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A concurrent system S is called deterministic if for all states s of S we have that whenever S can evolve 
from state s into states s' and s" by doing an action a, it must be the case that s' equals s". It is well 
known that for deterministic concurrent systems, most of the interleaved equivalences (bisimulation-, 
failure-, trace-equivalence) coincide. In this paper we prove in the setting of event structures that also most 
of the non-interleaved equivalences coincide (with each other) on this domain. In the last section of the 
paper we show that, as a consequence of our result, the causal structure of a deterministic concurrent sys
tem can be unravelled by observers who are capable to observe the beginning and termination of events. 
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§ l INTRODUCTION 
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A (discrete) concurrent system generates events as it evolves in time. At any moment a set of events 
will have occurred and these will be ordered 'in time' or by 'causal precedence'. This order may be 
partial. When modelling concurrent systems and reasoning about their behaviour, it is often useful to 
consider different events as occurrences of the same action. This may indicate that certain events are 
produced by the same physical resource or that they cannot be distinguished by an observer. The 
relation between events and actions can be expressed by a labelling function I :E ~A that relates an 
action to each event. Different approaches to the modelling of concurrent systems can be classified 
by looking at the types of labelling functions they allow for. For instance, if one models a concurrent 
system with an elementary net system [24], then it can never be the case that in some behaviour two 
events with the same label are concurrent (i.e. not related by the ordering). If we consider the usual 
semantics for process algebra languages like CCS [17], TCSP [14], ACP [4] and ME1rn [3], then it turns 
out that these languages are very liberal wrt labellings of events: there is (almost) no restriction at all. 
There exists a very rich theory of 'comparative concurrency semantics' relating the interleaved seman
tics for CCS-like languages, i.e. those semantics which do not treat concurrency as a primitive notion. 
Now a well-known result says that almost all these equivalences (bisimulation equivalence, trace 
equivalence and everything in between) coincide for deterministic systems (see for instance ENGEL
FRIET [9]). A concurrent system S is called deterministic if for all states s of S we have that whenever 
S can evolve from state s into states s' and s" by doing an action a, it must be the case that s' equals 
s". 

Recently, many equivalences have been proposed that do consider concurrency as a primitive 
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notion. Besides the event structure equivalence and the step sequence equivalence that will be dis
cussed in this paper, we have for instance the occurrence net equivalence of NIELSEN, PLoTKIN & 
WINSKEL [18], the NMS equivalence of DEGANO, DE NICOLA & MONTENARI [8], the BS bisimulation 
of 'fRAKHTENBROT, RABINOVICH & HIRSHFELD [27], the step failure semantics of TAUBNER & VOGLER 
[26], the step bisimulation semantics of NIELSEN & TmAGARAJAN [19], the pomset semantics of PRATT 
[22], the pomset bisimulation semantics of BoUDOL & CASTELLANI [6], the generalised pomset bisimu
lation and the ST-bisimulation of VAN GLABBEEK & VAANDRAGER [11], the split sequence equivalence 
which we present at the end of this paper, etc, etc. 

Now one can ask the obvious question what happens with all these equivalences if we restrict our
selves to the domain of deterministic systems. The main result of this paper is that almost all non
interleaved equivalences coincide (with each other) for deterministic systems. More specifically, we 
will show that step sequence equivalence and event structure isomorphism agree on this domain. Of 
the equivalences mentioned above only occurrence net equivalence is not situated in between step 
sequence equivalence and event structure isomorphism. 

Event structures. A natural domain for modelling concurrency is the class of event structures, which 
were introduced in NIELSEN, PLOTKIN & WINSKEL [18]. By now many different types of event struc
tures have been defined. For an overview we refer to WINSKEL [28]. In our view an especially impor
tant class of event structures is the class of prime event structures. Prime event structures contain no 
junk: every event in the set of events of a prime event structure can occur in at least one behaviour. 
The event structures used in this paper are labelled prime event structures with binary conflict. Below 
we give a formal definition of this type of event structures, followed by some explanatory remarks. 
The assumption of binary conflict is not essential in the proof of the main theorem of this paper. 
Because most people will be more familiar with event structures with binary conflicts and because the 
main use we foresee of our theorem lies in the field of CCS-like languages (where conflict is always 
binary), we decided to present the theorem for the case with binary conflict only, and to leave the 
generalisation to the case with arbitrary conflict as a (simple) exercise to the reader. 

Arbitrary interleaving versus True' concurrency. In the last section of the paper some consequences 
will be discussed of our result for the issue of arbitrary interleaving versus 'True' concurrency. We 
introduce an operator which splits each event into a beginning and an end and show that the causal 
structure of a deterministic concurrent system can be unravelled by observers who are capable to 
observe these beginnings and ends. 

