
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

M. Louter-Nool

UNPACK routines based on the level 2 BLAS

Department of Numerical Mathematics Report NM-R8811 September

E'"";._::.;,.•--·:;,1;

Centn.UJ• \JCCn ".... "· .~;l: .e,f1

Amsic.:tdarfl

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum. which was founded on February 11 . 1946, as a nonprofit institution aim
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

UNPACK routines based on the Level 2 BLAS

Margreet Louter-Nool
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

The Extended or Level 2 BLAS is intended to improve the performance of portable programs on high
performance computers. In this paper we examine where Extended BLAS routines may be inserted in the
UNPACK, such that no changes in the parameter list have to be made. We also discuss why, for some
algorithms, a simple restructuring in terms of Level 2 BLAS fails. We do not attempt to re-design the algo
rithms or to change the data structure. We concentrate on the translation of calls to original (Level 1)
BLAS into calls to Level 2 BLAS in order to improve readability, modularity and efficiency. This examination
results in a still portable subset of the UNPACK with a better performance than the original routines. The
measured performances of original and modified UNPACK routines on the CDC CYBER 990, CDC CYBER
205, CRAY X-MP and the NEC SX-2 are compared and analyzed.

1980 Mathematics subject classification: Primary:65V05. Secondary:65FXX
Key Words & Phrases: Matrix-vector operations, BLAS, Extended or Level 2 BLAS, Vector and parallel com
puters, Efficiency, Portability, Performance Measurements.

Note: This paper is submitted for publication elsewhere

1. INTRODUCTION

1

On vector and parallel computers the number of floating point operations is not a suitable measure to
check whether a particular algorithm is faster than another. It is well-known that on such machines
optimization on vector-vector level like the original BLAS[l4] is not sufficient, and that larger units
than the BLAS are required. More precisely, on uniprocessor vector machines the set of matrix
vector operations of the Extended BLAS[5] seems to be well suited. On multiprocessor machines, and
machines where the performance is dominated by data traffic, better performance can be achieved by
the use of Level 3 BLAS[4]. For those architectures the original matrices are partitioned into blocks
and the matrix-matrix operations are performed on those blocks. As a consequence, algorithms must
be recasted in terms of matrix-vector or matrix-matrix operations to reduce the number of memory
references; such a reduction will increase the efficiency of high-performance computers.

A well-known technique that is used to achieve high rates of execution is to overlap operations if
two operations are independent. For the _AXPY operation (y ~ y + a . x) two floating point
operations can deliver one result per clock cycle. The same rate can sometimes be obtained for the
_DOT operation. Another way to reduce the number of memory references is the technique of loop
unrolling[7, 8], where the output register of one vector instruction is the same as one of the input
registers for the next instruction. On a CRA Y-1 supervector performance can be achieved without
resorting to assembler language when applying this technique.

Van der Vorst[21] discusses the need to adapt and extend general numerical software libraries, so
that they perform efficiently on vector and parallel computers as well. We will show that using the
Level 2 BLAS may be a major step in this direction. Especially on high-performance machines, the
use of existing libraries will be preferable; for small runs or for testing parts of a code, it is desirable
to maintain portability to other machines. We have concentrated on the UNPACK as an example of

Report NM-R8811
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

a widely used library. Moreover, the codes are easily available, via the NETUB facility[8].
Though we realize that often an extensive restructuring of the codes (see, e.g., Dongarra, Kaufman

and Hammerling[9], and Dongarra and Sorensen[IO]) will be necessary in order to improve the perfor
mance, only small modifications are applied here. Our aim is to insert Level 2 BLAS routines in the
UNPACK package without changing the parameter list and the data structure and to keep the same
round-off pattern. We assume that users of portable software do not like to adapt their programs.
Any adaptation of the parameter list will result in changes in the calling program. For that reason, we
have excluded many routines from insertion of the Level 2 BLAS rather than to allow additional
workspace or data restructuring.

Currently, a new linear algebra package, the LAPACK{l] is being developed based on the LIN
PACK{3] as well as the EISPACK{l2,19] libraries. The use of the BLAS, including Level 2 and 3,
will be the basis to achieve efficiency for that package. In order to improve the performance, the codes
will be restructured extensively, whereas some algorithms may be deleted, others may be extended. As
opposed to our strategy, we expect that the data structure and the calling sequence of the LAPACK
library may be fairly deviate from the original LINPACK library.

In Section 2, we discuss the recoding strategy and we also mention which loops cannot be replaced
by calls to Level 2 BLAS. Examples of recoding for various types of matrices are given in Section 3.
Throughout this paper timings on various machines are given. These timings, of course, depend on the
properties of the Level 2 BLAS routines being called, and on the quality of the compiler. In Section
4, the performances of the Level 2 BLAS are considered. We used its model implementation[6], and as
far as available, a machine-dependent implementation. In Section 5, execution times of the original
UNPACK and the modified codes are compared. Finally, some remarks on the use, the contents and
the data structure of the Level 2 BLAS can be found in Section 6.

2. RECODING STRATEGY
The naming convention for the LINPACK routines that we have considered, is as follows. The first
character indicates the data type of the matrix :

S -REAL
C-COMPLEX

The second and third characters denote the kind of matrix :

GE - General
GB - General band
PO - Positive definite
PP - Positive definite packed
PB - Positive definite band
TR - Triangular
GT - General tridiagonal
PT - Positive definite tridiagonal
SI - Symmetric indefinite
SP - Symmetric indefinite packed

For each form there are four subroutines :

FA - Factor
co - Estimate condition
SL - Solve
DI - Determinant, inverse, inertia

The original LINPACK subroutines are based on the Level 1 BLAS. Most of the loops containing
calls to _AXPY or _DOT can be replaced by a single call to a Level 2 BLAS routine. The advantages
of the use of the Level 2 BLAS are :
- the modularity and clarity of the UNPACK subroutines are improved.

3

- operating on the matrix-vector level offers more possibilities for speed improvement.
- UNPACK still remains portable and can be executed on all kinds of serial and vector computers,

for which the model implementation or a machine-dependent implementation of the Level 2 BLAS
are present.

