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1. INTRODUCTION 

In real-life domains most expert .knowledge is of an imprecise nature. When building an expert 
system for an environment in which such imprecise .knowledge has to be employed, the system has to 
capture the uncertainties that go with the represented pieces of knowledge. For a long time Bayesian 
probability theory has been the only quantitative approach to manipulating uncertainty. The creators 
of the MYCIN system E.H. Shortllife and B.G. Buchanan, however, have observed that Bayesian 
probability theory cannot be applied in rule-based top-down reasoning expert systems in a 
straightforward manner. They have developed an ad hoe model for manipulating uncertainty, called 
the certainty factor model [ l ]. Since its introduction in the seventies the model has been implemented 
in a large number of rule-based expert systems and expert system shells. Part of the success of the 
model can be accounted for by its computational simplicity. At the same time the model has been 
criticised severely because of its ad hoe character. Although Shortllife and Buchanan have suggested 
a theoretical foundation for the model in Bayesian probability theory, they have not provided a 
thorough justification for their model In this paper we show which part of the model is consistent 
with the probabilistic basis suggested by Shortllife and Buchanan and which part is not. This is not 
the first paper examining the relationship between the certainty factor model and Bayesian probability 
theory. J.B. Adams has examined the probabilistic basis of the model as well, [2]. In their paper [3], 
B.P. Wise and M. Henrion suggest some properties that are implicitly assumed in the model. We will 
comment on these papers. D. Heckerman in [4] and M. Ishizuka, K..S. Fu and J.T.P. Yao in [5] have 
presented counterproposals for some parts of the model. As our purpose is to examine whether the 
original model is consistent with the probabilistic basis suggested by Shortllife and Buchanan, we will 
not discuss these counterproposals. 

We conclude this section with an introductory description of the notions that play an important 
role in the certainty factor model. The reader who is already acquainted with the model will notice 
that we have adopted another notational convention than the one used in [I]; it is emphasized that we 
have not departed from the intended meaning of the model, but merely have provided a more precise 
notation. A more elaborate introduction to the model and a motivation of our notational convention 
can be found in [6]. 

In a rule-based top-down reasoning expert system applying the certainty factor model for the 
manipulation of uncertainty, there are three major components: 

(1) Production rules and associated certainty factors. Basically an expert in the domain in which the 
expert system is to be used models his knowledge of the field in a set of production rules of the 
form e ~ h. The left-hand side e of a production rule is a positive Boolean combination of 
conditions, i.e. e does not contain any negations. Without loss of generality we assume that e is 
a conjunction of disjunctions of conditions. Throughout this paper e as well as its constituting 
parts will be called (pieces of) evidence. In general the right-hand side h of a production rule is 
a conjunction of conclusions. In this paper we restrict ourselves to single-conclusion production 
rules; notice that this restriction is not an essential one from a logical point of view. 
Henceforth, a conclusion will be called a hypothesis. 
An expert associates with the hypothesis h in each production rule e ~ h, a (real) number 
CF(h,e,e ~ h), quantifying the degree in which the observation of evidence e confirms the 
hypothesis h. The values CF(x,y,z) of the partial function CF are called certainty factors; 
CF(x,y,z) should be read as 'the certainty factor of x gi.veny and the derivation z of x fromy'. 
In the sequel we will use the more suggestive notation CF(h 1 e,e ~ h). Certainty factors 
range from - I to + 1. A certainty factor greater than zero is associated with a hypothesis h 
given some evidence e if the hypothesis is confirmed in some degree by the observation of this 
evidence; the certainty factor + I indicates that the occurrence of evidence e completely proves 
the hypothesis h. A negative certainty factor is suggested if the observation of evidence e 
disconfirms the hypothesis h. A certainty factor equal to zero is suggested by the expert, if the 
observation of evidence e does not influence the confidence in the hypothesis h. 
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(2) User-supplied data and associated certainty factors. During a consultation of the expert system, 

the user is asked to supply actual case data. The user attaches a certainty factor 

CF(e -1 u,u ~ e) to every piece of evidence e he supplies the system with. In order to be able 
to treat production rules and user-supplied data uniformly we assume the set of production 
rules supplied by the expert to be augmented with fictitious production rules u ~ e, where u 
represents the user's de facto knowledge and ea piece of user-supplied evidence. 

(3) A (top-down) inference engine and a (bottom-up) scheme for propagating uncertainty. Top-down 

inference is a goal-directed reasoning technique in which the production rules are applied 
exhaustively to prove one or more goal hypotheses. Due to the application of production rules, 

during the inference process several intermediary hypotheses are confirmed to some degree. The 
certainty factor to be associated with an intermediary hypothesis h is calculated from the 
certainty factors associated with the production rules that were used in deriving h. For the 

purpose of thus propagating uncertainty, an approximation function for certainty factors is 

defined. 

2. ELEMENTARY PROBABILITY THEORY 

This section presents an introduction to elementary probability theory providing a point of departure 

for the remaining sections of this paper. We chose [7] as a basis for our introduction, though any 

other introductory textbook will suffice. 
Many kinds of investigations may be characterized in part by conceptually repeated 

experimentation under essentially the same conditions. Each experiment terminates in an outcome 

which cannot be predicted with certainty prior to the performance of the experiment. The non-empty 

collection of all possible outcomes is called the sample space, usually denoted by 0. In the sequel we 

assume the sample space 0 to be a finite set. A subset e of the sample space 0 is called an event. If 

upon the performance of the experiment the outcome is in e, it is said that event e has occurred. The 

event that the outcome is not in e is denoted by e, called the complement of e. So, e = 0 \e. The 

event that occurs iff both the events e 1 and e2 occur, is called the intersection of e 1 and e2, denoted 

by e 1 n e2 • The event occurring if e 1 occurs, e2 occurs or both e 1 and e2 occur, is called the union 

of e 1 and e2, denoted by e1 U ei. 

DEFINITION 2.1. Let 0 denote a sample space. The sets el>···•en k 0, n ;;;;;.. 1, are called disjoint if 
e; n ej = 0, i '=f j, 1 .e;;; ~j .e;;; n. The events corresponding with the disjoint sets are called mutually 

exclusive events. 

A set function P is defined such that if e is a subset of the sample space, then P(e) is a real number 

indicating the 'probability' that the outcome of the experiment is an element of e. P is defined 

axiomatically in Definition 2.2. 

DEFINITION 2.2. Let 0 denote a sample space. If P(e) is defined for each subset e k 0, such that 

(1) P(e) ;;;;;.. 0, and 
(2) P(O) = 1, and 
(3) P(e 1 U e2 U ... ) = P(e 1) + P(e2) + ... , where e;, i = 1,4 ... , are mutually exclusive events, 

then P is called a probability set function on 0. For each subset e k 0, the number P(e) is called the 

probability that event e will occur. 

The following propositions give some properties of a probability set function. In each proposition, 0 

denotes a sample space and P a probability set function on 0. The propositions are presented 

without proof: they can easily be proven using Definition 2.2. 
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PROPOSITION 2.1. For each e (;;; 0, P(e) = l -P(i). 

PROPOSITION 22. P ( 0) = 0. 

PROPOSITION 2.4. Let e1,ei (;;; 0 such that e1 (;;; ei. If P(e1) = P(ei) then for each e3 (;;; 0 
P(e 1 n e3) = P(ei n eJ). 

In some situations one is interested only in those outcomes which are in a given non-empty subset e 
of 0, for instance when several pieces of information concerning the final outcome become known in 
the course of the actual performance of the experiment. These pieces of information are called pieces 
of evidence. Let h be an event, called the hypothesis. Given that an event e occurs, i.e. given that the 
evidence e is observed, we are interested in the degree to which this information influences P (h ), the 
prior probability of the hypothesis h. The probability of h given e is defined in the next definition. 

DEFINITION 2.3. Let 0 denote a sample space, and P a probability set function on 0. For each h,e (;;; 0 
with P ( e) > 0, the conditional probability of h given e, notation: P (h I e ), is 

P(h I e) = P(~(~) e). 

PROPOSITION 2.5. Let 0 denote a sample space, P a probability set function on Sl and e a subset of Sl 
with P (e) > 0. The conditional probabilities given e define a probability set function on 0. 

PRooF. We have to show that the axioms (1 ), (2) and (3) of Definition 2.2 hold for the conditional 
probabilities given e. 

P(h n e) . 
(1) P(h I e) =P(e) ;a. 0, smce P(h n e) ;;;... 0 and P(e) > 0. 

(2) P(Sl I e) = P(O n e) = .!J!)_ = 1. 
P(e) P(e) 

P((h 1 u hi u ... ) n e) 
(3) P(h1 U hi U ... le)= P(e) 

P((h 1 n e) u (hi n e) u ... ) 
P(e) 

P(h 1 n e) + P(hi n e) + ... 
= = 

P(e) 
P (h 1 n e) P (hi n e) 

= + + ... = P(h 1 I e) + P(hi I e) + ... 
P(e) P(e) 

for mutually exclusive events h;, i = 1,2, ... 11111 

Proposition 2.5 allows us to state properties of the conditional probabilities given some e, analogous 
to the properties stated in the Propositions 2.1 - 2.4. 

It seems natural to name an event h independent of an event e when P(h I e) = P(h): the prior 
probability of event h is not influenced by the knowledge that event e has occurred. However, this 
intuitive definition is asymmetric in its arguments and is not applicable in the case that P(e) = 0. 
Therefore a slightly modified definition is given. 
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for each subset {ii. ... ,ik} (;;; {1, .•• ,n}, 1..,.;;; k..,.;;; n, n ;;a.. I. The events e., ... ,en are called conditionally 
independent given an hypothesis h if 

P(e;, n ... n e;. lh) = P(e;, lh) · ... · P(e;. lh) 

for each subset {i ., ... ,ik} (;;; { 1, ... ,n }. 

Note that if the events h and e are independent and if P(e) > 0 we have 

P(h I e) = P(;(~) e) = P(;~~r) = P(h). 

THEOREM 2.1. (Bayes' Theorem) Let P denote a probability set fwiction on a sample space n. For each 
h,e (;;; il with P(e) > 0, P(h) > 0, 

P(h le)= P(e ~~!~(h). 

PRooF. The conditional probabilif of a hypothesis h given some evidence e is according to 

Definition 2.3, P(h le)= P(;(~) e • Similarly we have P(e lh) = P(;(~/>, and so it follows 

that P(e lh)P(h) = P(h n e) = P(h I e)P(e) from which the desired result is derived. II 

In the remainder of this paper, we take n to be a fixed sample space and P to denote a fixed 
probability set function on n. 

3. A FORMAL DESCRIPTION OF THE CERTAINTY FACTOR MODEL 

The certainty factor function we have introduced informally in Section 1 is not the basic function of 
the certainty factor model: this certainty factor function is defined in terms of two basic measures of 
uncertainty, the measures of belief and disbelief. In turn these basic measures are based on Bayesian 
probability theory. In Section 3.2 we provide formal definitions of these two basic measures. When 
applying the certainty factor model in a rule-based top-down reasoning expert system, approximation 
functions are used to approximate function values of the measures of belief and disbelief. These 
approximation functions are defined in Section 3.3. Section 3.4 provides formal definitions of the 
certainty factor function and its approximation function. 

3.1. Preliminaries 

In the foregoing we have discussed in an informal manner some basic notions that play an important 
role in the certainty factor model. Before presenting the formal definitions of the basic measures of 
uncertainty we provide some preliminary definitions of these notions. 
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DEFINmON 3.1. Let .Jid' denote a finite set of atomic propositions; µt tf denote the set of conjwictions of 
n m, 

disjunctions of elements of~ i.e. tf contains elements of the form . /\ • ( V a;"), a;'l· E ·~ n,m; ;;;;;.: 1, 
r=l 1=l 

i = 1, ... ,n. 

A hypothesis is an element h E stl A piece of evidence is an element e · E I. Let u be a fixed element of 
~ representing the user's de facto knowledge. 

A production rule is an expression e ~ h where e is a piece of evidence and h is a hypothesis. Let fJ1> 
denote a fixed, finite set of production rules. · 

In Section 1 we have introduced the· certainty factor function ll.aving three' arguments; ilie third 
argument of a certainty factor CF(j -1 i,Di,j) represents a derivation of ilie hypoiliesis j from i with 
respect to fJ'J. This notion is defined in ilie following definition. 

DEFINmON 3.2. LetfJ'J be defined as ablJVe. A derivai'ion Di,j of j from i With respect to fJ1J is defined re-
cursively as follows. · 

(1) e ~ h is a derivation of h from e with respect to fJ1J if e ~ h E fJ1J. 

(2) If D"·e is a derivation of e from u with respect to fJ1J and e ~ h is a derivation of h from e with 
respect to 9, then (D"'e) 0 (e ~ h) is a derivation of h from u with respect to .9,- (D"'e) 0 (e ~ h) 
is callt:d the sequential composition of the derivations D"·e and e ~h. 

