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Margreet Louter-Nool
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The Extended or Level 2 BLAS is intended to improve the performance of portable programs on high-
performance computers. In this paper we examine where Extended BLAS routines may be inserted in the
LINPACK, such that no changes in the parameter list have to be made. We also discuss why, for some
algorithms, a simple restructuring in terms of Level 2 BLAS fails. We do not attempt to re-design the algo-
rithms or to change the data structure. We concentrate on the translation of calls to original ( Level 1)
BLAS into calls to Level 2 BLAS in order to improve readability, modularity and efficiency. This examination
results in a still portable subset of the LINPACK with a better performance than the original routines. The
measured performances of original and modified LINPACK routines on the CDC CYBER 990, CDC CYBER
205, CRAY X-MP and the NEC SX-2 are compared and analyzed.
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Key Words & Phrases: Matrix-vector operations, BLAS, Extended or Level 2 BLAS, Vector and parallel com-
puters, Efficiency, Portability, Performance Measurements.

Note: This paper is submitted for publication elsewhere

1. INTRODUCTION

On vector and parallel computers the number of floating point operations is not a suitable measure to
check whether a particular algorithm is faster than another. It is well-known that on such machines
optimization on vector-vector level like the original BLAS[14] is not sufficient, and that larger units
than the BLAS are required. More precisely, on uniprocessor vector machines the set of matrix-
vector operations of the Extended BLAS[5] seems to be well suited. On multiprocessor machines, and
machines where the performance is dominated by data traffic, better performance can be achieved by
the use of Level 3 BLAS[4]. For those architectures the original matrices are partitioned into blocks
and the matrix-matrix operations are performed on those blocks. As a consequence, algorithms must
be recasted in terms of matrix-vector or matrix-matrix operations to reduce the number of memory
references; such a reduction will increase the efficiency of high-performance computers.

A well-known technique that is used to achieve high rates of execution is to overlap operations if
two operations are independent. For the _AXPY operation ( y «y + a.x ) two floating point
operations can deliver one result per clock cycle. The same rate can sometimes be obtained for the
—DOT operation. Another way to reduce the number of memory references is the technique of loop-
unrolling(7, 8], where the output register of one vector instruction is the same as one of the input
registers for the next instruction. On a CRAY-1 supervector performance can be achieved without
resorting to assembler language when applying this technique.

Van der Vorst[21] discusses the need to adapt and extend general numerical software libraries, so
that they perform efficiently on vector and parallel computers as well. We will show that using the
Level 2 BLAS may be a major step in this direction. Especially on high-performance machines, the
use of existing libraries will be preferable; for small runs or for testing parts of a code, it is desirable
to maintain portability to other machines. We have concentrated on the LINPACK as an example of
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a widely used library. Moreover, the codes are easily available, via the NETLIB facility[8].

Though we realize that often an extensive restructuring of the codes (see, e.g., Dongarra, Kaufman
and Hammerling[9], and Dongarra and Sorensen[10]) will be necessary in order to improve the perfor-
mance, only small modifications are applied here. Our aim is to insert Level 2 BLAS routines in the
LINPACK package without changing the parameter list and the data structure and to keep the same
round-off pattern. We assume that users of portable software do not like to adapt their programs.
Any adaptation of the parameter list will result in changes in the calling program. For that reason, we
have excluded many routines from insertion of the Level 2 BLAS rather than to allow additional
workspace or data restructuring.

Currently, a new linear algebra package, the LAPACK]1] is being developed based on the LIN-
PACK{[3] as well as the EISPACK][12,19] libraries. The use of the BLAS, including Level 2 and 3,
will be the basis to achieve efficiency for that package. In order to improve the performance, the codes
will be restructured extensively, whereas some algorithms may be deleted, others may be extended. As
opposed to our strategy, we expect that the data structure and the calling sequence of the LAPACK
library may be fairly deviate from the original LINPACK library.