The subroutines have been rewritten in the following way :
1. FORTRAN66 ~ FORTRAN77

Examples:
. GO TO statements have been replaced by IF THEN ELSE constructions to improve the readability .
. omission of tests on empty loops .
. array specifications have been adapted according to FORTRAN77.

2. insertion of Level 1 BLAS routines with increment value greater than 1.
Examples:
. to determine the largest off diagonal element in a column, UNPACK uses LAMAX, and for the
largest off-diagonal element in a row a loop is used. Now in both cases LAMAX is called .

. to swap two rows a call to _sw AP has been inserted.
3. loops with calls to _AXPY and _DOT have been replaced by a call to a Level 2 BLAS routine, if

possible.

Not nearly all UNPACK routines can be restructured in terms of Level 2 BLAS modules for the
following reasons :
I. The scaling that is done in _co routines makes it impossible to substitute Level 2 BLAS routines

for sections of the existing code. Nevertheless, the performance can change, since each _co routine
calls its corresponding _FA routine.

2. Not every routine performs a matrix-vector operation. For example, SGBDI computes only the deter
minant of a factorized matrix.

3. The absence of sufficient workspace prohibits a useful modification for subroutines computing
Cholesky, QR or singular value decomposition, updating, downdating and exchanging; those are
not considered in this paper. H sufficient workspace is missing in the parameter list, subsequent
matrix-vector operations can not pass temporary information. Ail illustration :

DO lOJ = JL,JU
T = -SOOT (N-L+ l, U(L,L), 1, U(L,J), 1) I U(L,L)
CALL SAXPY (N-L+ 1, T, U(L,L), 1, U(L,J), 1)

10 CONTINUE

Clearly, this loop could be replaced by
T = - 1.0EO I U(L,L)
CALL SGEMV ('Transpose', N-L+ l, ru-JL+ 1, T, U(L,JL), LDU, U(L,L), 1, O.OEO, WORK, 1)
CALL SGER (N-L+ 1, JU-JL+ 1, 1.0EO, U(L,L), 1, WORK, 1, U{L,JL), LDU)

if workspace of length ju - jl + 1 were available. Note that in the original code only a scalar value
is passed.

4. Operations on complex symmetric matrices have not been included in the Level 2 BLAS. Hence,
the CSL subroutines could not be restructured. The subroutines for complex Hermitian matrices
did not present additional problems, except that we missed a conjugated _SWAP.

5. For the solution of Ax = b, by LU-factorization, the solution of Ly = b and then Ux = y is
required. Since L is not explicitly stored, the same pivoting and elimination operations are applied
to b and to the columns of A in the factorization routine, and this prohibits the use of Level 2
BLAS routines. Of course, the solution of the second equation Ux = y can be translated into calls
to BLAS2 modules.

4

3. SOME NOTES ON THE RECODING

3.1. General matrices
To give an illustration of the recoding we analyze a part of the routine SGEFA. This routine factors a
real matrix by Gaussian elimination with partial pivoting. At each step in the original code, the k-th
reduced submatrix is modified as follows:

DO 30 J = K + 1, N
T = A(L,J)
IF (L .EQ. K) GO TO 20

A(L,J) = A(K,J)
A(K,J) = T

20 CONTINUE
CALL SAXPY (N - K, T, A(K + l ,K), 1, A(K + l ,J), l)

30 CONTINUE

Obviously, the k-th and /-th row starting in element k +I can be interchanged outside the loop. This
modification does not only save superfluous tests on I equal k, but also this operation can be vector
ized now. The remaining part of the loop is a simple rank-I update. The original UNPACK code can
be replaced by

IF (L .NE. K) THEN

CALL SSW AP (N - K, A(L,K + l), LDA, A(K,K + 1), LDA)
END IF
CALL SGER (N-K, N-K, l.OEO, A(K+ l,K), l, A(K,K+ 1), LDA, A(K+ l,K+ 1), LDA)

We have showed here a straightforward translation of the original code into a Level 2 BLAS code. In
the literature, other algorithms are discussed to perform this factorization, including methods that can
be carried out by calls to Level 2 BLAS. For instance, in Dongarra and Sorensen{IO], three alternative
methods are given all updating only the k-th row or column instead of the entire submatrix of order
k, as in the UNPACK code. Dongarra and Eisenstat[7, Table III] show how one of these methods,
performing only matrix-vector multiplications, produces supervector speed on a CRA Y-1 without
resorting to assembler language. For this purpose they suggested the technique of loop-unrolling to
reduce the number of memory references. This technique is very convenient for vector-register
machines, but on a direct-memory access machine, like the CYBER 205, the effect is less obvious.

For SGEFA this has the following consequences. Though both methods have the same number of
floating point operations, the number of vector operations is different. The UNPACK algorithm
needs k vector operations for k = 1, · · · ,n -1 per step, whereas the Dongarra-Eisenstat approach
requires n - I vector operations per step. It turns out that, on the CYBER 205 with its large startup
times the Dongarra-Eisenstat approach doubles the execution time. We observe, that we have found
two different algorithms, both performing the same factorization, though with a quite different pedor
mance characteristic. It seems that each architecture can claim its best algorithm. The LAPACK pro
ject aims to choose the structure that provides the best "average" pedormance over a range of target
machines, we wonder what the "average" will be in this case.

3.2. Band matrices
For band matrix routines the modifications are more complicated. The storage convention of the
Level 2 BLAS is similar to that of the UNPACK. Hence matrices are stored in rectangular arrays,
such that diagonals of the matrix are stored in rows, and columns are stored in corresponding
columns of the array. Consider SGBFA that factors a real band matrix. Again two rows must be inter
changed and in the original code the elimination part is carried out by SAXPY-operations:

MM= M
IF (JU .LT. K+ 1) GO TO 90
DO 80 J = K+ 1, JU

L = L - l
MM=MM-1
T = ABD(L,J)
IF (L .EQ. MM) GO TO 70

ABD(L,J) = ABD(MM,J)
ABD(MM,J) = T

70 CONTINUE

CALL SAXPY (LM, T, ABD(M+ l,K), 1, ABD(MM+ l,J), 1)
80 CONTINUE

90 CONTINUE

5

The row interchanging can be implemented by means of a SSWAP with increment values LDA-1, i.e.
one less than the leading dimension declared in the calling program. The same trick can be applied
for the elimination; the reduced submatrix is then stored in a nonrectangular array. The modified
code becomes

IF (L .NE. M) THEN
CALL SSWAP (JU-K, ABD(L-1,K+ 1), LDA-1, ABD(M-1,K+ 1), LDA-1)

END IF
CALL SGER (LM, JU-K, l.OEO, ABD(M+ 1, K), 1,

+ ABD(M-1,K + 1), LDA-1, ABD(M,K + 1), LDA -1)

In general, the band width and the corresponding vector length will be too small to obtain a high per
formance.

