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Assuming that a graph G on n vertices is a minimal counterexample to Hadwiger's Conjecture 

x(G),;:; 11(G), we apply the Edmonds-Gallai Structure Theorem to its complement, H , to find 

that H has a matching of size L n/2 J. Hence Magyar Tud. Acad. Mat. Kutat6 Int. KozL 8 ( 1963) 

373: x( G) ,;:; j n/ 21- Further, H is homeomorphic to a three.connected graph, and is of tree width 

at least four. The same holds for a minimal counterexample G to Colirt de Verdiere's Conjecture 

µ( G) + 1 ~ ~( G). © 2002 Published by Elsevier Science B.V. 

1. Introduction 

One of the most intriguing conjectures in today's graph theory is the conjecture of 

Hadwiger [5] linking the chromatic number of a graph G to the maximum size of its 

clique minor: 

Conjecture 1.1 (Hadwiger [5]). Every k-chromatic graph G has a Kk-minor. 

Hadwiger's Conjecture can be easily verified for k ~ 3. For example, for k = 3, a 

three-chromatic graph is not bipartite, i.e. it contains an odd cycle, and hence also a 

K3-minor. The smallest non-trivial case, k = 4, was proved by Hadwiger in the same pa

per [5], and-almost a decade later-by Dirac [3], apparently oblivious of Hadwiger's 

result. 
For k = ~. the statement of Hadwiger's Conjecture becomes "Every 5-chromatic 

graph has a K5-minor" and hence, in view of Kuratowski 's Theorem [7], its truthfulness 

implies the Four Color Theorem. In fact, it is equivalent to the Four Color Theorem, as 

proved by Wagner [14] sev.eral years before Hadwiger first formulated his conjecture. 

Thus, by establishing in 1975 the Four Color Theorem, Appel and Haken confirmed 

Hadwiger's Conjecture for k = 5. Finally, Robertson et al. [10] proved that for k = 6 

Hadwiger's Conjecture is-again-equivalent to the Four Color Theorem, and hence 

is true. This is the largest value of k for which Hadwiger's Conjecture has been 

verified. For a detailed history of Hadwiger's Conjecture, as well as an account of 

0012-365X/02/$-see front matter © 2002 Published by Elsevier Science B.V. 
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Nomenclature 

et.(G) 

~(G) 

li( G) 
l(S) 

17(G) 
µ(G) 
v(G) 
n 
x(G) 

independence number of G: the maximum size of an independent set in 
G 
maximum degree of G: the maximum degree of a Vertex in G 
minimum degree of G: the minimum degree of a vertex in G 
neighborhood of S: the vertices outside of S, each adjacent to a vertex 
in S 
Hadwiger number of G: the maximum size of a clique minor of G 
Colin de Verdiere number of G: cf. [2] for definition 
matching number of G: the maximum size of a matching in G 
the ratio of the circumference to the diameter of a circle 
chromatic number of G: the minimum number of colors in a proper 
coloring of G. 

recent developments there-about, the reader is refered to a nicely written survey [13] 
of Toft. 

Of course, Hadwiger' s Conjecture is true for almost all graphs, by a result of 
Bollobas et al. [I] . 

2. Main idea 

In this section, we describe the main idea of this paper. 
Suppose we have been told that some graph G is a countetexample to Hadwiger's 

Conjecture. We are determined to prove the claimant wrong; in this, our first endeavor 
is to find a "large" clique minor in G. 

Recall that a graph is a minor of G if it is either a stlbgraph of G, or can be 
obtained from one by a series of edge-contractions. An edge-contraction in G can 
be described as the operation of replacing two adjacent vertices, u and v, by a new 
vertex, w, and setting the neighborhood I'( w) of w to be the union of the neighborhoods 
I'(u) and I'( v )-minus, of course, the vertices u and v themselves. Respectively, an 
edge-contraction in G can be described in terms of its completnent, H, as the operation 
of replacing two non-adjacent vertices u and v by a new vertex w, and setting the 
neighborhood J(w) of w in H to I'(u) n I'( v ). Let us call such an operation in H a 
co-contraction. Observe that 17( G) ~ p if and only if we can exhibit in H, perhaps 
after a series of co-contractions, an independent set of size p. 

