
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

F.W. Vaandrager

Determinism ~
(Event structure isomorphism= Step sequence equivalence)

Computer Science/Department of Software Technology Report CS-R8839 October

Bibfioti'!eek
C~ntn.1mvoor'N'~,',;t,·,G.• ty1 lnf«~~

Arr1.°'~ftrf13f(l

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11 , 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

~~ f It, b~ f31

Copyrigfl'lt © Stichting Mathematisch Centrum, Amsterdam

Determinism ~

(Event Structure Isomorphism= Step Sequence Equivalence)

Frits W. Vaandrager
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

A concurrent system S is called deterministic if for all states s of S we have that whenever S can evolve
from state s into states s' and s" by doing an action a, it must be the case that s' equals s". It is well
known that for deterministic concurrent systems, most of the interleaved equivalences (bisimulation-,
failure-, trace-equivalence) coincide. In this paper we prove in the setting of event structures that also most
of the non-interleaved equivalences coincide (with each other) on this domain. In the last section of the
paper we show that, as a consequence of our result, the causal structure of a deterministic concurrent sys
tem can be unravelled by observers who are capable to observe the beginning and termination of events.

1985 Mathematical Subject Classification: 68010, 68060.
1980 Mathematical Subject Classification: 68810.
1982 CR Categories: F.1.2, F.3.1.
Key Words & Phrases: event structures, determinism, sequence/trace semantics, bisimulation semantics,
step semantics, partial order semantics, pomset semantics, action refinement, split semantics.
Note: Partial support received from the European Communities under ESPRIT project no. 432, An
Integrated Formal Approach to Industrial Software Development (METEOR).

§ l INTRODUCTION

1

A (discrete) concurrent system generates events as it evolves in time. At any moment a set of events
will have occurred and these will be ordered 'in time' or by 'causal precedence'. This order may be
partial. When modelling concurrent systems and reasoning about their behaviour, it is often useful to
consider different events as occurrences of the same action. This may indicate that certain events are
produced by the same physical resource or that they cannot be distinguished by an observer. The
relation between events and actions can be expressed by a labelling function I :E ~A that relates an
action to each event. Different approaches to the modelling of concurrent systems can be classified
by looking at the types of labelling functions they allow for. For instance, if one models a concurrent
system with an elementary net system [24], then it can never be the case that in some behaviour two
events with the same label are concurrent (i.e. not related by the ordering). If we consider the usual
semantics for process algebra languages like CCS [17], TCSP [14], ACP [4] and ME1rn [3], then it turns
out that these languages are very liberal wrt labellings of events: there is (almost) no restriction at all.
There exists a very rich theory of 'comparative concurrency semantics' relating the interleaved seman
tics for CCS-like languages, i.e. those semantics which do not treat concurrency as a primitive notion.
Now a well-known result says that almost all these equivalences (bisimulation equivalence, trace
equivalence and everything in between) coincide for deterministic systems (see for instance ENGEL
FRIET [9]). A concurrent system S is called deterministic if for all states s of S we have that whenever
S can evolve from state s into states s' and s" by doing an action a, it must be the case that s' equals
s".

Recently, many equivalences have been proposed that do consider concurrency as a primitive

Report CS-R8839
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

notion. Besides the event structure equivalence and the step sequence equivalence that will be dis
cussed in this paper, we have for instance the occurrence net equivalence of NIELSEN, PLoTKIN &
WINSKEL [18], the NMS equivalence of DEGANO, DE NICOLA & MONTENARI [8], the BS bisimulation
of 'fRAKHTENBROT, RABINOVICH & HIRSHFELD [27], the step failure semantics of TAUBNER & VOGLER
[26], the step bisimulation semantics of NIELSEN & TmAGARAJAN [19], the pomset semantics of PRATT
[22], the pomset bisimulation semantics of BoUDOL & CASTELLANI [6], the generalised pomset bisimu
lation and the ST-bisimulation of VAN GLABBEEK & VAANDRAGER [11], the split sequence equivalence
which we present at the end of this paper, etc, etc.

Now one can ask the obvious question what happens with all these equivalences if we restrict our
selves to the domain of deterministic systems. The main result of this paper is that almost all non
interleaved equivalences coincide (with each other) for deterministic systems. More specifically, we
will show that step sequence equivalence and event structure isomorphism agree on this domain. Of
the equivalences mentioned above only occurrence net equivalence is not situated in between step
sequence equivalence and event structure isomorphism.

Event structures. A natural domain for modelling concurrency is the class of event structures, which
were introduced in NIELSEN, PLOTKIN & WINSKEL [18]. By now many different types of event struc
tures have been defined. For an overview we refer to WINSKEL [28]. In our view an especially impor
tant class of event structures is the class of prime event structures. Prime event structures contain no
junk: every event in the set of events of a prime event structure can occur in at least one behaviour.
The event structures used in this paper are labelled prime event structures with binary conflict. Below
we give a formal definition of this type of event structures, followed by some explanatory remarks.
The assumption of binary conflict is not essential in the proof of the main theorem of this paper.
Because most people will be more familiar with event structures with binary conflicts and because the
main use we foresee of our theorem lies in the field of CCS-like languages (where conflict is always
binary), we decided to present the theorem for the case with binary conflict only, and to leave the
generalisation to the case with arbitrary conflict as a (simple) exercise to the reader.