In Section 2, we discuss the recoding strategy and we also mention which loops cannot be replaced
by calls to Level 2 BLAS. Examples of recoding for various types of matrices are given in Section 3.
Throughout this paper timings on various machines are given. These timings, of course, depend on the
properties of the Level 2 BLAS routines being called, and on the quality of the compiler. In Section
4, the performances of the Level 2 BLAS are considered. We used its model implementation{6], and as
far as available, a machine-dependent implementation. In Section 5, execution times of the original
LINPACK and the modified codes are compared. Finally, some remarks on the use, the contents and
the data structure of the Level 2 BLAS can be found in Section 6.

2. RECODING STRATEGY
The naming convention for the LINPACK routines that we have considered, is as follows. The first
character indicates the data type of the matrix :

S - REAL

C - COMPLEX

The second and third characters denote the kind of matrix :

GE - General

GB - General band

PO - Positive definite

PP - Positive definite packed

PB - Positive definite band

TR - Triangular

GT - General tridiagonal

PT - Positive definite tridiagonal
SI - Symmetric indefinite

SP - Symmetric indefinite packed

For each form there are four subroutines :

FA - Factor
CO - Estimate condition
SL - Solve

DI - Determinant, inverse, inertia

The original LINPACK subroutines are based on the Level 1 BLAS. Most of the loops containing
calls to _AXPY or _DOT can be replaced by a single call to a Level 2 BLAS routine. The advantages
of the use of the Level 2 BLAS are :

- the modularity and clarity of the LINPACK subroutines are improved.
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- operating on the matrix-vector level offers more possibilities for speed improvement.

- LINPACK still remains portable and can be executed on all kinds of serial and vector computers,
for which the model implementation or a machine-dependent implementation of the Level 2 BLAS
are present.

The subroutines have been rewritten in the following way :
1. FORTRAN66 — FORTRANT7
Examples :
- GO TO statements have been replaced by IF THEN ELSE constructions to improve the readability.
. omission of tests on empty loops.
. array specifications have been adapted according to FORTRAN77.
2. insertion of Level 1 BLAS routines with increment value greater than 1.
Examples :
- to determine the largest off diagonal element in a column, LINPACK uses I_AMAX, and for the
largest off-diagonal element in a row a loop is used. Now in both cases I_AMAX is called.
. to swap two rows a call to _SWAP has been inserted.
3. loops with calls to .AXPY and _DOT have been replaced by a call to a Level 2 BLAS routine, if
possible.

Not nearly all LINPACK routines can be restructured in terms of Level 2 BLAS modules for the
following reasons :

1. The scaling that is done in _CO routines makes it impossible to substitute Level 2 BLAS routines
for sections of the existing code. Nevertheless, the performance can change, since each _CO routine
calls its corresponding _FA routine.

2. Not every routine performs a matrix-vector operation. For example, SGBDI computes only the deter-
minant of a factorized matrix.

3. The absence of sufficient workspace prohibits a useful modification for subroutines computing
Cholesky, QR or singular value decomposition, updating, downdating and exchanging; those are
not considered in this paper. If sufficient workspace is missing in the parameter list, subsequent
matrix-vector operations can not pass temporary information. An illustration :

DO 10J = L, JU

T = —SDOT (N—L+1, ULL), 1, U(LJ), 1) / U(L,L)
CALL SAXPY (N—L+1, T, U(L,L), 1, U(L,3), 1)
10 CONTINUE

Clearly, this loop could be replaced by

T = —10€E0/ U(LL)
CALL SGEMYV ('Transpose’, N—L+1, JU—JL+1, T, U(L,JL), LDU, U(L,L), 1, 0.0E0, WORK, 1)
CALL SGER (N—L+1, JU—JL+1, 1.0E0, U(L,L), 1, WORK, 1, U(L,JL), LDU)
if workspace of length ju —jl +1 were available. Note that in the original code only a scalar value
is passed.

4. Operations on complex symmetric matrices have not been included in the Level 2 BLAS. Hence,
the CSI_ subroutines could not be restructured. The subroutines for complex Hermitian matrices
did not present additional problems, except that we missed a conjugated _SWAP.