3.3. Positive definite matrices
The number of floating-point operations for factorizing symmetric positive definite full matrices is
about half the corresponding number of operations for nonsymmetric matrices. The triangular factori
zation can easily be performed by calls to _TRSV, the triangular solver of the Extended BLAS. The
basis operation to factorize a general matrix is the rank-I update _GER, as described in Section 3.1.
The performance of this update is more than twice that of the triangular solver (_ TRSV) used for the
symmetric case. Indeed, our experiments (see Section 5) show that when factorizing symmetric
matrices, it does not always pay to exploit the symmetric structure. This is another example of an
algorithm that takes advantage of a special structure, although it will not always be faster than one
that ignores the special structure. Algorithms designed for structured systems may have to be
reworked to be competitive on a vector machine, as is shown by Kaufman(l3] and others.

3.4. Symmetric indefinite matrices
The recoding of the factorization of symmetric indefinite matrices (SSIFA, SSPFA, CSIFA, CSPFA, CHEFA
and CHPFA) requires some explication. For the real symmetric case, the code used to perform the
2 x 2 pivot block elimination in the original UNPACK looked like

For j = k - 2 to 1 by - I
mulk = du ajk + d12 aj,k-I

For i = I toj
aij ~ aij + mulk a;k

End
mulk-I = d11 ajk + d12 aj,k-I

For i = I toj
aij +- °'ij + mulk- I a;,k -1

End
ajk = mulk

aj,k-I = mulk-I

End

(3.4.1)

6

where the d/s can be computed outside the outermost loop. Both i-loops have been implemented
using _AXPY' s. If we wish to use matrix-vector operations rather than vector-vector operations we
might replace (3.4. l) by

Forj = k-2to 1 by -1
mu9k =du ajk + d12 aj,k-1

End
For j = k - 2 to 1 by - 1

For i = 1 toj
a;j ~ a;j + mu9k a;k

End
End
For j = k - 2 to 1 by - 1

mu9,k-1 = d21 ajk + d22 aj,k-1
End
For j = k - 2 to 1 by -1

For i = 1 toj
aij ~ aij + mu9,k- I a;,k -1

End
End
Forj = k-2to 1 by -1

ajk = mu9k

aj,k-1 = mu9,k-1
End

(3.4.2)

Obviously, the matrix updates are no symmetric rank-I updates and Level 2 BLAS routines are not
available. For that purpose we have to split the operations into

For j = k - 2 to 1 by - 1
For i = 1 toj

aij ~ aij + d 11 ajk a;k

End
End
For j = k-2 to 1 by -1

For i = 1 toj
aij ~ aij + d12 aj,k-1 a;k

End
End
Forj = k-2to 1 by -1

For i = 1 toj
aij ~ aij + d21 ajk a;,k -1 (3.4.3)

End
End
Forj = k-2to 1 by -1

For i = 1 toj
aij ~ a;j + d22 aj,k -1 a;,k -1

End
End
For j = k-2 to 1 by -1

ajk ~du ajk + d12 aj,k-1

aj,k-1 ~ d21 ajk + d22 aj,k-1
End

Let a. k and a. k-I denote the k-th and (k -1)-st column of A. Then (3.4.3) becomes

1: Ak(l) ~ Ak + d11 a. k a. kT

2: Ak<2> ~ Ak(l) + d12 a. k a. k-/

3: Ak<3> ~ Ak<2> + d21 a. k-1 a. k T

4: Ak<4> ~ Ak<
3> + d22 a. k-1 a. k-/

and two vector updates

1:

2:

a (1) .k ~ d 11 a. k + d 12 a. k-1

a. k-1<1> ~ d21 a. k + d22 a. k-1

7

(3.4.4a)

(3.4.4b)

The first and fourth updates are now symmetric rank-1 updates, and the second and third matrix
update can be replaced by a single rank-2 update. However, the original loop takes

2(k - 2)(k + 2)

operations to compute the submatrix Ak and here we have

4 (k - 2)(k - 3/2)

operations. So, at the cost of about twice as many operations we could translate the }-loop of (3.4.1)
into three calls to Level 2 BLAS routines.

Notice that in (3.4.4a) only two vectors a. k and a. k-I are involved for updating. The matrix opera
tion may be carried out by just one single Level 2 BLAS rank-2 update, performing

Ak <4> ~ Ak + a x y T +a y x T

For that purpose we have to construct the vectors, say

x = C1 a.k + C2 a.k-1

Y = C3 a.k + c4 a.k-1

and solve the following equations for the symmetric case

2ac1 c3 = d11

2 a C2 C4 = d22

a C1 C4 + a C2 C3 = d12 = d21

and for the complex Hermitian case

ac1 C3 + ac1 C3 = d11

a C2 C4 + a C2 C4 = d22

ac1c4 +ac2c3 =d12,

(3.4.Sa)

(3.4.5b)

(3.4.6a)

(3.4.6b)

where d 11 and d22 are real numbers and d 12 = d21 are complex numbers for complex Hermitian
matrices. In the real symmetric case, we can determine real values for the c/s and a. For real sym
metric or complex Hermitian matrices, we can use sSYR2 and SSPR2, or, CHER2 and CHPR2, respec
tively. The set of Level 2 BLAS, however, does not provide routines for complex symmetric matrices.
Consequently, the CSIFA and CSPFA can not be adapted.