Related work. One can view the main theorem of this paper as a retrievability result: given the step 
sequences of a deterministic event structure, we can retrieve this event structure up to isomorphism. 
Within the theory of concurrency there are quite a number of other retrievability results. BEST & 
DEVILLERS [5] prove various retrievability results for Petri nets. KIEHN [15] describes how the partial 
language of a pit net can be recovered from the set of its step sequences. SHIELDS [25] considers a 
subclass of deterministic systems ('behaviour systems with conservative labelling') which makes it pos
sible to lift concurrency up to a relation on labels, just like in MAzURKIEWicz's trace theory [16]. In 
both cases the partial order structure of a system can be retrieved from firing sequences (or words) 
and the concurrency relation. In 'fRAKHTENBROT, RABINOVICH & HIRSHFELD [27], some retrievability 
results are proved for 'behaviour structures'. 

In this paper we investigate the effect of assuming determinism on the lattice of equivalences in 
between sequence/ trace equivalence and event structure isomorphism. In the course of the discussion 
we will sketch parts of this lattice: we will define a number of equivalences and establish their mutual 
relationships. Hence our paper can be viewed as a contribution to the research area of comparative 
concurrency semantics. Related work on this topic has been done by PoMELLO [21 ], v AN GLABBEEK 
& VAANDRAGER [11] and ACETO, DE NICOLA & FANTECHI [l]. 



§2 EVENT STRUCTURES 

2.1. DEFINITION. A (labelled) event structure (over an alphabet A) is a 4-tuple (E, ~. #, l), where 
E is a set of events; 
~<;;,EXE is a partial order satisfying the principle of finite causes: 

{e'EEle'~e} is finite for eEE; 
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# <;;, E X E is an irreflexive, symmetric relation (the conflict relation) satisfying the principle of 
conflict heredity: 

e1#e2~e3 ~ e1#e3; 

1: E-'>A is a labelling function. 
As usual we write e' <e for e' ~e A e' =f=.e, ;;;:., for ...; - 1, and > for < - 1• We use v to denote the 
relation EXE -( ~ U ;;;:., U #). v is called the concurrency relation. By definition <, =, >, # and v 
form a partition of EX E. 

2.2. Note. The components of an event structure E will be denoted by respectively EE, ~E, #E and 
lE. The derived relations will be denoted vE, <E, >E, ;;;:.,E· For eEEE, preE(e) denotes the set of 
events which precede e in the ordering (so preE(e)= { e' EEE I e'~Ee }). 

2.3. Graphical representation. In the graphical representation we either depict the events or their 
labels, depending on what we want to illustrate. The partial order relation is indicated by arrows. 
The confict relation is denoted by means of dotted lines. If we draw no relation between events they 
are concurrent, unless, by means of the transitive and reflexive closure of the arrows, it can be 
deduced that they are ordered, or, by means of the principle of conflict heredity, it can be deduced 
that they are in conflict. 

2.4. Example. Let the event structure E be given by: 

EE = { ei.e2,e3,e4,e5 } 

.;;;;;E = {(ei.e2),(ei,e3),(e2,e3)} U {(e,e)leEEE} 

#E = {(x,e4),(e4,x)lxE{ei,e2,e3}} 

IE(ei) = ai 

Graphically we can depict E as follows: 

e1 ............ ·e4 es 

1 
e2 

1 
FIGURE 1. 
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2.5. Operational meaning of event structures. The events in a event structure can be anything varying 
from a clock pulse in a computer, the printing of a file, my act of writing this article, your act of read
ing it, the next crash of Wall Street, etc. 

The partial order relation expresses that some events are causally related to other events or that for 
all observers the occurrence of certain events will be seen to precede the occurrence of others. For 
instance, my act of writing this article will precede your act of reading it. On the other hand, your act 
of reading this article will probably not be causally related to the next crash of Wall Street. The ques
tion what, in general, constitutes a causal link, is a metaphysical one and difficult to answer. However, 
in a lot of practical situations it is perfectly clear what we mean with causality and reasoning about 
the behaviour of concurrent systems in terms of causality is useful. 

The principle of finite causes says that the systems we consider are discrete and that moreover we 
do not consider situation like 

FIGURE 2. 

or 

FIGURE 3. 

In the first situation it is not clear that any of the e; can ever happen, in the second situation e 00 can 
occur if execution of all events ei, e2 , • • • finishes after a finite amount of time. Because we do not 
make any assumptions about the time it takes to perform an event, it is possible that e 1 takes 1 
second, e 2 takes 2 seconds, etc. In that case e 00 will never take place. 

