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Pinsky. The continuous Hahn polynomials turn out to be Meixner-Pollaczek polynomials. Use is made of the 

connection between Laguerre polynomials and Meixner-Pollaczek polynomials, the Rodrigues formula for 
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1. Introduction 

. In two recent papers [6], [7] Bender, Mead and Pinsky discussed the connection between certain con­

tinuous Hahn polynomials and symmetrizations of elements in the Heisenberg algebra. They showed 

that, if 

[q,p] = i 
and T m,n is the sum of all possible terms containing m factors of p and n factors of q then 

Tn,n = const. Sn(T1,1), (1.1) 

for some polynomial Sn of degree n, which turns out to be the orthogonal polynomial of degree n on 

Ill with respect to the weight function x 1-+ l/ch('7Tx/2). However, the actual proof of this result is not 

very clear from these two papers. 

In the present note we give an alternative proof of (1.1). First, in section 2, we observe a 

transformation connecting certain continuous Hahn polynomials, in particular the above polynomials 

Sn to certain Meixner-Pollaczek polynomials. Next, in section 3 we use a Mellin transform relating 

Laguerre polynomials and Meixner-Pollaczek polynomials and the Rodrigues formula for Laguerre 

polynomials in order to derive an operational formula involving Meixner-Pollaczek polynomials. 

Finally, in section 4 we use this operational formula in order to derive formula (1.1). Here we make 

use of the Schrodinger model for the irreducible unitary representations of the Heisenberg group. 

I thank G. Gasper for a reference to (2.8). 

2. On continuous Halm polynomials expressible as Meixner-Pollilczek polynomials 

Continuous Hahn polynomials are defined by 

( . b d)·- ·n (a+c)n(a+d)n F [-n,n+a+b+c+d-1,a+ix. 1] 
Pn x ,a, ,c, . - l 1 3 2 + +d ' · 

n. a c,a 
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If c =a, d =band Re a, Re b >0 then they are orthogonal on (- oo, oo) with respect to the weight 

function 

w(x) := f(a+ix)f(b+ix)f(c-ix)f(d-ix). (2.2) 

See Atakishiyev and Suslov [3] and Askey [l], but read a +ix instead of a -ix in [l, formula (3)]. 

Meixner-Po/laczek polynomials are defined by 

p~a)(x ;<[>): = ein.P 2F1(-n, a +ix; 2a; l -e-2i<f>). (2.3) 

If a >0 and O<<[><w they are orthogonal on ( - oo, oo) with respect to the weight function 

w (x) = e<2<1>-w)x I f(a +ix) 12• (2.4) 

See Meixner [10], Pollaczek [11] and, for standardized notation, Askey and Wilson [2, Appendix]. 

For a =c =b-1h=d-1h>O the weight function (2.2) becomes 

w(x) = 2-4a+2 w lf(2a +2ix)l 2• (2.5) 

On comparing with (2.4) we conclude that 

Pn(x ;a,a + 1h,a,a + 1h) = const. p~2a)(2x ; 1/2w). 

The constant can be computed by comparing coefficients of xn. We obtain: 

• 1 
_ (2a)n (2a +1/2)n (2a) • 1 

Pn(X ,a,a + ~.a,a +Yi) - 1 
Pn (2x, ~w). 

n. 

In terms of hypergeometric functions this formula reads 

[
-n,n+4a,a+ix1 1] ( 2 2. 4 2 3F 2 2a , 2a + 112 = 2F 1 - n , a + zx ; a ; ). 

This identity can also be obtained from Bailey's [4, p.502] formula 

F [a,b,n+2c,-n 1] F [2a,2b,-n 1] 
4 3 a+b+V2,c,c+ 1h; = 3 2 a+b+ 1h,2c; 

by letting b~oo. 

For a:= !Ji the weight function (2.5) becomes 

2w2 
w(x)- ---

- ch(2wx) 

(2.6) 

(2.7) 

(2.8) 

In particular, we find for the polynomials Sn introduced in §1, which Bender, Mead and Pinsky [7] 

identified with special continuous Hahn polynomials, that they can be written as Meixner-Pollaczek 

polynomials: 

3. An operational fonnula involving Meixner-Pollaczek polynomials 

Recall that we can obtain the Mellin transform pair 

co 

G(A) = j F('1}r-l-i>. dT 
0 

co 

F(T) = (2w)- 1 j G(;\.)t>- d;\. 
-co 

(2.9) 

(3.1) 
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from the Fourier transform pair 

00 

g(A) = J f(t)e-2wrAt dt 
-oo (3.2) 

00 

f (t) = f g(A.) e2wi"At dA. 
-oo 

by making the substitutions 

T=e2'"1, F(T)= f(t), G(A.)=27Tg(A.) 

in (3.2). In particular, Mellin inversion in (3.1) is valid if the function t i-+F(e2'"1
) belongs to the class 

gj of rapidly decreasing C00 -functions on R. If Fi. F2 are two such functions and Gi. G2 their Mel­

lin transforms then we have the Parseval formula 

(3.3) 

Proposition 3.1. For a>O and 0<<j><7T Laguerre polynomials xi-+Ln2a-l(x) and Meixner-Pollaczek 

polynomials A.i-+P~0>(A.;<j>) are mapped onto each other by the Mellin transform in the following way: 

oo I -in</> 

f n.e -lhx(l+icotg</>) aL2a-I( ) -1-i>..d 

0 
(2a )n e X n X X X 

= e(ia->..><.<t>-'lm) (2 sin <j>}°-;>.. f(a -iA.) p~a)(A_;<j>). 