Suppose now that S is a cut set in H , i.e. a set of vertices such that H - S is 
disconnected. Let C1, ... , C, be the connected components of H -S, and set et.;:=a( C; ). 
Clearly, we can immediately exhibit an independent set, A, of size et. 1 + · · · + a, in 
H , or even in H - S. Using co-contractions, we can typically do even better, still 
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by looking only at the components of H - S. For example, if C1 and C2 are both 
non-singleton, then we can always choose a vertex v1 E C1 avoiding some maximum 
independent set in C1, a similar vertex v2 E C2, and co-contract this (independent) pair. 
By doing so, we create a brand new vertex whose neighborhood is entirely in S. This 
lets us increase the size of the independent set A by one. 

To do this in a more systematic fashion, let us set b;:=f C;f - a; and consider the 
complete r-partite 1 graph Kb, , ... ,b,. The reader will find it easy to argue that H - S can 
be co-contracted to an independent set of size p :=a1 + · · · +a, + v(Kb,, ... ,b, ). 

Now, one hopes that p compares favorably to x( G), the latter estimated using a large 
matching, M, in H . In other words, our strategy is to use two matchings "in parallel". 
The first matching, which we shall denote by N, should help us find a relatively large 
clique minor of G; the other matching, M , will help us color G in relatively few colors. 

Modulo slight variations, this is the main idea of this paper. 

3. Edmonds-Gallai Structure Theorem 

In this section, we apply our main idea to what is often a very special cut set of 
H: its Edmonds-Gallai Tutte set. Let us bring out the background. 

Given a graph H on n vertices, we write odd(H) and ev(H) for the number of odd 
and even components of H, respectively. For a subset S of the vertex set of H, we 
sets :=!Sf . 

In this notation [the defect version of], Tutte's Theorem asserts the existence of a 
subset S of the vertex set of H such that odd(H - S) = s + n - 2v(H). We call such an 
S a Tutte set (of H). Observe that for any maximum matching M in H, the quantity 
n - 2v(H) is the number of M-exposed vertices. 

The Edmonds-Gallai Structure Theorem is a strengthening of Tutte's Theorem. It 
asserts that a Tutte set S can be [uniquely] chosen so that the odd components of G- S 
are factor-critical 2 and in the [at most] bipartite graph obtained from G by contracting 
each odd component of G - S, deleting the even components; and deleting the edges 
spanned by S, S satisfies Hall's condition with surplus one. We call this [unique] Tutte 
set S as Edmonds-Gallai. For the details, we refer the reader to the book of Lovasz 
and Plummer [8, pp. 93-95]. 

Theorem 3.1. Suppose G is the only counterexample to Hadwiger's Conjecture among 
all of its induced subgraphs. Let H denote its complement, and let S be the Edmonds
Gallai set of H. Then s + odd(H - S) + ev(H - S) = l. In other words, the only 
component of H - S is H itself. 

1 By calling this graph r-partite, we are abusing vocabulary here, since some of the b; ' s may well be zeros. 
In fact, b, = 0 {:} IC,I =I. 
2 Graph X is factor-critical if X - v has a perfect matching for every vertex v EX. 
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Proof. Let H and S be as in the theorem, and let C1, •.• , C,. be the components of 
H -S, r ~ I. Suppose, for the sake of contradiction, that C1 is a proper subgraph of H. 

Let us set c;:= lJC;l /2 J. Observe that, by Tutte's Theorem, c; is the number of M-edges within C; for any maximum matching M of H. To mimic our main idea, 
we consider the complete r-partite graph Kc1, ••• ,c, and one of its maximum matchings, 
N. Without loss of generality, we suppose that the N-exposed vertices, say c ~ 0 
altogether, are all in the first partite class. 