If two events are in conflict, then at most one of them can occur. As a consequence of the principle 
of conflict heredity we have that when an event occurs, all its 'causes' must have occurred before. So 
if two events e and e' are related in the ordering, say e<e', then occurrence of e is a prerequisite for 
the occurrence of e'. In general it is not the case that after occurrence of e the occurrence of e' is 
inevitable. It would be possible to allow event structures where one event has two causes, which are 
in conflict: 

e1 ·············e2 

\/ 
FIGURE 4. 

Two interpretations of the above event structure are possible: either one can say that e3 will never 
occur because it is impossible that all its causes occur (in that case one can just as well leave e3 out of 
the event structure and adopt the principle of conflict heredity), or one can say that e3 can occur if a 
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maximal, conflict-free subset of its causes has occurred, so {ei} 6r {ei}. 
There are no fundamental reasons to adopt the principles of finite causes and conflict heredity. We 

have included them in our definition of event structures because this makes an elegant formulation 
possible of the main result of this paper. 

The operational intuitions that we presented in the discussion above, will be defined formally 
below. 

2.6. DEFINITION. Let Ebe an event structure and let X be a subset of EE. We say that X is left
closed if 

eEX /\ e'o;;;;Ee ~ e'EX 

X is conflictfree if X does not contain a pair of events which are in conflict, so if #E n(XXX)= 0. E 
is conflict-free if #E = 0. A configuration of E is a finite, 1 left-closed, conflict-free subset of EE. With 
Ex_E) we denote the set of configurations of E. 

2. 7. Example. In figure 5 below we have depicted all configurations of the event structure of example 
2.4. An arrow is drawn between two configurations if one can be obtained from the other by adding 
a single event. 

FIGURE 5. 

2.8. DEFINITION. For any alphabet~. we use~· to denote the set of finite sequences over alphabet 
~ and ~+ to denote the set of finite nonempty sequences over this alphabet. We write A. for the 
empty sequence and a for the sequence consisting of the single symbol a E~. By a*a', sometimes 
abbreviated aa', we denote the concatenation of sequences a and a'. On sequences we define a partial 
ordering ,.;;;; (the prefix ordering) by: a,.;;;p iff, for some sequence a', aa'=p. If a .;;;;;; p we say that a is 
a prefix of p. 

2.9. DEFINITION. Let E be an event structure and let X and Y be configurations of E. 

i) Let a EA. We say that there is an a-transition from X to Y, notation X ~ E Y, if Y =XU { e} for 
some event e$Xwith /E(e)=a. 

ii) An action a EA is enabled in X, notation X ~ E• if X ~EX' for some configuration X'. 

iii) A sequence of actions a=a 1* · · · *anEA* is enabled in X, notation X ~E, if there exist 

l. WINSKEL [28] does not require that configurations are finite. 
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configurations X 0 , ••• , Xn such that X=Xo and for I:s;;;i:s;;;n: X;-1 ~EXi· We say that Xn is 

obtained from X by the occurrence of o, notation X .J4.EXn. We also say that o is an (action) 
sequence of X. 

iv) A sequence of events a=e 1* · · · *enEEF, is enabled in X, notation X ~E. if there exist 
configurations X 0 , ••• , Xn such that X=Xo and for I:s;;;i:s;;;n: e;~X;-1 and Xi=Xi-1 U{e;}. 
We say that a is an (event) sequence of X. 

v) With seqE(X) we denote the set of action sequences of X, so seqE(X) = { oEA *IX .J4.E}· 

2.10. PROPOSITION (no junk). Let E be an event structure and let eEEE. Then there exists a 
configuration X ofE with eEX 
PROOF: Take X=preE(e). Due to the principle of finite causes X is finite. From the fact that :s;;;E is a 
partial order it follows that X is left-closed. X is conflict-free due to the principle of conflict heredity. 
Hence X is a configuration. Clearly e EX. D 

§3 THREE BASIC EQUIVALENCES ON EVENT STRUCTURES 
We will now define three equivalences on event structures which make increasingly more 
identifications. 

3.1. DEFINITION. An event structure isomorphism between two even structures E and Fis a bijective 
mapping/: EE~EF such that: 

j(e) :s;;;F f(e') ~ e :s;;;E e', 
j(e) #F j(e') ~ e #E e' and 
lF(j(e)) = /E(e). 

E and Fare isomorphic, notation E--F, if there exists an event structure isomorphism between them. 

3.2. DEFINITION. Let E, F be two event structures. A relation R c;;e(E)X® is a bisimulation 
between E and F if: 
1. 0R0; 

2. If X R Y and X ~EX' for some a EA, then there exists a Y' Ee{F) such that Y ~ E Y' and 
X'RY'; 

3. As 2 but with the roles of X and Y reversed. 
E and Fare bisimilar, notation Et:zF, if there exists a bisimulation between them. 