Unfortunately, the subroutines to factorize real symmetric and complex Hermitian matrices does
not use any workspace. Since we do not wish to change the parameter list, we have to use some space
of the matrix A. In (3.4.7), the columns a. k and a. k-I are replaced by the the vectors x and y from
(3.4.5b) and after updating of Ak they will contain the values of (3.4.4b); the same information is
passed as by the original code. This implies that for instance a call to the modified SSIFA can be

8

followed by a call to the original SSISL, or SSIDI. The algorithm becomes

Ifk:#=2tben
Compute 6i,62,63,64, such that a. k and a. k-I will contain x andy of (3.4.5b)
a.k ~ 61 a.k
a. k ~a. k + 62 a. k-I
a. k-I ~ 63 a. k-I
a. k-I ~a. k-I + 64 a. k-I

Compute a
A

_ T _ _ T
k ~ Ak + a a. k a. k-1 + a a. k-1 a. k (3.4.7)

Compute yi,y2,y3,y4 , such that a. k and a. k-I become the vector updates (3.4.4b)
a. k ~'YI a. k

a. k ~a. k + 'Y2 a. k-1
a. k-1 ~ 'Y3 a. k-1
a.k-1 ~ a.k-I + 'Y4 a.k

End if

We observe, that we have not changed the strategy, we have only changed the order of computa
tion. Tables 5a-b show that the rank-2 update codes require considerably less execution time. Note
that the application of a rank-2 update would be much more profitable, if workspace were on hand.

3.5. Tridiagonal matrices
The general tridiagonal matrices in _QTSL and the symmetric positive definite tridiagonal matrices in
_P'fSL are not stored according to the convention of general band matrices; their description consists
of three or two array names, respectively. So, Level 2 BLAS routines can not be used for such
matrices. Moreover, if as usual, the diagonals were stored in rows, the maximum vector length would
not exceed the bandwidth of two or three, which would imply scalar speed.

In the last few years, many techniques for bi- and tridiagonal systems have been developed for
advanced computer architectures[20, 22]. If diagonals were stored by columns rather than by rows,
efficient bi- or tridiagonal solvers could be implemented as special cases for band matrices. A Level 2
BLAS implementation would be of much more interest, if such efficient codes for diagonal systems
were included.

4. PERFORMANCE OF THE LEVEL 2 BLAS
The performance of both the original and the modified UNPACK is determined mainly by the per
formance of the Level 1 and Level 2 BLAS, respectively. In this section, we first review the peak per
formance of the machines considered in this paper. Then we list the speed in Mflops of the Extended
BLAS routines. Finally, we show which Level 2 BLAS routines are called by the UNPACK routines.

Table 1 contains the cycle time and peak performance of the various machines.

Machine
CDC CYBER 990
CDC CYBER 205
CRAY X-MP/2 (I proc.)
NEC SX-2

cycle time in nanoseconds
16
20
8.5
7

TABLE 1 Cycle Times and Peak Performances

peak performance in Mflops
60

200
235

1300

At this moment, on the CDC CYBER 205 optimized versions of all real Level 2 BLAS routines are
available as well as the complex rank 1 and 2 updates. For the other machines, only the model imple
mentation[6], which is written in portable FORTRAN77, is available, although its performance is much

9

below the best possible. Timing results of the model implementation and of the machine-dependent
CWI BLAS2, optimized for the CYBER 205, are listed in Tables 2a-b (the symbol - denotes : not yet
available). All dense matrices are of order 255 and all band matrices are of order 6500 with a max
imum band width of 10, so all matrices contain approximately the same number of elements. For
each routine two Mfiops values are given, one for INCX = (INCY =) 1 and one for INCX = 1 and
INCY > I, in case of two vector arguments, or INCX > 1 otherwise. These combinations of increment
values often occur in the implementation of linear algebra subroutines.

The routines for solving triangular equations _ TRSV, _ TPSV and _ TBSV allow for the matrix to be
stored either in the upper or lower triangle, i.e., UPLO = 'Upper', or UPLO = 'Lower'. The parameter
TRANS is used to specify whether the operation is performed on the matrix or its transpose. The per
formances of all possible cases are listed, where the suffices _i mean :

CYDER
990

model
impl.

SGEMV 17
SGBMV 2
SSYMV 9
SSPMV 7
SSBMV 2
STRMV 15
STPMV 4
STBMV 3

STRSV l 7
STRSV 2 8
STRSV 3 22
STRSV 4 8
STPSV l 3
STPSV 2 8
STBSV 1 2
STBSV 2 4

SGER 23
SSYR 16
SSPR 4
SSYR2 21
SSPR2 8

-
2
3
4

UPLO = 'Upper',
UPLO = 'Upper''
UPLO = 'Lower',
UPLO = 'Lower''

TRANS = 'No Transpose'
TRANS = 'Transpose'
TRANS = 'No Transpose'
TRANS = 'Transpose'

Mfl.ops for Real Extended BLAS routines

INCX = INCY = l INCX = 1, INCY > 1

CYDER CRAY NEC CYBER CYBER
205 X-MP SX-2 990 205

model I CWI model model model model I CWI
impl. BLAS2 impl. impl. impl. impl. BLAS2

75 89 118 393 4 4 88
3 38 14 16 2 3 33

50 51 82 136 6 7 51
8 49 81 135 7 7 49
2 50 4 7 2 4 42

41 55 83 130 3 4 54
4 51 84 132 4 4 51
4 35 12 13 2 3 32

8 49 78 114 3 3 47
31 37 53 91 8 5 37
35 46 79 117 4 3 45
11 37 52 89 8 5 36
4 44 84 116 4 3 43
5 35 54 91 8 5 34
2 5 11 11 2 2 5
3 5 5 11 3 3 5

77 94 118 410 24 77 94
47 60 99 257 4 4 60
4 60 99 252 4 4 60

58 73 130 338 7 6 73
6 73 129 333 8 6 73

TABLE 2a Mfl.ops for Real Extended BLAS routines
n = 6500, kl= ku = 3 V k = 9 for band matrices,

m = n = 255 for dense matrices.

CRAY
X-MP

model
impl.

116
14
70
75

4
54
54
11

65
44
60
47
66
46
11
5

71
63
64
88
90

NEC
SX-2

model
impl.