Let M be a maximum matching in H having no edge with exactly one endpoint 
is in C1. Notice that if IC1 I is even, then every maximum matching of H has this 
property, while if IC1 I is odd, the existence of such a matching is guaranteed by the 
Edmonds-Gallai Structure Theorem. 

Next, let C <:;;; C1 be the subgraph induced by the endpoints of some c M -edges 
within C1 plus the M-exposed vertex of Ci, if any. Since the M-edges outside of C 
induce, in a natural way, a coloring of G - C, we conclude that G can be properly 
colored in this many col ors: x( C) plus the number of M -edges and M -exposed vertices 
outside of C. 

On the other hand, the minimality of G and our assumption imply that the com
plement of C satisfies Hadwiger's Conjecture. In other words, C can be co-contracted 
to an independent set of cardinality at least x(C). We enlarge this set by adding to it 
one vertex from each odd component of H - S different from C1-as many vertices 
altogether as there are M-edges incident with S plus M-exposed vertices outside of C. 
Furthermore, the matching N induces, in a natural way, a pairing of those vertices in 
H - (CU S) which are not yet in our independent set. Co-contracting each of these 
c1 + · · · + c,. - c pairs (as many as there are M-edges within C1 - C, C2, ... , C,.) let 
us enlarge our independent set to the size of the coloring of G from the previous 
paragraph. This is a contradiction. 0 

As an immediate corollary of Theorem 3.1 and the Edinonds-Gallai Structure 
Theorem, we obtain the following result: 

Theorem 3.2. Suppose that G is the only counterexample to Hadwiger' s Conjecture 
among its induced subgraphs, and let H denote its compleinent. Then H is con
nected and, depending on the parity of IGI, either H has a perfect matching or His 
factor-critical. 

Corollary 3.3 (Gallai [4]) . If G on n vertices is the only countetexample to Hadwiger's 
Conjecture among its induced subgraphs then X( G) ~ I n/2l 

Proof. x( G) ~ n - v( G). 0 

Exercise 3.4. Suppose that G is the only counterexample to Hadwiger's Conjecture 
among its induced subgraphs and, in addition, a( G) = 2 (i.e. the complement H of G 
is triangle free). Prove, using only Tutte's Theorem, that H is factor-critical. 
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4. Slicing it another way 

It is my impression that, with respect to Hadwiger' s Conjecture, the universe of 
graphs is traditionally partitioned into the classes of k-chromatic graphs, a class per each 
value of k. Respectively, aside from proving or disproving the conjecture in general, 
one establishes a benchmark by settling the conjecture for "the next value of k". 

My idea was to look at a different partition, i.e. at the graphs G with x( G) = I GI - p 
for each non-negative integer p . For example, the conjecture is trivially true for p = 0, 
since then G is a clique. 

In a sense, slicing it this way was a self-deception. Indeed, it is not difficult to show 
that the conjecture is true for those G for which x( G) = I G I - p as soon as it is true 
for the graphs on at most 2p(p+ 1) vertices. We do not treat this statement in detail, 
since we are to obtain a better bound presently, in Theorem 4.1. On the other hand, 
even though these bounds do help for a while (Corollary 4.2), I already list the case 
p = 6 as an open question, cf. Problem 5 in Section 8. 

Theorem 4.1. Suppose Hadwiger' s Conjecture is false, and let p be the smallest in
teger such_ that there is a counterexample G to Hadwiger's Conjecture with IGI -
x( G) = p~ Then there is such a counterexample on at most 2 p + l vertices. 

Proof. Follows immediately from Corollary 3.3 and the trivial inequality JGI- x( G) ~ 
JG'J - x(G') for any induced subgraph G' of G. D 

Corollary 4.2. Suppose Hadwiger's Conjecture is false, and let p be the smallest 
integer such that there is a counterexample G to Hadwiger's Conjecture with IGI -
x(G) = p. Then p ~ 6. 