3.3. DEFINmON. Two event structures E and Fare sequence equivalent, notation E seq F, if: 

seqE(0) = seqF(0). 

3.3.1. Remark. The semantical notion of sequence equivalence, is usually called trace equivalence in 
the settings of process algebra and trace theory a la REM [23]. However, use of the word trace would 
be very confusing in a paper on event structures, since event structures are closely related to a com
pletely different type of traces, namely those which are studied in trace theory a la MAZURKIEWICZ 
[16]. Therefore we have chosen to use the word 'sequence' to denote a finite string of symbols record
ing the actions in which a process has engaged up to some moment in time. Still we think that the 
word 'trace' is more suitable for denoting a string of symbols than for denoting an equivalence class 
of strings (as in trace theory a la Mazurkiewicz) because outside computer science the word trace is 
associated with 'a mark or line left by something that has passed' ([20]). 
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3.4. PROPOSITION. ~, e and seq are equivalence relations and their relations are as indicated below: 

PROOF: Standard. D 

3.5. Examples. The event structures in figure 6 show that ~, e and seq are really different 
equivalences. In the graphical representations we have depicted the labels of the events and not the 
events themselves. 

a ............. a ~ a ............. a ~ a 

/1 1 e 1 1 -seq /\ 
b ..... b c b c b ............. c 

FIGURE 6. 

The following definition is central in this paper: 

3.6. DEFINITION. Let E be an event structure. E is deterministic if for all configurations X Ee(E) we 

have that whenever X ~ E Y and X ~ E Y' for some a EA and Y, Y' Ee(E), we have that Y = Y'. 

So an event structure is deterministic if it does not have a configuration with the property that two 
different events are enabled which have the same label. 

3.7. DEFINITION. Let Ebe an event structure. Two events e,e'EEE are in immediate conflict, nota
tion e #te', if they are in conflict and furthermore: 

e ;;a.E f #E e' ~ e = f and e #E f ,.;;;;E e' ~ f = e'. 

Using the notion of immediate conflict we can give a 'less operational' characterization of determinis
tic event structures. 

3.8. PROPOSITION. Let Ebe an event structure. Then Eis deterministic iff: 

e VE e' or e #t e' ~ lE(e) =I= lE(e'). 

PROOF: Easy. D 

It is well-known that the linear time - branching time spectrum collapses for deterministic event struc
tures. 

3.9. PROPOSITION. Let E,F be deterministic event structures. Then: Ee F ~ E seq F. 
PRoOF: '~'follows from proposition 3.4. In order to prove'*=' define a relation R ~e(E)X«F) by: 

X R Y *-> seqE(X)=seqF(Y). 

It is easy to show that R gives a bisimulation between E and F. D 
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3.10. Remark. In a dictionary ([20]) we found the following entry for the word 'determinism': 
I. a doctrine that all phenomena are determined by preceding occurrences; esp. the doctrine that all 

human acts, choices etc are causally determined and that free will is illusory; 
2. a belief in predestination. 
One may think that the notion of determinism introduced in definition 3.6 is in conflict with the 
above description. If one for instance considers the deterministic event structure containing two 
events labelled a and b which are in conflict, then one may argue that the choice between a and b is 
not causally determined, that the event structure 'has a free will' and 'may choose' whether to perform 
a or b. Therefore one may propose another definition of determinism for event structures which says 
that an event structure is deterministic iff it is conflict-free. In fact this definition occurs in ACETO, DE 
NICOLA & FANTECHI [l]. 

We however prefer our own definition because we like to view event st[uctures as 'reactive systems'. 
An event structure model of a concurrent system describes how the system reacts to stimuli received 
from its environment. In the above example of the event structure with actions a and b, it is com
pletely determined how a system modelled by this event structure will react to external stimuli: the 
system has no choice. 

Now consider the following event structure: 

a a 

! ! 
b c 

FIGURE 7. 

This event structure is conflict-free and hence deterministic in the sense of [1]. However, if the 
environment offers an a, then there is a choice between the 'left' a and the 'right' a. Depending on 
how this choice is resolved by the system, it can engage in b or in c afterwards. Hence one can argue 
that the event structure exhibits nondeterministic behaviour. 

§4 NON-INTERLEAVED EQUIVALENCES 
Many people think that bisimilation equivalence, and consequently also sequence equivalence, make 
too many identifications on event structures to be of use in general. In bisimulation semantics con
currency is not preserved, i.e. for each event structure we can give a bisimilar event structure with an 
empty concurrency relation. We elaborate on this below. 