3. For the solution of Ax = b, by LU-factorization, the solution of Ly = b and then Ux = y is
required. Since L is not explicitly stored, the same pivoting and elimination operations are applied
to b and to the columns of 4 in the factorization routine, and this prohibits the use of Level 2
BLAS routines. Of course, the solution of the second equation Ux = y can be translated into calls
to BLAS2 modules.
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3. SOME NOTES ON THE RECODING

3.1. General matrices

To give an illustration of the recoding we analyze a part of the routine SGEFA. This routine factors a
real matrix by Gaussian elimination with partial pivoting. At each step in the original code, the k-th
reduced submatrix is modified as follows:

DO30J=K+1,N
T = A(LJ)
IF (L .EQ. K) GO TO 20
ALY = AKK,)
AKD) =T
20  CONTINUE
CALL SAXPY (N—K, T, A(K+1,K), 1, A(K+1,5), 1)
30 CONTINUE

Obviously, the k-th and I-th row starting in element k+1 can be interchanged outside the loop. This
modification does not only save superfluous tests on / equal k, but also this operation can be vector-
ized now. The remaining part of the loop is a simple rank-1 update. The original LINPACK code can
be replaced by

IF (L .NE. K) THEN
CALL SSWAP (N—K, A(L,K+1), LDA, A(K, K+ 1), LDA)
END IF
CALL SGER (N—K, N—K, 1.0E0, A(K+ 1,K), 1, A(K,K+1), LDA, A(K+1,K+ 1), LDA)

We have showed here a straightforward translation of the original code into a Level 2 BLAS code. In
the literature, other algorithms are discussed to perform this factorization, including methods that can
be carried out by calls to Level 2 BLAS. For instance, in Dongarra and Sorensen[10], three alternative
methods are given all updating only the k-th row or column instead of the entire submatrix of order
k, as in the LINPACK code. Dongarra and Eisenstat[7, Table III} show how one of these methods,
performing only matrix-vector multiplications, produces supervector speed on a CRAY-1 without
resorting to assembler language. For this purpose they suggested the technique of loop-unrolling to
reduce the number of memory references. This technique is very convenient for vector-register
machines, but on a direct-memory access machine, like the CYBER 205, the effect is less obvious.

For SGEFA this has the following consequences. Though both methods have the same number of
floating point operations, the number of vector operations is different. The LINPACK algorithm
needs k vector operations for k=1, - - - ,n—1 per step, whereas the Dongarra-Eisenstat approach
requires n—1 vector operations per step. It turns out that, on the CYBER 205 with its large startup
times the Dongarra-Eisenstat approach doubles the execution time. We observe, that we have found
two different algorithms, both performing the same factorization, though with a quite different perfor-
mance characteristic. It seems that each architecture can claim its best algorithm. The LAPACK pro-
ject aims to choose the structure that provides the best “average” performance over a range of target
machines, we wonder what the “average” will be in this case.

3.2. Band matrices

For band matrix routines the modifications are more complicated. The storage convention of the
Level 2 BLAS is similar to that of the LINPACK. Hence matrices are stored in rectangular arrays,
such that diagonals of the matrix are stored in rows, and columns are stored in corresponding
columns of the array. Consider SGBFA that factors a real band matrix. Again two rows must be inter-
changed and in the original code the elimination part is carried out by SAXPY-operations:




MM = M

IF (JU .LT. K+1) GO TO 90
DO 80J = K+1,1U

L=L-—1
MM = MM — 1
T = ABD(L,J)

IF (L .EQ. MM) GO TO 70
ABD(L,J) = ABD(MM,J)
ABD(MM)J) = T
70  CONTINUE
CALL SAXPY (LM, T, ABD(M+ 1K), 1, ABD(MM + 1), 1)
80 CONTINUE
90 CONTINUE