(3) If Du.e,. is a .derivation of e 1from u with. respect to fJ'J· and D~e, is a derivation of e2 from u with 
respect to 9, then. (~u,e,) & (D"'e2) is . a derivation of (e 1 A e2) from u . with, respect to .9,­
(D"'e') & (D"'e2

) is called the conjunctiOn of the derivations Du,e, and D"'~2 • 
(4) If Du..e, is (l derivation of e1 from u with respect to fJ1J and D"'e2 is a· derivation ofe2 from u with 

respect to 9, then (Du,e,) I (D"'e2
) is a derivation of (e1 V e2) from u with respect to .9,­

(D"'e') I (D"'e2
) is called the disjwiction of the derivations Du,e, and Du,e,. 

(5) If DY·h and D'fh are derivations of h from u with respect to fJ1J, then (DY'h) II (D~·h) iS a derivation 
of hfrom u with respect to .. .9,- (DY.h) II (D'fh) is .called the parallel comp(}Sition of tl,e derivatiOns 
DY·h and,,D~·h . . ·. 

The set of all derivations with respect to fJ1J is denoted by !!d. 

We remark iliat ilie notion of sequential' corriposition of two derivations is defined asymmetrically. 
Aliliough a 'Symmetrical definition (D"·e) o (De,h) is more· natuiru; it goos' beyond ilie' notlon' of 
derivation in toP-<iown '.inference. ·. ' · . . · . · . · 

In ilie sequel, we will omit parenilieses from elemeiits of ·tf and !14 as long ·as ambiguity carinot 
occur. 

The two basic measures of uncertainty iliat we will discuss in ilie sequel have a foundation in 
probability ilieo~. As production rules are statements concerning atomic propositions and positive 
boo~ean combinations of atomic propositions, and probabilities are statements concerning sets we 
have to define a mapping from <f to Jt We .take each atomic proposition e to identify a nonempty 
subset e of ilie sample space ll. The logical connective A (conjunction) translates into ilie set 
operation n (intersection); ilie logical connective v (disjunction) translates into ilie set operation U 
(union). In Figure 3.1 ilie intuitive idea of iliis mapping is shown. Notice iliat this mapping from tf 
into ll is injective. Furiliermore, aliliough we did not allow negations in production rules, each subset 
of ll has a complement due to ilie properties of sets. We assume iliese complements to be nonempty. 

Similarly each derivation Di,j wiili respect to fJ1J identifies a subset of ilie sample space 0 dependent 
upon ilie intermediary hypoilieses iliat were used in deriving ilie hypothesis j from i: 
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FIGURE 3.1. A mapping from I' into il. 

DEFINITION 3.3. Let~ u and [JJ be defined according to Definition 3.1 and!» according to Definition 3.2. 
Let the mapping from 4' into il be as described above. Then, an rJ,!»-interpretation of elements of!» is a 
function ig: !!) ~ rJ such that 

(1) for each u ~ h E ~ ig(u ~ h) = 0, and 

(2) for each e ~ h E [JJ where e =/= u, ig(e ~ h) = e, and 

(3) for each DI> D2 E ~ ig(D1 ° D2) = ig(D1) U ig(D2), and 

(4) for each D., D2 E ~ ig(D1 & D2) = ig(D1) n ig(D2), and 

(5) for each Di, D2 E ~ ig(D1 I D2) = ig(D1) U ig(D2). and 

(6) for each DI> D2 E ~ ig(D1 II D2) = ig(D1) n ig(D2). 

The basic idea of this mapping from !!) to rJ is to identify with a derivation a subset of ll representing 
all information that has been concluded by the system in the course of the derivation except for the 
final conclusion of this derivation. So with a derivation u ~ h the empty set is associated since the 
system has not reached any conclusion during this derivation except for h. The interpretation of a 
conjunction of derivations and of a disjunction of derivations as the set operations intersection and 
union respectively are rather straightforward. The interpretation of the parallel composition of 
derivations as the intersection of the separate derivations, i.e. the idea of taking the intersection of all 
evidence that is used in deriving a hypothesis, should be intuitively appealing. The interpretation of 
the sequential composition of derivations as the union of the sets identified by these derivations comes 
forth from the idea that an expert system should have the ability to extend its focus. 

Ex:AMPLE 3.1. Consider the derivation DY·h = ((u ~ e) 0 (e ~ h)). Then ig(DY·h) = 0 U e = e. 
Consider the derivation D~·h = (((u ~a) 0 (a ~ h)) II ((u ~ e) 0 (e ~ h))). Then 
ig(D~·h) = (0 u a) n (0 u e) = a n e. 11111 

In the sequel we will see that in calculating a measure of uncertainty for a hypothesis the set 
corresponding with the derivation of this hypothesis is intersected with the set identified by u. From 
this it will be evident that the system is not allowed to focus on hypotheses contradictory to the user's 
de facto knowledge. 
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3.2. The Basic Measures of Uncertainty 

In developing the certainty factor model Shortliff e and Buchanan have chosen two basic measures of 

uncertainty: the measure of belief expressing the degree to which an observed piece of evidence 
increases the belief in a hypothesis, and the measure of disbelief expressing the degree to which an 
observed piece of evidence decreases the belief in a hypothesis. Before stating the formal definitions 
of these functions, we quote their intuitive account for the measure of belief (see also Figure 3.2). We 
suppose a sample space 0 and a probability set function P on 0 are given. 

P(h le) 

0 P(h) 1 

FIGURE 3.2. The degree of increased belief. 

"In accordance with subjective probability theory, it may be argued that the expert's personal 
probability P (h) reflects his or her belief in h at any given time. Thus, 1 - P (h) can be viewed as an 
estimate of the expert's disbelief regarding the truth of h. If P(h I e) is greater than P(h) the 
observation of e increases the expert's belief in h while decreasing his or her disbelief regarding the 
truth of h. In fact the proportionate decrease in disbelief is given by the following ratio: 

P(h le) - P(h) 
1 - P(h) 

This ratio is called the measure of increased belief in h resulting from the observation of e." 
(11], pp. 247, 248) 

Similarly, the measure of disbelief is accounted for. J!e notice that the ratio mentioned in the 

foregoing quotation equals P(h I e) - P(h) = 1 - P(h I e). 
1 - P(h) P(h) 

In the next definition the measures of belief and disbelief are defined formally. 

DEFINITION 3.4. Let 8 be defined according to Definition 3.1 and~ according to Definition 3.2. Furth­
ermore, let ig be defined according to the Definition 3.3. Let h,e E 8 and D e,h E ~ such that 
P(e n ig(De,h)) > 0. The measure of (increased) belief MB is a function MB: 8 X 8 X ~ ~ [O, l] 
such that 

{

1 if P(h) = 1 

MB(h -1 e,De·h) = { P(h le n ig(De,h)) - P(h)} . 
max 0, 1 _ p (h) otherwise 

The measure of (increased) disbelief MD is a function MD: 8 X 8 X ~ ~ [O, 1] such that 

{

1 if P(h) = 0 

MD(h -I e,De,h) = { P(h) - P(h I e n ig(De·h))} . 
max 0, p (h) otherwise 



9 

It is noted that Shortllife and Buchanan neither account for their choice for the measure of belief in 
the case where P (h) = I nor for their choice for the measure of disbelief in the case where P (h) = 0. 

From now on we will assume a prope_!...!fil>lication of th~ function ig implicitly, and for instance 
write P(Di·i) instead of P(ig(Di,j)). For ig(h) we will write h where appropriate. 

The properties of MB and MD stated in the following proposition can easily be proven. 

PROPOSITION 3.1. Let t! and fJIJ be de.fined according to Definition 3.1 and !i4 according to Definition 3.2. 
Furthermore, let the functio11S MB and MD be defined according to Definition 3.4. Let h,e E t! and 
De,h E ~ Then the following properties hold: 

(1) If e ~ h E fJIJ and P (h I e) = P (h) with 0 < P (h) < I and P (e) > 0 then 
MB(h --1 e,e ~ h) = MD(h --1 e,e ~ h) = 0. 

(2) If MB(h --1 e,De·h) > 0 then MD(h --1 e,De,h) = 0. 

(3) If MD(h --1 e,De,h) > 0 then MB(h --1 e,De,h) = 0. 

Part (1) of Proposition 3.1 shows that neither the belief nor the disbelief in a hypothesis h is increased 
by the observation of evidence independent of h. Parts (2) and (3) show that a derivation of a 
hypothesis h cannot both confirm and disconfirm h. 

3.3. The Approximation Functio11S for the Basic Measures 

Leaving the notion of certainty factors aside for the moment, an expert associates with the conclusion 
h of a production rule e ~ h a measure of belief MB(h -i e,e ~ h) and a measure of disbelief 
MD(h --1 e,e ~ h); equally a user associates with every piece of evidence e he feeds the system with a 
measure of belief MB(e -i u,u ~ e) and a measure of disbelief MD(e -i u,u ~ e). The objective of 
the application of the certainty factor model in a rule-based top-down reasoning expert system is to 
calculate function values MB(hg --1 u,D"'h•) and MD(hg --1 u,D"·h•) for each goal hypothesis hg. 

Notice that these function values of MB and MD for goal hypotheses have u for a second argument. 
If the probability set function Pon the sample space '1 is known (e.g. based on relative frequency) the 
function values MB(hg --1 u,D"'h•) and MD(hg -i u,D"'h•) can be computed using the probabilistic 
definitions of MB and MD. In many of the domains in which expert systems are employed, however, 
the probability set function is rarely known. It is obvious that the expert and the user have supplied 
function values of MB and MD for only a few arguments. The certainty factor model offers 
approximation functions for calculating certain function values of MB and MD from the function 
values already known to the system. From our objective and from the notion of top-down derivation 
we have that only function values of MB and MD have to be approximated that have u for a second 
argument. 

Shortllife and Buchanan argue that the application of their approximation functions renders 
function values of MB and MD that are 'close enough' approximations of the real values of MB and 
MD. In this section we provide formal definitions of these approximation functions. In subsequent 
sections we examine the above mentioned claim of Shortllif e and Buchanan. 

The approximation functions for the measure of belief and the measure of disbelief are defined in 
the following definition. 
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DEFINITION 3.5. Lett( u and fJlJ be defined according to Definition 3.1 and 57) according to Definition 3.2. 
Furthermore, let the functions MB and MD be defined according to Definition 3.4 and let the functions 
MBo, MDo, MB 1, MD 1, MB<b MD<b MBn and MDn be as in the subsequent definitions. Let h,e E tf 
and D"·h = D 1 0 D 2 E 51) where 0 E { 0 , &. I, II}. MB is a partial function 
MB: tf X tf X 57) ~ [O, 1] such that 

(1) MB(h -1 e,e ~ h) = MB(h -1 e,e ~ h) if e ~ h E ~and 

(2) MB(h -1 u,D 1 0 D 2) = MB 0 (h -1 u,D1 0 Di) otherwise. 

MD is a partial Junction MD: tf X tf X 51) ~ [O, 1] such that 

(1) MD(h -1 e,e ~ h) = MD(h -1 e,e ~ h) if e __,. h E ~ and 

(2) MD(h -1 u,D 1 0 D 2) = MD 0 (h -1 u,D 1 0 Di) otherwise. 

In Definition 3.5 we have introduced several new functions. Following the terminology of Shortliffe 
and Buchanan we will call these functions combination functions. In the remainder of this section the 
intended meaning of each of these combination functions is discussed in the light of rule-based top­
down reasoning expert systems before the combination function is formally defined. 

As has been mentioned before the function values MB(h -1 e,e .....,. h) and MD(h -1 e,e.....,. h) are 
associated with the conclusion h of a production rule e ~ h. These function values express the degree 
to which the occurrence of evidence e influences the belief and disbelief in the hypothesis h, 
respectively. However, the truth of a piece of evidence e (i.e. whether e has actually occurred) may 
not always be determined with absolute certainty: with every piece of evidence e supplied by the user 
a measure of belief MB(e -1 u,u.....,. e) and a measure of disbelief MD(e -1 u,u.....,. e) are associated 
not necessarily equalling +I and 0, respectively. Furthermore when using production rules an 
intermediary hypothesis e can be confirmed to some degree MB(e -1 u,D"·e) and disconfirmed to 
some degree MD(e -1 u,D"·e), and may in turn be used as evidence in other production rules 
concluding on new hypotheses. In the case of the production rule e .....,. h described above, we are 
interested in the function values MB(h -1 u,Du.e 0 (e ~ h)) and MD(h -1 u,Du,e o (e ~ h)). These 
function values are approximated from the measures of belief and disbelief attached to the production 
rule and the function values associated with the intermediary hypothesis e: in the combination 
functions to deal with the situation that the truth of a piece of evidence is not known with certainty, 
the measures of belief and disbelief of the intermediary hypothesis e are used as part of a weighting 
factor for the measures of belief and disbelief associated with the hypothesis h in the production rule. 
These approximation functions are denoted by MB o and MD o• 
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DEFINITION 3.6.1 Let tB; u and 9 be defined according to Definition 3.1 and ~ according to Definition 
3.2. Furthermore let the functions MB and MD be defined according to Definition 3.5. Let h,e E '8; 
Du,e E ~and e ~ h E .9. MB" is a partial function MB a: <I X <I X ~ ~ [O, 1] such that 

MBa(h --l u,Du,e o (e ~ h)) = 

= MB(h --l e,e ~ h). max{o, MB(e --l u,D"·e) - MD(e --l u,D"·e) }· 
l - min{MB(e --l u,D"·e),MD(e --l u,D"·e)} 

MD a is a partial function MD a: <IX <IX~~ [O, 1] such that 

MDa(h 1 u,Du,e o (e ~ h)) = 

= MD'h h). {o MB(e --l u,D"·e) - MD(e --l u,Du.e) } 
~ --l e,e ~ max , _ _ . 