Arbitrary interleaving versus True' concurrency. In the last section of the paper some consequences
will be discussed of our result for the issue of arbitrary interleaving versus 'True' concurrency. We
introduce an operator which splits each event into a beginning and an end and show that the causal
structure of a deterministic concurrent system can be unravelled by observers who are capable to
observe these beginnings and ends.

Related work. One can view the main theorem of this paper as a retrievability result: given the step
sequences of a deterministic event structure, we can retrieve this event structure up to isomorphism.
Within the theory of concurrency there are quite a number of other retrievability results. BEST &
DEVILLERS [5] prove various retrievability results for Petri nets. KIEHN [15] describes how the partial
language of a pit net can be recovered from the set of its step sequences. SHIELDS [25] considers a
subclass of deterministic systems ('behaviour systems with conservative labelling') which makes it pos
sible to lift concurrency up to a relation on labels, just like in MAzURKIEWicz's trace theory [16]. In
both cases the partial order structure of a system can be retrieved from firing sequences (or words)
and the concurrency relation. In 'fRAKHTENBROT, RABINOVICH & HIRSHFELD [27], some retrievability
results are proved for 'behaviour structures'.

In this paper we investigate the effect of assuming determinism on the lattice of equivalences in
between sequence/ trace equivalence and event structure isomorphism. In the course of the discussion
we will sketch parts of this lattice: we will define a number of equivalences and establish their mutual
relationships. Hence our paper can be viewed as a contribution to the research area of comparative
concurrency semantics. Related work on this topic has been done by PoMELLO [21], v AN GLABBEEK
& VAANDRAGER [11] and ACETO, DE NICOLA & FANTECHI [l].

§2 EVENT STRUCTURES

2.1. DEFINITION. A (labelled) event structure (over an alphabet A) is a 4-tuple (E, ~. #, l), where
E is a set of events;
~<;;,EXE is a partial order satisfying the principle of finite causes:

{e'EEle'~e} is finite for eEE;

3

<;;, E X E is an irreflexive, symmetric relation (the conflict relation) satisfying the principle of
conflict heredity:

e1#e2~e3 ~ e1#e3;

1: E-'>A is a labelling function.
As usual we write e' <e for e' ~e A e' =f=.e, ;;;:., for ...; - 1, and > for < - 1• We use v to denote the
relation EXE -(~ U ;;;:., U #). v is called the concurrency relation. By definition <, =, >, # and v
form a partition of EX E.

2.2. Note. The components of an event structure E will be denoted by respectively EE, ~E, #E and
lE. The derived relations will be denoted vE, <E, >E, ;;;:.,E· For eEEE, preE(e) denotes the set of
events which precede e in the ordering (so preE(e)= { e' EEE I e'~Ee }).

2.3. Graphical representation. In the graphical representation we either depict the events or their
labels, depending on what we want to illustrate. The partial order relation is indicated by arrows.
The confict relation is denoted by means of dotted lines. If we draw no relation between events they
are concurrent, unless, by means of the transitive and reflexive closure of the arrows, it can be
deduced that they are ordered, or, by means of the principle of conflict heredity, it can be deduced
that they are in conflict.

2.4. Example. Let the event structure E be given by:

EE = { ei.e2,e3,e4,e5 }

.;;;;;E = {(ei.e2),(ei,e3),(e2,e3)} U {(e,e)leEEE}

#E = {(x,e4),(e4,x)lxE{ei,e2,e3}}

IE(ei) = ai

Graphically we can depict E as follows:

e1 ·e4 es

1
e2

1
FIGURE 1.

4

2.5. Operational meaning of event structures. The events in a event structure can be anything varying
from a clock pulse in a computer, the printing of a file, my act of writing this article, your act of read
ing it, the next crash of Wall Street, etc.

The partial order relation expresses that some events are causally related to other events or that for
all observers the occurrence of certain events will be seen to precede the occurrence of others. For
instance, my act of writing this article will precede your act of reading it. On the other hand, your act
of reading this article will probably not be causally related to the next crash of Wall Street. The ques
tion what, in general, constitutes a causal link, is a metaphysical one and difficult to answer. However,
in a lot of practical situations it is perfectly clear what we mean with causality and reasoning about
the behaviour of concurrent systems in terms of causality is useful.

The principle of finite causes says that the systems we consider are discrete and that moreover we
do not consider situation like

FIGURE 2.

or

FIGURE 3.

In the first situation it is not clear that any of the e; can ever happen, in the second situation e 00 can
occur if execution of all events ei, e2 , • • • finishes after a finite amount of time. Because we do not
make any assumptions about the time it takes to perform an event, it is possible that e 1 takes 1
second, e 2 takes 2 seconds, etc. In that case e 00 will never take place.

If two events are in conflict, then at most one of them can occur. As a consequence of the principle
of conflict heredity we have that when an event occurs, all its 'causes' must have occurred before. So
if two events e and e' are related in the ordering, say e<e', then occurrence of e is a prerequisite for
the occurrence of e'. In general it is not the case that after occurrence of e the occurrence of e' is
inevitable. It would be possible to allow event structures where one event has two causes, which are
in conflict:

e1 ·············e2

\/
FIGURE 4.

Two interpretations of the above event structure are possible: either one can say that e3 will never
occur because it is impossible that all its causes occur (in that case one can just as well leave e3 out of
the event structure and adopt the principle of conflict heredity), or one can say that e3 can occur if a

5

maximal, conflict-free subset of its causes has occurred, so {ei} 6r {ei}.
There are no fundamental reasons to adopt the principles of finite causes and conflict heredity. We

have included them in our definition of event structures because this makes an elegant formulation
possible of the main result of this paper.

