion that is based on expanding f at the internal saddle point. In §4 we give an application to 
confluent hypergeometric functions. In §5 the parameter >. is considered as a second uniformity param­
eter in [O, oo), and again we apply the methods on a confluent hypergeometric function. Especially, we 
pay attention to the mappings needed for a transformation to the standard form. 

TERMINOLOGY. We call a parameter fixed when it does not depend on the parameters z, a,>.. 

2. AN INTEGRATION BY PARTS PROCEDURE 

The procedure of this section takes into account both saddle points ±(3 of the exponential function 
(where (3 is given in (1.3)), although -(3 lies outside the interval of integration. For this reason we 
assume that f is also defined at negative values of its argument, and that f is sufficiently smooth for 
the operations to be used here. Further conditions on f will be given later. 
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2.1. Construction of t11e forma.1 series 

The first step is the representation 

f(t) = ao + bo(t - /3) + (t - {3/t)g(t), (2.1) 

where a0 , b0 follow from substitution oft= ±/3. We have 

ao = /(/3), 
1 

bo = 213 [!(/3)-f(-/3)]. 

Inserting (2.1) into (1.1) we obtain 

where A.x, B.x are combinations of the modified Bessel functions introduced in (1.2). It is straightforward 
to verify that 

(2.2) 

An integration by parts gives 

with 

fi(t) = t 1->. :t[t>.g(t)] = .Ag(t) +tg'(t). 

We see that zFi1)(z, a) is of the same form as F.x(z, a). The above procedure can now be applied to 

zFi1)(z, a) and we obtain for (1.1) the formal expansion 

00 00 

F.x(z,a) ""A.x(z,/3) L::>sz-' + B.x(z,/3) 2.:b1 z-', as z--+ oo, (2.3) 
s:O 

where we define inductively fo = f, go = g and for s = 1, 2, ... 

(2.4) 

REMARK 2.1. As mentioned earlier, for this procedure we need function values off and derivatives 
at negative values, although the integral(l.1) is defined only fort-values in [O,oo). When we consider 
analytic functions f, as we do later, we assume that f is analytic in a domain 0 in the complex plane 
that contains the real line. When, however, f is supposed to belong to Ck[O, oo), we assume in the 
above procedure that f has been smoothly continued on (-00,00). 
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2.2. The remainder of the expansion 

We introduce a remainder for the expansion in (2.3) by writing 

n-1 n-1 

F,x.(z, a)= A,x.(z, ,8) 2: a,z-' + B.x_(z, /3) 2: b.z-8 + z-n Rn, (2.5) 
•=O •=O 

where n = 0, 1, .... When n = 0 the sums are empty and Ro = F.x.(z, a). The integration by parts 
procedure yields for Rn the representation 

(2.6) 

where fn is defined by (2.4). 
When a bound for lfn(t)i is available, say, 

t;:::: 0, n = 0, 1, ... , (2.7) 

then a bound for Rn reads 
(2.8) 

Since fn depends on /3, the quantity Mn may also depend on /3. It follows that for bounded values of {3, 
say /3 E [0, /30], /30 fixed and finite, the estimate (2.8) of the remainder Rn shows the asymptotic natme 
of the expansion (2.5), provided that (2.7) is satisfied. 

We must point out that, in general, it is rather difficult to find realistic numbers 111n in order to 
obtain sharp estimates in (2.8). Also, the estimate in (2.7) is rather global, since it takes into account 
values off n in the complete interval [O, oo). 

A sharper and more realistic bound for Rn may be obtained as follows. Let 

t > 0, O";:::: o. (2.9) 

Observe that wu(f3) = 1 and that 

lim Wq(t) = lim Wq(t) = +oo. 
t-o t-+oo 

We assume that we can assign quantities O"n and Mn, which may depend on f3 and which satisfy 

O"n ;:::: 0, ln fixed and positive, (2.10) 

such that for all t > 0 we have 
lfn(t)I $Mn lfn(f3)1 Wq,.(t). (2.11) 

Then in stead of (2.8) we obtain 

(2.12) 

where 
(2.13) 

When fn(/3) = 0 a slight modification is needed. The idea about this approach is that in (2.11) function 
values outside a neighborhood oft = /3 may be estimated very roughly, and that the integral, which 
results after inserting the right-hand side of (2.11) into (2.6), can be written in terms of one of the 
approximants in front of the series in (2.5). 
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A possible approach to compute Mn and Un of (2.11) is to start with trial values of Mn satisfying 
(2.10). Then we compute 

where 

Un= sup h(t), 
t~O 

J (t) = ln lfn(t)/[Mnfn(/3)]1 
n t + /32/t-2/3 ' 

Observe that the function defined in (2.13) satisfies 

/3 fixed in[O,oo), 

t f. /3, fn(/3) =fi 0. 

A..\(z, /3)/A..\(z, /3) = 1 + o(l) as z-+ oo, 

uniformly with respect to /3 E [O, oo). This follows from (2.2) and well-known asymptotic relations for 
the Bessel function. 

3. EXPANSION AT THE INTERNAL SADDLE POINT 

In the expansion (2.3) we have used function values off at the negative saddle point -{3. These values 
appear in the coefficients a., b. of the expansion. The form of the expansion is very attractive, since only 
two special functions arise, and also since the parameters {3 and z are nicely separated in both series. 
Although the expansion (2.3) has a canonical form, there remains the drawback that the function f 
must be defined at (-oo, O] in order to obtain for /3 a uniformity domain [O, oo). For example, it is not 
possible to obtain such a uniformity domain when f(t) = l/(t + 1). In this section we only expand the 
function f at the internal saddle point and we formulate further conditions on f in order to obtain an 
optimal domain for f3. 

3.1. The functions Q. and Q.(() 

We expand f in the form 
00 

f ( t) = I: a, (,8)( t - /3)", 
J(•) (,8) 

a,= . 
s! 

(3.1) 

Substituting (3.1) in (1.1), we obtain after interchanging the order of summation and integration the 
formal result 

where 

00 

F..\(z,o) ""z-..\ L:a.({3)Q,(()z-•, as z-+ oo, 
1=0 

Q.(() = (..\+• fo 00 t..\- 1 (t - l)8e-W+i/t) dt, 

( = f3z. 