4.1.1. DEFINITION. The sequentialisation of an event structure E, notation ~(E), is the event structure 
F defined by: 

EF = {aE(EE)+ I 0 ~E}; 
a,,;;;;,FfJ iff a is a prefix of /J; 
#F = (EFXEF)-(,;;;;FU~F); 
IF(a*e) = /E(e). 

4.1.2. PROPOSITION. Let Ebe an event structure. Then: 
i) the concurrency relation of~) is empty, 
ii) E~~), 
iii) ~) ,_ ~~)). 
PROOF: Easy. D 
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4.2. Step semantics. Intuitively, one of the reasons why an event structure is in general different from 
its sequentialisation is that it sometimes has the possibility to do a number of events simultaneously 
in one 'step'. The notion of a 'step' immediately suggests refinements of sequence equivalence and 
bisimulation equivalence which do not disregard concurrency. These refinements will be called step 
sequence equivalence and step bisimulation equivalence respectively. Step sequences were defined 
already in [10]. Step bisimulations appear in [19]. In [11] they are called 'concurrent bisimulations'. 
Below we give the formal definitions of step sequence equivalence. 

4.2.1. DEFINITION. Let E be an event structure and let X and Y be configurations of E. 
(i) Let Ube a finite subset of EE. We say that Y Ufollows X, notation X[U>Y, if XnU= 0, the 

elements of U are pairwise concurrent (so 'r;;/e,e'EU: e::f=e'~e ~Ee') and Y=XU U. 
(ii) Let U<;;;,EE. We say that U is enabled in X (U is a step from X), notation X[U>E, if X[U>EX' 

for some configuration X' of E. 
(iii) A sequence a= U1 * · · · *Un E(Pow(EE))* is enabled in X, notation X[a>E, if there exist 

configurations X 0 , ••• ,Xn such that X=Xo and for l~i~n: X;- 1[U;>EXi· We say that Xn is 
obtained from X by the occurrence of a, notation X[a>EXn. We also say that a is an (event) step 
sequence of X. 

(iv) Let a=U1* · · · *UnE(Pow(EE))* such that X[a>EY. Let CJ be the sequence lE(Ui)* · · · *lE(Un) 
where lE(U;) denotes the multiset of labels of events in U;. We say that CJ is enabled in X, nota
tion X[CJ>E· We also say that CJ is an (action) step sequence of X, and that Y is obtained from X 
by the occurrence of CJ, notation X[CJ>E Y. 

(v) With stepE(X) we denote the set of action step sequences of X, so stepE(X) = 
{aE(Mul(A))* IX[a>E}· 

4.2.2. DEFINITION. Two event structures E and Fare step sequence equivalent, notation E step F, if: 

stepE(0) = stepF(0). 

4.2.3. PROPOSITION. step is an equivalence relation. The following relations hold between the 
equivalences presented thus far: 

- ~ ~ 

i i 
-step ~ -seq 

PROOF: Easy. 0 

4.2.4. Examples. We give some examples which show that the diagram above gives all relations 
between the equivalences. Our first example shows that step semantics (at least sometimes) takes con
currency as a primitive notion. 

a b =E. step a ............. b 

~ l l 
-seq b a 

FIGURE 8. 

The two leftmost event structures in figure 6 are not isomorphic but they are step sequence equivalent. 
This follows from the observation that on the domain of event structures with empty concurrency 
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relation step sequence equivalence and sequence equivalence coincide. 
The two rightmost event structures in figure 6 are not bisimilar, but they are step sequence 

equivalent. 

4.3. Partial order semantics. An A-labelled partially ordered set is a triple (X,~,l) with X a set, ~ a 
partial order on X, and l:X~A a labelling function. Two such sets (X0,~0 ,/0) and (Xi.~ 1 ,/ 1 ) are 
isomorphic if there exists a bijective mapping /: x0~x1 such that f (x)~if (y) *9 x~0y and 
11(f (x))=l0(x). A partially ordered multiset (pomset) is an isomorphism class of labelled partially 
ordered sets. As usual, pomsets can be made setlike by requiring that the events in the partial orders 
should be chosen from a given set. Below we will view equivalence classes of conflict-free event struc
tures as pomsets. 

4.3.1. DEFINITION. The restriction of an event structure E to a set X<;;;,EE of events is the event struc
ture Et x = (X, ~E n(XXX), #E n(XXX), lE t X). 

4.3.2. DEFINITION. Let Ebe an event structure and let X be a configuration of E. The set of pomsets 
of X, notation pomE(X), is defined by: 

pomE(X) = {(E t(X'-X))/~ IX<;;;,X'Ee(E)}. 

4.3.3. DEFINITION. Two event structures E and Fare pomset equivalent, notation E pom F, if: 

pomE(0) = pomF(0). 