The operational intuitions that we presented in the discussion above, will be defined formally
below.

2.6. DEFINITION. Let Ebe an event structure and let X be a subset of EE. We say that X is left
closed if

eEX /\ e'o;;;;Ee ~ e'EX

X is conflictfree if X does not contain a pair of events which are in conflict, so if #E n(XXX)= 0. E
is conflict-free if #E = 0. A configuration of E is a finite, 1 left-closed, conflict-free subset of EE. With
Ex_E) we denote the set of configurations of E.

2. 7. Example. In figure 5 below we have depicted all configurations of the event structure of example
2.4. An arrow is drawn between two configurations if one can be obtained from the other by adding
a single event.

FIGURE 5.

2.8. DEFINITION. For any alphabet~. we use~· to denote the set of finite sequences over alphabet
~ and ~+ to denote the set of finite nonempty sequences over this alphabet. We write A. for the
empty sequence and a for the sequence consisting of the single symbol a E~. By a*a', sometimes
abbreviated aa', we denote the concatenation of sequences a and a'. On sequences we define a partial
ordering ,.;;;; (the prefix ordering) by: a,.;;;p iff, for some sequence a', aa'=p. If a .;;;;;; p we say that a is
a prefix of p.

2.9. DEFINITION. Let E be an event structure and let X and Y be configurations of E.

i) Let a EA. We say that there is an a-transition from X to Y, notation X ~ E Y, if Y =XU { e} for
some event e$Xwith /E(e)=a.

ii) An action a EA is enabled in X, notation X ~ E• if X ~EX' for some configuration X'.

iii) A sequence of actions a=a 1* · · · *anEA* is enabled in X, notation X ~E, if there exist

l. WINSKEL [28] does not require that configurations are finite.

6

configurations X 0 , ••• , Xn such that X=Xo and for I:s;;;i:s;;;n: X;-1 ~EXi· We say that Xn is

obtained from X by the occurrence of o, notation X .J4.EXn. We also say that o is an (action)
sequence of X.

iv) A sequence of events a=e 1* · · · *enEEF, is enabled in X, notation X ~E. if there exist
configurations X 0 , ••• , Xn such that X=Xo and for I:s;;;i:s;;;n: e;~X;-1 and Xi=Xi-1 U{e;}.
We say that a is an (event) sequence of X.

v) With seqE(X) we denote the set of action sequences of X, so seqE(X) = { oEA *IX .J4.E}·

2.10. PROPOSITION (no junk). Let E be an event structure and let eEEE. Then there exists a
configuration X ofE with eEX
PROOF: Take X=preE(e). Due to the principle of finite causes X is finite. From the fact that :s;;;E is a
partial order it follows that X is left-closed. X is conflict-free due to the principle of conflict heredity.
Hence X is a configuration. Clearly e EX. D

§3 THREE BASIC EQUIVALENCES ON EVENT STRUCTURES
We will now define three equivalences on event structures which make increasingly more
identifications.

3.1. DEFINITION. An event structure isomorphism between two even structures E and Fis a bijective
mapping/: EE~EF such that:

j(e) :s;;;F f(e') ~ e :s;;;E e',
j(e) #F j(e') ~ e #E e' and
lF(j(e)) = /E(e).

E and Fare isomorphic, notation E--F, if there exists an event structure isomorphism between them.

3.2. DEFINITION. Let E, F be two event structures. A relation R c;;e(E)X® is a bisimulation
between E and F if:
1. 0R0;

2. If X R Y and X ~EX' for some a EA, then there exists a Y' Ee{F) such that Y ~ E Y' and
X'RY';

3. As 2 but with the roles of X and Y reversed.
E and Fare bisimilar, notation Et:zF, if there exists a bisimulation between them.

3.3. DEFINmON. Two event structures E and Fare sequence equivalent, notation E seq F, if:

seqE(0) = seqF(0).

3.3.1. Remark. The semantical notion of sequence equivalence, is usually called trace equivalence in
the settings of process algebra and trace theory a la REM [23]. However, use of the word trace would
be very confusing in a paper on event structures, since event structures are closely related to a com
pletely different type of traces, namely those which are studied in trace theory a la MAZURKIEWICZ
[16]. Therefore we have chosen to use the word 'sequence' to denote a finite string of symbols record
ing the actions in which a process has engaged up to some moment in time. Still we think that the
word 'trace' is more suitable for denoting a string of symbols than for denoting an equivalence class
of strings (as in trace theory a la Mazurkiewicz) because outside computer science the word trace is
associated with 'a mark or line left by something that has passed' ([20]).

7

3.4. PROPOSITION. ~, e and seq are equivalence relations and their relations are as indicated below:

PROOF: Standard. D

3.5. Examples. The event structures in figure 6 show that ~, e and seq are really different
equivalences. In the graphical representations we have depicted the labels of the events and not the
events themselves.

a a ~ a a ~ a

/1 1 e 1 1 -seq /\
b b c b c b c

FIGURE 6.

The following definition is central in this paper:

3.6. DEFINITION. Let E be an event structure. E is deterministic if for all configurations X Ee(E) we

have that whenever X ~ E Y and X ~ E Y' for some a EA and Y, Y' Ee(E), we have that Y = Y'.

So an event structure is deterministic if it does not have a configuration with the property that two
different events are enabled which have the same label.