The row interchanging can be implemented by means of a SSWAP with increment values LDA-], ie.
one less than the leading dimension declared in the calling program. The same trick can be applied
for the elimination; the reduced submatrix is then stored in a nonrectangular array. The modified
code becomes

IF (L .NE. M) THEN
CALL SSWAP (JU—K, ABD(L—1,K+1), LDA—1, ABD(M—1,K+1), LDA—1)
END IF
CALL SGER (LM, JU—K, 1.0E0, ABD(M+ 1, K), 1,
+ ABD(M—1,K+1), LDA—1, ABD(M,K+ 1), LDA—1)
In general, the band width and the corresponding vector length will be too small to obtain a high per-
formance.

3.3. Positive definite matrices

The number of floating-point operations for factorizing symmetric positive definite full matrices is
about half the corresponding number of operations for nonsymmetric matrices. The triangular factori-
zation can easily be performed by calls to _TRSV, the triangular solver of the Extended BLAS. The
basis operation to factorize a general matrix is the rank-1 update _GER, as described in Section 3.1.
The performance of this update is more than twice that of the triangular solver ( _TRSV ) used for the
symmetric case. Indeed, our experiments ( see Section 5 ) show that when factorizing symmetric
matrices, it does not always pay to exploit the symmetric structure. This is another example of an
algorithm that takes advantage of a special structure, although it will not always be faster than one
that ignores the special structure. Algorithms designed for structured systems may have to be
reworked to be competitive on a vector machine, as is shown by Kaufman[13] and others.

3.4. Symmetric indefinite matrices

The recoding of the factorization of symmetric indefinite matrices (SSIFA, SSPFA, CSIFA, CSPFA, CHEFA
and CHPFA) requires some explication. For the real symmetric case, the code used to perform the
2 X 2 pivot block elimination in the original LINPACK looked like

Forj =k—2to1by —1
mul, = dyy ag + dpy g

Fori = 1toj
g « a; + mul, ay
End
muly_y = dy ag + dp aj;— 341
Fori =1toj
aj « ay + mul_y g5
End
“ aj = mul

A —1 = mub_,
End
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where the d;’s can be computed outside the outermost loop. Both i-loops have been implemented
using _AXPY's. If we wish to use matrix-vector operations rather than vector-vector operations we

might replace (3.4.1) by

Forj=k—2tolby —1
muly = dyy ag + dip a5

End
Forj=k—2tolby —1
Fori =1toj
aj «— a; + muly ay
End
End

Forj = k—2to1by —1
muli_y = dy ag + dp aj;—

End
Forj = k—2tolby —1
Fori =1toj
a,~j « q; + mulj,k_l ik —1
End
End
Forj=k—2to1by —1
ajx = muly,
G —1 = mulje_
End

(34.2)

Obviously, the matrix updates are no symmetric rank-1 updates and Level 2 BLAS routines are not

available. For that purpose we have to split the operations into
Forj=k—2to1by —1

Fori =1toj
,a,~j — & + du ajk (/7
End
End
Forj =k—2to1lby —1
Fori = 1toj
a,~j « a4 + d12 4k -1 Qi
End
End
Forj=k—2tolby —1
Fori =1¢toj
aj « a; + dy ap ;)
End
End
Forj=k—2to1by —1
Fori = 1toj
a,-]- & a; + dzz aj,k_l Qi —1
End
End

Forj =k—2to1by —1
ap <« dyag +dpaj-y
Ajx—1 < dy aip + dyp i
End

Let a ; and g ;—; denote the k-th and (k — 1)-st column of A. Then (3.4.3) becomes

(3.4.3)




I G S R S S

4D 4, +dnara,”
4P « 4V +dpagar” (3.4.4a)
AP 4D +dy ag-a,”
4 AW <40 tdpara"
and two vector updates
I a Y «dyaxtdpag (3.4.4b)

2 apVedyar+tdpar,

The first and fourth updates are now symmetric rank-1 updates, and the second and third matrix
update can be replaced by a single rank-2 update. However, the original loop takes