Proof. The left hand side can be rewritten as 

n (-n)k oo 
e-in</> ~ I f e-'hx(l+icotg</>) xk+a-i>..-1 dx 

k =O (2a )k k . O · 

= e-in</> ~ (-n)k f(a -iA.+k) 
k=O (2a)kk! (1/2+Y2icotg<j>)0 -iA+k 

= e-in</> f(a -iA.)(l-e2i<f>)a-i>.. 2F1(-n 'a -iA.; 2a; l-e2i<f>) 

= ein</> f(a -iA.)(I-e2i<t>yi-i>.. 2F1(-n, a +iA.; 2a; 1-e-Zi<I>), 

which can be rewritten as the right hand side of (3.4). D 

(3.4) 

It is possible to give an interpretation of the above proposition in the context of matrix ele­

ments of discrete series representations of SL(2,R), cf. Koomwinder [9, §7] and Basu and Wolf [5]. 

Corollary 3.2. For a >0 and O<<j><7T Laguerre polynomials can be expressed by the differentiation 

formula 
I -in</> n.e -'hx(l+icotg</>) aL2a-I() 
(2a)n e X n X 

= p~a)( -ix di dx ; <j>)(e -'hx(I +icotg<t>) xa). (3.5) 

Proof. In the left hand side of (3.4) Mellin transform is taken of a function which belongs to the class 

gj as a function oft, where x =e1. Hence we can apply Mellin inversion (cf. (3.1)) and we can write 

the left hand side of (3.5) as 



00 

(2'71r 1 J e(ia->-Xl/>-'lm) (2sin q,)a-i>. f(a -iA)P~a)("A;<f>)xi>- dA 
-oo 

= p~a>(-ix di dx; <f>) [e(ia->-Xl/>-'h'IT) (2 sin q,)a-i>. f(a -i"A)xiX], 

which equals the right hand side of (3.5). D 

By substitution of the Rodrigues formula 

n ! ,-x x• L:(x) = [,;;, r (e-x x' +•) 

into (3.5) we obtain [,;;, r (e-xxa+2a-I) 

= (2a)n einl/> e-'hx(l-icotgl/>) xa-1 p~a>(-ix di dx, q,)[e-'hx(l+icotgl/>) xa]. 

In particular, for <f>=1h'1T and a =1h we obtain 

[i ,;;, r ( e - x x') = n ! e -11< P ,\">(ix d I dx + \ii , \iw)[e -1«1 

Hence, for arbitrary vEC: 

e;" [i ,;;, r (x' e -Un) = n ! Pj"l(ix di dx + \ii , \iw)[ e -;.xl 

4. Proof of the Bender-Mead-Pinsky result 

Consider the Heisenberg group H 1 which is IR3 equipped with the multiplication rule 

(g, 1J, r)(g', '11', 'T') = (g+ g', 1J +'11', r+'T' + 1h(~'11- ~')). 
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(3.6) 

(3.7) 

(4.1) 

Let AEIR \ {O} and let 'TT;i._ denote the unique (up to equivalence) irreducible unitary representation of 

H 1 such that 

?T;i._(0,0,r) = eiXT I, rEIR. 

Then, withµ.:= I "Al 'h and E: =sign("A), 'TT;i._ can be realized on L2(1R) by 

(?T;i._(g,'lj,T)j)(x) = ei~ ei;(£T+'h~) j(x +µ.'11), f EL2(1R). (4.2) 

Let X and Y be the infinitesimal generators of the one-parameter subgroups of elements (g,O,O) and 

(0,'1j,O), respectively. Let o denote the symmetrization mapping from the symmetric algebra to the 

universal enveloping algebra of the Lie algebra of H 1, i.e. 

1 
o(X1 · · • Xk) := -k1 ~Xs(I) · · • Xs(k)> (4.3) 

• s 

where s runs over all permutations of { l, ... , k }, cf. for instance Helgason [8, Ch.2, Theorem 4.3]. 

Let f be a C00 -function locally defined on IR. Then 

('TT;i..(X)j)(x) = i µ.x f(x), 

'TT;i._(Y)j)(x) = µ,f'(x) 

and 



('1TA(a(Xn yn))f)(x) 

= [J_]n [_!_Jn (ei~ eiµ2(£T+'h~) f(x +µ71))1 
a~ a11 E.11.T=o 

[iµ :~ r ((x Hl'1J)' f (x+l'1J})l,=o 

Hence 

(">.(a(X' Y"))f)(x) = IAI' [i a~ r ((x +\\y)' f (x + y)) I y=O 

For n = 1 this simplifies to 

('1TA(a(XY))j)(x) = IXI (ix o/ox + 1/2i)f(x). 

Let 

f P(x) := e-ipx. 

Then we obtain from ( 4.4), (3. 7) and ( 4.5) that 

('1TA(a(Xn r)) f p)(x) 

= IX In [i_l_ln ((x +1hyf e-ill(x+y>)I 
oy y=O 

= i-· IAI' •''" [i :x r (x' ,-u .. ) 
= rn n ! I;\ In p~'h)(ix di dx + V2i' 1h'1T)[e-ivx] 

= 2-n n ! I A In P ~'h)( I A I - I 'ITA (a(XY)), 1h'1T)[f v(x)]. 

Hence, by integrating both sides against suitable functions of v we obtain: 

'ITA(a(Xnyn)) = rnn! IXlnp~'h)(jXl- 1 '1TA(a(XY)),1h'1T). 

In view of (2.9) and (4.3) this becomes for;\= 1 the result (1.1) of Bender, Mead and Pinsky [6]. 
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