379
14

132
127

6
128
124
12

116
88

117
88

113
87
11
10

416
231
217
303
291

10

CGEMV

CGBMV

CHEMV

CHPMV

CHBMV

CTRMV
CTPMV

CTRSV l -
CTRSV 2 -
CTRSV 3 -
CTRSV 4 -
CTPSV I -
CTPSV 2 -
CTBSV l -
CTBSV 2 -
CGERC

CGERU

CHER

CHPR

CHER2

CHPR2

Mflops for Complex Extended BLAS routines

INCX = INCY = 1 INCX = 1, INCY > 1

CYBER CYBER CRAY NEC CYBER CYBER
990 205 X-MP SX-2 990 205

model model I CWI model model model model I CWI imp I. imp!. BLAS2 imp I. imp I. imp I. imp!. BLAS2

14 34 - 147 551 9 8 -
4 4 - 37 27 6 7 -
8 13 - llO 232 7 12 -
9 13 - llO 231 7 12 -
4 10 - 10 ll 3 9 -

10 28 - 128 270 7 8 -
9 8 - 129 270 7 8 -
7 2 - 127 252 8 8 -

10 8 - 82 166 12 8 -
17 26 - 125 259 8 8 -
7 8 - 76 161 15 8 -
9 8 - 124 254 10 8 -

16 8 - 82 164 12 8 -
2 2 - 33 25 4 6 -
3 6 - 11 18 7 6 -

14 34 124 150 567 17 34 123
17 34 134 150 571 17 35 133
13 28 89 129 299 7 8 88
9 8 89 130 305 9 8 89

15 29 99 157 331 10 14 98
11 14 96 157 336 8 13 95

TABLE 2b Mflops for Complex Extended BLAS routines
n = 6500, kl= ku = 3 V k = 9 for band matrices,

m =n =255 for dense matrices.

CRAY
X-MP

model
imp I.

131
33

104
105

9
116
113

113
81

114
79

113
78
31
11

149
149
136
121
146
144

NEC
SX-2

model
imp I.

541
25

228
229
ll

266
260

255
161
256
160
254
159
25
18

560
564
298
299
330
332

Obviously, the CYBER 205 compiler fails to vectorize the routines for packed forms, i.e., the rou
tines with a P as third character. It should be noted that also a nonsequential storage (see the right
part of Table 2a) degrades the performance of both CYBERs considerably. The optimized FrN200
version for the CYBER 205 as well as the model implementation on the CRAY and the NEC are less
sensitive to nonsequential storage. Because of the specific storage scheme for banded matrices (cf.
Section 3.2) the vector-length is at most kl+ ku + 1 for general banded matrices and k + 1 for other
banded matrices, if operations are performed on columns rather than rows. However, operating on
diagonals stored in rows of the array, results in vector lengths close ton and consequently for large n
high performances can be obtained despite the stride problem. So, both the storage convention and
the column-oriented approach of the model implementation cause the low performance for the
_GBMV and _TBMV routines. For the CWI BLAS2, which operates on diagonals, much higher
Mflops-rates are obtained compared to the other machines. It would have been better if the model
implementation had been coded along these lines; its performance for banded matrices is very poor,
now.

Note that for the solution of a banded matrix in the _ TBSV routines, the recurrence relations

11

prevent vectorization. We remark, however, that for banded systems much higher performances can
be achieved than the Mfiops-rates listed here. In this context we refer to [22] in which a number of
techniques for solving tridiagonal linear systems are discussed. Most techniques are also applicable to
more general banded systems.

s s s s s s s s s s s s s s s s s
G s s T T T T T T T T T G s s s s
E y p p R R R R p p B B E y p y p
M M M M s s s s s s s s R R R R R
v v v v v v v v v v v v 2 2

l 2 3 4 l 2 l 2

SGEFA - - - - - - - - - - - - + - - - -
SGESL - - - - + + - - - - - - - - - - -
SGEDI + - - - - - - - - - - - + - - - -
SGBFA - - - - - - - - - - - - + - - - -
SGBSL - - - - - - - - - - + + - - - - -
SPOFA - - - - - + - - - - - - - - - - -
SPOSL - - - - + + - - - - - - - - - - -
SPODI - - - - - - - - - - - - + + - - -
SPPFA - - - - - - - - - + - - - - - - -
SPPSL - - - - - - - - + + - - - - - - -
SPPDI - - - + - - - - - - - - - - + - -
SPBFA - - - - - + - - - - - - - - - - -
SPBSL - - - - - - - - - - + + - - - - -
SSIFA - - - - - - - - - - - - - + - + -
SSIDI - + - - - - - - - - - - - - - - -
SSPFA - - - - - - - - - - - - - - + - +
SSPDI - - + - - - - - - - - - - - - - -
STRSL - - - - + + + + - - - - - - - - -
STRDI - - - - - - - - - - - - + - - - -

TABLE 3 Relation between Real Modified UNPACK routines and Level 2 BLAS

The overview in Table 3 explains which of the specific Level 2 BLAS routines were inserted in the
UNPACK subroutines. In practice, the Mfiops-rates of Tables 2a-b will not be reached for LIN
PACK routines: in most algorithms the Level 2 BLAS operations are performed on matrices of order
k, where k = 1, · · - ,n for dense matrices; for banded matrices k will not exceed the band width.

5. ExPERIMENTS

In this section we compare the performance on vector computers of several original LINPACK rou
tines (i.e., those based on Level I BLAS subroutines) with the performance of the modified UN
PACK routines (i.e., those based on the Level 2 BLAS subroutines). All new codes were primarily
tested on a serial machine, a CDC CYBER 750. As opposed to the high-performance vector comput
ers discussed in this paper, this serial machine can be used interactively, a very pleasant circumstance.
Not only correctness tests have been carried out on this machine, but also some timings of the pro
grams have been collected. Since, by replacing calls to the Level l BLAS by calls to Level 2 BLAS,
the number of floating point operations remains unchanged, we expected only a small effect from this
recoding on the CYBER 750. Nevertheless, in some cases we found significant deviations in perfor
mance. It turns out that calls to the logical function LSAME in the Level 2 BLAS routines are much
more expensive than straightforward comparison of characters.

12

We expect UNPACK based on Level 2 BLAS to run more efficiently than UNPACK based on
Level I BLAS because of the following reasons : less subroutine call overhead, less parameter check
ing within the subroutines and less increment testing in loops. Actually, the use of any BLAS is
rather expensive, in particular, if no optimized implementations are available. Central to most algo
rithms in linear algebra are inner product computations (_DOT operation) and additions of a scalar
multiple of one vector to another vector (_AXPY operation). If one should replace the BLAS routines
for these operations by single DO-loops, avoiding parameter checks and tests on increment values
(always equal to I in a UNPACK code), the execution time will decrease extremely. Of course, the
compiler must be able to recognize the loops and replace them by fast in line codes, as most com
pilers do nowadays.