1 - min{MB(e --l u,D"·e),MD(e --l u,D"·e)} 

From now on, we will call the functions MB" and MD" the combination functions for propagating 
uncertain evidence. We notice that these combination functions render function values equal to zero 
when there is more reason to believe that e is false than there is to believe that e is true. This 
property of the combination functions for propagating uncertain evidence has as a consequence that a 
production rule e ~ h has no influence on the belief nor on the disbelief in h when the rule has failed 
during the top-down inference process. 

The evidence e in a production rule e ~ h is a positive Boolean combination of pieces of evidence 
according to Definition 3.1. In order to be able to apply the combination functions MB a and MD" to 
approximate the measures of belief and disbelief of h after the application of this rule, the measures 
of belief and disbelief of e given some derivation of e from u, i.e. MB(e --l u,D"·e) and 
MD(e 1 u,D"·e), have to be known. As these function values are not known in general they have to 
be approximated from the separate measures of belief and disbelief for each of the pieces of evidence 
that e comprises, viewed as hypotheses. Shortliffe and Buchanan argue 

.. that the measure of belief in the conjunction of two hypotheses is only as good as the belief in the 
hypothesis that is believed less strongly, whereas ... the measure of disbelief in such a conjunction is 
as strong as the disbelief in the most strongly disconfirmed." 
([l], p. 256) 

Complementary observations are made for disjunctions of hypotheses. In character with these 
contemplations Definition 3.7 formulates the combination functions MB&, MD&, MB 1 and MD 1 for 
approximating the measures of belief and disbelief in positive Boolean combinations of hypotheses. 

I. In [ l ), the following combination functions are proposed: 

MB(h,i) = MB'(h,i) · max{O,CF(i,e)} 
MD(h,i) = MD'(h,i) · max{O,CF(i,e)} 

where MB'(h,i) and MD'(h,i) are the measures of belief and disbelief which the expert associated with h given that evidence 
i is observed with absolute certainty. CF(i,e) denotes the same expression in MB(i,e) and MD(i,e) we have used in our 
Definition 3.6. In the original formulation given above the introduction of the quoted functions MB' and MD' is necessary 
because in their model Shortliffe and Buchanan do not explicitly distinguish approximated function values from actual func­
tion values; as we will see, this is still more evident in their formulation of the other combination functions. We have intro­
duced new functions MBo and MD. to emphasize the difference between the actual functions MB and MD and the approx­
imation functions. Furthermore it is noted that in the original formulation given above the dependence of each of the left­
hand sides on i as well as on e is not expressed. This observation has led to the second argument u in our formulation and 
the introduction of the third argument expressing a derivation with respect to the set of production rules. Notice that we 
have not departed from the intended meaning of the original formulation. 
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DEFINITION 3.7.1 Let<! and u be defined according to Definition 3.1 and !!J according to Definition 3.2. 
Fwthermore let the functions MB and MD be defined according to Definition 3.5. Let e; E <!and 
Du.e, E ~ i = 1,2 MB 1 is a partial function MB 1: tf X tf X !!J ~ [O, 1] such that 

MB 1 (e1 v e2 --1 u,Du.e, I D"'e2) = max{MB(e1 --1 u,D"'e'),MB(e2 --1 u,D"'e2
)}. 

MD 1 is a partial function MD 1 : <! X <! X !!J ~ [O, I] such that 

MD1(e1 V e2 -I u,Du,e, I D"'e2
) = min{MD(e1 --1 u,D"'e'),MD(e2 -1 u,D"'e2

)}. 

MB& is a partial function MB&: <! X <! X !!J ~ [O, 1] such that 

MB&(e1 /\ e2 -I u,Du,e, & D"'e2
) = min{MB(e1 -1 u,D"'e'),MB(e2 --1 u,D"'e2

)}. 

MD & is a partial function MD&: <! X tf X !!J ~ [O, 1] such that 

MD&(e1 /\ e2 -I u,Du,e, & D"'e2
) = max{MD(e1 -I u,D"'e'),MD(e2 --1 u,D"'e2

)}. 

Henceforth the combination functions MB 1 and MD 1 will be called the combination functions for 
disjunctions of hypotheses; the combination functions MB& and MD& will be called the combination 
functions for conjunctions of hypotheses. When referring to the four functions together we will call 
them the combination functions for composite hypotheses. 

When different successful production rules e; ~ h (i.e. rules with different left-band sides e;) 
conclude on the same hypotheses h, a measure of belief MB(h --1 u,D'fh) and a measure of disbelief 
MD(h --1 u,DY·h) are calculated from each of these rules using the approximation functions MB and 
MD. The net measure of belief and the net measure of disbelief, for example for two production rules 
MB(h --1 u,DY·h II D~h) and MD(h --1 u,Df·h II D~h), are approximated from these partial measures of 
belief and disbelief. Shortliffe and Buchanan justify their combination functions for combining the 
results of different production rules concluding on the same hypothesis as follows: 

"since an MB (or MD) represents a proportionate decrease of disbelief (or belief), the MB (or MD) of 
a newly acquired piece of evidence should be applied proportionately to the disbelief (or belief) still 
remaining." 
([I], p. 256) 

The combination functions for combining the results of different production rules concluding on the 
same hypothesis are defined in the next definition. 

I. In [I], the following combination functions are proposed: 

MB(h1 A h2,e) = min{MB(hi.e),MB(h2,e)} 
MB(h 1 v h2,e) = max{MB(hi.e),MB(h2,e)} 

MD(h1 A h2,e) = max{MD(h1,e),MD(h2,e)} 
MD(h1 v h2,e) = min{MD(hi,e),MD(h2,e)} 

Again, no distinction is made between approximated and actual function values: the original formulation therefore suggests 
properties of MB and MD that do not hold in general. Furthermore, these combination schemes can be used to combine 
the measures of belief and disbelief for several hypotheses given the same evidence. In practice however, the measures of 
belief and disbelief of the hypotheses to be combined are derived along different inference paths, and may differ in the 
second argument due to the original formulation of the combination functions for propagating uncertain evidence. 
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DEFINITION 3.8. 1 Let 8 and u be defined according to Definition 3.1 and !» according to Definition 3.2. 
Furthermore let the functions MB and MD be defined according to Definition 3.5. Let h E tf and 
D'th E ~ i = 1,2 MB 11 is a partial/unction MB 11 : 8 X tf X !» ~ (0, I] such that 

(1) MB 11 (h -l u,D'th II D~h) = 0 if MD11(h -l u,D'th II D~h) = I. and 

(2) MB 11 (h -l u,DY·h II D~·h) = MB(h -l u,D'f:h) + MB(h -l u,D~h)(1 - MB(h -; u,DY·h)) 
otherwise. 

MD 11 is a partial/unction MD11: tf X tf X !» ~ (0, I] such that 

(I) MD11(h -; u,DY·h II D~h) = 0 if MB11(h -l u,DY·h II D~h) = I, and 

(2) MD11(h -; u,Dy·h II D~h) = MD(h -l u,DY·h) + MD(h -; u,D~·hXI - MD(h -l u,D'f:h)) 
otherwise. 

Henceforth, the functions MB 11 and MD 11 will be called the combination functions for (combining the 
results of) co-concluding production rules (i.e. concluding on the same hypothesis). 

It is noted that the functions MB and MD are defined recursively through the eight combination 
functions defined in the foregoing definitions. These combination functions can only be applied in a 
specific order as shown in Figure 3.3. 

3.4. A Derived Measure and its Approximation Function 

In addition to the basic measures of uncertainty MB and MD a third measure, derived from the 
measures of belief and disbelief, is defined. This derived function is called the certainry factor 
function. 

I. In [l) the following combination functions are proposed: 

MB(h,e1 /\ e2) = · {

O if MD(h,e1 /\ e2) = 1 

MB(h,e1) + MB(h,e2)(1 - MB(h,e1)) otherwise 

{

O if MB(h,e1 /\ e1) = 1 
MD(h,ei /\ e 2) = MD(h,e 1) + MD(h,e2)(1 - MD(h,e1)) otherwise 

Once more, the original formulation suggests properties of the functions MB and MD that do not hold in general. Further­
more in describing the combination of the results of different production rules ooncluding on the same hypothesis, the same 
symbol /\ is used as in descn"bing a conjunction of hypotheses or pieces of evidence. Shortliffe and Buchanan seem to as­
sume that the success of a production rule e 1 /\ e2 ~ h is equivalent to the success of the two production rules e 1 ~ h and 
e2 ~ h. As such an equivalence is apt to be violated due to inconsistent values of MB and MD provided by the expert and 
the user or calculated using the approximation functions, we have felt the necessity of introducing another symbol 
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MBu.MDu 

FIGURE 3.3. The order in applying the combination functions. 

DEFINITION 3.9. Let 8 be defined according to Definition 3.1 and !?J according to Definition 3.2. Furth­
ermore let the functions MB and MD be defined according to Definition 3.4. Let h,e E 8 and De,h E !?a 
CF is a partial function CF: 8 X 8 X !') ~ [ -1, 1] such that 

CF(h -l e,De,h) = MB(h -l e,De,h) - MD(h -l e,De,h) . 
I - min{MB(h -i e,De,h),MD(h -l e,De,h)} 

Using Proposition 3.1 the property in the following proposition can easily be proven. 

PR.oPosmoN 3.2. Let 8 be defined according to Definition 3.1 and!') according to Definition 3.2. Furth­
ermore let the functions MB and MD be defined according to Definition 3.4 and the function CF as 
above. Let h,e E 8 and De,h E !?a Then one of the following statements is true 

(1) CF(h -i e,De·h) = MB(h -l e,De,h). 
(2) CF(h -l e,De.h) = -MD(h -i e,De,h). 

Definition 3.9 describes the certainty factor function in terms of the measures of belief and disbelief 
as proposed in [l]: if the function values MB(h -l e,De,h) and MD(h -l e,De,h) are known, the 
function value CF(h -l e,De,h) can be calculated from these values. As we have discussed in the 
foregoing section, in general the function values of MB and MD are not known and are approximated 
in the model using MB and MD. In practice therefore, the function values of the certainty factor 
function are calculated from approximations of the functions values of MB and MD. In the following 
definition the notion of certainty factor is redefined in terms of the approximation functions for MB 
and MD. 



15 

DEFINITION 3.10. Let 8 be !!!fjned according to Definition 3.1 and !i) according to Definition 3.2. Furth­

ermore, let the functions MB and MD be defined according to Definition 3.5. Let h,e E 8 and 
De,h E .@ CF' is a partial function CF': 8 X 8 X !i) ~ [ - I, I] such that 

CF'(h -l e,De•h) = MB(h ~,De·h) - MD-2!_ -l e,De·h) 
I - min{MB(h -i e,De·h),MD(h -i e,De,h)} 

It should be evident from the definitions of the functions CF and CF' that these functions (at least) 

coincide when production rules are considered. This property is formulated in the following 
corollary. We emphasize that this property does not hold for each derivation in general. 

CoR.OLLARY 3.1. Let 8 and fJJ be defined according to Definition 3.1. Furthermore, let the function CF 
be defined according to Definition 3.9 and the function CF' as above. Let h,e E 8 and e ~ h E fJ'. 
Then CF(h -i e,e ~ h} = CF'(h -l e,e ~ h). 

In the EMYCIN implementation of the certainty factor model rather than ~ubsequently 

approximating the measures of belief and disbelief for each hypothesis using MB and MD, and finally 

computing the certainty factor using Definition 3.10, only subsequently approximated certainty factors 
are used. For that purpose we introduce an approximation function for certainty factors. 

DEFINmON 3.11. Let tB; u and fJJ be defined according to Definition 3.1 and !i) according to Definition 

3.2. Furthermore, let the function CF' be defined according to Definition 3.10 and the functions CF., 
CF..,. CF 1 and CF lL.!!:Y in the subsequent 4!1J.nitions. Let h,e E tl' and D"·h = D 1 0 D 2 E !i) where 

0 E { 0 , &. I, II}. CF is a partial function CF: t1' X 8 X !i) ~ [ - 1, I] such that 

(1) CF(h -i e,e ~ h} = CF'(h -i e,e ~ h) if e ~ h E 9, and 

(2) CF(h -i u,D 1 0 D 2) = CF 0 (h -i u,D 1 0 D 2) otherwise. 

In Definition 3.11 several new functions are introduced. These functions CF., CF 1 , CF& and CF 11 

are the combination functions for the certainty factor function. They are defined in the next three 

definitions. 