(3.2) 

(3.3) 

(3.4) 

The functions Q.(() can be expressed in terms of the modified Bessel functions defined in (1.2). It is 
easily verified that 

Q.(() = 2(..\+• ~(-1)•-r (;) J(..\+r(2(). (3.5) 

On the other hand, integrating by parts in (3.3), we obtain the recursion relation 

Q.+2 = (s + >. + 1 - 2()Qs+1 + ((2s + >. + l)Q. + s(2Q,_1, s = 0, 1, 2,... (3.6) 

For proving the asymptotic properties of (3.2) it is useful to introduce the functions 

(3.6) 
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By applying Laplace's method it is found that for large positive values of ( 

(3.7) 

Furthermore, we have when z is fixed 

lim Q.(() = r(>. + s). 
13-0 

(3.8) 

3.2. Error bounds, interpretation of the expansion 

We introduce a remainder in the expansion (3.2) by writing 

n-1 

f(t) =I: a.(,B)(t - ,8)" + Rn(t, ,B)(t - ,ar, n = 0, 1, 2, .... (3.9) 
•=O 

Then we obtain for (3.2) 

n-1 

F,\(z,a) = z->. [L: a8 (/3)Q 8 (()z-• + En(z, a)z-n], (3.10) 
s=O 

where roo 2 
En(z, a)= z,\+n lo t,\- 1(t - Pr Rn(t,f3)e-z(t+f3 ft) dt. (3.11) 

Let f be analytic in a connected domain 0 of the complex plane; 0 may depend on /3 and we 
assume that the radius of convergence R13 of the expansion (3.1) satisfies the condition 

R13 ;;::: p(l + /3)", ,8;;::: 0, (p, n: fixed, p > 0, n:;;::: 1/2). (3.12) 

This condition says that the singularities off should have a distance of 0(/3"'), uniformly with respect 
to ,8 E [O, oo ). When n: < 1/2 the singularities off are too close to the saddle point. Furthermore, we 
assume that f has the following growth condition in 0: there is a real fixed number p such that 

sup(l + Jtl)-PJ/(t)J (3.13) 
ten 

is bounded for /3 E [0, oo). 
The coefficients a,(/3) of (3.1) can be written as 

1 r t(t) 
aa(/3) = 21ri Jcr (t - f3)•+1 dt, (3.14) 

where Cr is a circle with centre /3 and radius r(l + /3)"'; r may depend on ,8, but should be uniformly· 
bounded from zero and small enough to keep Gr inside 0. Using (3.14) we obtain the following form 
of Cauchy's inequality 

(3.15) 

where 
Mr(/3) = sup J/(t)J. 

tECr 
(3.16) 

In the next theorem we introduce an asymptotic sequence {t;I>.}, which is constructed on the basis of 
the estimates in (3.7) and (3.14). For the concept of asymptotic scale and (generalized) asymptotic 
expansion we refer to [4 p. 25]. 



THEOREM 3.1. Let ( = /3z, K, 2: 1/2 and let 

<Ps = </;,(z, /3) = Mr(/3)(1 + /3)-'"(1 + ()>-+(s-l)f2e-2( z-•, s = 0, 1, 2, .... 

Then {</J,} is an asymptotic scale as z __... oo, uniformly with respect to /3 E [O, oo). 

PROOF. 
if z 2: l. 

Now we write the expansion (3.2) in the notation 
co 

z>- F.>-(z,a) ""I>s(/3)Q,(()z-•; {efJ,} as z-oo, 
s:O 

and we have 
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(3.17) 

(3.18) 

• 
(3.19) 

THEOREM 3.2. The expansion (3.19) k a uniform asymptotic expansion as z __... oo, uniformly with 
respect to f3 E [O, oo). 

PROOF. According to the definition of generalized (uniform) asymptotic expansions, we have to prove 

z-n En(z, {3) = O(</;n), n = 0, 1, 2, ... , (3.20) 

as z __... oo, uniformly with respect to f3 E [O, oo). The interval of integration in (3.11) is split up as 
follows 

[0, oo) = LL U [L, t+] U Li+, (3.21) 

where 
Li_ = [O, L], Li+ = [t+, oo), t± = /3 ± r 1(1 + /3)", 0 < ri < r, r 1 fixed, (3.22) 

with r as in (3.14). When L happens to be negative, we replace it by 0. Fort E [L, t+] we can write 

1 r f ( r) 
Rn(t,(3) = 27ri}cr (1-t)(1-f3)n dr, (3.23) 

with Gr as in (3.14). If TE Cri we have \1 - t\ 2: (r - r 1)(1 + /3)". Thus we obtain as in (3.15) 

\R,.,(i,/3)1 ~ Mr(f3_}(1 + /3)-n". (3.24) 
rn l(r - r1) 

Hence the integral over [L, i+] in (3.11) gives a contribution which is bounded by 

z>- Mr(/3)(1 + f3)-n11: it+ t>--1 It_ /3lne-z(t+,B 2 /t) dt = 
rn-l(r - r1) t_ (3.25) 

Mr(/3)(1 + ,B)-n" Z-nQn(()O(l), as Z __... oo, 

uniformly with respect to f3 E [O,oo). Using (3.7), (3.8) and (3.17), we conclude that 

z-n En(z, ,\) = L +I++ O(</Jn), as z __... oo, (3.26) 

uniformly with respect to f3 E [O, oo), where I± are the contributions to (3.11) from Li±. For t E .6.± 
we write 

n-1 

(t - /3t Rn(t, ,B) = f(t) - I: a,(f3)(t - /3)' 
s=O 

and the proof is finished when we have shown that 

z>-j t>--le-z(t+/9 2 /t)g(t)dt=O(<Pn), as z-oo, (3.27) 
a± 

uniformly with respect to f3 E (0, oo ), where g(t) is lf(t)\ or \a,(t - /3)' I (0 ~ s ~ n - 1). In fact it 
possible to prove that 

!±,...., O; {</J,}, as z-oo, (3.28) 

uniformly with respect to f3 E [O,oo). That is, I± are asymptotically equal to zero with respect to the 
scale {</J,}. The proof of (3.28) is similar to that given for another type of integrals in [5, Lemma 3.3], 
and will not be repeated here. • 
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The above theorem only gives an order estimate in terms of </Jn for the remainder defined in (3.11) 

and gives an interpretation of the asymptotic nature of the expansions (3.2) and (3.19). To obtain 
a numerical upper bound for En(z, )..) we proceed as in the previous section. Since f(t) satisfies the 

growth condition (3.13), it is possible to find numbers Mn,<rn satisfying (2.10), such that 

0 < t < 00. (3.29) 

Using this in (3.11), we obtain the bound 

(3.30) 

When an(f3) happens to vanish as a function of fJ E [O, oo), this approach needs a slight modification. 

