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In hypersonic flow computations, Newton iteration in a local relaxation procedure may easily fail. A remedy 
is proposed for overcoming this problem. The remedy consists of a switch to local, explicit time stepping in 
case of Newton's failure. Promising results are shown for a hypersonic flow computation around a blunt 
body, using the steady, 20 Euler equations. 
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1. INTRODUCTION 

1.1. Governing equations 
The flow equations considered are the perfect gas, steady, 20 Navier-Stokes equations with Re very 
large (Re= 10100 ). So, in fact, the equations considered are the Euler equations 

with 
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(1.2) 

So far, real gas effects are not taken into account. Even the specific heat ratio y of the di-atomic gas 
considered is assumed to be constant and determined by fully excited translational and rotational 
energies only. (Though it could be easily introduced as a function ranging from zero up to the full 
equipartition value, the vibrational energy is assumed to be zero.) 

1.2. Existing computational method 
For a detailed account of the existing computational method which is taken as a point of departure, 
we refer to [2,3]. Here we give an overview of its main characteristics only. 

Discretized equations are obtained by subdividing the computational domain n into quadrilateral 
finite volumes fil;,1, and by requiring that the conservation laws, (U) in integral form, hold for each 
finite volume separately. This discretization requires an evaluation of the convective flux vector at 
each volume wall. A proper evaluation of this vector is of great importance. For this, we prefer an 
upwind approach which follows the Godunov principle [I]. The l D Riemann problem thus arising at 
each volume wall is solved in an approximate way by using Osher's scheme [5] in its so-called P­
variant [2]. The approximation of the left and right state in the l D Riemann problem determines the 
accuracy of the convective discretization. Here we consider first-order accuracy only, which is 
obtained, in the standard way, by taking the left and right state equal to that in the corresponding 
adjacent volumes. 

For the solution of the nonlinear system of first-order accurate discretized equations, collective sym­
metric point Gauss-Seidel relaxation is used. In this relaxation, one or more (exact) Newton steps are 
used for the collective update of the four state vector components in each finite volume. Given the 
good smoothing properties of symmetric point Gauss-Seidel relaxation applied to first-order upwind 
discretizations, multigrid techniques may be applied for accelerating the solution process. 
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2. ExrENSION TO HYPERSONICS 

2.1. Discretization method 
The existing upwind finite volume discretization is maintained. The only modification to be ~t_ro­
duced in the existing discretization method consists of a protection of Osher's bounda!)'. cond1tion 
treatment at solid, impermeable walls [2,4] against an extrapolation leading to an unphys1cal expan­
sion beyond vacuum; cavitation. For the situation with a solid wall boundary at the left e.g., Osher's 
scheme yields 

(2.1) 

where (un,v8 ,cs,zsf is the unknown boundary state, and (u,v,c,zl the known inner state. In a qual­
itatively correct way, (2.1) leads to a compression towards the wall for u<O, and vice versa an expan­
sion for u>O. However, for y=7/5 and ulc>5 e.g., a situation that occurs at the beginning of the 
solution process when considering a di-atomic gas and a uniform, hypersonic initial solution, (2.1) 
yields: cn<O. As a safeguard against cavitation we introduce a switch from (2.1) to the less sophisti­
cated but safer mirror principle 

(2.2) 

if ulc>21(y-1). Notice that in general this will not change the solution because the switch is not 
made if (u, v,c,zl is sufficiently accurate. 

2.2. Solution method 
In the present paper we do not yet consider the possibility of accelerating hypersonic flow computa­
tions by multigrid techniques. Here, we restrict ourselves to the relaxation method only, and more in 
particular to its robustness. 

Single-grid, hypersonic blunt body flow computations with the revised discretization method, 
though with the non-revised solution method, break. down in the very first visit to the stagnation 
domain. 