The first systematic study of pomsets is by GRABOWSKI [12], who called them partial words. Pomset 
semantics is advocated by PR.Arr [22]. 

4.3.4. PROPOSITION. pom is an equivalence relation. It fits in our semantical lattice as follows: 

pom ~ -step ~ -seq 

4.3.5. Examples. The two rightmost event structures in figure 6 provide an example of two event 
structures which are identified in pomset semantics, but distinguished in bisimulation semantics. The 
remaining examples distinguishing pomset equivalence and the other equivalences are displayed in 
figure 9 below. The example of figure 10 is interesting because it only contains conflict-free event 
structures. The example disproves theorem 3.5 of ACETO, DE NICOLA & FANTECHI [1]. 
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a b a b =E.pom a b 

pom -step 

a tz a 

-seq ~ 
b 

FIGURE 9. 

a a =E.pom a a 

-step ! ! 
a a a a 

FIGURE 10. 

Notice that all these examples contain non-deterministic event structures. 

§5 DETERMINISM~ (EVENT STRUCTURE ISOMORPHISM = STEP SEQUENCE EQUIVALENCE) 

Proposition 3.9 stated that bisimulation equivalence and sequence equivalence coincide on the domain 

of deterministic event structures. Surprisingly, most of the non-interleaved semantics which have been 

proposed in the literature, also coincide on this domain. 
In the introduction of this paper we mentioned a large number of equivalences which are situated 

in between event structure isomorphism and step sequence equivalence. As a consequence of the fol

lowing result all these equivalences (except for occurrence net equivalence) coincide with event struc

ture isomorphism on the domain of deterministic event structures. 

5.1. THEOREM. Let E, F be deterministic event structures. Then: E ,.._, F ~ E step F. 

5.2. LEMMA. Let E be a deterministic event structure and let X, Y be configurations of E such that 

Et X::::E t Y. Then: X= Y. 
PROOF: Induction on the size of X. If X is the empty set, then Y must be empty too and we are 

done. Suppose X is nonempty. Let e be a maximal element of X and let X'=X-{e}. Now we use 

that there exists an event structure isomorphism f between E t X and E t Y: we have E t X' :::: E t Y' 

for Y' = Y - {f (e)} and furthermore X' and Y' are configurations. Applying the induction hypothesis 

gives X'=Y'. Let a=/E(e)=/E(j(e)). We have that X' ~EXbut also X' ~EY. Now use that E 

is deterministic to obtain that X = Y. D 

5.3. LEMMA. Let E and F be deterministic event structures. Then: E pom F ~ E '.::'. F. 

PROOF: '<==' is trivial, so the interesting direction is '~'. Define relation ,...., c;;;, EE X E F by: 

eo,....,e1 ~de/ E tpreE(eo):::: F tpreF(e1). 

We claim that ,..., gives a bijective mapping between EE and EF. Because E pom F, it is obvious 

that dom(,...,)=EE and range(,...,)=EF. Suppose that e0 ,....,e 1 and e0 ,...,e 1'. We show that e 1 =e1'. By 

definition we have E tpreE(e0 ) ,...., F tpreF(e 1) ,...., F tpreF(e 1'). Application of the previous lemma 
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gives preF(e 1)=preF(e 1'). Since both sets have a unique maximal element, these maximal elements 
must be identical: e 1 =e1'. In the same way we can prove that if e0-e1 and e0'-e1> this implies 
e0 =e0'. Hence"' gives a bijection between EE and EF. It is not hard to see that this bijection is in 
fact an event structure isomorphism. D 

Proof of theorem 5.1. From the previous results it follows that in order to prove theorem 5.1 it is 
enough to show that for deterministic event structures E,F: 

E step F ~ E pom F. 

By definition this is equivalent to: 

stepE(0) = stepF(0) ~ pomE(0) = pomF(0). 

We will prove a slightly stronger statement, namely: 

'VXEqE) 'VYEEXF): stepE(X) = stepF(Y) ~ pomE(X) = pomF(Y). 

Let XEtl:E), YEEtF) with stepE(X)=stepF(Y). Let X' be a configuration of E with XCX'. Let ao 
= {ei}*{e2}* ···*{en} be a sequence of singleton steps such that X[ao>EX' and X'-X = 
{ei. ... ,en}· Let a1 = {e1'}*{e2'}* ···*{en'} be a step sequence such that Y[a1>F and 
/E(ei)=/F(e;') for 1,,;;;;;;;,,;;;;;;n (due to the fact that X and Y have the same step sequences, such a 
sequence will always exist). Let Y' = YU{e1', ... ,en'}. We claim that the function which maps e; 
to e;' is an event structure isomorphism between Et (X' - X) and F t (Y' - Y). For reasons of sym
metry we have proved the theorem if we have shown this. 