3.7. DEFINITION. Let Ebe an event structure. Two events e,e'EEE are in immediate conflict, nota
tion e #te', if they are in conflict and furthermore:

e ;;a.E f #E e' ~ e = f and e #E f ,.;;;;E e' ~ f = e'.

Using the notion of immediate conflict we can give a 'less operational' characterization of determinis
tic event structures.

3.8. PROPOSITION. Let Ebe an event structure. Then Eis deterministic iff:

e VE e' or e #t e' ~ lE(e) =I= lE(e').

PROOF: Easy. D

It is well-known that the linear time - branching time spectrum collapses for deterministic event struc
tures.

3.9. PROPOSITION. Let E,F be deterministic event structures. Then: Ee F ~ E seq F.
PRoOF: '~'follows from proposition 3.4. In order to prove'*=' define a relation R ~e(E)X«F) by:

X R Y *-> seqE(X)=seqF(Y).

It is easy to show that R gives a bisimulation between E and F. D

8

3.10. Remark. In a dictionary ([20]) we found the following entry for the word 'determinism':
I. a doctrine that all phenomena are determined by preceding occurrences; esp. the doctrine that all

human acts, choices etc are causally determined and that free will is illusory;
2. a belief in predestination.
One may think that the notion of determinism introduced in definition 3.6 is in conflict with the
above description. If one for instance considers the deterministic event structure containing two
events labelled a and b which are in conflict, then one may argue that the choice between a and b is
not causally determined, that the event structure 'has a free will' and 'may choose' whether to perform
a or b. Therefore one may propose another definition of determinism for event structures which says
that an event structure is deterministic iff it is conflict-free. In fact this definition occurs in ACETO, DE
NICOLA & FANTECHI [l].

We however prefer our own definition because we like to view event st[uctures as 'reactive systems'.
An event structure model of a concurrent system describes how the system reacts to stimuli received
from its environment. In the above example of the event structure with actions a and b, it is com
pletely determined how a system modelled by this event structure will react to external stimuli: the
system has no choice.

Now consider the following event structure:

a a

! !
b c

FIGURE 7.

This event structure is conflict-free and hence deterministic in the sense of [1]. However, if the
environment offers an a, then there is a choice between the 'left' a and the 'right' a. Depending on
how this choice is resolved by the system, it can engage in b or in c afterwards. Hence one can argue
that the event structure exhibits nondeterministic behaviour.

§4 NON-INTERLEAVED EQUIVALENCES
Many people think that bisimilation equivalence, and consequently also sequence equivalence, make
too many identifications on event structures to be of use in general. In bisimulation semantics con
currency is not preserved, i.e. for each event structure we can give a bisimilar event structure with an
empty concurrency relation. We elaborate on this below.

4.1.1. DEFINITION. The sequentialisation of an event structure E, notation ~(E), is the event structure
F defined by:

EF = {aE(EE)+ I 0 ~E};
a,,;;;;,FfJ iff a is a prefix of /J;
#F = (EFXEF)-(,;;;;FU~F);
IF(a*e) = /E(e).

4.1.2. PROPOSITION. Let Ebe an event structure. Then:
i) the concurrency relation of~) is empty,
ii) E~~),
iii) ~) ,_ ~~)).
PROOF: Easy. D

9

4.2. Step semantics. Intuitively, one of the reasons why an event structure is in general different from
its sequentialisation is that it sometimes has the possibility to do a number of events simultaneously
in one 'step'. The notion of a 'step' immediately suggests refinements of sequence equivalence and
bisimulation equivalence which do not disregard concurrency. These refinements will be called step
sequence equivalence and step bisimulation equivalence respectively. Step sequences were defined
already in [10]. Step bisimulations appear in [19]. In [11] they are called 'concurrent bisimulations'.
Below we give the formal definitions of step sequence equivalence.

4.2.1. DEFINITION. Let E be an event structure and let X and Y be configurations of E.
(i) Let Ube a finite subset of EE. We say that Y Ufollows X, notation X[U>Y, if XnU= 0, the

elements of U are pairwise concurrent (so 'r;;/e,e'EU: e::f=e'~e ~Ee') and Y=XU U.
(ii) Let U<;;;,EE. We say that U is enabled in X (U is a step from X), notation X[U>E, if X[U>EX'

for some configuration X' of E.
(iii) A sequence a= U1 * · · · *Un E(Pow(EE))* is enabled in X, notation X[a>E, if there exist

configurations X 0 , ••• ,Xn such that X=Xo and for l~i~n: X;- 1[U;>EXi· We say that Xn is
obtained from X by the occurrence of a, notation X[a>EXn. We also say that a is an (event) step
sequence of X.

(iv) Let a=U1* · · · *UnE(Pow(EE))* such that X[a>EY. Let CJ be the sequence lE(Ui)* · · · *lE(Un)
where lE(U;) denotes the multiset of labels of events in U;. We say that CJ is enabled in X, nota
tion X[CJ>E· We also say that CJ is an (action) step sequence of X, and that Y is obtained from X
by the occurrence of CJ, notation X[CJ>E Y.

(v) With stepE(X) we denote the set of action step sequences of X, so stepE(X) =
{aE(Mul(A))* IX[a>E}·

4.2.2. DEFINITION. Two event structures E and Fare step sequence equivalent, notation E step F, if:

stepE(0) = stepF(0).

4.2.3. PROPOSITION. step is an equivalence relation. The following relations hold between the
equivalences presented thus far:

- ~ ~

i i
-step ~ -seq

PROOF: Easy. 0

4.2.4. Examples. We give some examples which show that the diagram above gives all relations
between the equivalences. Our first example shows that step semantics (at least sometimes) takes con
currency as a primitive notion.

a b =E. step a b

~ l l
-seq b a

FIGURE 8.