Proof. By Theorem 4.1, the smallest counterexample is on at most 2p+ I vertices; by 
Corollary 3.3, its chromatic number is at most p + I. Apply the result of Robertson 
et al. [10]. D 

5. Word on Colin de Verdiere's Conjecture 

Suppose y is a graph invariant satisfying the following properties: 

(Y 1 ) y is mill or monotone: G1 ~ G2 ::::} y( G1 ) ~ y( G2 ), 
(Y2) y(K1) ~ 1, 
(Y3) y(G) ~ y(Gi) + y(Gz), where G= G1UG2. 

It is easy to see that 17( G) has these properties. In fact, so does the invariant c · 11( G) 
for any c ~ I. Moreover, if y has (YI )-(Y3) then y ~ 17. In particular, for such an 
invariant y, it is "safe" to conjecture y ~ X· 
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A non-trivial example of such an invariant is the next integer after the number µ 
introduced by Colin de Verdiere 3 [2]; hence the conjecture µ + I ~ X· However, the 
intriguing thing about this particular conjecture is, as Colin de Verdiere proves, that 
its truthfulness would [still] imply the Four Color Theorem. 

It seems that everything that is known about Colin de Verdiere's Conjecture is 
a corollary of the corresponding knowledge on Hadwiger's Conjecture. To follow the 
trend, we remark that all of the results in this paper translate Verbatim from the context 
of 17(G) to that of µ(G) + 1-or, for that matter, of any other invariant y(G) with 
(YI )-(Y3 ). In fact, the reader will be able to check that (YI )-(Y3) are the only 
properties of 17 used in this paper. 

We conclude that the results of this paper remain valid if the words "Hadwiger's 
Conjecture" are replaced, throughout, by the words "Colin de Verdiere's Conjecture". 
In particular since the graphs G with planar complements have tt( G) ~ JGJ - 5 [6], the 
Colin de Verdiere version of Corollary 4.2 implies that Colin de Verdiere's Conjecture 
is true for graphs with planar complements. The phrase in italics, were we in sales, 
could have been chosen as the trademark for this section. 

Along these lines, but on a more serious note, we will deduce (Corollary 7.2) that 
Hadwiger'~ Conjecture is true for the graphs with series-parallel complements. Per
haps it would be interesting to prove such a statement for the graphs with planar 
complements as well. 

6. Sparsity and connectivity 

In the next two sections, we assume that the graph G is the only counterexample 
to Hadwiger's Conjecture among its induced subgraphs, and H is its complement. In 
this section, we consider "the second iteration" of our main idea. This time, we apply 
it to an arbitrary cut set in H; the graph H itself being subject to Theorem 3.2. 

Theorem 6.1. Let S be a cut set in H, and let H1, .. . , H, denote the connected com
ponents of H - S. For i E {l , ... ,r}, let a; be a fi xed natural number satisfying 
a; ~ rx(H;), and set h;:=JH;J, b;:=h; -a;. If, for some k ~ r, we have a1 + · · · + ak ~ s 
then the complete r-partite graph Kb1, •.. ,b;,h;+i , ... ,h, (this becomes Kb1, .• ,b, when k = r) 
does not have a matching covering all the vertices of the first k partite classes. 

Proof. In the notations of the theorem, within each H;, let us fix an independent set 
A; of cardinality a;, and set B;:=H; -A;. Let us assume, for the sake of contradiction, 
that the conclusion of the theorem does not hold for some k. 