Table 4 shows the various BLAS implementations which we have used on four different vector com
puters.

CDC CYBER 990
CDC CYBER 205
CRAY X-MP/2
NEC SX-2

Level 1 BLAS
"rolled"
CDC
SCIUB
"rolled"

TABLE 4 Survey of available BLAS implementations

Level 2 BLAS
model
CWI I model
model
model

We remark that analogous to [2], the "unrolled loops" in the model implementation of the original
BLAS were replaced by simple loops in FORTRAN. On the CYBER 205, optimizations of both the
Level I and Level 2 BLAS are available. It should be mentioned that, as a matter of fact, even two
Level I BLAS optimizations exist for the CDC CYBER 205: the CDC BLAS, distributed by CDC,
and the CWI BLAS[l7]. In some cases the CWI BLAS runs significantly faster, e.g., for complex vec
tors with a non-unit stride[l6]. However, for small n and for unit stride the CDC BLAS runs faster
mainly because of the lack of error testing. If we want to present the actual speedup we have to select
the CDC BLAS, because the original UNPACK deals with unit strides. The implementation and
optimization of the Level 2 BLAS on the CYBER 205 are described in Lioen, Louter-Nool and Te
Riele[l5]. The codes are available in the NUMVEC-library[l8].

Let us first consider the performances of the real UNPACK routines in Table 5a. Both CYBER
compilers do not generate very optimal code for the model implementation of the Level 2 BLAS.
When we compare for the CYBERs the performance of the original UNPACK (Columns 1 and 3)
with those of the modified UNPACK executed with the model Level 2 BLAS (Columns 2 and 4) we
see that the performances do not always improve. Obviously, most _SL routines for solving a system
of linear equations become less efficient. Moreover, the modified routines operating on packed arrays
are slower; on the CYBER 205 more than a factor 3. By comparing the results of the original UN
PACK to those with a coded Level 2 BLAS (cf. Columns 3 and 5), one observes a considerable
increase of performance. Only the modified SPBFA has become slower; this is also true for the other
machines (cf. Section 3.2).

In Table 5a also the performances of the original and the modified UNPACK are compared on
both the CRAY X-MP (Columns 6-7) and the NEC SX-2 (Columns 8-9). At present, the system
library of the CRAY in Bracknell provides a coded version of the Level 1 BLAS but not of the Level
2 BLAS. For the real case, the modified UNPACK with the model Level 2 BLAS requires less time
than the original UNPACK with a coded Level 1 BLAS, except for the routines for banded matrices.
On the NEC, where optimized versions of both Levels of BLAS are lacking the modified UNPACK
based on the Level 2 BLAS is the best choice. Note that the performances of the routines for packed
(i.e., _pp __ and _gp __) and unpacked (i.e., _po __ and _g1__) arrays are identical.

SGEFA

SGESL 0

SGESL I
SGEDI

SGBFA

SGBSL 0

SGBSL I

SPOFA

SPOSL

SPODI

SPPFA

SPPSL

SPPDI

SPBFA

SPBSL

SSIFA

SSIDI

SSPFA

SSPDI

STRSL I -
STRSL 2

STRSL 3
STRSL 4
STRDI I
STRDI 2

Timings of Real UNPACK routines in milliseconds

CYBER990 CYBER205 CRAYX-MP

original

UNPACK

696.3
9.652

10.1
1318.8

319.3
124.8
137.5

514.6
9.888

892.0

503.5
9.369

901.6

712.3
140.5

519.6
946.7

505.3
935.4

5.339
5.196
5.017
4.257

484.7
476.4

model original model CWI original model
BLAS2 BLAS2 BLAS2 BLAS2

UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK

380.9 287.5 192.3 150.6 129.5 94.6
20.3 4.063 11.4 3.386 1.766 1.569
16.9 4.911 5.971 3.946 2.884 2.477

774.0 505.7 398.6 322.5 242.2 189.1

252.8 227.6 319.2 219.8 86.8 86.4
127.3 87.9 154.0 65.7 25.7 22.4
101.4 91.6 124.2 70.6 35.4 40.6

811.9 279.0 258.3 219.7 171.4 142.7
18.4 3.137 9.883 3.078 2.351 1.932

519.5 469.2 342.9 260.5 186.0 122.7

731.2 288.5 1055.3 238.4 165.5 140.9
21.7 4.380 29.7 3.354 2.274 1.924

2410.5 450.1 3027.3 301.9 172.7 136.0

778.3 410.3 1143.0 1507.0 169.2 356.9
101.8 94.8 112.2 50.1 35.0 35.0

259.3 287.8 176.4 133.9 108.8 70.0
1131.2 467.7 299.0 291.3 235.7 169.6

1253.0 272.3 1507.3 133.6 105.4 62.8
1441.2 463.3 1502.9 307.5 256.0 159.8

3.101 2.488 2.084 1.613 0.997 0.843
6.433 2.493 7.969 1.538 1.061 0.853
8.885 2.875 6.441 1.964 1.577 1.288
8.982 2.707 2.294 1.936 1.607 1.261

241.6 216.7 169.6 128.0 88.2 62.7
253.8 247.1 171.2 129.6 91.0 62.8

TABLE 5a Timings of Real UNPACK routines in milliseconds,
n = 6500, kl= ku = 3 V k = 9 for band matrices,

m = n = 255 for dense matrices.