The two leftmost event structures in figure 6 are not isomorphic but they are step sequence equivalent.
This follows from the observation that on the domain of event structures with empty concurrency

10

relation step sequence equivalence and sequence equivalence coincide.
The two rightmost event structures in figure 6 are not bisimilar, but they are step sequence

equivalent.

4.3. Partial order semantics. An A-labelled partially ordered set is a triple (X,~,l) with X a set, ~ a
partial order on X, and l:X~A a labelling function. Two such sets (X0,~0 ,/0) and (Xi.~ 1 ,/ 1) are
isomorphic if there exists a bijective mapping /: x0~x1 such that f (x)~if (y) *9 x~0y and
11(f (x))=l0(x). A partially ordered multiset (pomset) is an isomorphism class of labelled partially
ordered sets. As usual, pomsets can be made setlike by requiring that the events in the partial orders
should be chosen from a given set. Below we will view equivalence classes of conflict-free event struc
tures as pomsets.

4.3.1. DEFINITION. The restriction of an event structure E to a set X<;;;,EE of events is the event struc
ture Et x = (X, ~E n(XXX), #E n(XXX), lE t X).

4.3.2. DEFINITION. Let Ebe an event structure and let X be a configuration of E. The set of pomsets
of X, notation pomE(X), is defined by:

pomE(X) = {(E t(X'-X))/~ IX<;;;,X'Ee(E)}.

4.3.3. DEFINITION. Two event structures E and Fare pomset equivalent, notation E pom F, if:

pomE(0) = pomF(0).

The first systematic study of pomsets is by GRABOWSKI [12], who called them partial words. Pomset
semantics is advocated by PR.Arr [22].

4.3.4. PROPOSITION. pom is an equivalence relation. It fits in our semantical lattice as follows:

pom ~ -step ~ -seq

4.3.5. Examples. The two rightmost event structures in figure 6 provide an example of two event
structures which are identified in pomset semantics, but distinguished in bisimulation semantics. The
remaining examples distinguishing pomset equivalence and the other equivalences are displayed in
figure 9 below. The example of figure 10 is interesting because it only contains conflict-free event
structures. The example disproves theorem 3.5 of ACETO, DE NICOLA & FANTECHI [1].

11

a b a b =E.pom a b

pom -step

a tz a

-seq ~
b

FIGURE 9.

a a =E.pom a a

-step ! !
a a a a

FIGURE 10.

Notice that all these examples contain non-deterministic event structures.

§5 DETERMINISM~ (EVENT STRUCTURE ISOMORPHISM = STEP SEQUENCE EQUIVALENCE)

Proposition 3.9 stated that bisimulation equivalence and sequence equivalence coincide on the domain

of deterministic event structures. Surprisingly, most of the non-interleaved semantics which have been

proposed in the literature, also coincide on this domain.
In the introduction of this paper we mentioned a large number of equivalences which are situated

in between event structure isomorphism and step sequence equivalence. As a consequence of the fol

lowing result all these equivalences (except for occurrence net equivalence) coincide with event struc

ture isomorphism on the domain of deterministic event structures.

5.1. THEOREM. Let E, F be deterministic event structures. Then: E ,.._, F ~ E step F.

5.2. LEMMA. Let E be a deterministic event structure and let X, Y be configurations of E such that

Et X::::E t Y. Then: X= Y.
PROOF: Induction on the size of X. If X is the empty set, then Y must be empty too and we are

done. Suppose X is nonempty. Let e be a maximal element of X and let X'=X-{e}. Now we use

that there exists an event structure isomorphism f between E t X and E t Y: we have E t X' :::: E t Y'

for Y' = Y - {f (e)} and furthermore X' and Y' are configurations. Applying the induction hypothesis

gives X'=Y'. Let a=/E(e)=/E(j(e)). We have that X' ~EXbut also X' ~EY. Now use that E

is deterministic to obtain that X = Y. D

5.3. LEMMA. Let E and F be deterministic event structures. Then: E pom F ~ E '.::'. F.

PROOF: '<==' is trivial, so the interesting direction is '~'. Define relation ,...., c;;;, EE X E F by:

eo,....,e1 ~de/ E tpreE(eo):::: F tpreF(e1).

We claim that ,..., gives a bijective mapping between EE and EF. Because E pom F, it is obvious

that dom(,...,)=EE and range(,...,)=EF. Suppose that e0 ,....,e 1 and e0 ,...,e 1'. We show that e 1 =e1'. By

definition we have E tpreE(e0) ,...., F tpreF(e 1) ,...., F tpreF(e 1'). Application of the previous lemma

12

gives preF(e 1)=preF(e 1'). Since both sets have a unique maximal element, these maximal elements
must be identical: e 1 =e1'. In the same way we can prove that if e0-e1 and e0'-e1> this implies
e0 =e0'. Hence"' gives a bijection between EE and EF. It is not hard to see that this bijection is in
fact an event structure isomorphism. D

Proof of theorem 5.1. From the previous results it follows that in order to prove theorem 5.1 it is
enough to show that for deterministic event structures E,F:

E step F ~ E pom F.

By definition this is equivalent to:

stepE(0) = stepF(0) ~ pomE(0) = pomF(0).