Suppose first that k = r. Then, by our assumption, the complete r-partite graph Kb1, •.• ,b, 
contains a perfect matching. Naturally, this perfect matching induces a pairing of the 

3 Colin de Verdiere [2] proved that µ( G) + I has (Yi); (Y2) holds trivially; and (Y3) is not difficult to see, 
especially by using the alternative definition ofµ in terms of vector labellings [6]. 
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vertices of B 1 U ... UB,, n - s - (a1 + · · · +a,) vertices altogether. (In particular, if 
a 1 + · · · + a, = s then n is even.) Co-contracting the vertices of each pair gives us, in 
combination with the vertices of A 1 U ... UAr, an independent set of cardinality [n -s + 
(a1 +···+a, )]/2 ~ f n/21. By Corollary 3.3, the latter quantity is at least as large as 
x( G). This is a contradiction. 

Thus, we may assume that k < r. Let us write a:=a1 + · · · + ak and b:=b1 + · ··+bk. 
By Theorem 3.2, either H has a perfect matching, or it is factor-critical. Let us 

assume the latter; the former case can be treated analogously. 
Let v be a vertex of H, and let M be a perfect matching in H - { v}. To be

gin, we claim that no more than b vertices of S are matched by M to vertices of 
H': =Hk+ 1 U . . . UH,. Indeed, this is trivially true if b ~ a, since a ~ s. Thus assume 
that p:=a - b > 0. Since A:=A 1 U .. . UAk is an independent set, the vertices of A 
are matched by M to a vertices outside of A, at least p of which must be not in 
B:=B1 U ... UBk, and hence are in S. But then at most s - p = s - a+ b ~ b vertices 
of S can be matched into H', as claimed. 

Let C be the set of vertices in H' matched by Minto S; set c:=IC/- Our next claim is 
that the complete r-partite graph Kb, , ... ,b;h +i .... ,h, has a matching, N , covering the b ver
tices of the first k classes (as guaranteed by our assumption) and, moreover, matching 
some d ~ C:-.1 of these into H' . We leave the proof of this simple claim to the reader. 

Next, among all the induced subgraphs of H' on d vertices and inclusionwise compa
rable to C, let D be one containing the maximum number of M-edges. Set X:=H' -D. 
It is crucial to observe that, by construction, H - X possesses, depending on the parity 
of IH - XI, either a perfect, or a near-perfect matching. We conclude, as before, that 
X( G) ~ x(X) + llH - x1;21 . 

On the other hand, the matching N induces, in a natural way, a pairing of the vertices 
of BUD. As before, co-contracting the vertices of each pair gives us, in combination 
with the vertices of A and an appropriate co-contraction of X, an independent set of 
cardinality at least a+(b+d)/2+x(X) ~ f(a+b+d+s) /21 +x(X). The latter quantity 
has just been shown to be at least x( G). This is a contradiction. 0 

Corollary 6.2. Let S be a cut set in H. Then H - S has at most s components. 

Proof. Let H 1, •• • , H, be the components of H - S labelled in the non-decreasing or
der of cardinalities: h1 ~ • • • :::::; h,. Suppose, for the sake of contradiction, that r > s. 
Let us set, in the notations of Theorem 6.1, a1 = · · ·=as= 1, and k = s. Then a1 + · · · + 
ak = s ~ s. Further, it is trivial to see that the complete r-partite graph Kh, -l , ... ,h5 -J,hs+ i, ... ,h, 
has a matching covering the vertices of the firsts partite classes (which-as the reader 
will recall-we allow to be empty). This shows that the graph G violates the conclusion 
of Theorem 6.1, which is a contradiction. 0 

Corollary 6.3. H is two-connected. 

Since Corollary 6.3 is quite an immediate consequence of Corollary 6.2 or, for that 
matter, of Theorem 6.1 itself, one would expect to hear more about the connectivity 
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of H. Disappointingly, I cannot prove that H is three-connected. In fact, I cannot even 
prove that f>(H) > 2. What is easy to prove is that a vertex of degree two in H must 
have non-adjacent neighbors. In light of this, Bert Gerards suggested to me that H 
might be a subdivision of a three-connected graph. In fact, we prove slightly more in 
Theorem 6.7 below. But first, we need the following observation whose easy proof we 
leave to the reader. 