DEFINITION 3.12. Let tB; u and fJJ be defined according to Definition 3.1 and~ according to Definition 

3.2. Furthermore, let the function CF be defined according to Definition 3.11. Let h,e E r8; D"·e E ~ 

and e ~ h E fJ'. CF. is a partial function CF.: 8 X 8 X ~ ~ [-1, 1] such that 
~ ~ 

CF.(h -i u,D"·e 0 (e ~ h}) = CF(h -i e,e ~ h} · max{O,CF(e -i u,Du.e)}. 

Henceforth the approximation function CF. will be called the combination function for propagating 
uncertain evidence analogous to the naming of MB. and MD •. This combination function shows once 
more that a production rule has no influence on the belief nor on the disbelief in a hypothesis when 
the rule has failed during the top-down inference process: the approximated certainty factor for this 

rule after its application equals zero. 
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DEFINITION 3.13. Let tf and u be defined according to Definition 3.1 and !5} according to Definition 3.2. 
Furthermore, let the function CF be defined according to Definition 3.11. Let e; E tf and Du,e, E ~ 
i = 1, 2 CF 1 is a partial function CF 1: tf X 8 X !5} ~ [ - 1, 1] such that 

CF1(e1 V e2,u,Du,e, I D"'e2) = max{CF(e.,u,D"'e'),CF(e2,u,D"'e2
)}. 

CF & is a partial function CF&: tf X tf X !5} ~ [ - 1, 1] such that 

CF&(e 1 I\ e2,u,Du,e, & D"'e2) = min{CF(e.,u,D"'e'),CF(e2,u,D"'e2)}. 

From now on, we will call the approximation functions CF 1 and CF & the combination functions for 
composite hypotheses. 

DEFINITION 3.14. Let tf and u be defined according to Definition 3.1 and !5} according to Definition 3.2. 
Furthermore, let the function CF be defined according to Definition 3.11. Let h E tf and Df·h E ~ 
i = 1,2 CF11 is a partial function CF11: 8 X 8 X !5} ~ [-1, 1) such that 

(1) CF11(h -1 u,DY·h II D~h) = CF(h -1 u,D'{'h) + CF(h -1 u,D~h)(l - CF(h -1 u,Dy·h)) 

if CF(h -1 u,Df·h) > 0 and CF(h -1 u,D~h) > 0, and 

(2) 
CF(h -1 u,Df·h) + CF(h -1 u,D~·h) 

CF11(h -1 u,Df·h II D~·h) = -----------------
1 - min{ICF(h -1 u,DY·h)I, ICF(h -1 u,D~·h)I} 

ij-1 < CF(h -1 u,Df·h) · CF(h -1 u,D~h) zs;;; 0, and 

(3) CF11 (h -1 u,DY·h II D~·h) = CF(h -1 u,D'{'h) + CF(h -1 u,D~h)(l + CF(h -1 u,Df·h)) 

The approximation function CF11 will be called the combination Junction for (combining the results of) 
co-concluding production rules. 

3.5. Summary 

In the foregoing sections we have defined the basic measures of uncertainty of the certainty factor 
model, the measure of belief MB and the measure of disbelief MD using a probability set function P 
on a sample space '2 (see Definition 3.4). As this probability set function is not always known in 
practice, not all function values of MB and MD can be computed from this probabilistic definition; 
the functions MB and MD are introduced to approximate function values of MB and MD respectively 
(see Definition 3.5). In addition in the model a third measure of uncertainty is used; the certainty 
factor function CF is defined using MB and MD (see Definition 3.9). As function values of MB and 
MD are approximated by MB and MD, we have redefined the certainty factor function in terms of 
these approximated measures of belief and disbelief, giving CF' (see Definition 3.10). In actual 
implementations of the model only this certainty factor function is used fo!_!andling uncertainty. 
For the purpose of approximating function values of CF' the function CF is introduced (see 
Definition 3.11). Figure 3.4 shows the relations that have been defined between the functions 
employed in the certainty factor model. In Section 4 and 5 we examine these relations in detail. 



17 

p 

CF 
Definition 3.9 

MB,MD 

CF' 
Definition 3.10 

MB,MD 

CF 

FIGURE 3.4. A diagram of functions. 

4. AN ANALYSIS OF TIIE APPROXIMATION FUNCTIONS MB AND MD 

In Section 3.3 we have introduced the approximation functions MB and MD for the basic measures of 
uncertainty MB and MD of the certainty factor model. In this section we investigate whether these 
approximation functions respect the probabilistic definitions of MB and MD respectively, or more 
formally, we investigate whether MB is a restriction of MB and whether MD is a restriction of MD. 

DEFINITION 4.1. Let 'Wo, ~ and "I'" denote sets such that ~o ~ t¥t: Furthermore, let f be a function 
f: ~ -">°Y. A function fo: 'flo --"> "Yis called a restriction off, notation: fo ~ f, if fo(uo) = f(uo) for each 
uo E 'flo. The function f is called an extension off o· 

In this section, we concentrate on the right half of Figure 3.4. We recall that the approximation 
functions MB and MD are defined recursively through eight so-called combination functions: MB o 

and MDo (the combination functions for propagating uncertain evidence), MB 1, MD 1, MB& and 
MD& (the combination functions for composite hypotheses), and MB 11 and MD 11 (the combination 
functions for co-concluding production rules). Several authors have analysed the combination 
functions for combining the results of co-concluding production rules. We present our views on these 
functions in Section 4.1. The other combination functions have received far less attention in the 
literature. As the functions for composite hypotheses are applied approximately as often as the 
combination functions for co-concluding production rules and perhaps even more often, they can 
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iniluence the resulting approximated function values of MB and MD considerably. The combination 
functions for composite hypotheses will be discussed in Section 4.3. Section 4.2 examines the 
combination functions for propagating uncertain evidence; in practice these functions are applied less 
often than the other combination functions. 

4.1. The Combination Fwictions for Co-concluding Production Rules 

In this section we investigate whether the combination functions for co-concluding production rules, 
i.e. MB 11 and MD 11 , respect the probabilistic definitions of MB and MD respectively. We are 
interested in function values resulting from appl~e combination functions MB 11 and MD 11 once. 
Therefore, we assume that the function values of MB and MD that are used in MB 11 and MD 11 are 
exact, i.e. we assume the properties MB(h --J u,Dr·h) = MB(h --J u,D'fh) and 
MD(h --J u,Dr·h) = MD(h --J u,Dr·h), i = 1,2. We recall from Definition 3.8 that the combination 
function for combining the measures of belief of co-concluding production rules is defined as stated 
below: 

(I) MB11(h --J u,DY·h II D~h) = 0 if MD11(h -; u,D'('h II D~·h) = 1, and 

(2) MB 11 (h --J u,DY·h II D~h) = MB(h,u --J D'('h) + MB(h -; u,D~·h)(l - MB(h --J u,D'{'h)) 

otherwise. 

Assuming the above mentioned property once more, we recall that the combination function for 
combining the measures of disbelief of co-concluding production rules is defined as stated below: 

(1) MD11(h --J u,DY·h II D~h) = 0 if MB11(h -; u,D'('h II D~·h) = 1, and 

(2) MD 11 (h -1 u,DY·h II D~h) = MD(h -; u,DY·h) + MD(h --J u,D~·h)(l - MD(h --J u,D'('h)) 

otherwise. 

We will show that in some situations these combination functions respect the probabilistic definitions 
of MB and MD by making rather strong assumptions. 

Given a hypothesis h and two derivations DY·h of h from u each not increasing the disbelief in h, 
Proposition 4.1 shows under which restrictions the combination functions for combining these 
derivations are consistent with the probabilistic definitions of MB and MD. 

PROPOSITION 4.1. Let <f and u be defined according to Definition 3.1 and!?) according to Definition 3.2. 

Furthermore, let the functions MB and MD be defined according to Definition 3.4 and the functions MB 11 

and MD 11 according to Definition 3.8. Leth E <f and D'fh E !?) such that MD(h -1 u,DY·h) = 0 and 
u n Dr·h are independent and conditionally independent given h, i = 1,2. Then 

(1) MB(h --J u,D'('h II D~·h) = MB 11 (h -l u,D'('h II D~·h), and 

(2) MD(h -l u,DY·h II D~h) = MD11(h -1 u,DY·h II D~h) = 0. 

PROOF. 

ad (1) Since MD(h -l u,D'fh) = 0, i = 1,2, implies MD 11 (h -; u,Dy·h II D~·h) =I= I we have to prove 

MB(h -l u,DY·h II D~·h) = MB(h -l u,DY·h) + MB(h -1 u,D~·h)(l - MB(h -l u,D'('h)). 

According to Definition 3.4 we have 

{

l if P(h) = 1 

MB(h -1 u,D'('h II D~·h) = { P(h I u n DY·h n D~h) - P(h)} . . 
max 0, 1 _ P(h) otherwise 

We distinguish two cases: P (h) = 1 and P (h) =I= 1. 



19 

If P(h) = I then MB(h -i u,DY·h II D~h) = MB(h -i u,Dy·h) = MB(h -i u,D!·h) = I. So 

MB(h -i u,DY·h II D~h) = MB(h -i u,D'th) + MB(h -i u,D!·h)(l - MB(h -i u,D'th)). 

Now suppose P (h) =I= 1. By definition we have 

h h { P(h lu n D'{'h n D~h) - P(h)} 
MB(h -i u,D't II D~ ) = max 0, I _ P(h) . 

. P(h '" n D'{'h n D!•h) - P(h) . . . . 
The fraction 1 

_ p (h) will be exammed m detail: 

P(h ju n D'th n D~h) - P(h) I - P(h lu n D'{'h n D~h) 
----'---------- = 1 - ----------

1 - PW 1-PW 

P(h I u n D'th n D~h) 
= 1 - --------

P(h) 

P(u n D'{'h n D!·h lh) 
= 1 - ---------''--

P(u n Dy·h n D~h) 

by using Bayes' Theorem for the last equality. We recall from the conditions of the 

propo~ti.on that u n D'{'h and u n D!·h are independent and conditionally independent 

given h. So from Definition 2.4 we have 

P(h I u n DY·h n D!·h) - P(h) 
----"---------- = 1 -

1 - P(h) 

=1-

P(u n D'th jh)P(u n D!·h jh) 

P(u n D'{'h)P(u n D!·h) 

P(h I u n Dy·h)P(h I u n D!·h) 

P(h)2 

by using Bayes' Theorem once more for the last equality. The last term can be written as 

follows 

P(h I u n D'th n D!·h) - P(h) 

1 - P(h) 

_ [ _ I - P(h I u n D'{'h) l [i- 1 - P(h I u n D!·h) l + 
- 1 1 - p (h) + 1 - p (h) 

[ 
_ I - P(h lu n D'th)]· [ _ 1 - P(h lu n D!·h)l 

l 1 - P(h) I 1 - P(h) . 

We recall from the conditions of the 
P(h 1 u n »r·h) - P(h) 

MD(h -i u,DY·h) = MD(h -i u,D!·h) = 0, so I _ P(h) 

these inequalities and Definition 3.4 we have 

proposition that 

;;;;;.. 0, i = 1,2. Using 
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So, 

_ { P (h I u n D1th n D~·h) - P (h) } _ 
- max O, 1 - P(h) -

= max{O,MB(h -1 u,D1f'h) + MB(h -1 u,D~·h)(I - MB(h -1 u,Df·h))} = 
= MB(h -1 u,Df·h) + MB(h -1 u,D~·hXl - MB(h -1 u,Df•h)). 

ad (2) It suffices to show that MD(h -1 u,Df·h II D~h) = 0. H MB 11 (h -1 u,Df·h II D~h) = 1 we 
have MD 11 (h -1 u,Df·h II D~h) = 0 by definition; otherwise since we have 
MD(h -1 u,Df·h) = MD(h -1 u,D~h) = 0 it follows that MD 11 (h -1 u,Df·h II D~h) = 
= MD(h -1 u,D1f'h) + MD(h -1 u,D~h)(I - MD(h -1 u,Df·h)) = 0. 

Since MD(h -1 u,Df·h) = MD(h -1 u,D~h) = 0 implies P(h) ¥= 0, we have according to 
Definition 3.4 

1!,h u,h _ { P(h) - P(h lu n D'{'h n D~h)} 
MD(h -1 u,D1 II Di ) - max 0, P(h) · 

We distinguish two cases: MB(h -1 u,D'{'h II D~h) > 0 and MB(h -; u,Df·h II D~h) = 0. 

Assume MB (h -; u,D'th II D~h) > 0. The cases P (h) = 1 and P (h) ¥= l are distinguished. 

If P(h) = I then P(h I u n Df·h n D~h) = I so 

1!,h y,h - { P(h) - P(h ju n Df·h n D~h>}-
MD(h -1 u,D 1 II Di ) - max 0, P(h) - 0. 

Now suppose P(h) ¥= l then we have according to Definition 3.4 

MB(h D
l!,h 

11 
D"·h) = P(h I u n D'th n D~·h) - P(h) 

-I u, l i I - P(h) > 0. 

From this inequality we have P(h I u n Df·h n D~·h) > P(h) implying 

MD(h D"·h II D"·h) = {o P(h) - P(h I u n Df·h n D~h)} = O 
-1 u, 1 i max , P(h) . 