4. APPLICATION TO CONFLUENT HYPERGEOMETRIC FUNCTIONS 

We start with the confluent hypergeometric function defined by 

( 4.1) 

We consider a as the large parameter and x as a uniformity parameter in [O, oo); b is a fixed real 
parameter. We take b::; 1; the relation 

U(a,b,x) = x1-bU(a+ 1- b,2-b,x) 

can be used when b > 1. 

4.1. Transformation to the standard form 

First we give a simple intermediate transformation. The function [u/( u + 1 )]a assumes its maximal 
value (on [O, oo)) at u = oo. This function controls the asymptotic behaviour of the integrand and, 

hence, we transform it to an exponential function by writing u/(u+ 1) = exp(-w). Then (4.1) becomes 

(4.2) 

where 
f( w) = [ 1 - cw l >.-1. 

w 
( 4.3) 

We transform (4.2) into (1.1) with the help of the transformation 

v (32 
w+--=t+-+A 

eW - 1 t ' 
( 4.4) 

where v = x/a and /3,A are to be determined. We compute them on the following condition on the 
mapping: the critical points of the w-function in ( 4.4) must correspond with the critical values of the 
t-function. Critical w- and t-values are ±w0 , ±t0 , where 

It follows that 

to = (J, -1( ( v + Wo) w 0 = cosh 1 + v /2) = ln 1 + 2 , Wo = Vv2 + 4v. 

v 
A=--, 

2 
fJ wo + sinh wo 1 1 ( v + Wo) 1 

= =-nl+ +-~. 
2 2 2 4 

( 4.5) 

( 4.6) 



From the simple differential equation 

df3 1 - = -)(11 + 4)/v 
d11 4 
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it follows that {32 of (4.4) is an analytic function of 11. Conversely, 11 is an analytic function of {3 2• 

With these values of A, f3 the mapping w ~ t is regular at w = ±w0 and at w = O. In fact it is 
regular in (-oo, oo) and as a conformal mapping in a large domain n of the complex plane. We have 
the correspondances 

t(±oo) = ±oo, t(±wo) = ±(3, t(O) = 0. (4.7) 

More details on the mapping are given in the next subsection. 
Using transformation (4.4) in (4.2), we arrive at the standard form 

(4.8) 

with z =a, a= z/32 , >. = 1- b, /3 defined in (4.6) with v = x/a and 

( 1 - e-w )>.-l dw 
f(t) = t dt' 

dw (ew - 1)2 t2 - 132 
dt = -t- (ew - 1)2 - vew · (4.9) 

The function t( w) defined in ( 4.4) is an odd function of w. This easily follows from rewriting ( 4.4) in 
the form 

1 II {32 
-v+w+ --= t+-. 
2 eW - 1 t 

(4.10) 

After these preparations the expansion of (3.2) can be constructed. The expansion holds uniformly 
with respect to f3 E [O,oo); that is, uniformly with respect to x E [O,oo). 

The asymptotic nature of the expansion follows from combining (3.20) and (3.17). For this partic­
ular case we can derive an upper bound for Mr(f3) of (3.16). The t- values on the circle are written 
as t = f3 + rv',6-tT, with JrJ = r, r fixed. When f3 is large, we derive from (4.6) 11"" 4/3. So, for large 
values of /3, we obtain from (4.10) w + 11/(ew - 1)""" r 2, or w""" ln(v/r2). It follows from (4.9) that 
f(t) """2(3112-\ t E Cr. Consequently, we can find a fixed number]{, such that 

Mr(/3) ~ K(f3 + 1)112-\ f3 E [O, oo). (4.11) 

To conclude this subsection, we give the first coefficient a0 (f3) of (3.2). A few calculations based 
on ( 4.9) and l'Hopital's rule yield 

dw r----,-...,....,-,--
dt It= ±,8 = y'2tanh(wo/2)/f3. 

So we obtain 

( 1- e-wo )>.-1 
ao(/3) = J2tanh(wo/2)/f3 f3 . (4.12) 

4.2. Analytical properties of the mapping ( 4.4) 

We now consider the mapping ( 4.4) in more detail. We restrict w to the strip 

H = {w I - oo < ~w < oo, -71' ~ ~w ~ 71'}, (4.13) 

and we prove the following 

THEOREM 4.1. Let 0 be the image of H under the mapping w ~ t defined in (4.4). Let v E [0, oo) 
and let A,(3 be defined by (4.6). Then t(w,{3) is analytic in H. 
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PROOF. We prove that t(w,/3) and w(t,/3) are analytic in a fixed neighborhood of(O,O). Accordingly, 
we concentrate on small (complex) values of the parameters. For remaining values the proof is much 
easier. From ( 4.6) it follows that 

wo = /3[1 + o(l)], v = /32[1 + o(l)], as /3-+ 0. 

Recall that t( w) is an odd function of w (see ( 4.10)). We introduce a function y == y( w, (3) by writing 

t == w[L+ (w2 -w6)y]. 
Wo 

(4.14) 

This matches the points w = 0 ~ t = 0 and also the critical points w = ±wo ~ t = ±/3; y is an 
even function of wand should vanish with /3. Substituting (4.14) in (4.10), we obtain 

where <f>(w) = w/(exp w - 1) - 1 + w/2. We expand 

<f>(w) - <P(wo) _ ~ b ( 2 _ 2)$-l 
w2 - w2 - L.,; $ w wa ' 

0 •=1 

/3- Wo 
b1 = . 