We will prove a slightly stronger statement, namely:

'VXEqE) 'VYEEXF): stepE(X) = stepF(Y) ~ pomE(X) = pomF(Y).

Let XEtl:E), YEEtF) with stepE(X)=stepF(Y). Let X' be a configuration of E with XCX'. Let ao
= {ei}*{e2}* ···*{en} be a sequence of singleton steps such that X[ao>EX' and X'-X =
{ei. ... ,en}· Let a1 = {e1'}*{e2'}* ···*{en'} be a step sequence such that Y[a1>F and
/E(ei)=/F(e;') for 1,,;;;;;;;,,;;;;;;n (due to the fact that X and Y have the same step sequences, such a
sequence will always exist). Let Y' = YU{e1', ... ,en'}. We claim that the function which maps e;
to e;' is an event structure isomorphism between Et (X' - X) and F t (Y' - Y). For reasons of sym
metry we have proved the theorem if we have shown this.

The proof goes by induction to n. The case with n =O is trivial. Now suppose n >0. Due to the
fact that X and Y have the same step sequences and due to the determinism of E and F, we have:

Since

stepE(XU{e1}) = stepF(YU{e1'}).

XU{ei} [{e2}* · · · *{en}>EX' and

YU{e1'} [{e2'}* · · · *{en'}>EY',

we can now apply the induction hypothesis which gives:

E t(X'-(XU{e1})) - F t(Y'-(YU{e1'})).

In order to prove the induction step it is enough to show that for 2,,;;;;;; i,,;;;;;; n: e 1 < E e; # e 1 ' < F e;'. If
n = 1 we are done, so assume n ;;:.2. Let for some i, e; be minimal in { e2, ... , en}. Then e;' is
minimal in {e2', ... ,en'}. We claim that e 1 <Ee; # e1' <Fe;'. Suppose e1 <Ee; but not
e1' <Fe;'. If we show that this leads to a contradiction we have proved the claim because the
remaining case is symmetric. If it is not the case that e 1' < F e;' then e 1' -F e;'. Due to the minimal
ity of e;' we have that Y[{e1', e;'}>F. Now we use that X and Y have the same step sequences and
the fact that Eis deterministic. There must be some/such that X[{ei./}>E and /E(/) = /F(e;') =
/E(e;). Because e1 <E e;, J=:/=e;. But now there is a contradiction since we can go from configuration
XU { ei} with an /E(/)-transition to XU { e1>/} as well as XU { e1 ,e; }.

Now we have proved that fore;, which are minimal in {e2, ... ,en}, e 1 <Ee; # e1' <Fe;'. In
order to prove this fact also for e; which are not minimal, we distinguish between two cases.
1. For all e; which are minimal in {e2, ... ,en}, we have that e 1 <Ee;. This implies that e1 <E e1

for 2,,;;;;;;f,,;;;;;;n. Further we have that for all e;' which are minimal in {e2', ... ,en'}, e1' <Fe;'.
Consequently e1' <Fe/ for 2,,;;;;;;f,,;;;;;;n, and we are done.

2. There is an e; which is minima] in {e2, ... ,en} such that e 1 VE ei. This means that e 1' VF e;'.
We now have the following situation:

XU{e;} [{ei}* · · · *{e;-i}*{e;+i}* · · · *{en}>EX' and

13

YU{e;'} [{e1'}* · · · *{ei-1'}*{e;+1'}* · · · *{en'}>pY'.

Of course XU { e;} and YU { e/} have the same step sequences. Application of the induction
hypothesis gives:

D

Observe that in the proof of theorem 5.1 we only use that E and F have the same sequences of steps
containing at most two events.

5.4. The diagram below presents the relations between the equivalences presented thus far when res
tricted to the domain of deterministic event structures.

,._, # porn # step

tl <=> seq

The example of figure 8 shows that even for deterministic systems there is a difference between arbi
trary interleaving and partial order semantics.

§6 ARBITRARY INTERLEAVING VERSUS 'TRUE' CONCURRENCY

One can consider event structures up to step sequence equivalence as an interleaving semantics if one
is willing to view a multiset of actions as an action again. In the process algebra languages MEIJE and
ACP this idea can be implemented by working for instance with an action structure which is the pro
duct of a free commutative monoid and a free commutative group. Under this interpretation one can
say that for deterministic systems there is no difference between arbitrary interleaving and 'True' con
currency.

Now one can ask the question to what extent a multiset of more than one action can be considered
as something which is observable. In a synchronous system like a systolic architecture there is cer
tainly no problem. After each clock tick one can just stop the system and examine which 'cells' have
performed an action. The multiset (or set if the system is deterministic) of actions performed by the
separate cells gives the step which is performed by the synchronous system. It is much harder to ima
gine how a 'step' can be observed in an asynchronous system. The only thing I can come up with is
that some observer notices the beginning of one action before another action has been finished. In
such a situation the observer can conclude that the two actions occur concurrently.

Below, this way of observing concurrent processes is formally implemented by means of an opera
tor split on event structures that splits any event e into events e + and e - , which are ordered. One
may think of e + as the beginning of e and of e - as the end of e.

6.1.1. DEFINITION. Let E be an event structure over some alphabet A. Let A + = {a+ I a EA } and
A - = {a - I a EA} be two disjoint copies of A. The event structure F= split (E) over alphabet
A+ UA- is given by:

Ep = {e+ ,e- leEEE}

<F = {(eX,.f')lx,yE{+,-} ande <Ef}U{(e+,e-)leEEE}

#F = {(eX,.f')lx,yE{ +, - } and e #E f}

IF(e+) = (/E(e))+

/F(e-) = (/E(e))-

14

6.1.2. Example.

split (a c)

1
b d

FIGURE 11.