Proposition 6.4. For every two vertices u -:/::. v of G, we have t( u) rt. I'( v ). 

Translated into the terms of the complementary graph H, Proposition 6.4 states that 
for every two vertices u and v adjacent in H, there is a vertex w-:/::. v adjacent to u 
but not to v. 

Corollary 6.5. If Q is a clique in H then the collection of sets {I'( v) - Q : v E Q} is 
an anti-chain with respect to inclusion. 

Corollary 6.6. H has no simplicial vertex (i. e., a vertex whose neighborhood is a 
clique in H) . 

Proof. Assume, on the contrary, that v is simplicial; apply Corollary 6.5 to the clique 
Q :={v} U I'(v). 0 

Theorem 6.7. Let S be a cut set in H of cardinality two (so that, by Corollary 6.2, 
H - S has two components). Let H1 and H2 be the components of H -S of respective 
cardinalities h1 ~ h2 . Then H 1 US induces a path of length two with the endpoints 
in S. 

Proof. By Corollary 6.6, it is enough to show that h1 = 1. Thus assume, for the sake of 
contradiction, that h1 ~ 2. Notice that H 1 is a clique, since otherwise H would violate 
the conclusion of Theorem 6.1 with k = 1 and a1 = 2. Applying Corollary 6.5 to the 
clique Q:=H1 shows that the restrictions to S of the neighborhoods of the vertices of 
H 1 form an anti-chain. Sine a two-element ground set has no anti-chain of size more 
than two, and only one anti-chain of size two, we conclude that h1 = 2 and H1 US 
spans, depending on whether or not S spans an edge, either a four-cycle or a path of 
length three. Write S = {s1,s2}, H1 = {x1x2}, and assume, without loss of generality, 
that s1x1x2s2 is a path in H . 

Case 1: s 1s2 is an edge in H. By the minimality of G, G-x1 - x2 satisfies Hadwiger's 
Conjecture. In other words, H - H 1 can be co-contracted to an independent set of 
size x( G - X1 - X2 ). If S] does not participate in this independent set then, in the 
corresponding co-contraction of H, this set can be enlarged by x 1• If both s1 and s2 
participate in this set then, since s1s2 is an edge, say s1 has been co-contracted with 
another vertex of H - H 1. But then again, x1 can be added to this independent set. 
Either way, this is a contradiction, since x( G) ~ x( G - x1 - x2) + 1. 
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Case 2: s 1s2 is not an edge in H. Again, H2 can be co-contracted to an inde
pendent set of size x(H 2 ) . In the corresponding co-contraction of H, this set can be 
enlarged by x1, and the co-contraction of s 1,s2 , and x2 . This is a contradiction, since 
x(G) ~ x(H2) + 2. D 

Exercise 6.8. If S= {si,s2 } is as in Theorem 6.7, prove that lt(s 1 )nI'(s2 )1~2 in H. 

Remark 6.9. In his Ph.D. thesis (11] and in paper (12], Toft characterized vertex-critical 
and k-critical graphs whose complements have a cut set of cardinality at most two. 
In particular, Theorem 3 of [ 12] states that the complement of a k-critical graph is 
two-connected. Though this does not seem to imply our Corollary 6.3 directly, it should 
be noted that Corollary 6.3 can be proved quite easily using the techniques of [ 11, 12]. 
Similarly, Corollary 8 of (12] reaches parts of the conclusion of our Theorem 6.7-
formulated for a general k-critical graph. (For example, it states that if the complement 
H of a k-critical graph has a cut set S on two vertices, then H - S has exactly 
two components.) Again, I do not know whether these results of Toft imply our 
Theorem 6.7. 

To conclude this section, we observe that Theorem 6.1 (respectively, Corollary 6.2) 
has a useful modification. 