VWo 

Since </>( w) is analytic if Jwj < 2-ir, the series converges if /3 and w are small. Finally, we obtain the 
equation F(y, w, /3) = 0, where F is given by 

The series represent analytic functions of w, w0 . Since w0 is an analytic function of /3, F is analytic in 
a fixed neighborhood of(0,0,0), F(0,0,0) = 0, and Fy(0,0,0) = -1. After these preparations we can 
use an implicit function theorem (see, for instance, (1, p. 36]) and solve for y(w, /3); it is analytic in a 
fixed neighborhood of (0, 0). By using (4.14) it follows that the same holds for t(w,/3). • 

The first terms in the expansion 

t(w,/3) = c1(/3)w + c3(/3)w3 + ... 

easily follow from ( 4.10). We have 

c1(/3) = /32 /v, cs(/3) =(er+ /32 /6 - c1 - vci/4)/v. 

THEOREM 4.2. The mapping (4.4) is univalent in H. 

PROOF. When ~w -+ ±oo we have w,..., t. Hence the mapping is one-to-one at oo. Next we sho\v 
that the mapping is univalent on .C+ = { w = u + iv Ju E ( -oo, oo), v = 11"}, which is the upper part 
of the boundary 8H of H. The remaing part follows by symmetry of the mapping. We write t = rei8 • 

The image of .C+ in the t-plane is defined by the equations 

where 

/32 
7r = rsinB(l - z-), w(u) = <I>(B), 

r 

w(u) = v/2 + u - v/(eu + 1), 
132 

<I>(B) = rcosO(l + 2 ). 
r 

(4.15) 



11 

The first equation in (4.15) defines a curve given by 

7r + J 7r2 + 4132 sin2 () 
r( 0) = 2 . 0 , 0 :::; () :::; 7r. 

sm 

It follows that r > 7r /sin (). Furthermore, we have 

'11(-oo) = <I>(7r) = -oo, w(+oo) = <I>(O) = +oo. 

The function '11( u) is one-to-one on (-oo, oo ). The same is true for <I>(O) on [0, Tr], but the proofrequires 
a little extra work. We have, using the first equation in (4.15), 

dr r cos 0( r 2 - f32 ) 

dO = - sin O(r2 + /32) · 

It follows that 
<I>(O) = _ sinO(r2 +132) [ 2 (dr)2] 

dO r 3 r + dO ' (4.16) 

which shows that <I>( 0) is one-to-one on [O, 7r]. We infer that for each value u E (-oo, oo) we can find 
one and only one value(} e: [0,7r), such that ~(u) = '1)(0), and, hence, one and only one value r(O). So, 
the mapping w 1-+ t is one-to-one on 8H. We now use a well-known result of complex function theory, 
that says that consequently the mapping is also univalent in the interior of H, since it is analytic there. 
See [3, Vol. II, p. 118]. • 

For the uniform expansion of ( 4.8) we take n as the image of the strip H under the mapping w 1-+ t. 
From J(t) defined in (4.9) it follows that (3.13) is bounded inn if p = 1 - >.and that Mr(/3) of (3.16) 
is well defined. There remains to show that the radius of convergence R13 of the series in (3.1) satisfies 
(3.12). It appears that we must take "' = 1/2. In fact we show that n contains a disc around f3 with 
radius p$+T (p fixed), for all f3 :;::: 0. We try to intersect the curve defined by the first equation of 
( 4.15) with a circle around t = 13. We write t = u + ir. This gives the equations 

( u _ /3)2 + r2 = r2, 
/32 

7r = r(l - 2 J, 
u +r 

with the "touching" condition 
u-/3 2u(r-7r)2 

-r- = 7r132 + 2r(r - 7r)2 · 

For large values of /3 the solution of these three equations reads 

T > tr, 

r = 7r + a./P[l + o(l)], u = /3 + bVP[l + o(l)], r = cJ;B'[l + o(l)], 

with a = b = ..;;fi, c = ...fi. 
This shows that !'2 is large enough to apply Theorem 3.2. From a further analysis it follows that 

the value K. = 1/2 is best possible in this case. Apart from the real critical points ±w0 given in (4.5), 
which are regular points for the mapping, we have other ones located at ±w0 ± 27rni, n = 1, 2, .... For 
large values of /3 those are mapped at a distance 0( .JiJ) from the critical point t = (3. 

REMARK 4.1. The behaviour of f(t) of (4.9) in the left half-plane ~t < 0 is quite different from that 
in ~t > 0, except when ). = 1. Consequently, the approach of §2 is less attractive. See also Remark 
2.1. 

REMARK 4.2. When b = 1/2, (4.1) is a parabolic cylinder function and the functions Q.(() defined in 
(3.3), (3.5) are elementary functions (.A= 1/2). Then (3.2) gives an expansion of the parabolic cylinder 
function D,,(z), as v-+ -oo, which is uniformly valid with respect to x E [O, oo). 
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5. A SECOND UNIFORMITY PARAMETER 

In this section we consider (1.1) with). as a second uniformity parameter in (0, oo). Thus we take more 
advantage of the fact that the modified Bessel function is a function of two variables. In this case it is 
convenient to put the reciprocal gamma function in front of the integral. So, now we write 

F (z ) = _1_ {oo t><-le-zt-aftJ(t) dt 
).. 'Q: f(.A) J 0 ' 

(5.1) 

In [5] we considered (5.1) with a:= 0, again with z -+ oo and >. as a uniformity parameter in [O, oo). 
In [6] we applied the present method for a loop integral (without proofs) to the case of Laguerre 
polynomials. 

We write A = µz. The critical points of the integrand are now defined as the points were the 
derivative oft+ 13 2 /t - µ ln t vanishes. This gives the real critical points 

µ±T . I 
t± = --, T = v µ2 + 4132. 

2 
(5.2) 

Observe that also in this case one of the real saddle points is outside the interval of integration, and 
that the "phase function" that is used to compute the critical points has a logarithmic singularity at 
t = 0. The two critical points coincide with this singularity when /3 and µ both vanish. At the same 
moment, however, the logarithmic singularity disappears. 

First we construct an expansion by using the integration by parts procedure of§2. The modification 
of (2.1) is 

f(t) =co+ do(t - t+) + (t - µ - /32 /t)h(t). (5.3) 

Using this in (5.1) we obtain, after repeating the procedure, 

n-1 n-1 

F>-.(z, a:)= C(z,13,µ) L c,z-• + D(z,{3, µ) L d,z-• + z-n Rn. (5.4). 