6.1.3. DEFINITION. Two event structures E and Fare split sequence equivalent, notation E split F, if:
split (E) seq split (F).

Split sequence equivalence is closely related to ST-bisimulation semantics as presented in VAN GLAB
BEEK & VAANDRAGER [11] on the domain of Petri nets, but there are some differences. Besides the
fact that split sequence equivalence does not respect branching time it is also not real time consistent
in the sense of [11]. The idea of splitting actions into a beginning and an end is, on a different and
more restricted domain, also described by HENNESSY [13]. Our split-operator can be viewed as a spe
cial case of 'action refinement as described by CASTELLANO, DE MICHELIS & POMELLO [7] and ACETO
& HENNESSY [2].

6.2. LEMMA. Let E and F be two event structures. Then: E porn F ~ split(E) porn split(F).
PROOF: The main idea of the proof occurs already in [7].
Let E and F be event structures with E porn F. Choose a configuration X Ef?i,_split(E)). We ·must
show that there exists a configuration Y Ef?i,_split(F)) such that:

split(E) t X - split(F) t Y.

By symmetry it follows that we are ready if we have proved this. Define the sets x± ,x+ ~EE by:

x± = {eEEE le+ EX and e- EX},

x+ = {eEEE le+ EX and e- ~X},

One can easily check that x± U x+ is a configuration of E. Since E porn F, there is a configuration
YEf?i..F) and a bijection f:X± ux+ ~y which gives an event structure isomorphism between
E t(X± ux+) and Ft Y. Define ysplit ~Esplit(F) by:

ysplit = {(f(e))+ ,(f(e))- leEX±}U{(f(e))+ leEX+ }.

It is not hard to see that ysplit is a configuration of split(F). Now define a mapping.fP1i':x~ysplit by:

f8P1i1(e+) = (f (e))+ fore+ EX,

f8P1i1(e-) = (f(e))- fore- EX

We claim that .fP/i' is an event structure isomorphism between split(E) t X and split(F) t ysplit. A

15

simple argument gives that .fP1it is a bijection. Clearly Fplit preserves labels. Finally we have that if
two events in X are ordered their images under Fplit are also ordered, and if two events in X are con
current their images under Fplit are concurrent too. D

6.3. PROPOSITION. Let E and F be two event structures. Then: E pom F => E split F.
PROOF: E pom F => split(E) pom split(F) => split(E) seq split(F) => E split F.

6.4. PROPOSITION. Let E and F be two event structures. Then: E split F => E step F.

D

PROOF: Let E and F be two event structures with E split F. Let o ::::: A 1 * · · · *Am E(Mul (A))* with
Ai ::::: { ai 1, ••• , ain, } be an action step sequence of E. We must show that o is also an action step
sequence of F. By symmetry we are ready if we have proved this. The following sequence p is an
action sequence of split(E):

p = ail *a ii* · · · *at, *ail *au* · · · *aln, *aii * · · · *a;:; 1 * · · · *a;:;n,. *a;;; 1 * · · · *a;;;,,m

Since E split F, p is also an action sequence of split(F). Hence split(F) has some event sequence a
with the property that, if we replace the events in a by their labels, we obtain p. Let this a be given
by:

Note that in general eij may be different from fij. However, we do have that {en, ... , e;n,} equals

{Ii I> • • • ,Jin,}.
From the fact that a is an event sequence of split(F) it follows that F has the event step sequence:

Hence a is an action step sequence of F. D

6.5. As a consequence of propositions 6.3 and 6.4, split sequence equivalence can be located in our
semantical lattice as follows:

pom => split => step => - seq

6.6. Examples. The essential counterexamples are here:

a b =E.pom a

split !
b b

FIGURE 12.

16

a c ±split b.,..__a·········C

i -step /! i
b c a---b

FIGURE 13.

Due to theorem 5.1 and the position of split in the semantical lattice we have that for deterministic
event structures, split bisimulation equivalence and event structure isomorphism coincide. This means
that the causal structure of a deterministic concurrent system can be unravelled by observers who are
capable to observe the beginning and termination of events.

ACKNOWLEDGEMENTS
The author would like to thank Rob van Glabbeek for many stimulating discussions and careful
proofreading, Henk Goeman for some useful comments on an earlier version, and Alex Rabinovich
for pointing out that the assumption of binary conflict is not essential for the results of this paper.

REFERENCES
[l] L. ACETO, R. DE NICOLA & A. FANTECHI (1987): Testing Equivalences for Event Structures. In:

Proceedings Advanced School on Mathematical Models for the Semantics of Parallelism, 1986
(M. Venturini Zilli, ed.), LNCS 280, Springer-Verlag, pp. 1-20.

[2] L. ACETO & M. HENNESSY (1988): Towards Action-Refinement in Process Algebras. Report 3/88,
Computer Science, University of Sussex, Brighton.

[3] D. AUSTRY & G. BOUDOL (1984): Algebre de processus et synchronisations. Theoretical Computer
Science 30(1), pp. 91-131.

[4] J.A. BERGSTRA & J.W. KLoP (1985): Algebra of communicating processes with abstraction. Theoret
ical Computer Science 37(1), pp. 77-121.

[5] E. BEST & R. DEVILLERS (1987): Sequential and Concurrent Behavior in Petri Net Theory. Theoret
ical Computer Science 55(1), pp. 87-136.