Now assume MB(h -1 u,D'f:h II D~h) = 0. From MB(h -1 u,Df·h II D~·h) = 0 we have 
P(h) ¥= 1 using Definition 3.4. Furthermore from the proof of part (1) it follows that 
MB(h -l u,Df·h) = MB(h -1 u,D~·h) = 0. MB(h -1 u,Df·h) = MB(h -; u,D~·h) = 0 and the 
conditions of the proposition, MD(h --J u,Df·h) = MD(h --J u,D~·h) = 0, imply 
P(h I u n Df·h) = P(h) and P(h I u n D~h) = P(h). Now it can easily be shown that 
P(h I u n Df·h n D~·h) = P(h) so 
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{ 

P'h) - P'h ju n D 11·h n D1J.h)} 
MD(h -t u,DY.h II D~·h) = max 0, " " P(h) 

1 2 = 0. 

Given a hypothesis h and two derivations Df·h of h from u each not increasing the belief in h, 
Proposition 4.2 shows under which conditions the combination functions for combining these 
derivations respect the probabilistic definitions of MB and MD. 

PlloPosmoN 4.2. Let 8 and u be defined according to Definition 3.1 and~ according to Definition 3.2. 
Furthermore, let the functions MB and MD be defined according to Definition 3.4 and the functions MB 11 

and MD 11 according to Definition 3.8. Let h E 8 and Df·h E ~ such that MB (h -1 u,Df·h) = 0 and 
u n D'fh are independent and conditionally independent given h, i = 1,2 Then 

(1) MD(h -1 u,DY·h II D~·h) = MD11(h -1 u,DY.h II D~h), and 

(2) MB(h -1 u,Dth II D~·h) = MB11(h -1 u,Df'h II D~h) = 0. 

PRooF. We will only prove part (1). The proof of part (2) is analogous to the proof of part (2) of the 
foregoing proposition. 

Since MB(h -1 u,Df'h) = MB(h -1 u,D~h) = 0 implies MB(h -1 u,Df·h II D~·h) =I= 1, we have to 
prove MD(h -1 u,Df'h II D~h) = MD(h -1 u,Df'h) + MD(h -t u,D~h)(l - MD(h -1 u,DY·h)). 

According to Definition 3.4 we have 

{

l if P(h) = 0 

MD(h -1 u,DY·h II D~h> = { P(h) - P(h I u n DY·h n D~·h)} . 
max 0, p (h) otherwise 

We distinguish two cases: P (h) = 0 and P (h) =I= 0. 

If P(h) = 0 then MD(h -t u,DY·h II D~h) = MD(h -1 u,Df·h) = MD(h -1 u,D~·h) = 1 by definition. 
So MD(h -1 u,Df'h II D~h) = MD(h -t u,Df·h) + MD(h -t u,D~h)(l - MD(h -t u,Df·h)). 

Now suppose P(h) =I= 0. By definition we have 

u,h IJ.h - { p (h) - p (h I u n DY·h n D~h) } 
MD(h -1 u,D1 II Di ) - max 0, P(h) · 

. . . P(h) - P(h I u n Df·h n D~·h) . . 
We will examme the fraction p (h) m detail. 

P(h) - P(h I u n Df·h n D~·h) P(h I u n Df'h n D~·h) 
-------'------- = I - ----'-------

P(h) P(h) 

P(u n Dth n D~·h I h) 
= I - ---------'-

P(u n DY·h n D~h) 

by using Bayes' Theorem for the last equation. Recall from the conditions of the proposition that 
u n DY·h and u n D~h are independent and conditionally independent given h; so according to 
Definition 2.4 we have 
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P(h) - P(h ju n DY·h n D~·h) P(u n D'th lh)P(u n D~·h lh) 
- I ----------- = 

P(h) - - P(u n D'f'h)P(u n D~h) 

=I-
P(h I u n D'f'h)P(h I u n D~h) 

P(h)2 

by using Bayes' Theorem for the last equation. The last term can be written as follows 

P(h) - P(h I u n D'th n D~·h) 
P(h) 

= [1 - P(h '" n DY·h)l + [ - P(h '" n D~h>] + 
P(h) I P(h) 

- [ - P(h '" n D'f'h)l· [ - P(h lu n D~·h)l 
I P(h) I P(h) . 

From the conditions of the proposition MB(h --J u,DY·h) = MB(h --J u,D~·h) = 0, it follows that 
P(h) - P(h I u n D'fh) 

p (h) ~ 0, i = 1,2. Using these inequalities and Definition 3.4 we have 

So, 

11111 

P(h) - P(h '" n DY·h n D~·h) ------'------- = MD(h --J u,Dy·h) + MD(h --J u,D~h)(l - MD(h --J u,DY·h)). 
P(h) 

- { P(h) - P(h '" n D'f'h n D~·h)}-
- max 0, P(h) -

= max{O,MD(h --J u,DY·h) + MD(h --J u,D~h)(I - MD(h --J u,DY·h))}= 

= MD(h --J u,D'f'h) + MD(h --J u,D~h)(l - MD(h --J u,DY·h)). 

Given two derivations DY·h and D~h of h from u with respect to the set of production rules, there are 
three possibilities for their relationship with the hypothesis h: 

(1) both D'th and D~h do not increase the disbelief in h, i.e. 
MD(h -1 u,D'fh) = MD(h --J u,D~·h) = 0 and MB(h --J u,DY·h) ~ 0 and MB(h -1 u,D~h) ~ 0, 
or 

(2) both D'th and D~·h do not increase the belief in h, i.e. 
MB(h -1 u,D'f'h) = MB(h --J u,D~h) = 0 and MD(h --J u,D'f'h) ~ 0 and MD(h --J u,D 2) ~ 0, 
or 

(3) one of DY·h and D~·h increases the disbelief in h while the other one increases the belief in h, i.e. 
MB(h --J u,D'f'h) > 0 and MD(h --J u,D~·h) > 0, or MD(h --J u,DY·h) > 0 and 
MB(h -1 u,D~h) > 0. 

Proposition 4.1 shows that in the case of p,art (1) the approximated function values 
MB 11 (h --J u,D'th II D~·h) and MD 11 (h --J u,DY·h II D~ ) equal the actual function values of MB and 
MD provided that certain conditions hold; similarly Proposition 4.2 provides for the case that part (2) 
occurs. The case of part (3) is not provided for yet. 

In his paper [2], Adams has stated properties similar to our Propositions 4.1 and 4.2. He however, 
did not recognize the restriction MD(h --J u,Dr·h) = 0 on the value of the measure of disbelief 
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necessary to show that the combination functions MB 11 respects the probabilistic definition of MB in 
the case of part (l); equally he did not recognize the restriction MB(h -1 u,D'fh) = 0 necessary to 
show that MD 11 respects the definition of MD in the case of part (2). So in considering the case that 
part (3) occurs he seems to assume the three properties 

(i) DY·h and D~·h are mutually independent, and 
(ii) DY·h and D~·h are conditionally independent given ~ and 
(iii) DY·h and D~·h are conditionally independent given h. 

It can easily be shown that when these properties hold, at least one of the following statements is true 

(i) P(h) = 0, or 
(ii) P(h) = 1, or 
(iii) P(h IDY·h) = P(h), or 
(iv) P(h ID~·h) = P(h). 

Therefore, taking the three assumptions together, renders the model only applicable in trivial 
situations. 

When we consider the actual function values of MB and MD in the case that part (3) occurs, either 
MB(h -; u,D'th II D~h) or MD(h -1 u,DY·h II D~·h) equals zero according to Proposition 3.1. The 
application of the af proximation functions MB II and MD 11 however, renders function values 
MB 11 (h -; u,D'th II D~· ) and MD 11 (h -; u,DY·h II D~·h) that can both be greater than zero. As the 
approximation functions cannot decrease the once calculated measures of belief and disbelief such an 
error cannot be reduced. Only if one of MB11(h -; u,DY·h II D~h) and MD 11 (h -1 u,DY·h II D~·h) 
attains the value one is the other set to zero. From this observation it is obvious that the 
approximation functions MB 11 and MD 11 are not consistent with probability theory in the case that 
there are 'conflicting' derivations of a hypothesis. 

In [I], the case in which MD 11 (h -; u,D'th II D~h) = 1 has been defined as an exceptional case for 
the function MB 11 ; likewise, the case in which MB 11 (h -; u,D"'h II D~·h) = 1 has been defined as an 
exceptional case for the function MD 11 • In Definition 3.8 we have followed Shortliffe and Buchanan 
in excepting these cases. When closely examining the definitions of MB 11 and MD 11 it is obvious that 
the function values MB1

1
(h -; u,D'fh II D~h) and MD 11 (h -1 u,DY·h II D~·h) are not uniquely defined in 

the case where MB(h -; u,D'th) = 1 and MD(h -; u,D~h) = l, i.e. the case where one derivation 
completely proves a hypothesis h and the other one completely disconfirms h. Propositions 4.3 and 
4.4 show that under some of the conditions stated in the foregoing propositions, the case mentioned 
above cannot occur. 

PROPOSITION 4.3. Let tf and u be defined according to Definition 3.1 and f!) according to Definition 3.2. 

Furthermore, let the functions MB and MD be defined according to Definition 3.4. Let h E tf and 

D'th E f!) such that u n D'th are independent and conditionally independent given h, i = 1,2. If 
MB(h -; u,DY·h) = I then MD(h -; u,Dy·h) = MD(h -1 u,D~·h) = 0. 

PROOF. Using the information MB(h -; u,DY·h) = 1 we have to show that 
MB(h -; u,D~·h) = MD(h -1 u,DY·h) = MD(h -; u,D~·h) = 0. 

From Proposition 3.1 and MB(h -; u,DY·h) = I we have MD(h -; u,DY·h) = 0. It is noted that from 
MD(h -; u,D'th) = 0 and Definition 3.4 it follows that P(h) =I= 0. 

We distinguish two cases: P(h) = 1 and P(h) =I= 1. 

If P(h) = 1, then also MB(h -; u,D~·h) = 1 according to Definition 3.4. Using Proposition 3.1 once 
more we have MD(h -1 u,D~h) = 0. 

Now suppose P(h) =I= 1. According to Definition 3.4 we have 
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y,h - { P(h lu n D'{'h) - P(h)} 
MB(h -1 u,D1 ) - max 0, l _ P(h) . 

It follows from MB(h --l u,D'{'h) = 1 and our assumption P(h) + 1 that P(h I u n D'{'h) = 1. 
P(h n u n D'fh) 

From P(h I u n DY·h) = h = land Proposition 2.4 we have 
P(u n D't ) 

P(h n u n D"·h n D"·h) 
P(h I D~h n D~h) - I 2 = 1 

u n I i - P(u n D'th n D~·h) 

(It is noted that from the condition of the proposition stating that u n Df·h are independent we have 
P(u n D'th n D~h) + O). 

P(u n D'th n D~h lh)P(h) 
It follows from Bayes' Theorem that P(h I u n D'('h n D~·h) = h h . We 

P(u n DY· n D~· ) 
recall that u n D'th and u n D~h are independent and conditionally independent given h, so from 
Definition 2.4 we have 

h h P(u n D'{'h lh)P(u n D~·h lh)P(h) 
P(h lu n D"· n D"·) = -----------'----

1 
2 

P(u n DY·h)P(u n D~·h) 

P(u n D'th lh)P(h) 
Using P(h I u n D'{'h) = h = I, we have 

P(u n D'{' ) 

~h ll,h _ P(u n D~h lh) _ P(h lu n D~·h) 
P(h I u n D1 n Di ) - h - P'h) · 

P(u n D~ ) " 

From P(h l u n DY·h n D~h) = 1, it follows that P(h I u n D~·h) = P(h). So 
MB(h --l u,D~· ) = 0 and MD(h --l u,D~h) = 0 by definition. 11111 

PRoPosmoN 4.4. Let t8' and u be defined according to Definition 3.1 and!!) according to Definition 3.2. 
Furthermore, let the functions MB and MD be defined according to Definition 3.4. Let h E t8' and 
D'fh E !!) such that u n D'th are indf,,endent and conditionally independent in h, i = 1,2 If 
MD(h --l u,D'{'h) = 1 then MB(h --l u,D't ) = MB(h --l u,D~h) = 0. 

PROOF. Analogous to the proof of Proposition 4.3. 111111 

4.2. The Combination Functions for Propagating Uncertain Evidence 

In this section we examine the combination functions for propagating uncertain evidence, i.e. MB. 
and MD •. We are interested in the error introduced by applrl!!g the combination functions MB. and 
MD. once. Therefore, we assume that the function values of MB and MD that are used in MB. and 
MD. are exact, i.e. we assume the properties MB(e --l u,D"·e) = MB(e --l u,D"·e) and 
MD(e --l u,D"·e) = MD(e --l u,D"·e). We recall from Definition 3.6 that the combination functions 
for propagating uncertain evidence are defined as stated below: 

MB.(h --l u,Du.e o (e ~ h)) = 

= MB'h h) . {o MB(e --l u,D"·e) - MD(e --l u,D"·e) } " ,e,e ~ max , , 
1 - min{MB(e -1 u,D"·e),MD(e --l u,D"·e)} 



25 

and 

MDo(h -l u,Du,e 0 (e---+ h)) = 

= MD'h h) . {o MB(e -l u,D"'e) - MD(e -l u,D"'e) } 
" ,e,e ---+ max , . 