The functions in front of the series are again combinations of Bessel functions as in (2.2). \Ve have 

The coefficients C3 , d, follow from the recursion relation 

fo(t) = f(t), 
d 

f,(t) = t dt hs-1(t) =Cs+ d,(t - i+) + (t - µ - 132 /t)hs(t), 

c, = f,(t+), d, = f(t+)-f(t_). 
t+ - t_ 

The remainder Rn in (5.4) can be written in the form 

1 100 Rn = -- t><-le-zt-a/tf (t) dt 
f(.A) 0 n . 

A bound can be constructed by using constants <Tn, Mn satisfying (2.10), and using a function 

Wq( t) = e"(t+/32 /t-µ In t-t+-/3 2 /t++µ ln t+) 

such that, as in (2.11), for all t > 0 



13 

Then we obtain 
l.Rnl ~Mn lfn(t+)IC(z,,B,µ), 

where 
C(z,/3,µ) = C(z -<Tn,/3,µ)e-un(t++/32/t+-µlnt+) 

When f n(t+) = 0 a slight modification is needed. An optimal value of <Tn follows from the method 
described in §2.2. 

The analogue of the expansion of §3 is obtained by substituting 

n-1 

t(t) = :L c.({3, µ)(t - t+Y + Rn(t, /3, µ)(t - t+t, (5.5) 
s=O 

So we obtain 
n-1 

F>-.(z, a)= z->-. [L c,({3, µ)P.z-• + En(z, a, .\)z-n], (5.6) 
s=O 

where 

En(z,a,.\) = z>-.+n 100 t>-.- 1 (t-t+t.Rn(t,{3,µ)e-z(t+f3 2 /t)dt, 

p - z>-.+s loo t>-.-l(t - t )'e-z(t+/3,/t) dt = 2z>+•13>-. ~ (s) (-t )s-r(3r J{ (2(3z) 
s - r(>.) 0 + r(>.) ~ ,,. + >-.+r . 

A recursion relation for P, follows from the above integral representation. 
The asymptotic properties can be described in terms of the functions 

z>-.+s loo 2 P = -- t>-.- 1 It - t Is e-z(t+/3 ft) dt 
• r(>.) o + 

"' ri>-.+(s-1)/2 -TJ(l+/3, /t~.) [(32 + ti] -(•+l )/2 r( s + 1) 
f(.\) e 2ti 2 ' 

(5.7) 
as 'f/ _,. oo, 

where T) = zt+. Since z is the large parameter, T) is large if at least one of the uniformity parameters 
{3, µ is bounded away from zero. 

The coefficients Cs and the remainder Rn can be written as 

1 j f( r) 
c.(/3, µ) = -2 . ( t )• dr, 

71"2 Gr r - + 
1 j f( r) 

Rn(t,{3,µ) = 27ri c. (r-t)(r-t+)n dr, 

where Gr is a circle around t+ with radius r(l + t+)",,.., 2: 1/2, r > 0. We accept that f depends on 
both uniformity parameters /3, µ, and we assume that the domain of analyticity D is large enough to 
contain such a circle for all /3, µ 2: 0. 

As in §3 we have the following theorems. The quantity Mr(/3,µ) is defined as in (3.16); we also 
assume that (3.13) is bounded for all /3, µ E [O,oo). 

THEOREM 5.1. Let 'f/ = zt+, K, 2: 1/2 and Jet 

X = Mr(f3' µ) (1 + t )-si< (1 + 'll)(s-1)/2e-'1(1+/32 /ti) [(32 + ti ]-(s+l)/2 
s f(.\) + ., 2ti , s=0,1,2, .... 

Then {x.} is an asymptotic scale as z _,. oo, uniformly with respect to (3, µ E [O, oo ). 

THEOREM 5.2. The expansion 

00 

z>-.F;>..(z,a)"'Lc•(f3,µ)P,z-•; {x.} as z_,.oo, 
•=O 

is a uniform asymptotic expansion as z _,. oo, uniformly with respect to (3, µ E [O, oo). 

(5.8) 

(5.9) 
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A bound for the remainder En of (5.6) can be constructed by combining the methods used for 
(3.30) and the above estimate for the remainder of (5.4). 

5.1. Application to a confluent hypergeometric function 

Our starting point is (cf. (4.2)) 

r(a) U(a l- >. x) = _1_100 e-z(-µln(1-e-"')+111+v/(e"'-1)J dw 
r(>.) , ' r(>.) 0 1 - e-111 , 

(5.10) 

with z =a,µ = >./ z, v = x/ z. The real critical points of the "phase function" are 

( µ+v±W) 
W± =In 1+ 2 , W = J(µ + 11)2 + 4v. (5.11) 

The transformation to the standard form (5.1) reads 

I/ 132 
-µln(e"' -1) + (µ + l)w + -- = t + - - µIn t +A; 

e111 -1 t 
(5.12) 

A, /3 are determined by substituting W± and t±, where t± are the critical points defined in (5 .2). We 
have the correspondances 

t(±oo) = ±oo, t(w±) = t±, t(O) = 0. 

Observe that the introduction of a second parameter (here in the form ofµ) does not require a third 
constant in the equation (5.12). It has the same number of constants as (4.4). In fact, in order to 
obtain a regular mapping w t-+ t, the constants multiplying the log-functions in the left- and right-hand 
side of (5.12) must be the same. We assume that the log-functions take their principal branches. 

Elimination of A from the two equations (5.12) (with w = w±, t = t±) gives a relation for the 
unknown parameter /3 in terms ofµ, v: 

( 1) 1 2 + µ + v + W 1 W + µ + v W 2T 1 T + µ µ + n - µ n + = - µ n --. 
2+µ+v-W W-µ-v T-µ 

(5.13) 

By consideringµ E [O, oo) as a fixed parameter, we obtain a more transparent relation for f3(v) in the 
form of a differential equation: 

df3(v) (3W 
~ = 2vT' f3(0) = O. (5.14) 

The value of A follows from (5.12) by substituting w = t+, t = t+. We have 

A - ( + 1) 1 µ + v + W µ + v - W T - µ w+-µ n - - . 
µ+T 2 

Using (5.13), we can eliminate W/2 - T and we obtain 

1 132 
A = 2 [ (µ + 1) ln(µ + 1) + µ ln -;- - µ - v] . (5.15) 

The transformation (5.12) is discussed in the next subsection. By using it in (5.10) we obtain the 
standard form (5.1): 

F ( ) _ ezAr(a) ( ) __ 1_100 >.-1 -zt-a/t 
).Z,O'. - r(>.) Ua,1->.,x -r(>.) 0 t e f(t)dt, 

where z = a,at = z/32 ; (32 follows from (5.13) withµ= >./z,v = x/z. Furthermore, 

dw e"'(e111 - 1) t 2 - µt - /3 2 

f(t) = -1--e---111 dt - t (e111 - 1)2 - (µ + v)(e111 - 1) - v · (5.16) 
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The first coefficient of (5.9) equals /(t+). A few computations give 

co(f3, µ) = ew+/2.jT/W. 