13

NEC SX-2

original model
BLAS2

UNPACK UNPACK

91.2 47.1
1.533 1.898
2.056 2.483

164.8 77.4

137.8 132.4
37.6 31.6
43.7 35.0

118.9 81.5
1.754 1.122

162.6 70.8

120.8 81.7
1.792 1.152

165.2 86.2

188.4 360.7
41.5 22.5

92.1 32.5
214.5 104.6

92.1 33.2
215.8 106.2

0.842 0.654
0.805 0.560
1.121 0.717
0.993 0.690

87.0 40.9
86.3 41.0

The efficiency of the model implementation is highly dependent on the FORTRAN compiler avail
able. Table Sb - containing the results of the complex UNPACK - shows that none of the Level 2
BLAS routines are vectorized well by the CYBER compilers; most operations are performed at scalar
speed. Since on the CYBER 205 for the timings of the original UNPACK (Column 3) an optimized
Level I BLAS was used, the performance decreases using the modified UNPACK executed with the
model Level 2 BLAS (Column 4). Nevertheless, when executed with the CWI BLAS2 (Column 5) a
considerable speed up is obtained, or can be expected (only COMPLEX rank updates are available, yet).
On the CYBER 990, the results of the original and modified complex UNPACK are comparable.
Due to the absence here of an optimized Level 1 BLAS also the original UNPACK performs badly.
It appears that, on the CYBERs, the use of the model implementation of the complex BLAS and, in

14

many cases, the real BLAS must be dissuaded.
On the CRAY, with a coded Level l BLAS, an optimized Level 2 BLAS is needed to improve the

performance of the modified UNPACK, and henceforth, this explains the execution time reduction
compared to the original UNPACK (cf. Column 6 and 7). From Columns 8 and 9, it follows that,
on the NEC, where optimized versions of both Levels of BLAS are lacking the modified UNPACK is
the best choice, also for the complex case (except for CPBFA).

CGEFA
CGESL 0 -
CGESL I -
CGEDI

CGBFA
CGBSL 0 -
CGBSL I -
CPOFA
CPOSL
CPODI

CPPFA
CPPSL
CPPDI

CPBFA
CPBSL

CHIFA
CHIDI

CHPFA
CHPDI

CTRSL I
CTRSL 2 -
CTRSL 3 -
CTRSL 4 -
CTRDI 1 -
CTRDI 2 -

Timings of Complex UNPACK routines in milliseconds

CYBER 990 CYBER205 CRAYX-MP NEC SX-2

original model original model CWI original model original BLAS2 BLAS2 BLAS2 BLAS2
UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK

2513.5 2516.4 748.7 1420.4 402.6 336.0 348.1 175.8
33.4 32.7 10.5 110.9 - 4.328 4.612 2.612
86.7 82.2 14.8 40.0 - 6.879 7.319 4.502

4901.4 4949.7 1451.7 2867.4 - 645.1 684.l 335.8

610.1 611.8 387.5 500.5 417.5 106.7 110.3 154.0
294.8 292.9 173.4 326.6 - 37.0 35.2 60.8
400.4 405.8 191.6 152.4 - 46.3 67.8 96.7

3967.3 4024.7 809.9 3021.5 - 361.7 409.5 296.0
56.3 60.7 13.2 138.8 - 5.634 5.777 3.619

3090.7 3115.0 1118.1 1873.0 587.7 404.8 400.9 289.2

3914.5 3919.1 808.2 2856.2 - 363.8 407.4 294.9
59.7 59.6 13.2 65.4 - 5.604 5.933 3.922

2998.5 2981.2 1096.0 5582.8 - 400.8 413.1 288.7

1927.1 1934.0 859.3 1535.5 - 228.6 567.1 436.7
405.2 399.4 201.6 390.1 - 55.4 67.9 82.l

1617.2 1624.9 646.8 962.3 333.8 234.0 217.0 189.3
5580.0 5177.8 1253.5 3531.7 - 548.8 521.2 416.9

1620.7 1622.6 641.0 2839.7 349.6 233.5 216.3 188.2
5305.3 5302.7 1241.2 3433.l - 554.4 525.9 415.2

16.3 16.4 5.909 10.3 - 2.367 2.434 1.427
16.2 16.2 5.978 106.1 - 2.399 2.528 1.393
44.4 44.4 8.119 33.2 - 3.569 4.122 2.326
40.6 45.l 8.082 33.2 - 3.498 4.082 2.302

1561.5 1552.4 549.3 922.7 305.2 197.0 197.4 151.9
1543.7 1536.7 550.7 921.6 301.9 202.1 191.1 149.4

TABLE 5b Timings of Complex UNPACK routines in milliseconds
n=6500, kl=ku=3 V k=9 for band matrices,

m =n =255 for dense matrices.

model
BLAS2

UNPACK

122.1
2.246
3.997

227.2

138.9
49.9
80.5

214.2
2.773

210.4

216.5
2.820

211.2

577.7
57.2

112.2
254.7

108.9
257.0

1.089
1.046
1.908
1.938

106.2
106.1

15

6. CONCLUSIONS AND REMARKS

In this paper we have shown that by replacing in the UNPACK library calls to Level 1 BLAS rou
tines by calls to Level 2 BLAS routines - without changing the algorithm, the data structure and the
round-off pattern - a considerable speedup can be obtained, especially when a machine-optimized
Level 2 BLAS code is available. Moreover, the use of the Level 2 BLAS enhances the modularity and
readability of the programs. The subset, which we have developed, can substitute the corresponding
subset of the original UNPACK without the need to adapt any calling program, since the parameter
lists have not been changed. Unfortunately, this restriction prohibits the adaptation of a larger set of
subroutines, like those for QR, SVD and Cholesky factorization, since all suffer from the lack of
sufficient workspace.

Section 4 shows that the model implementation of the Level 2 BLAS achieves a moderate efficiency
on vector-processing machines, although we expect that, by means of small modifications in the model
code, a considerably higher performance can be obtained. We mentioned the alternative implementa
tion of routines for banded matrices (see Section 4 and [6, Section 3.3]) and the straightforward com
parison of characters. In the optimized CYBER 205 implementation[l5], the test on zero elements is
omitted to achieve better performances for general nonsparse vectors. In [11], techniques to optimize
the Level 2 BLAS code on the NEC SX-2 in particular are presented. Many of them will also be
suited to a more efficient "model" implementation. As long as specialized implementations are want
ing, an efficient portable set of FORTRAN77 is required. We hope that optimized implementations of
the original and Extended BLAS will be distributed in a similar way as the source codes of the UN
PACK and the model implementations of the BLAS which are easily available via the NETLIB facil
ity[8].