I - min{MB(e -l u,D"'e),MD(e -l u,D"'e)} 

Notice the asymmetry in these functions. 
Under the above mentioned assumptions the formulations of the functions MB a and MD a can be 

simplified using the property stated in Lemma 4.1, given below. This lemma can easily be proven 
using Proposition 3.1. 

LEMMA 4.l. Let tS' and u be defined according to Definition 3.1 and !7) according to Definition 3.2. Furth­
ermore, let the functions MB and MD be defined according to Definition 3.4. Let e E tS' and D"·e E !?d. 
Then. 

max{o, MB(e -l u,D"'e) - MD(e -1 u,D"·J } = MB(e -1 u,D"·e). 
1 - min{MB(e -l u,D"'e),MD(e -l u,D"'e)} 

In bis paper, Adams notices the resemblance between the function MB. and the probabilistic formula 
P(h I e) = P(h I i)P(i I e) which holds when h ~ i ~ e. He states that this assumption is not strong 
enough to prove the combination functions for propagating uncertain evidence to be consistent with 
the probabilistic definitions of the measures of belief and disbelief. Proposition 4.5 however, shows 
that the assumption stated above is strong enough in some situations. It is noted that Proposition 4.5 
uses a property of the function ig, embedding derivations in the sample space n: the interpretation of 
the operation ° as the set operation union is essential to the result stated in the proposition. 

PROPOSITION 4.5. Let 4; u and fJiJ be defined according to Definition 3.1 and !7) according to Definition 
3.2. Furthermore, let the functions MB and MD be defined according to Definition 3.4 and the functions 
MB. and MDa according to Definition 3.6. Let h,e E <( Du,e E !7) and e---+ h E fJJ such that 
h ~ e ~ u n D"'e and P(u n D"'e) =/= 0. Then 

(1) MB(h -1 u,D"'e a (e ---+ h)) = MB.(h -l u,D"·e o (e ---+ h)), and 
(2) MD(h -l u,Du.e o (e---+ h)) = MD.(h -l u,D"'e 0 (e---+ h)). 

PROOF. We will only prove part (1); part (2) follows by symmetry. 

From Definition 3.6 and Lemma 4.1 it follows that we have to prove 
MB(h -l u,Du.e o (e---+ h)) = MB(h,e,e ---+ h) · MB(e -l u,D"'e). From Definition 3.4 we have 

{

I if P(h) = 1 

MB(h -l u,D"·e o (e ---+ h)) = {o P(h I u n (D"'e U e)) - P(h)} th . max , 1 _ P(h) o erwzse 

We distinguish two cases: P(h) = l and P(h) =/= 1. 

If P(h) = 1 then also MB(h -1 e,e---+ h) = I. From the condition of the proposition h ~ e and 
P(h) = 1 we have P(e) = 1, implying MB(e -1 u,D"'e) = 1. So we have 
MB(h -l u,Du.e o (e---+ h)) = MB(h -1 e,e---+ h) · MB(e -l u,D"'e) = 1. 

,,, 
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Now suppose P(h) :,=I. We have 

MB(h -l u,Du.h a (e ~ h)) =max{o, P(h I u n ~D~eP~h;)) - P(h)} = 

= {o P(h l(u n D"·e) U (u n e)) - P(h)} = 
max ' 1 - P(h) 

= {o P(h lu n D"'e) - P(h)} 
max ' 1 - P (h) · 

Furthermore, we have by definition 

MB(h -1 e,e ~ h) · MB(e -1 u,D"'e) = 

= {o P(h le) - P(h)}. {o P(e lu n D"·e) - P(e)} = 
max ' 1 - P(h) max ' 1 - P(e) 

= {o [P(h le) - P(h)l · [P(elu n D"'e) - P(e)]} 
max ' I - P(h) 1 - P(e) · 

W "d th d t [P(h le) - P(h)) · [P(e lu n D"'e) - P(e)l . d tail econst er epro uc 1 _ P(h) 1 _ P(e) m e . 

[
P(h le) - P(h))· [P(e lu n D"·e) - P(e)l = 

1 - P(h) 1 - P(e) 

- P(h I e)P(e I u n D"·e) - P(h I e)P(e) - P(h)P(e I u n D"·e) + P(h)P(e) -
- (1 - P(h))(l - P(e)) -

- P(h I u n D"'e) - P(h) - P(h)P(e I u n vu.e) + P(h)P(e) -
- (1 - P(h))(l - P(e)) -

_ (P(h I u n D"·e) - P(h))(l - P(e)) + P(h I u n D"'e)P(e) - P(h)P(e I u n D"·e) = 
- (1 - P(h))(l - P(e)) 

= P(h I u n Du.e) - P(h) + P(h n u n D"·e)P(e) - P(h)P(e n u n D"'e) = 
I - P(h) P(u n D"·e)(l - P(h))(I - P(e)) 

= P(h I u n vu.e) - P(h) 
I - P(h) 

So, 
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MB(h --1 ee ~h) ·MB(e ·-J uD"'e) = max 0 = 
{ 

P(hlunD"'h)-P(h)} 

' ' ' I - P(h) 

= MB(h --1 u,D"·e o (e ~ h)). 

4.3. The Combination Functions for Composite Hypotheses 

In this section we investigate whether the combination functions for composite hypotheses, i.e. MB 1, 

MD 1, MB& and MD&, respect the probabilistic definitions of MB and MD. Again we are interested 
in the error introduced by applying these combination functions once. We therefore assume the 
properties MB(e; --l u,D"'e') = MB(e; --1 u,D"'e') and MD(e; --1 u,Du,e,) = MD(e; --1 u,D"'e'), i = 1,2. 

We recall from Definition 3.7 that the combination functions for composite hypotheses are defined as 
stated below; we have assumed the properties 

MB 1(e1 V ei --1 u,Du,e, I Du,e,) = max{MB(e1 --1 u,D"'e1),MB(e2 --1 u,D"'e2
)}, and 

MD1(e1 V ei -I u,Du,e, I D"'e2) = min{MD(e1 --l u,D"'e'),MD(e2 -I u,D"'e2)}, and 

MB&(e 1 /\ ei --1 u,Du,e, & D"'e2
) = min{MB(e1 --1 u,D"'e'),MB(e2 --1 u,D"'e2

)}, and 

MD&(e1 /\ ei -I u,Du,e, & D"'e2) = max{MD(e1 -I u,D"'e'),MD(e2 -I u,D"'e2
)}. 

The combination functions for composite hypotheses have received little attention in papers dealing 
with the certainty factor model. Adams shows that these combination functions are inconsistent with 
the probabilistic definitions of MB and MD by giving a counterexample ([2], p. 258). His 

counterexample concerning MB& is shown in Example 4.1 adapted to our notational conventions. 

Ex.AMPLE 4.1. Let land u be defined according to Definition 3.1 and £5) according to Definition 3.2. 
Furthermore, let the function MB be defined according to Definition 3.4 and the function MB& 

according to Definition 3.7. Let e"e2 E 8 such that e 1 n e 2 = 0, and let D"'e',D"'e2 E £5) such 
that P(u n Du,e, n D"'e2) > 0. From Definition 3.4 we have MB(e 1 /\ e 2 --1 u,Du.e, & Du,e,) = 0 

since P(e 1 n ei I u n Du.e, n Du,e,) = 0. From Definition 3.7 however, we have 

MB&(e 1 /\ e2 --1 u,Du.e, & D"'e') = min{MB(e1 --1 u,D"'e1),MB(e2 --1 u,D"'e2)}, not necessarily 

equalling zero. 11111 

Similar counterexamples can be found concerning the combination functions MD&• MB 1 and MD 1 • 

Adams does not examine the combination functions for composite hypotheses in further detail, 
because to him "the extent or importance of the use of these (combination functions) in the 
employment of the model is not clear, but does not seem great" ([2], p. 258). As these combination 
functions are used in the application of each production rule whose left-hand side is not atomic, we 
feel that these combination functions might have a considerable impact on the approximated 
measures of belief and disbelief of the goal hypotheses. 

The combination function MB& bears strong resemblance to the probabilistic formula 
P(a n b) = min{P(a),P(b)}, which holds when either a ~ b orb ~ a. Due to this similarity Wise 
and Henrion suggest in their paper that in the combination functions for composite hypotheses 
maximum correlation of hypotheses is assumed: "the less probable event occurs whenever the more 
probable event occurs" ([3], p. 73). The following example shows that the assumption of maximum 

correlation of hypotheses is not strong enough to derive MB& and MD& from the probabilistic 
definitions of MB and MD respectively. 

ExAMPLE 4.2. Let tff and u be defined according to Definition 3.1 and £5) according to Definition 3.2. 
Furthermore, let the function MB be defined according to Definition 3.4 and the function MB& 
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according to Definition 3.7. Let ei.e2 E ff such that e 1 c e2 , e 1 =I= 0 and P(e 1 n e2) =I= 1, and let 
Du,e, ,D"'e2 E !». From Definition 3.4 we have 

u,e, u,e
2 

_ { P(ei n e2 I u n Du,e, n D"'e2
) - P(e 1 n e 2) }-

MB(ei /\ e2 -i u,D &: D ) - max 0, I P( ) -- ei n e2 

not equalling min{MB(e 1 -i u,D"'e'),MB(e2 -i u,D"'e')} in general. Even if we further assume 
Du,e, c D"'e2 we cannot show that MB& respects the basis of MB in probability theory since possibly 
MB(e2 -l u,D"'e2

) < MB(ei -l u,Du,e,) in spite of e1 C e2. 11111 

We feel that it is not possible to identify a set of 'natural' assumptions under which the combination 
functions for composite hypotheses can be shown to be consistent with the probabilistic definitions of 
the measures of belief and disbelief. 

4.4. Summary 

In this section we have addressed the question whether the approximation functions MB and MD for 
the basic measures of uncertainty MB and MD respect the probabilistic definitions of these basic 
functions. As the approximation functions are defined recursively through eight combination 
functions, we have analysed the application of each of these combination functions in just one step in 
the process of approximating the actual function values of MB and MD, i.e. we have renounced errors 
introduced earlier during the approximation process. The analysis of some of these combination 
functions has helped us to formulate conditions under which the function is consistent with the 
probabilistic foundation of the model. 

In Section 4.1 our analysis of the combination functions for co-concluding production rules, i.e. 
MB 11 and MD 11 , given two derivations D'fh of the hypothesis h from the user's de facto knowledge u, 
i = 1,2, has shown that these combination functions are consistent with the probabilistic basis of the 
model if one of the following sets of conditions holds: 

(1) Both derivations do not increase the disbelief in the hypothesis, i.e. MD(h -i u,Df·h) = 0, and 
the two derivations, or to be more precise u n D'fh, are independent and conditionally 
independent given the hypothesis (see Proposition 4.1). 

(2) Both derivations do not increase the belief in the hypothesis, i.e. MB(h -i u,D'fh) = 0, and the 
two derivations are independent and conditionally independent given the complement of the 
hypothesis (see Proposition 4.2). 

In the case of 'conflicting' derivations the combination functions for co-concluding production rules 
do not respect the probabilistic definitions of the measures of belief and disbelief. 

In Section 4.2 our analysis of the combination functions for propagating uncertain evidence, i.e. 
MB 0 and MDo, given a production rule e ~hand a derivation D"·e of e from the user's knowledge 
u, has shown that these combination functions respect the probabilistic basis of the model if 
h ~ e ~ u n D"'e where P(u n D"'e) =I= 0 (see Proposition 4.5). This result shows that the 
combination functions MB. and MD o are correct in case the expert system is only able to narrow its 
focus and does not have the ability to tum to hypotheses slightly outside the scope of the derivation 
up till that moment. 

In Section 4.3 our analysis of the combination functions for composite hypotheses, i.e. MB 1 , MD 1, 

MB& and MD&, has not enabled us to formulate conditions under which these functions can be 
shown to be consistent with the probabilistic basis of the model. The easy counterexamples we have 
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given concerning these functions, however, show that any set of such conditions will be violated in 
most practical cases. 

From these observations we have that the approximation function MB is not a restriction of the 
function MB. A similar statement can be made concerning MD and MD. 

THEOREM 4.1. Let the functions MB and MD be defined according to Definition 3.4, and the functions 

MB and MD according to Definition 3.5. Then, the following statements are true: 

(1) MB it- MB. 
(2) MD it- MD. 

In Figure 4.1 this result has been added to the diagram of functions, introduced in Section 3. 

p 

CF MB,MD 

1~ 
--

CF' MB,MD 

1 
CF 

FIGURE 4.1. The diagram of functions. 

5. THE CERTAINTY FACTOR FUNCTION AND ITS APPROXIMATION FUNCTION 

In Section 3.4 a third measure is introduced in the certainty factor model in addition to the (basic) 
measures of belief and disbelief: the certainty factor. We recall from Definition 3.9 that the certainty 
factor function CF is defined as follows: 

CF(h -t e D"'e) = MB(h -t e,D"·e) - MD(h -t e,D"·e) 
' I - min{MB(h -t e,D"·e),MD(h -t e,D"'e)} 
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From Proposition 3.2 we have that there is a one-to-one correspondence of the functions MB and 
MD, and CF. 