Starting with a poor initial solution, one may gain in robustness by introducing a continuation pro­
cess preceding to the nested iteration. In such a process, usually a single upstream boundary condi­
tion, for instance M 00 , is increased from some low initial value to its correct high value, while per­
forming relaxation sweeps. Continuation processes like this require a tuning of both the initial value 
and the increment. For hypersonic flow problems, proper tuning is difficult, given the fact that in 
these flows the condition number of the derivative matrices used may be quite large. (The larger the 
condition numbers, the larger are the perturbations in the iterands induced by perturbations in the 
righthand sides; righthand side perturbations which may already be quite large by themselves in 
hypersonic flow computations.) The ill-conditionedness occurring in h~ersonic flow computations can 
be illustrated for the derivative matrix '\l(pu,pu +p,puv, pu(e+plp)), where 
V =~/au, d/av, a1ac, ofaz)T, the differential operator applied in Our solution method, and where 
c = yplp, and z =ln(pp-Y). Considering for simplicity v =O and p = 1, it clearly appears from Fig. 
2.1 that the condition of '\l(pu,pu2 +p,puv, pu(e+plp)) becomes worse for ulc;;:;:;l.5. Notice further 
that the condition becomes worse also for increasing c with u close to zero. The latter indicates that 
stagnation flows become harder to relax with increasing upstream Mach number. 

s 
ulc 

8 

Fig. 2. L Condition of typical derivative matrix to be inverted. 
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In all our (final) algorithms we want to avoid any tuning. Therefore, as a remedy for failure of the 
Newton process in the point relaxation method, we propose a switched-relaxation-evolution technique. 
In this technique, we simply start applying the existing relaxation method, and take measures only as 
soon as the local Newton iteration fails. To discuss these measures for robustness improvement, we 
consider the local, first-order discrete system 

~,J(q;,J) = r- 1 ( c/>;+r,,1)F(T( </>; + ii,J )q;,J, T(c/>; + 'l:z,J )q; + 1,1)/; + 'l:z,J -

r- 1 ( c/>; - r,,j)F( T( </>; - 17,J)q; - 1.1, T( c/>; - V:i,J )q;,J )/; - ii,J + 
-I . 

T (c/>i,j + V:i)F(T(<Pi,j +Y?)qi,j• T(</>;,j+ l/:i)qi,j +I )l;,j +l/:i -

T- 1(c/>;,J-¥,)F(T(</>;,J -v,)q;,1- 1> T(<P;,1-v,)q;,J)l;,J-Vz = 0, (2.3) 

where T(c/>) denotes the matrix for rotation to a local coordinate system, F(q1, q7 ) the numerical flux 
function and I the length of a finite volume wall. (For details we refer to [2,3].) 

2.2.1. Failing Newton iteration. As a non-failing Newton iteration to solve q;,; from (2.3) we define: a 
Newton iteration for which: (i) 

l~Y<lJ7./ 1 >I E;; I k = 1 2 3 4 'rj .. 

'
~k)< IJ ·>I , , , , , '·1' 

l,j q,,j 
(2.4) 

for any n-th Newton iterand (n =O, 1,2, · · · ,N) and each of the four residual components, and for 
which (ii) each iterand q7,/ 1 is physically correct, with physical correctness defined in the following 
way. Considering the local solution vector qfti =(u;,1, v;,1, c;,1, z;,;)T and the corresponding hypersonic, 
upstream state vector q 00 = (u 00 , v 00 , c 00 , z 00 ) , we know that the flow speed may not exceed the value 
corresponding with adiabatic expansion to vacuum, departing from upstream conditions: 

2 + 2 :s:::: 2 + 2 +-2- 2 w U; 1· V; 1· """' U00 V00 l C00 , v;1·. 
' ' y- ' 

(2.5) 

Further, we know that after this expansion, the speed of sound equals zero, its minimally allowable 
value: 

C;,j ~ 0, 'fli,j· (2.6) 

The maximally allowable value of the speed of sound is that corresponding with the stagnation tem­
perature (which is the same for both isentropic and non-isentropic compression). For adiabatic flows 
we can write: 

C;,j E;; v c2oo + r;} (u;, +v~ ), 'fli,j· 

For z;,1 we can directly write with the entropy condition: 

z;,J ~ z co, 'fli,J· 

(2.7) 