The proof goes by induction to n. The case with n =O is trivial. Now suppose n >0. Due to the 
fact that X and Y have the same step sequences and due to the determinism of E and F, we have: 

Since 

stepE(XU{e1}) = stepF(YU{e1'}). 

XU{ei} [{e2}* · · · *{en}>EX' and 

YU{e1'} [{e2'}* · · · *{en'}>EY', 

we can now apply the induction hypothesis which gives: 

E t(X'-(XU{e1})) - F t(Y'-(YU{e1'})). 

In order to prove the induction step it is enough to show that for 2,,;;;;;; i,,;;;;;; n: e 1 < E e; # e 1 ' < F e;'. If 
n = 1 we are done, so assume n ;;:.2. Let for some i, e; be minimal in { e2, ... , en}. Then e;' is 
minimal in {e2', ... ,en'}. We claim that e 1 <Ee; # e1' <Fe;'. Suppose e1 <Ee; but not 
e1' <Fe;'. If we show that this leads to a contradiction we have proved the claim because the 
remaining case is symmetric. If it is not the case that e 1' < F e;' then e 1' -F e;'. Due to the minimal
ity of e;' we have that Y[{e1', e;'}>F. Now we use that X and Y have the same step sequences and 
the fact that Eis deterministic. There must be some/such that X[{ei./}>E and /E(/) = /F(e;') = 
/E(e;). Because e1 <E e;, J=:/=e;. But now there is a contradiction since we can go from configuration 
XU { ei} with an /E(/)-transition to XU { e1>/} as well as XU { e1 ,e; }. 

Now we have proved that fore;, which are minimal in {e2, ... ,en}, e 1 <Ee; # e1' <Fe;'. In 
order to prove this fact also for e; which are not minimal, we distinguish between two cases. 
1. For all e; which are minimal in {e2, ... ,en}, we have that e 1 <Ee;. This implies that e1 <E e1 

for 2,,;;;;;;f,,;;;;;;n. Further we have that for all e;' which are minimal in {e2', ... ,en'}, e1' <Fe;'. 
Consequently e1' <Fe/ for 2,,;;;;;;f,,;;;;;;n, and we are done. 

2. There is an e; which is minima] in {e2, ... ,en} such that e 1 VE ei. This means that e 1' VF e;'. 
We now have the following situation: 

XU{e;} [{ei}* · · · *{e;-i}*{e;+i}* · · · *{en}>EX' and 
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YU{e;'} [{e1'}* · · · *{ei-1'}*{e;+1'}* · · · *{en'}>pY'. 

Of course XU { e;} and YU { e/} have the same step sequences. Application of the induction 
hypothesis gives: 

D 

Observe that in the proof of theorem 5.1 we only use that E and F have the same sequences of steps 
containing at most two events. 

5.4. The diagram below presents the relations between the equivalences presented thus far when res
tricted to the domain of deterministic event structures. 

,._, # porn # step 

tl <=> seq 

The example of figure 8 shows that even for deterministic systems there is a difference between arbi
trary interleaving and partial order semantics. 

§6 ARBITRARY INTERLEAVING VERSUS 'TRUE' CONCURRENCY 

One can consider event structures up to step sequence equivalence as an interleaving semantics if one 
is willing to view a multiset of actions as an action again. In the process algebra languages MEIJE and 
ACP this idea can be implemented by working for instance with an action structure which is the pro
duct of a free commutative monoid and a free commutative group. Under this interpretation one can 
say that for deterministic systems there is no difference between arbitrary interleaving and 'True' con
currency. 

Now one can ask the question to what extent a multiset of more than one action can be considered 
as something which is observable. In a synchronous system like a systolic architecture there is cer
tainly no problem. After each clock tick one can just stop the system and examine which 'cells' have 
performed an action. The multiset (or set if the system is deterministic) of actions performed by the 
separate cells gives the step which is performed by the synchronous system. It is much harder to ima
gine how a 'step' can be observed in an asynchronous system. The only thing I can come up with is 
that some observer notices the beginning of one action before another action has been finished. In 
such a situation the observer can conclude that the two actions occur concurrently. 

Below, this way of observing concurrent processes is formally implemented by means of an opera
tor split on event structures that splits any event e into events e + and e - , which are ordered. One 
may think of e + as the beginning of e and of e - as the end of e. 