We have observed that in practice another certainty factor function CF' is used arising from the 
fact that the actual function values of MB and MD are not always known and are approximated 
using MB and MD. Definition 3.10 has redefined the certainty factor function: 

CF'(h -I e,De,h) = MB(h -I e,De,h) - MD(h -I e,De,h) 
I - min{MB(h -1 e,De,h),MD(h -1 e,De,h)} 

Furthermore, we have described in Section 3 that in the EMYCIN implementation of the model, and 
in fact in all implementations since the introduction of the EMYCIN system, only subsequently 
approximated certainty factors are used. For that purpose we have defined an approximation 
function CF for certainty factors. This section focuses on the left half of Figure 3.4. In Section 5.1 
we examine the question whether CF' is a restriction of CF. Section 5.2 shows that the 
approximation function CF is a restriction of CF'. 

5.1. The Certainty Factor Functions CF and CF' 

In this section we compare the functions CF defined by Shortliffe and Buchanan and CF', actually 
employed by them in the MYCIN implementation of the model. From the definitions of these 
functions we have that CF' is a restriction of CF if MB is a restriction of MB and MD is a restriction 
of MD. So, using Theorem 4.1 we have that CF' is not a restriction of CF. This result is stated in 
Theorem 5.1. Before giving this theorem we state some intermediate results. 

We distinguish several cases. The first case we consider is the propagation of uncertain evidence. 
We recall that Proposition 4.5 states that MBo(h -1 u,Du,e o (e ~ h)) = MB(h -1 u,Du.e o (e ~ h)) if 
certain properties are assumed. So, under the same conditions as mentioned in Proposition 4.5 both 
certainty factor functions CF and CF render the same result in the case of the propagation of 
uncertain evidence. Again we renounce errors that were introduced earlier in the computation. 

CoROLLARY 5.1. Let~ u and 9 be defined according to Definition 3.1 and !!J according to Definition 3.2. 
Furthermore, let the function CF be defined according to Definition 3.9 and the function CF' according to 
Definition 3.10. Let h,e E ~ Du,e E !!J and e ~ h E 9 such that h ~ e ~ u n Du,e where 
P(u n Du.e) =/= 0. Then, CF'(h -1 u,Du.e 0 (e ~ h)) = CF(h -1 u,Du,e 0 (e ~ h)). 

In Section 4.3 we have argued that we feel that it is not possible to state a number of conditions 
under which the combination functions for composite hypotheses can be shown to be consistent with 
the probabilistic definitions of MB and MD. From this observation we have that in the case of 
composite hypotheses the certainty factor functions CF and CF' will not always render the same 
function values. 

In the case of co-concluding production rules our observation concerning the two certainty factor 
functions is threefold. Corollary 5.2 follows from Proposition 4.1 and Corollary 5.3 can easily be 
proven using Proposition 4.2. Again errors introduced earlier in the computation are renounced. 

CoROLLARY 5.2. Lett! and u be defined according to Definition 3.1 and!') according to Definition 3.2. 
Let the function MD be defined according to Definition 3.4. Furthermore, let the function CF be defined 
according to Definition 3.9 and the function CF' according to Definition 3.10. Leth Et! and D'fh E !!J 
such that MD(h -1 u,D'fh) = 0 and u n D'fh are mutually independent and conditionally independent 
given h, i = 1,2 Then CF'(h -1 u,D'{'h II D~h) = CF(h -1 u,DY·h II D~·h). 
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Co:&OLLARY 5.3. Let tl and u be defined according to Definition 3.1 and !5) according to Definition 3.2. 

Let the function MB be defined according to Definition 3.4. Furthermore, let the function CF be defined 

according to Definition 3.9 and the function CF' according to Definition 3.10. Leth E tl and D'th E !5) 

such that MB(h --1 u,Df·h) = 0 and u n Df·h are mutually ind'fendent and conditionally independent 

given h. i = 1,2 Then CF'(h --1 u,D'th II D~·h) = CF(h --1 u,Df· II D¥·h). 

The case that remains to be considered in our examination of the behaviour of the two certainty 
factor functions with respect to co-concluding production rules, is the case in which there is a 

derivation of h from u confirming h and a derivation of h from u disconfirming h. In his paper 
Adams observes that the model combines separately all derivations favouring a hypothesis and all 
derivations not favoring the hypothesis when calculating the corresponding certainty factor. Using 
Propositions 4.1 and 4.2 the property stated in Proposition 5.1 can easily be generalised to confirm his 
observation. 

PROPOSITION 5.1. Let tl and u be defined according to Definition 3.1 and !5) according to Definition 3.2. 

Furthermore, let the functions MB and MD be defined according to Definition 3.4 and the functions MB 11 

and MD11 according to Definition 3.8. Let the function CF' be defined according to Definition 3.10. Let 

h E tl and D'fh E £14 i = 1,2, such that u n D'fh are mutually independent and MB(h --1 u,D'th) > O 
and MD(h --1 u,D'fh) > 0. Then, 

h h MB(h --1 u,D'th) - MD(h --1 u,D¥·h) 
CF'(h --1 u,Df· II D'f ) = . 

1 - min{MB(h --1 u,D'th),MD(h --1 u,D'fh)} 

PROOF. From Definition 3.10 we have 

h II h MB 11 (h --1 u,D'th II D¥·h) - MD 11 (h --1 u,Df·h II D¥·h) 
CF'(h --1 u D"· Dll. ) = ---------------------

' 
1 2 I - min{MB11(h --1 u,D'th II D'fh),MD11(h --1 u,Df·h II D'fh)} 

It will be evident that it suffices to show under the conditions mentioned above that 

(1) MB11(h --1 u,Df·h II D¥·h) = MB(h --1 u,D'th), and 

(2) MDu(h --1 u,Df·h II D'fh) = MD(h --1 u,D'fh). 

We will only prove part (l); part (2) follows by symmetry. 

From the condition of the proposition MD(h --1 u,D'fh) > 0 and Proposition 3.1 it follows that 
MB(h --1 u,D¥·h) = 0. From Definition 3.8 we have 

MB 11 (h --1 u,D'th II D'fh) = MB(h --1 u,D'th) + MB(h --1 u,D'fh)(l - MB(h --1 u,D'th)) = 
= MB(h --1 u,D'th). 

It should be obvious that in the case of conflicting evidence the certainty factor functions CF and CF' 

do not always render the same result. 
Theorem 5.1 states the final result of this section: 

THEOREM 5.1. Let the function CF be defined according to Definition 3.9 and the function CF' according 

to Definition 3.10. Then, CF' !:fa. CF. 



32 

5.2. The Approximation Function for Certainty Factors 

We have already remarked before that in the EMYCIN implementation of the model only 

subsequently approximated certainty factors are used. For that purpose we have introduced _!he 

approximation function CF for certainty factors. This section inves!!g_ates the question whether CF is 

a restriction of CF'. We recall that the approximation function CF is defined recursively through 

eight combination functions: CFo (the combination functions for propagating uncertain evidence), 

CF 1 and CF& (the combination functions for composite hypotheses), and CF11 (the combination 

function for co-concluding production rules). We will examine these combination functions 

separately. 
We recall from Definition 3.12 that the combination function for propagating uncertain evidence is 

defined as stated below; we have assumed the property CF(e -J u,D"·e) = CF(e -l u,D"·e): 

CFo(h -J u,Du.e 0 (e ~ h)) = CF(h -J e,e ~ h) · max{O,CF(e -J u,D"·e)} 

Proposition 5.2 shows that the function CFo respects the definition of the function CF'. 

PROPOSITION 5.2. Let~ u and fJlJ be defined according to Definition 3.1 and!') according to Definition 

3.2. Furthermore, let the Junction CF' be defined according to Definition 3.10 and the function CFo ac­

cording to Definition 3.12. Let h,e E t8; D"'e E !')and e ~ h E fJlJ. Then, 

CF'(h -l u,Du,e 0 (e ~ h)) = CFo(h -l u,Du,e o (e ~ h)). 

PRooF. From Definition 3.12 it follows that we have to show 

CF'(h -l u,D"'e o (e ~ h)) = CF(h -l e,e ~ h) · max{O,CF(e -l u,D"'~}. 

From Definition 3.10 we have 

MBo(h -l u,D"·e 0 (e ~ h)) - MDo(h -l u,D"·e o (e ~ h)) 
CF'(h -J u,Du.e o (e ~ h)) = ----------------------

1 - min{MBo(h -J u,Du,e o (e ~ h)),MDo(h -J u,Du,e o (e ~ h))} 

Using Definition 3.6 and Lemma 4.1 it follows that 

CF'(h -l u,D"'e 0 (e ~ h)) = 

____ M_B_("'"'h_-J-'--e,._e_~_h_,)_·_M_B_....(e___,_-1-'-u,"'""D-"·_,e)_----'M-D_,(~h--J..:....;..r.e,"'""e-~_h;..t.)_·..;;;..M.;;;.;B;;....>,;;(e--:.-J...;;.u;z.;;,Do.-"'e-L) __ = 

1 - min{MB(h -J e,e ~ h) · MB(e -J u,D"·e),MD(h -J e,e ~ h) · MB(e -l u,D"'e)} 

(MB(h -J e,e ~ h) - MD(h -l e,e ~ h)) · MB(e -J u,D"·e) 

I - min{MB(h -i e,e ~ h) · MB(e -J u,D"·e),MD(h -i e,e ~ h) · MB(e -i u,D"·e)} 

(MB(h -J e,e ~ h) - MD(h -i e,e ~ h)) · max{O,MB(e -i u,D"·e) - MD(e -J u,D"'e)} 

I - min{MB(h -i e,e ~ h) · MB(e -l u,D"'e),MD(h -i e,e ~ h) · MB(e -l u,D"·e)} 

Using Proposition 3.1 it can easily be shown that 

1 - min{MB(h -J e,e ~ h) · MB(e -J u,D"'e),MD(h -l e,e ~ h) · MB(e -J u,D"·e)} = 1, so 

CF'(h -l u,Du.e o (e ~ h)) = 
= (MB(h -l e,e ~ h) - MD(h -l e,e ~ h)) · max{O,MB(e -l u,D"·e) - MD(e -l u,D"'e)} 

Furthermore we have 1 - min{MB(h -i e,e ~ h),MD(h -J e,e ~ h)} = I and 

I - min{MB(e -i u,D"·e),MD(e -J u,D"'e)} = 1. It follows that 
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MB(h -; e,e-? h) - MD(h -; e,e-? h) = MB(h -; e,e-? h) - MD(h -; e,e-? h) 
1 - min{MB(h -; e,e -? h),MD(h -; e,e -? h)} 

= CF(h -; e,e -? h), 

and 

MB(e -; u,D"·e) - MD(e -; u,D"·e) 
MB(e -; u,D"'e) - MD(e -; u,D"'e) = = 

I - min{MB(e -; u,D"·e),MD(e -; u,D"·e)} 

= CF(e -; u,D"'e). 

So, 

CF'(h -; u,Du.e o (e-? h)) = CF(h -; e,e-? h) · max{O,CF(e -; u,D"'e)}. 

We recall from Definition 3.13 that the combination function for disjunctions of hypotheses is defined 
as stated below; we have assumed the property CF(e;,u,D"'e') = CF(e;,u,D"'e'), i = 1,2: 

CF1(e1 V e1 -I u,Du,e, I D"'e') = max{CF(e1 -; u,D"'e'),CF(e2 -; u,D"'e2
)} 

Proposition 5.3 shows that the function CF1 respects the definition of the function CF'. 

PROPOSITION 5.3. Let 8 and u be defined according to Definition 3.1 and !7J according to Definition 3.2. 
Furthermore, let the function CF' be defined according to Definition 3.10 and the function CF1 according 
to Definition 3.13. Let e; E 8 and Du,e, E ~ i = 1,2 Then, 

PRooF. From Definition 3.13 it follows that we have to show that 
CF'(e1 V e1 -; u,Du.e, I D"'e2

) = max{CF(e1 -; u,D"'e'),CF(e2 -; u,D"'e2
)}. 

From Definition 3.10 and Definition 3.7 we have 

1 - min{max{MB(e1 -; u,D"'e'),MB(e2 -; u,D"'e2 )},min{MD(e 1 -; u,D"'e'),MD(e2 -; u,D"'e2
)}} 

Using Proposition 3.1 it can easily be shown that the denumerator of the fraction equals 1. So, 
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MD(e 1 -l u,D"'e') = MD(e2 -l u,Du,e') = 0 follows by symmetry. 

From this assumption and Proposition 3.1 we have MD(e 1 -l u,Du,e,) ;;;..: 0 and 
MD(e2 -l u,D"'e') ;;;..: 0. 