(2.8) 

For the upper limit of z;,1 we have to consider the state q2 at the downstream side of a normal shock 
wave which has at its upstream side a state q 1 which has expanded to vacuum, departing from 
upstream conditions. Given the gasdynamical relations 

P2 = 
2yMt -(y-l) 

y+l 

(y+ l)Mt 

p1, 

P2 = (y- l)My +2 P1> 

PIPJY = PooP;/, 
it is clear that 

(2.9a) 

(2.9b) 

(2.9c) 

Z;,jE;;limM, ..... ooln(p2p2Y) = CO, 'fli,j· (2.10) 

Summarizing, we see that in adiabatic flows both the flow speed and the·speed of sound have a physi­
cal lower and upper limit. The entropy only has a lower limit. 

In the algorithm, (2.4)-(2.8) are checked after each update in the Newton iteration. As soon as one 
or more of these five requirements are not satisfied, the Newton iteration is said to have failed, and 
any correction made is rejected. 
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2.2.2. Evolution technique. As the alternative for a failing Newton iteration, we apply now one or 
eventually two explicit time stepping schemes to the local, semi-discrete system 

aq· · I 
..::::!!iL + -qf ·(q· ·) = 0. ot A·. '·I '·l 1,f 

(2.11) 

where A·. denotes the area of finite volwne ~; 1·. As time stepping scheme to be applied first, we take v ' 
the following version of Wambecq's explicit two-step rational Runge-Kutta scheme [6] 

'T· . ~ -(q~-) 
,,TJ+l - r11 _....:.!L. '·I '·l n =O 1 2 · · · N 
'1.i,. - 'ti,. ' ' ' , ' . 

l,j I,] Ai,j 2~.j(q7,1)-~,J(q'/,1+1hr;,j<ff;,J{q7,1)) 
(2.12) 

In here, Ti,J denotes the local time step, for which, to start with, we safely take the one which is maxi­
mally allowed for the forward Euler scheme: 

A· -h-. _ I,) 1,j 

'T'j,j - [ d6}; ·(q· ·) ] ' 1,j l,j 

sup dq·. 
I,) 

(2.13) 

with hi,J a characteristic local mesh size. With our upwind discretization, (2.13) may be rewritten by 
good approximation as 

'T· . = hi,. (2.14) 
I,) 'I 2 2 v ui,J +v;,J +c;,J 

For the evaluation of the denominator in (2.12) we use the Samelson inverse of a vector: 

§-1 = l§r2 §, (2.15) 

§ being a vector, whereas for the norm of a vector, we simply use the Cartesian inner product. As ini­
tial solution we take the same q?,1 that just failed for the Newton iteration. The motivation for apply­
ing Wambecq's scheme is its good stability as demonstrated in [6] for a stiff and coupled system of 
four equations, which is precisely what we have here in hypersonics. However, a potential danger of 
(2.12) is that there is no guarantee for the denominator to be non-zero. 

To protect Wambecq's scheme against a possibly too large time step, and against a (nearly) zero 
denominator, in each time step we require both the predictor and corrector to satisfy (2.5)-(2.8). As 
soon as a physically unrealistic value occurs, the time stepping is stopped immediately, rejecting any 
update made. Then, at first we assume that the unphysical result is due to a too large time step. 
Therefore, as a remedy, we halve T;,J and restart the time stepping with Wambecq's scheme, using the 
same q?,1. In case of re-occurrence of something unphysical, we assume that the denominator was the 
problem. Therefore, as a new remedy, we restart with an explicit time stepping scheme which is safe 
in this sense; the simple forward Euler scheme 

'T· . 
rl!:l-1 = q~--....:.!L.6.f. ·(q~·)• n =O I 2 · · · N '1t,1 1,1 A· . 1,1 '·l ' ' • • · 

l,j 
(2.16) 

As Ti,J we apply the one which was latest used with Wambecq's scheme, and as q?,1 still the same as 
before. When a physically unrealistic value (according to (2.5)-(2.8)) occurs again, T;,J is halved for the 
second time and the time stepping with forward Euler is restarted, still using the same q21. In case of 
something unphysical once more, the time stepping is stopped and the finite volume visited is quit 
without any update being made. (Notice that for both time stepping schemes, we do not require (2.4) 
to be satisfied.) 