6.1.1. DEFINITION. Let E be an event structure over some alphabet A. Let A + = {a+ I a EA } and 
A - = {a - I a EA} be two disjoint copies of A. The event structure F= split (E) over alphabet 
A+ UA- is given by: 

Ep = {e+ ,e- leEEE} 

<F = {(eX,.f')lx,yE{+,-} ande <Ef}U{(e+,e-)leEEE} 

#F = {(eX,.f')lx,yE{ +, - } and e #E f} 

IF(e+) = (/E(e))+ 

/F(e-) = (/E(e))-
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6.1.2. Example. 

split ( a c ) 

1 
b ............. d 

FIGURE 11. 

6.1.3. DEFINITION. Two event structures E and Fare split sequence equivalent, notation E split F, if: 
split (E) seq split (F). 

Split sequence equivalence is closely related to ST-bisimulation semantics as presented in VAN GLAB
BEEK & VAANDRAGER [11] on the domain of Petri nets, but there are some differences. Besides the 
fact that split sequence equivalence does not respect branching time it is also not real time consistent 
in the sense of [11]. The idea of splitting actions into a beginning and an end is, on a different and 
more restricted domain, also described by HENNESSY [13]. Our split-operator can be viewed as a spe
cial case of 'action refinement as described by CASTELLANO, DE MICHELIS & POMELLO [7] and ACETO 
& HENNESSY [2]. 

6.2. LEMMA. Let E and F be two event structures. Then: E porn F ~ split(E) porn split(F). 
PROOF: The main idea of the proof occurs already in [7]. 
Let E and F be event structures with E porn F. Choose a configuration X Ef?i,_split(E)). We ·must 
show that there exists a configuration Y Ef?i,_split(F)) such that: 

split(E) t X - split(F) t Y. 

By symmetry it follows that we are ready if we have proved this. Define the sets x± ,x+ ~EE by: 

x± = {eEEE le+ EX and e- EX}, 

x+ = {eEEE le+ EX and e- ~X}, 

One can easily check that x± U x+ is a configuration of E. Since E porn F, there is a configuration 
YEf?i..F) and a bijection f:X± ux+ ~y which gives an event structure isomorphism between 
E t(X± ux+) and Ft Y. Define ysplit ~Esplit(F) by: 

ysplit = {(f(e))+ ,(f(e))- leEX±}U{(f(e))+ leEX+ }. 

It is not hard to see that ysplit is a configuration of split(F). Now define a mapping.fP1i':x~ysplit by: 

f8P1i1(e+) = (f (e))+ fore+ EX, 

f8P1i1(e-) = (f(e))- fore- EX 

We claim that .fP/i' is an event structure isomorphism between split(E) t X and split(F) t ysplit. A 
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simple argument gives that .fP1it is a bijection. Clearly Fplit preserves labels. Finally we have that if 
two events in X are ordered their images under Fplit are also ordered, and if two events in X are con
current their images under Fplit are concurrent too. D 

6.3. PROPOSITION. Let E and F be two event structures. Then: E pom F => E split F. 
PROOF: E pom F => split(E) pom split(F) => split(E) seq split(F) => E split F. 

6.4. PROPOSITION. Let E and F be two event structures. Then: E split F => E step F. 

D 

PROOF: Let E and F be two event structures with E split F. Let o ::::: A 1 * · · · *Am E(Mul (A))* with 
Ai ::::: { ai 1, ••• , ain, } be an action step sequence of E. We must show that o is also an action step 
sequence of F. By symmetry we are ready if we have proved this. The following sequence p is an 
action sequence of split(E): 

p = ail *a ii* · · · *at, *ail *au* · · · *aln, *aii * · · · *a;:; 1 * · · · *a;:;n,. *a;;; 1 * · · · *a;;;,,m 

Since E split F, p is also an action sequence of split(F). Hence split(F) has some event sequence a 
with the property that, if we replace the events in a by their labels, we obtain p. Let this a be given 
by: 

Note that in general eij may be different from fij. However, we do have that {en, ... , e;n,} equals 

{Ii I> • • • ,Jin,}. 
From the fact that a is an event sequence of split(F) it follows that F has the event step sequence: 

Hence a is an action step sequence of F. D 

6.5. As a consequence of propositions 6.3 and 6.4, split sequence equivalence can be located in our 
semantical lattice as follows: 

pom => split => step => - seq 

6.6. Examples. The essential counterexamples are here: 

a b =E.pom a 

split ! 
b ......... b 

FIGURE 12. 
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a c ±split b.,..__a·········C 

i -step /! i 
b c a---b 

FIGURE 13. 

Due to theorem 5.1 and the position of split in the semantical lattice we have that for deterministic 
event structures, split bisimulation equivalence and event structure isomorphism coincide. This means 
that the causal structure of a deterministic concurrent system can be unravelled by observers who are 
capable to observe the beginning and termination of events. 
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