The present UNPACK with Level 1 BLAS routines is not attractive for many vector- and parallel
machines. The results of Section 5 illustrate that much better performances can be achieved by means
of a library based on the Level 2 BLAS. However, we believe that the production of a new linear
algebra library makes more sense than the adaptation of the present library. The substitution of
Level 2 BLAS modules by calls to Level 1 BLAS is too limited. New algorithms have been, and will
have to be developed minimizing the amount of data transfer rather than the number of floating point
operations. Also the data structure becomes more and more important. For instance, the partitioning
of matrices into submatrices or blocks can be useful. Obviously, the poor performances of the algo
rithms for banded matrices are closely related to the data storage. Moreover, this storage does not
provide for a fast solution of bi- and tridiagonal systems. On many vector machines, the FORTRAN
storage convention of the complex vectors and matrices is rather inconvenient. The COMPLEX data
type to maintain a close correspondence between UNPACK routines for REAL and COMPLEX matrices
causes many superfluous data transfers, because most operations on complex vectors involve a stride 2
problem. Sometimes, it is better to separate the real and imaginary parts, in other cases operations
must be performed controlled by bit vectors. However, in all cases, the performance decreases.
Another difficulty arises when compilers don't provide complex arithmetic, like the two CYBER com
pilers considered in this paper.

REFERENCES

1. J. DEMMEL, J.J. DoNGARRA, J.J. Du CROZ, A. GREENBAUM, s. lIAMMERLING and D.C. SORENSON
(September 1987). Prospectus for the Development of a Linear Algebra Library for High
Performance Computers, Technical Memorandum 97, Argonne National Lahoratory.

2. J.J. DoNGARRA (April 1988). Performance of Various Computers Using Standard Linear Equa
tions Software in a Fortran Environment, Technical Memorandum 23, Argonne National Labora
tory.

3. J.J. DoNGARRA, J.R. BUNCH, C.B. MOLER and G.W. STEWART (1979). Linpack User's Guide,
SIAM, Philadelphia, PA.

4. J.J. DONGARRA, J.J. Du CRoz, I.S. DUFF and s. lIAMMERLING (May 1988). A Set of Level 3
Basic Linear Algebra Subprograms, Technical Memorandum 88 (Revision 1), Argonne National

16

Laboratory.
5. J.J. DONGARRA, J.J. Du CROZ, s. liAMMERLING and R.J. HANSON (November 1986). An

Extended Set of Fortran Basic Linear Algebra Subprograms, Technical Memorandum 41 (Revision
3), Argonne National Laboratory.

6. J.J. DoNGARRA, J.J. Du CRoz, S. liAMMERLING and R.J. HANsoN (August 1986). An Extended
Set of Fortran Basic Linear Algebra Subprograms: Testing Software and Model Implementation,
Argonne National Laboratory Report, ANL-TM 81.

7. J.J. DONGARRA and s.c. EISENSTAT (1984). Squeezing the Most out of an Algorithm in CRAY
FORTRAN, ACM Transactions on Mathematical Software, 10, 219-230.

8. J.J. DoNGARRA and E. GROSSE (July, 1987). Distribution of Mathematical Software via Elec
tronic Mail, Comm of the ACM, 30, 5, 403-407.

9. J.J. DoNGARRA, LINDA KAUFMAN and SVEN liAMMARLING (1986). Squeezing the Most out of
Eigenvalue Solvers on High-Performance Computers, Linear Algebra and its Applications, 77,
113-136.

10. J.J. DoNGARRA and D.C. SORENSEN (1986). Linear Algebra on High-Performance Computers,
Parallel Computing 85, Elsevier Science Publishers B.V., 3-32.

11. RM. DUDASH, J.L. FREDIN and 0.G. JOHNSON (1977). Benchmark of the Extended Basic Linear
Algebra Subprograms on the NEC SX-2 Supercomputer, Lecture Notes in Computer Science, 297,
Springer-Verlag, Berlin.

12. B.S. GARBOW, J.M. BOYLE, J.J. DONGARRA and C.B. MOLER (1977). Matrix Eigensystem Rou
tines - EISPACK Guide Extension, Lecture Notes in Computer Science, 51, Springer-Verlag, Ber
lin.

13. LINDA KAUFMAN (1984). Banded Eigenvalue Solvers on Vector Machines, ACM Transactions on
Mathematical Software, 10, 73-86.

14. C.L. LAWSON, R.J. HANSON, D.R. KINCAID and F.T. KROGH (1979). Basic Linear Algebra Sub
programs for FORTRAN usage, ACM Transactions on Mathematical Software, 5, 308-323.

15. W.M. LIOEN, M. LoUTER-NOOL and H.J.J. TE RIELE (1987). Optimization of the real Level 2
BLAS on the CYBER 205, In: Algorithms and Applications on Vector and Parallel Computers,
H.JJ. te Riele, Th. J. Dekker and HA. van der Vorst (eds.), North-Holland, Amsterdam-New
York-Oxford, 199-212.

16. M. LoUTER-NOOL (1987). Basic linear algebra subprograms (BLAS) on the CDC CYBER 205,
Parallel Computing, 4, 143-165.

17. M. LoUTER-NooL (1988). Translation of Algorithm 539: Basic Linear Algebra Subprograms for
FORTRAN Usage in FORTRAN 200 for the CDC CYBER 205, to appear in: ACM Transac
tions on Mathematical Software.

18. NUMVEC (1988), A library of NUMerical software for VECtor and Parallel Processors,Centre for
Mathematics and Computer Science, Amsterdam.

19. B.T. SMITH, J.M. BOYLE, J.J. DONGARRA, B.S. GARBOW, Y. IKEBE, V.C. KLEMA and C.B. MOLER
(1976). Matrix Eigensystem Routines - EISPACK Guide, Lecture Notes in Computer Science, 6,
2nd edition, Springer-Verlag, Berlin.

20. J. SCHLICHTING and H.A. VAN DER VORST (1987). Solving bidiagonal systems of linear equations
on the CDC CYBER 205, NM-R8725, Centre for Mathematics and Computer Science, Amster
dam.

21. H.A. VAN DER VORST (1988). Vectorial aspects of software libraries, Supercomputer 23, V-1, 33-
41.

22. H.A. VAN DER VoRST (1987). Large tridiagonal linear systems on vector and parallel computers,
Parallel Computing, 5, 45-54.