The function f satisfies f(t) "'"' t as t -+ +oo, whereas f is exponentially small at -oo. This time we 
can also derive an expansion based on (5.4). 

5.2. Analytical properties of the mapping (5.12) 

The mapping w 1-+ t defined in (5.12) is one-to-one on the strip H given in (4.13). First we prove 
this property for the boundary. The equations for the image of the upper part of aH are given by ( cf. 
(4.15)) 

{32 
7r = rsinB(l - 2) - µB, w(u) = <P(B), 

r 

where 

w(u) =-A+(µ+ l)u - v/(eu + 1), 
(32 

<P(B) = rcos B(l + 2 ) - µIn r. 
r 

It follows that the image is given by 

µB + 7r + J(µB + 7r)2 + 4(32 sin2 () 

r(O) = 2 . B , 0 ~ 0 ~ 7r. 
sm 

The function w(u) is one-to-one on (-oo, oo). When we compute d<P(B)jd(), we find the same expression 
as in (4.16). Hence the mapping is univalent on the boundary for all (3, µ E [O,oo). 

It remains to show that the mapping is analytic inside H. The interesting question is: Is t( w) 
analytic at t = 0, t = W±, uniformly with respect to the parameters v, µ? Especially interesting are 
small values of the parameters, since then the critical points coalesce with the pole and log-singularity 
at w = 0. When one of the parameters is bounded away from the origin, the critical points W± are well 
separated. In that case the problem is simpler. Here we prove that t( w, v, µ) is analytic for complex 
values of the three arguments in a fixed neighborhood of (0,0,0). The proof follows the idea of §4.2. 

First we have 

THEOREM 5.1. (32 = {32(v,µ) defined by (5.13) is an analytic function ofv, µ. 

PROOF. As remarked earlier, we concentrate on small values of the parameters. Forµ= 0 the relation 
between v and f3 is given in ( 4.6), and we have mentioned there that f32 (v, 0) is analytic in the domain 
of interest. On the other hand, we have the expansion 

{32(v,µ)"" c1(µ)11 + c2(µ)11 2 + c3(µ)113 + ... , as v-+ 0. 

The coefficients c8 are analytic functions ofµ. The first few easily follow from (5.13): 

1 1 
c1(µ) = e(µ+l)ln(µ+l)/µ-1=1 + 2µ - 24µ2 + 0(µ3), as µ-+ 0, 

1 
c2(µ) = c1(µ)[µ + 2 - 2c1(µ)]/µ 2 = 12 + O(µ), as µ-+ 0. 

Next we observe that the quantity T of (5.2) is singular at (32 = -µ 2/4 and that W of (5.11) has 
singular points at v = v0 , v = v1, where 

Vo = -(µ + 2) + 2J;+l, V1 = -(µ + 2) - 2J;+l. (5.17) 

It is obvious that the singularities at -µ2 /4, v0 must correspond. That is, a necessary condition for (32 

to be regular for small values of lµI is f32(v0 ,µ) = -µ 2 /4. Note that vo ""-µZ/4 asµ-+ 0 and that 
(5.13) is satisfied when we substitute T = W = 0. 
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We "remove" the singularity at v = v0 from (5.13) and we introduce a function X = X(q,µ) by 
writing 

T + µ w - µ - v 1 + yqX 
T - µ w + µ + v = 1 - yqX) 

q = V - !IQ. 

In other words, 

.;qx - µW - <11 + µ)T T = µ[W + (v + µ).JqX]/ D, D = 11 + µ + .;qxw. 
- WT-µ(µ+v)' 

Now we can rewrite (5.13) in the form K + L + M = 0, with 

K = (W - 2T)D = W(v- µ) + ..jqX(v2 + 411- µ 2 ), 

2 + µ + II+ W 1 + JqZ 
L = D(µ + 1) ln 2 w = D(µ + 1) ln 1 r,;z) +µ+11- -yq. 

T + µ w - µ - II 1 + yqX 
M = Dµln T-W = Dµln l r;;x, -µ +µ+11 -yq. 

where 
Z = ..;v=v; = V q + Vo - Ill . 

2 + µ + II q + 2 + µ + Vo 

(5.18) 

(5.19) 

We expand K + L + M in powers of q. A first observation is that F( q, X, µ) := ( K + L + M) / Jq is a 
function of q, X, µ, the factor vq being completely removed. We expand F in powers of q. We have 

where F8 (X,µ) do not explicitly depend on q (or 11). We compute 

2../110 - 111(110 + µ)(µ + 1) 
Fo = (110 - µ)-./vo - 111 - 2µ(vo + µ)X + 2 + 2µ(110 + µ)X. 

+µ+Vo 

It appears that F0(X,µ) = 0, and that, hence, we can continue with the equation G(q,X,µ) := 
F/q = F1 +F2q+ ... = 0. We claim that the equation G(q, X, µ) = 0 can be solved for X = X(q, µ),and 
that X is analytic for small values of both arguments. By calculating some limits, it follows from (5.18) 
or (5.19) that X(O,O) = -1/2. This is used to show that G(0,-1/2, 0) = F1 (0, 0) = 0. In order to apply 
an implicit function theorem (see [1, p. 36]), we need to show that G is analytic in a neighborhood 
of (0,-1/2,0) and that G(0,-1/2,0) = 0, Gx(0,-1/2,0) "f; 0. It is straightforward to verify that 
G(q, X,µ) is analytic in a neighborhood of (0, -1/2, 0). Furthermore, Gx(O, -1/2, 0) = oFif oX = 4 
at (X, µ) = (-1/2, 0). We have shown that we can solve the equation G = 0 and that the solution 
X(q, µ) is analytic in a fixed neighborhood of (0, 0). 