Theorem 6.10. Suppose that, in the notations of Theorem 6.1, Sis such that for each 
i E {I, ... , r} there is a vertex in S adjacent to nothing in ll;. Then, the conclusion 
of Theorem 6.1 holds even if the condition a 1 + · · · + ak ~ s fork< r is replaced by 
a1 + · · · + ak ~ s - 1. 

Proof. Essentially, we repeat the part of the proof of Theorem 6.1 following the words 
"Thus, we may assume that k < r'', stressing only the deviations. Naturally, we assume 
that a1 + · · · + ak =s - I, since there is nothing to prove otherwise. Notice that this 
implies that b + c is odd. Further, b and d have to have the same parity, so that also 
c + d is odd. If d = c - 1 then we choose D to be on d + I = c vertices; otherwise, we 
choose D to be on d - 1 vertices. In any case, D is picked to contain C and so that 
A U B U S U D has a perfect matching. The final deviation from the proof of Theorem 
6.1 is that now the unique vertex, v, of BUD left single under the pairing induced by 
N, is co-contracted with the vertex of S adjacent to nothing in H1 3 v. This "saves" 
the counting. D 

Corollary 6.11. If Sis as in Theorem 6.10, then H -S has at most s-1 components. 

7. Tree width 

The notion of tree width, introduced by Robertson and Seymour in [9], has several 
equivalent definitions. We recall one. 



Definition 7.1. A graph X on n vertices is maximal tree-width-k if its vertices can be 
labelled v1, ••• , Vn so that v1, ••. , Dk span a clique, and for every i, k + I ~ i ~ n, the 
vertex v; is simplicial of degree k in the induced sub graph of X spanned by V1, . .. , v;. 
The tree width tw(X) of a graph X is the least natural number k such that X is a 
subgraph of a maximal tree-width-k graph. 

We see immediately that the tree-width-one graphs are forests. The tree-width-two 
graphs are called series-parallel, and are characterized by being K4-minor-free. We 
leave it to the reader to argue the following consequence of Theorem 6.7. 

Corollary 7.2. Hadwiger's Conjecture holds for the graphs with series-parallel 
complements. 

Throughout the rest of this section, we let fr denote a maximal tree-width k := 
tw(H) supergraph of H on the same vertex set as H. Notice that H #fr by Corollary 
6.6. 

Of course, fr need not be unique for a given H . However, what is important to 
us is that any cut set S of fr is a cut set in H. Due to its structure, fr has several 
"canonical" cut sets. Namely, these are the k-cliques of fr shared by two or more 
(k +I )-cliqiles; other cut sets of interest are (k +I )-cliques themselves-namely, those 
that are cut sets. The useful thing about the latter cut sets is that they satisfy the 
condition of Theorem 6.10. Hence, Corollaries 6.2 and 6.11 give us the following 
result: 

Theorem 7.3. Let S be a clique in fr. Then H-S has at most k components. 

Suppose now that S is a cutting ( k +I )-clique in fr . Let H1, •• • , Hr be the components 
of H-S labelled in the non-decreasing order of cardinalities, which we denote by 
h 1, ••• , hr . We let the reader argue that S can be chosen so that h 1 + · · · + hr- I ~ h,. -
I. But then, two applications of Theorem 6.10 show that a(H1 U · · · U Hr-I) < k 
and a(Hr) < k , respectively. In particular, a(H-S) ~ 2(k - I) and hence, IH-SI ~ 
2(k-l)(k+l). (To derive the last inequality, we used the trivial facts x(H) ~ tw(H)+l 
and IHI ~ a(H)x(H).) Thus, we have just proved the following result. 

Theorem 7.4. IGI ~ 2(k - l)(k + l) + (k + l) =2k2 + k - l. 

Observe that Corollary 7.2 is implied by Theorem 7.4. Indeed, substituting k = 2 
in the claim of the theorem gives us IGI ~ 9. Then, by Corollary 3.3, x(G) ~ 5 and 
hence, in light of the result of Wagner [14] and the Four-Color Theorem, G satisfies 
Hadwiger's Conjecture. Of course, we can prove Corollary 7.2 "directly", without these 
profound facts. 