Now suppose MD(e1 -l u,Du.e,) E;; MD(e2 -l u,Du.e'). The other case 
MD(e 1 -l u,Du,e,) ;;;..: MD(e2 -l u,D"'e') follows by symmetry. Our assumptions imply 

max{MB(e1 -l u,Du,e 1 ),MB(e2 -l u,Du,e')} - min{MD(e1 -l u,D"'e1 ),MD(e2 -l u,D"'e2
)} = 

= - MD(e1 -l u,Du.e,) = 

= MB(e1 -l u,Du,e,) - MD(e1 -l u,Du,e,) = 

= max{MB(e1 -l u,Du,e,) - MD(e1 -l u,D"'e 1),MB(e2 -l u,Du,e') - MD(e2 -l u,D"'e2
)}. 

(2) Assume MB(e 1 -l u,Du,e,) > 0 and MD(e2 -l u,D"'e') > 0. The case MD(e 1 -l u,Du,e,) > 0 
and MB(e2 -l u,D"'e') > 0 follows by symmetry. 

From this assumption and Proposition 3.1 we have MD(e 1 -l u,D"'e') = 0 and 
MB(e2 -l u,D"'e') = 0. So, 

max{MB(e1 -l u,D"'e'),MB(e2 -l u,D"'e')} - min{MD(e1 -l u,D"'e'),MD(e2 -l u,Du,e2
)} = 

= MB(e1 -l u,Du.e,) = 
= MB(e1 -l u,Du,e,) - MD(e 1 -l u,Du,e,) = 
= max{MB(e1 -l u,Du.e,) - MD(ei -l u,Du.e'),MB(e2 -l u,D"'e') - MD(e2 -l u,D"'e2

)}. 

From (1) and (2), we have 

= max{MB(ei -l u,Du,e,) - MD(ei -l u,Du,e,),MB(e2 -l u,D"'e') - MD(e2 -l u,D"'e')}. 

Using Proposition 3.1 we can show that 1 - min{MB(e; -l u,D"'e'),MD(e; -l u,Du.e,)} = 1, i = 1,2, 
from which we have 

= CF(e; -l u,D"'e'). 

Therefore, we have 

CF'(ei V ei -l u,Du,e, I Du,e2
) = max{CF(ei -l u,D"'e'),CF(e2 -l u,D"'e')}. 

We recall from Definition 3.13 that the combination~ction for conjunctions of hypotheses is 
defined as stated below; we have assumed the property CF(e;,u,D"'e') = CF(e;,u,D"'e'), i = 1,2: 

CF&:(ei /\ ei -l u,Du.e, & D"'e') = min{CF(ei -l u,D"'e'),CF(e2 -l u,D"'e2
)} 
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The proof of Proposition 5.4 is analogous to the proof of the foregoing proposition. 

PROPOSITION 5.4. Let 8 and u be defined according to Definition 3.1 and!'} according to Definition 3.2. 

Furthermore, let the function CF' be defined according to Definition 3.10 and the function CF & according 

to Definition 3.13. Let e; E 8 and Du,e, E ~ i = 1,2 Then, 

The combination function that remains to be examined is the combination function for co-concluding 

production rules. We recall from Definition 3.14 that this combination function is defined as stated 
below. Once more we have renounced errors that were introduced earlier in the approximation of the 

actual certainty factors, i.e. we have assumed the property CF(h -J u,DY·h) = CF(h -l u,D'/'h), 

i = 1,2: 

(1) CF 11 (h -J u,Df·h II D~·h) = CF(h --! u,D'th) + CF(h -J u,D~h)(l - CF(h -J u,Df·h)) 

if CF(h -J u,Df·h) > 0 and CF(h -J u,D~h) > 0, and 

(2) h h CF(h -J u,D'th) + CF(h -J u,D~·h) 
CF (h -J u D"· II D"· ) - ----------------

11 ' 
1 2 

- l - min{I CF(h -J u,Df·h) I, I CF(h -J u,D~h) I} 
if -1 < CF11(h -J u,D'{'h) · CF11(h --! u,D~h) E;;; 0, and 

(3) CF11(h --! u,Df·h II D~h) = CF(h --! u,D'th) + CF(h --! u,D~h)(l + CF(h --! u,Df·h)) 

In Proposition 5.5 it is shown that the combination function CF 11 respects the definition of the 

function CF'. 

PROPOSITION 5.5. Let 8 and u be defined according to Definition 3.1 and!'} according to definition 3.2. 

Furthermore, let the function CF' be defined according to Definition 3.10 and the function CF11 according 

to Definition 3.14. Let e; E 8 and Du,e, E ~ i = 1,2 Then, 

CF'(h -J u,DY·h II D~h) = CF11(h --! u,D'th II D~h). 

PRooF. It follows from Definition 3.14 that we have to show 

CF'(h -J u,Df·h II D~h) = 

{

CF(h --! u,D'f'h) + CF(h --! u,D'J:h) (1 - CF(h -1 u,D'f'h)) 

_ CF(h -1 u,D'f'h) + CF(h -1 u,D'J:h) 

- l - min( I CF(h -l u,D'th)I, I CF(h -1 u,D'J:h)I} 

CF(h --! u,D'f'h) + CF(h --! u,D'J:h) (1 + CF(h -1 u,D'J:h)) 

From Definition 3.10 we have 

We will consider this fraction in detail. 

if CF(h -l u,D'f'h ), CF(h -1 u,DIJ:h) > 0 

if-1 < CF(h -1 u,D'f'h) · CF(h --! u,D'J:h) ..;; O 

if CF(h -1 u,D'f'h ), CF(h -l u,DIJ:h) < 0 
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(1) Assume MB(h -l u,DY·h) > 0 and MB(h -J u,D~·h) > 0. The case MD(h -J u,D';:h) > 0 and 
MD(h -J u,D~h) > 0 follows by symmetry. 

From Proposition 3.1 we have MD(h -J u,DY·h) = MD(h -J u,D~h) = 0. Hence, from our 
assumptions it follows that CF(h -l u,D'th) > 0 and CF(h -; u,D~·h) > 0. 

From MD(h -; u,D'th) = MD(h -l u,D~h) = 0 we have MD 11 (h -l u,Df·h II D~h) = 0. 
Therefore, the denumerator for the fraction equals I. It follows that 

CF'(h -l u,DY·h II D~h) = 

= MB
11
(h -l u,DY·h II D~h) - MD 11 (h -l u,D';:h II D~·h) = 

= MB(h -J u,D'th) + MB(h -; u,D~·h) - MB(h -l u,Df·h) · MB(h -; u,D~·h) = 

= (MB(h -l u,D'{'h) - MD(h -J u,D'th)) + (MB(h -; u,D~h) - MD(h -J u,D~·h)) + 
- (MB(h -J u,D'{'h) - MD(h -J u,DY·h)) · (MB(h -J u,D~·h) - MD(h -J u,D~·h)). 

From 1 - min{MB(h -; u,D'fh),MD(h -J u,D'fh)} = 1, i = 1,2, we have 

MB(h -l u,Dr·h) - MD(h -; u,Dr·h) 
MB 'h -; u D'!·h) - MD(h -l u D'!·h) = ---------------

" ' ' ' ' I - min{MB(h -; u,Dr·h),MD(h -; u,D'th)} 

Therefore, we have 

= CF(h -; u,D'{'h) + CF(h -; u,D~·h) - CF(h -J u,Df·h) · CF(h -J u,D~h) = 
= CF(h -J u,D'th) + CF(h -; u,D~·h)(l - CF(h -J u,D~h)). 

(2) Now assume MB(h -; u,D'th) = 0 and MB(h -; u,D~·h) > 0. The case MB(h -J u,D'th) > 0 
and MB(h -l u,D~h) = 0, similar cases for MD and the case where 
MB(h -; u,D'{'h) = MB(h -; u,D~h) = MD(h -J u,DY·h) = MD(h -l u,D~·h) = 0 follow by 
symmetry. 

From Proposition 3.1 we have MD(h -J u,DY·h);;;:.: 0 and MD(h -J u,D~h) = 0. Hence, from 
our assumptions we have CF(h -l u,D'th),.;;;;; 0 and CF(h -; u,D~·h) > 0. From now on we 
assume CF(h -J u,D'th) · CF(h -; u,D~h) > -1. So, the numerator of the fraction can be 
written as follows 

= MB(h -J u,D'th) + MB(h -l u,D~·h) - MB(h -; u,Df·h) · MB(h -; u,D~·h) + 
- MD(h -J -; u,D'th) - MD(h -J u,D~·h) + MD(h -J u,D'{'h) · MD(h -J u,D~·h) = 
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From 1 - min{MB(h,e 1},MD(h,e 1)} = I - min{MB(h,e2),MD(h,e2)} = I we have 

MB(h ; u,DY·h) - MD(h ; u,D'th) 
--------------~ + 
I - min{MB(h ; u,D'th),MD(h ; u,DY·h)} 

MB(h ; u,D~h) - MD(h ; u,D~h) 
+ ---------------

1 - min{MB(h --i u,D~h),MD(h --i u,D~h)} 

The denumerator of the fraction equals 

1 - min{MB11(h --i u,D'th II D~·h),MD11(h ; u,DY·h II D~h)} = 

= I - min{MB(h ; u,DY•h) + MB(h ; u,D~·h) - MB(h --i u,D'th) · MB(h --i u,D'th), 

MD(h --i u,DY·h) + MD(h ; u,e~h) - MD(h ; u,D'('h) · MD(h --i u,D~h)} = 

= I - min{MB(h ; u,D~h),MD(h --i u,DY·h)}. 

It can easily be shown that 

MB(h --i u,D~h) - MD(h --i u,D~·h) 
MB(h --i u,D~·h) = ---------------

1 - min{MB(h --i u,D~h),MD(h ; u,D~·h)} 

Furthermore, we can easily show that 

h MB(h --i u,D'{'h) - MD(h ; u,DY·h) 
MD(h ; u,DY· ) = - ---------------

1 - min{MB(h ; u,D'{'h),MD(h --i u,D'th)} 

So, we have 

CF(h --i u,D'('h) + CF(h ; u,D~·h) 
CF'(h --i u,DY·h 11 D~·h) = ----------------

1 - min{ I CF(h --l u,DY·h) I, I CF(h ; u,D~·h) I } · 

From the Proposition 5.2, 5.3, 5.4 and 5.5 we have that CF~ CF'. The propositions even prove the 

stronger result stated in Theorem 5.2. 
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THEOREM 5.2. Let the function CF' be <J!jjned according to Definition 3.10 and the function CF 
according to Definition 3.11. Then, CF' = CF. 

5.3. Summary 

In this section we have investigated the relations between the functions CF, CF' and CF. In Section 
5.1 we have shown that the certainty factor function CF defined by Shortliffe and Buchanan, and the 
function CF' actually used in the MYCIN implementation of the model, do not always render the 
same function values for the arguments of interest. In Section 5.2 we have shown that the 
approximation function CF used in the EMYCIN implementation respects the definition of CF'. In 
fact, CF' and CF coincide. In Figure 5.1 the results from this section have been added to the 
diagram of functions introduced in Section 3. 

p 

I \ 
CF MB,MD 

~i i~ 
--

CF' MB,MD 

~1 
CF 

FIGURE 5.1. The diagram of functions. 
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6. CoNCLUSION 

The certainty factor model has been proposed by E.H. Shortliffe and B.G. Buchanan as a model for 
handling uncertainty in rule-based top-down reasoning expert systems. The model has been employed 
in a wide variety of expert systems. In this paper we have not discussed the issues that arise when 
actually using the model, for instance we have not looked at the model from a knowledge engineering 
point of view. 

The presentation of the model by Shortliffe and Buchanan lacks a proper formal description. We 
have introduced definitions of the basic notions of rule-based top-down reasoning expert systems that 
are used in the model such as productions rules and derivations. From these preliminaries we have 
presented a formal description of the model in Section 3. In this formalisation we have extended the 
functions used in the model with the notion of derivation. In [ 6] the reaser can find our motivation 
for doing so. 

In the model two basic measures of uncertainty are defined: the measures of belief and disbelief. 
These measures are defined in terms of a probability set function. We have not addressed the 
question whether these measures of belief and disbelief actually model the type of uncertainty that is 
encountered in real-life domains. Shortliff e and Buchanan argue that such a probability set function 
is rarely known and that the actual function values of the measures of belief and disbelief should be 
approximated. For that purpose they have introduced approximation functions. We have 
investigated in Section 4 whether these approximation functions respect the probabilistic definitions of 
the measures of belief and disbelief. Section 4.4 summarises the results of our analysis of these 
approximation functions: we have shown that in some cases these functions respect the probabilistic 
basis by making rather strong assumptions. We have not paid attention to the question whether it is 
expected that these conditions are met in practice. Nor have we discussed the impact of the 
application of the model in situations in which the assumed properties do not hold. In other cases 
the approximation functions cannot be shown to be consistent with the foundation in probability 
theory suggested in [ 1 ]. We have not investigated the error introduced by applying the functions in 
these cases. 

In actual implementations of the certainty factor model the measures of belief and disbelief are not 
used. A third function derived from these two basic measures is used: the (redefined) certainty factor 
function. This function is defined in terms of the measures of belief and disbelief. For the purpose of 
subsequently computing certainty factors again an approximation function is defined. Section S 
shows that this approximation function respects the definition of the certainty factor function. 

Figure S.l summarizes the main results of this paper. 
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