It remains to show that /32 is analytic. We consider T of (5.2) given in the middle of (5.19). We 
are done when we have shown that µ/ D is bounded away from zero when µ is small, since then we can 
divide the denominator of T by µ. From the above result it follows that we can expand 

X(q,µ) = Xo(q) + X1(q)µ + ... , 

where the coefficients X 8 are analytic functions of q. From the first equation of (5.19) we compute 
Xo = -1/../v - v1=-l/../11+4. Hence D = 11+µ+(11-11o)Jv - v1Xo + 0(µ) = 0(µ) asµ__, 0. It 
now follows that T 2 is an analytic function of q,µ in a fixed neighborhood of (0, 0), and, consequently, 
that /3 2 is analytic. This proves the theorem. • 

REMARK 5.1. It is possible to base a proofon the differential equation (5.14). The condition /3(0) = O 
is not enough to prove the theorem, since the ratio (32 /v (at 11 = 0) turns out to be undefined. Requiring 
that this ratio equals c1(µ) of (5.17) is sufficient, however. 
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In Theorem 4.1 we expanded the functions of (4.10) at the critical points ±wo, and in (4.14) we 
used a representation oft in which y can be viewed as a part of the complete expansion. In fact ( 4.14) 
is a change of variables. In the present case we expand at the critical points W±, and the expansions 
have the form 

00 

<P(w) = l:[ak + wbk]Vk, V = V(w) = (w - w_)(w - w+)· (5.20) 
k=O 

When <P is sufficiently smooth, the coefficients ak, bk are uniquely defined. The first few are given by 

<P- w+ - <P+ w_ b <P+ - efi-
ao = , o = , w+ -w_ w+ - w _ 

_ bowo - efi± w_ - </J'_ w+ b _ <P± + <P'_ - 2bo 
ai - ( 2 , 1 - , w+ -w_) (w+ - w_)2 

where w0 = W+ - w_, and <P+ = <P(w+), etc. For analytic functions the coefficients can be represented 
as Cauchy-type integrals. We have 

ak = 21 .j(w-wo)v-k-1 (w)efi(w)dw, 
1ri c 

bk= -21 ·1 v-k- 1 (w)efi(w) dw, 
1!'2 c 

(5.21) 

where C is a contour around the two critical points; <P must be analytic inside C and continuous on C. 
This can be verified by substituting a new variable w = v + wo/2. Then we have 

By separating odd and even parts (with respect to v ), and representing Ck, bk as Cauchy integrals in 
the V-plane, we arrive at (5.21). (Note that a circle around the origin in the w-plane is traversed 
twice in the V -plane.) For MacLaurin series the domain of convergence is a disc. For expansions as 
in (5.20) the domain of convergence is defined by IV( w )I < IV( W 6 ) I, where w6 is a singularity of efi; this 
domain is bounded by a Cassini's oval with foci at w±. See also [7, p. 149, Exercise 24]. 

The parameter t of (5.12) is represented in the form 

t = w[B +Cw+ V(w)y], (5.22) 

where B, C do not depend on w, and we require that the points { w_, 0, w+} correspond with { L, 0, t+ }. 
This gives for B, C the values 

wit_ - w:t+ C- t+w- - Lw+ 
B = ( , - (5.23) 

w+w- w+-w-) w_w+(w+-w-)' 
The critical points w±, t± are not analytic for small values of the parameters. However, we have 

LEMMA 5.1. B, C, w+ w_, w0 = w+ +w- are analytic functions ofµ, 11 in a fixed neighborhood of(O, 0). 
Moreover, B = 1 + o(l), C = o(l) near (0, 0). 

PROOF. We use the notation of Theorem 5.1. We have wo = ln(l + µ) and the product w+w- is 
an even function of W. So the singularity in W = Jq..jv - v 1 is removed when we expand w+ w_ in 
powers of W. Using (5.2), we can write 

2C = __ µ_[1- Tln(l + µ)/µ]. (5.24) 
W+W- W+ -W_ 

We introduce a parameter T/ by writing 
µ2 111 

(32 = 11[E + (v - vo)T/], E = -- = --. 
4110 4 

Then we have T = 2Jq..j E + 11ry; 17 = 17(v, µ) is analytic in a neighborhood of (0, 0). Next we use 
w+ - w_ = ln[(l + JqZ)/(1 - JqZ)]. Since the factor Jq can be removed, we infer that the fraction 
T/(w+ - w_) is regular. It is easily verified that the expression between square brackets in (5.24) 
vanishes when 11 -!o O and that w+w- = -vF, where F = F(v, µ) is analytic at (0, 0), with F = 
l+O(v+µ), as v, µ -!o 0. This proves that C is analytic at (0, O); the factorµ in the first fraction of (5.24) 
takes care of the vanishing ofC at (0, 0). A more detailed analysis shows that C......, -µ/24, /L -!o 0, 11 = 0. 
The proof for B now follows from the representation B + woC = (t+ - t_ )/( w+ - w_) = T /( w+ - w_ ). 
At 11 = 0 this expression reduces to µ/In(µ+ 1) = 1 + O(µ), asµ -!o 0. • 
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COROLLARY 5.1. Let <P of (5.20) be analytic in a domain containing the points W±. Then the coefficients 
ak> b1c are analytic functions of the parametersµ, 11. 

PROOF. This follows from the fact that sum and product of W± occur in V(w) and that the Cauchy 
type integrals in (5.21) are analytic functions of w+ + w_ and w+ w_. • 

After these preparations we are ready to consider 

THEOREM 5.2. The function t(w,11,µ) defined by (5.12), with 132 defined in (5.13), is analytic in a 
fixed neighborhood of (0, 0, 0). 