With the present switched-relaxation-evolution approach we expect that in those volumes where 
Newton fails, the local evolution technique will finally bring the solution into the attraction domain of 
Newton (for the next sweep), and so make itself superfluous at the end of the solution process. 



3. NUMERICAL RESULTS 

3.1. Flow problem 

A.s test case we consider a hypersonic flow around a blunt forebody with canopy. The forebody is 
composed out of two ellipse segments (Fig. 3.1), given by 

[ O~ r + [ ofis r ~ I 

[ 0;35 r + [o.fis]' ~ I x<O, 
(3.la) 

and a parallel part, given by 

y = -0.015} 
O:o:;;;x~0.016. 

y = 0.025 
(3.1 b) 

The upstream flow conditions are: M 00 =8.l5, a=30°, a denoting the angle of attack. (So the flight 
situation considered is a reentry situation.) 

0.025 -·-----~ 
/ ; i 

I 
y 0 -- I ----·-·1 

-0.015 ---t · - --:::..=. ----+----= 

i 
' 

Fig. 3. l. Double ellipse. 

I 
-0.06 0 0.016 
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As grids we use the C-type grids shown in Fig. 3.2. The grids are exactly equidistant in radial direc­

t.ion per radial column separately, and nearly equidistant in tangential direction, at the body. 

~r-------· r··--------- r~----

1 

y 

-0.2S -O.lS x 
-a.OS a.as -o.25 -a.is X -0.05 o.os 

a. 16 X 8-grid. b. 32X 16-grid. c. 64X 32-grid. 

Fig. 3.2. Grids double ellipse. 
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In Fig. 3.3, we show for the l6X 8-, 32X 16-, and 64X32-grid, respectively, the behaviour of t~e 
switched-relaxation-evolution technique. The residual ratio along the left vertical axes is the ratio 

2:1=i 1Fh(qnlJ~-:1= 1 1Fh(q2)1i> where IFh(qh)I denotes the summation over all volumes of the absolute 
value of the discrete Euler defect, i the i-th defect component and q~ the solution after the n-th cycle. 
The solution q2 is the uniformly constant initial solution. The quantity along the right vertical axes is 
the permillage of quit volumes in the total number of finite volumes visited during one cycle (one 
cycle being defined as two diagonally opposite, symmetric relaxation sweeps). In all three grid cases, 
the initial solution continuously fits to the hypersonic upstream boundary conditions. The robustness 
of the switched-relaxation-evolution technique is dear. For none of the cases considered there is an 
abortion of the solution process due to overflow or such. We even have convergence for all three grid 
cases. Further, from Fig. 3.3b and 3.3c, it appears that the evolution technique makes itself 
superfluous indeed. 

Notice that the convergence slow down with decreasing mesh size is expected for a plain relaxation 
method and is supposed to be repaired by application of a suitable multigrid technique. 

1 6 

cycles 
10 a 1 6 

cycles 
8 10 a 2 4 6 

cycles 

a. 16 X 8-grid. b. 32X 16-grid. c. 64 x 32-grid. 

Fig. 3.3. Convergence results switched-relaxation-evolution technique. 

4. CONCLUSIONS 

The essential element for robustness is the continuous checking of both the local relaxation and the 
local evolution. The essential element for convergence is the triple-combination of Newton iteration, 
Wambecq's explicit, two-step rational Runge-Kutta scheme and the explicit Euler scheme. 

For steady Navier-Stokes flow computations at a finite Reynolds number, the proposed checks on 
physical correctness can be maintained as long as the ft.ow remains adiabatic. Only the time step 
needs to be reconsidered for diffusion. 

Convergence acceleration is expected to be ready to hand by incorporation of multigrid. 
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