[6] G. BOUDOL & I. CASTELLANI (1987): On the Semantics of Concurrency: Partial Orders and Transi
tion Systems. In: Proceedings TAPSOFf 87, Vol. I (H. Ehrig, R. Kowalski, G. Levi & U. Mon
tenari, eds.), LNCS 249, Springer-Verlag, pp. 123-137.

[7] L. CASTELLANO, G. DE MICHELIS & L. POMELLO (1987): Concurrency vs Interleaving: an instruc
tive example. Bulletin of the EATCS 31, pp. 12-15.

[8] P. DEGANO, R. DE NICOLA & U. MONTANARI (1987): Observational equivalences for concurrency
models. In: Formal Description of Programming Concepts - III, Proceedings of the third IFIP
WG 2.2 working conference, Ebberup 1986 (M. Wirsing, ed.), Elsevier Science Publishers B.V.
(North Holland), pp. 105-129.

[9] J. ENGELFRIET (1985): Determinacy ~ (observation equivalence = trace equivalence). Theoretical
Computer Science 36(1), pp. 21-25.

[10] H.J. GENRICH & E. STANKIEWICZ-WIECHNO (1980): A Dictionary of Some Basic Notions of Petri
Nets. In: Advanced Course on General Net Theory of Processes and Systems, Hamburg 1979
(W. Brauer, ed.), LNCS 84.

(11] R.J. VAN GLABBEEK & F.W. VAANDRAGER (1987): Petri net models for algebraic theories of con
currency. In: Proceedings PARLE conference, Eindhoven, Vol. II (Parallel Languages) (J.W. de
Bakker, A.J. Nijman & P.C. Treleaven, eds.), LNCS 259, Springer-Verlag, pp. 224-242.

[12] J. GRABOWSKI (1981): On Partial Languages. Fundamenta Informaticae IV(2), pp. 427-498.
[13] M. HENNESSY (1987): Axiomatising Finite Concurrent Processes. Report 4/87, Computer Sci

ence, University of Sussex, Brighton.

17

[14] C.A.R. HOARE (1985): Communicating Sequential Processes, Prentice-Hall International.
[15] A. KIEHN (1988): On the Interrelation between Synchronized and Non-Synchronized Behaviour of

Petri Nets. J. Inf. Process. Cybern. EIK 24(1/2), pp. 3-18.
(16] A. MAZURKIEWICZ (1987): Trace theory. In: Petri Nets: Applications and Relationships to Other

Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced
Course, Bad Honnef, September 1986 (W. Brauer, W. Reisig & G. Rozenberg, eds.), LNCS 255,
Springer-Verlag, pp. 279-324.

[17] R. MILNER (1980): A Calculus of Communicating Systems, LNCS 92, Springer-Verlag.
[18] M. NIELSEN, G.D. PLOTKIN & G. WINSKEL (1981): Petri nets, event structures and domains, part I.

Theoretical Computer Science 13(1), pp. 85-108.
[19] M. NIELSEN & P.S. Tu!AGARAJAN (1984): Degrees of Non-Determinism and Concurrency: A Petri

Net View. In: Proc. of the 5th Conf. on Found. of Softw. Techn. and Theor. Comp. Sci. (M.
Joseph & R. Shyamasundar, eds.), LNCS 181, Springer-Verlag, pp. 89-118.

[20] PENGUIN (1986): The New Penguin English Dictionary, Penguin Books.
[21] L. PoMELLO (1986): Some equivalence notions for concurrent systems. An overview. In: Advances

in Petri Nets 1985 (G. Rozenberg, ed.), LNCS 222, Springer-Verlag, pp. 381-400.
[22] V.R. PRATI (1986): Modelling Concurrency with Partial Orders. International Journal of Parallel

Programming 15(1), pp. 33-71.
[23] M. REM (1987): Trace theory and systolic computations. In: Proceedings PARLE conference, Ein

dhoven, Vol. I (Parallel Architectures) (J.W. de Bakker, A.J. Nijman & P.C. Treleaven, eds.),
LNCS 258, Springer-Verlag, pp. 14-33.

[24] G. ROZENBERG & P.S. Tu!AGARAJAN (1986): Petri nets: basic notions, structure, behaviour. In:
Current Trends in Concurrency (J.W. de Bakker, W.-P. de Roever & G. Rozenberg, eds.), LNCS
224, Springer-Verlag, pp. 585-668.

[25] M.W. SHIELDS (1982): Non Sequential Behaviour: 1. Internal Report CSR-120-82, Department
of Computer Science, University of Edinburgh.

[26] D.A. TAUBNER & W. VOGLER (1987): The Step Failure Semantics. In: Proc. STACS 87 (F.J.
Brandenburg, G. Vidal-Naquet & M. Wirsing, eds.), LNCS 247, Springer-Verlag, pp. 348-359.

[27] B.A. 'fRAKHTENBROT, A. RABINOVICH & J. HIRSHFELD (1988): Discerning Causality in the
Behaviour of Automata. Technical Report 104/88, Tel Aviv University.

[28] G. WINSKEL (1987): Event structures. In: Petri Nets: Applications and Relationships to Other
Models of Concurrency, Advances in Petri Nets 1986, Part II; Proceedings of an Advanced
Course, Bad Honnef, September 1986 (W. Brauer, W. Reisig & G. Rozenberg, eds.), LNCS 255,
Springer-Verlag, pp. 325-392.