PROOF. We write (5.12) in the form 

F(t,w,µ,11) = tH(w)- S(t) = 0, 

where 
ew - 1 II 

H(w) =-µIn--+(µ+ l)w+ --1 -A, 
W e111 -

t 
S(t) = t 2 +132 - µtln -. 

w 

(5.25) 

(5.26) 

Using (5.22) we can consider Fas a function of w, with two known parametersµ, 11 and one unknown 
parameter y. We expand F as in (5.20): 

00 

F = :L)uk + wv1c]Vk(w), (5.27) 
k=O 

where the coefficients Uk> VA: do not depend on w and t; they do depend on y, however. The first 
coefficients are 

1.Lo = -C2b2a - C2a2 - aB2 - 2aBCb + foB + goaC - 132 

+µa( Ceo+ Bdo + Cbdo), 

vo = -2aBC - C2b3 - bB2 + f 0 C + g0 B - 2C2ab - 2b2 BC+ g0bC 

+µ(Cada+ Bco + Cbco + bBdo + Cb2do), 

u1 = -B2 - C 2b2 - 2aBy- 2Cbay- 2C2a + foY + f1B - 2BCb + goC + g1aC 

+ µ(aBd1 + Cbad1 +Caci+ Ceo+ Bdo + Cbdo + aydo), 

v1=-2bBy-2Cb2y- 2BC- 2Cay- 2C2b + YoY+ f1C + g1B + g1bC 

+ µ(bBd1 + Cb2d1 + Bc1 + Cad1 + Cbc1 + Cdo +yea+ bydo), 

U2 = -ay2 + g1C + hB + f1Y- 2By + g2aC - C2 - 2Cby 

+ µ(Cac2 + aBd2 + Bd1 + Cc1 + ydo + Cbd1 + Cbad2 + ayd1), 

v2 = g2bC- by2 + Y1Y- 2Cy+ g2B + hC 

+ µ(Cb2d2 + byd1 + Cbc2 + Cad2 + Bc2 + bBd2 + yc1 + Cd1), 

where a,b are defined by w2 =a+ bw + V(w), i.e., a= -w+w_, b = w+ + w_ and the coefficients 
ck> dk, fk, gk occur in the expansions 

. wH(w) =lo+ gow+ f1V +g1wV + hV2 + g2wV2 + ... , 

t 2 2 ln - = co + daw + c1 V + d1 w V + c2 V + d2w V + .... 
w 

The coefficients uo, vo vanish identically. This can be verified by straightforward manipulations. 
It also follows from the observation that the representation (5.22) can be viewed as a truncated expan­
sion fort, in which the first coefficients B, Care defined properly. When more coefficients D, E, ... 
would have been included in y (and defined properly), more and more coefficients Uk. VA: would vanish 
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identically. When using (5.22), only a few coefficients will vanish. Although u1 , v1 contain the param­
eter y (also via c1 , d1 ), these coefficients vanish too. Again, this can be verified by straightforward 
manipulations. 

It follows that we can proceed with the equation G = 0, where 

G = G(y,w,µ,v) = F(t,w,µ,v)/V 2(w) 

The coefficient u 2 contains a term -2By, with B given in (5.23). From Lemma 5.1 it follows that 
B is bounded away from zero when the parameters µ, z; are small. The remaining contributions to u 2 

containing the parameter y tend to zero as µ, z; -+ 0. All coefficients uk> vk are analytic functions of 
µ, v, and the convergent infinite series (including coefficients v2 and higher) represents a function of 
y, w, µ, z; that is analytic in a neighborhood of (0,0,0,0). Consequently, since fJG(O, 0, 0, O)/fJy = -2, we 
can solve for y and this solution is an analytic function of w, µ, v in a fixed neighborhood of (0,0,0). 
The same holds for t given in (5.22). • 

REMARK 5.3. A simpler version (µ = 0) of the above theorem is considered in Theorem 4.1. Another 
simpler version (v = 0) is given in [5, Theorem 2.1]. 

We still have to show that n (the image of strip H of ( 4.13) under the mapping w......,. t defined in 
(5.12)) is large enough to contain a disc around t+ with radius p(l + t+)", K ~ 1/2, p fixed. It is not 
difficult to verify that when f3 > µ the proof runs as in §4.2. Ifµ is much larger than /3, the situation 
improves, and we can take K = l. 

We conclude with computing a bound for the quantity Mr(/3, µ) used in (5.8), and defined as in 
(3.16). The t- values on the circle Cr are written as t = t+ + r.J4+T, with lr[ = r, r fixed. We 
assume that at least one of the parameters v, µ is large. We have 

t + /3 2 /t - µ ln t,..., t + /3 2 /t - µ ln t + T(l + t+) r 2 + O(t-1 ). 
+ + + t+ (µ + T) + 

We denote the factor multiplying r 2 by q. Observe that, roughly speaking, q belongs to the interval 
[1/2, l]. Using this in (5.12), we obtain 

qr2,....,_µln ew-l +(µ+l)(w-w+)+v[-1-1_ 1 1]. 
ew+ - 1 ew - ew+ -

Denoting the right-hand side by c/;(w), we see that c/;(w+) = c/;'(w+) = 0. A few computations give 

"( ) 2(v + W) ( ) cj; W+ = 1 + ( )2 = 1 + 0 1 . v+µ+w 

To solve the equation <j>(w) = qr2 we expand <fi(w+ + v) = tv2cj;"(w+) + .... We can take the fixed 
number r as small as we please. Then the solution of the above equation reads w ,...., w+ + rffq. Using 
this in (5.16), we infer that f(t) ,..., 4../4/r, under the condition that t E Cr and that at least one of 
the parameters v, µ is large. Consequently, we can find a fixed number /{, such that 

Mr(/3,µ) ~ ]{ /1+4/r, v, µ E [O, oo). 

REFERENCES 

[1] SH-N. CHOW AND J. K. HALE, Methods of bifurcation theory, Springer Verlag, New York, Hei­
delberg, Berlin, 1982. 

[2] C. L. FRENZEN AND R. WONG, Uniform asymptotic expansions of Laguerre polynomials, preprint. 
[3] A. I. MARKUSHEVICH, Theory of functions of a complex variable, Prentice Hall, Englewood Cliffs, 

N.J ., 1965. 
[4] F. W. J. OLVER, Asymptotics and Special Functions, Academic Press, New York, 1974. 
[5] N. M. TEMME, Laplace type integrals: transformation to standard form and uniform asymptotic 

expansions, Quart. Appl. Matb. XLIII, 103-123, 1985. 
[6] N. M. TEMME, Laguerre polynomials: asymptotics for large degree, CWI Report AM-R8610, 1986 

(to appear in the proceedings of a conference on orthogonal polynomials, Segovia (Spain) October 
1986). 

[7] E. T. WHITTAKER AND G. N. WATSON, A course of modern analysis, 4th ed. Cambridge Univ. 
Press, London and New York, 1927. 