Refining the argument of Theorem 7.4 for the particular case k = 3, we obtain the 
following: 



Theorem 7.5. k ~ 4. 

Proof. Suppose, on the contrary, that k = 3. Let S be a cutting K4 in f/, and 
let H 1, Hz, and H3 be the components of H - S listed in the non-decreasing order 
of cardinalities: h1 :::; hz :::; h3. To treat two possibilities at once, we allow h1 
to be zero. Again, we let the reader argue that we can always choose S so that 
h1 + hz ~ h3 - I. 

Case 1: h3 :::; 2. Then the number of vertices n in H is at most 10. In light of 
Corollary 3.3, this is a contradiction. 

Case 2: h3 = 3. If h1 < 3 then n < 13, and we obtain a contradiction as in Case I. 
So that h1 = hz = h3 = 3. Then n = 13 and, by Corollary 3.3, x(G):::; 7. Suppose first 
that all three H; 's are isomorphic to K3 . Then, as in the proof of Theorem 6.1, H-S can 
be co-contracted to a K6 . If S = K4 then we can co-contract S to a point not adjacent 
to anything in H-S, and add it to the K6 . Else S spans an edge, whence x( G) :::; 6. 
Either way, we arrive at a contradiction. 

Thus, assume that rx(H3 ) ~ 2. Choose a vertex from each H 1 and Hz, two independent 
vertices in H3, co-contract the third vertex of H3 with a vertex in S adjacent to nothing 
in H3 , and co-contract, as usual, two pairs of the unchosen vertices of H 1 and Hz. This 
yields anifldependent set of size seven, which is a contradiction. 

Case 3: h3 ~ 4. Observe that h1 + hz ~ 4 (else n:::; 11 ). It follows from Corollary 
6.6 that rx(H1) + rx(Hz) ~ 2 and rx(H3) ~ 2. In the notations of Theorem 6.1, 
set a1 + az = a3 = 2. Then b1 + b2 ~ b3 - 1. We conclude that the graph Kb1,b2,bi 
has a perfect, or a near-perfect matching; this, as usual, let us pair-up for co
contraction all n - 8, but maybe one vertices of B. The un-paired vertex, if any, is then 
co-contracted with an appropriate vertex in S. This gives us an independent set 
of cardinality a 1 + az + a3 + f(n - 8)/21 = [n/21 ~ x( G). This contradiction completes 
the proof. D 

8. Open questions 

Disappointingly, it was not too difficult for me to discover my limitations: 
(l) Is Hadwiger' s Conjecture true for graphs G with rx( G) = 2? Perhaps it is appro

priate to remark here that the weakening 1.517( G) ~ x( G) of Hadwiger' s Conjecture 
can be easily shown for these graphs. Notice that, in light of Exercise 3.4, we know 
x(G) exactly for a minimal counterexample G. 

Hadwiger's Conjecture is "trivially" true for graphs with bipartite complement-for 
example, because they are perfect. In light of this, we have: 

(2) Is Hadwiger's Conjecture true for graphs G with tripartite complements? 
(3) Is Hadwiger's Conjecture true for graphs G with trimtgle-free tripartite com

plements? This is, of course, a common weakening of Problems I and 2. Again, 
1.12517(G) ~ x(G) can be easily demonstrated in this case. 

(4) Does a minimal counterexample G to Hadwiger's Cot!iecture satisfy ~(G):::; 
IGI - 4? This is the "unsettled" case in Theorem 6.7. 
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Finally, and perhaps least interesting of all: 
(5) Can the bound in Corollary 4.2 be improved to p ~ 7? Notice that to answer 

this question, one "only" has to consider the 7-chromatic graphs on 13 vertices with 
two-connected, factor-critical complements of tree width at least four. 
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