2(k —2)(k+2)
operations to compute the submatrix 4, and here we have
4(k—2)(k—3/2)
operations. So, at the cost of about twice as many operations we could translate the j-loop of (3.4.1)
into three calls to Level 2 BLAS routines.
Notice that in (3.4.4a) only two vectors a ; and a ,_; are involved for updating. The matrix opera-
tion may be carried out by just one single Level 2 BLAS rank-2 update, performing
A® 4 +axyT+ay xT (3.4.53)
For that purpose we have to construct the vectors, say
X =crayrt+cyar (3.4.5b)
y=ciaptcsar
and solve the following equations for the symmetric case
2acy ¢35 =dy
2acycq =dy (3.4.6a)
acycqg tacycy3 =dp =dy
and for the complex Hermitian case
aci ¢y tacyc3 =dy
acy €y +acy ey =dy (3.4.6b)
acycy tac,c3 =dy,

where dy; and dy, are real numbers and d\; = d;; are complex numbers for complex Hermitian
matrices. In the real symmetric case, we can determine real values for the ¢;’s and a. For real sym-
metric or complex Hermitian matrices, we can use SSYR2 and SSPR2, or, CHER2 and CHPR2, respec-
tively. The set of Level 2 BLAS, however, does not provide routines for complex symmetric matrices.
Consequently, the CSIFA and CSPFA can not be adapted.

Unfortunately, the subroutines to factorize real symmetric and complex Hermitian matrices does
not use any workspace. Since we do not wish to change the parameter list, we have to use some space
of the matrix 4. In (3.4.7), the columns a , and a ;_, are replaced by the the vectors x and y from
(3.4.5b) and after updating of 4, they will contain the values of (3.4.4b); the same information is
passed as by the original code. This implies that for instance a call to the modified SSIFA can be

£
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followed by a call to the original SSISL, or SSIDI. The algorithm becomes

I k 5~ 2 then
Compute 61,8,,83,84, such that a , and a ;_; will contain x and y of (3.4.5b)
ay <8 ay
ar <«<ap+&ar,
Ar-1<8a,
Ap-1 < a1 + 8 a,

Compute o r r
Ay <~ Ay taara,, taagjay (3.4.7)

Compute 7v1,v2,73,Y4, such that a , and a ,_; become the vector updates (3.4.4b)

Gr <M ag

G «<aptyv2a,-

Q-1 < V38 k-1

Qp-1 < dr—1 T Y40

End if
We observe, that we have not changed the strategy, we have only changed the order of computa-

tion. Tables 5a-b show that the rank-2 update codes require considerably less execution time. Note
that the application of a rank-2 update would be much more profitable, if workspace were on hand.

3.5. Tridiagonal matrices

The general tridiagonal matrices in _GTSL and the symmetric positive definite tridiagonal matrices in
—PTSL are not stored according to the convention of general band matrices; their description consists
of three or two array names, respectively. So, Level 2 BLAS routines can not be used for such
matrices. Moreover, if as usual, the diagonals were stored in rows, the maximum vector length would
not exceed the bandwidth of two or three, which would imply scalar speed.

In the last few years, many techniques for bi- and tridiagonal systems have been developed for
advanced computer architectures[20, 22]. If diagonals were stored by columns. rather than by rows,
efficient bi- or tridiagonal solvers could be implemented as special cases for band matrices. A Level 2
BLAS implementation would be of much more interest, if such efficient codes for diagonal systems
were included.

4. PERFORMANCE OF THE LEVEL 2 BLAS

The performance of both the original and the modified LINPACK is determined mainly by the per-

formance of the Level 1 and Level 2 BLAS, respectively. In this section, we first review the peak per-

formance of the machines considered in this paper. Then we list the speed in Mflops of the Extended

BLAS routines. Finally, we show which Level 2 BLAS routines are called by the LINPACK routines.
Table 1 contains the cycle time and peak performance of the various machines.

Machine cycle time in nanoseconds  peak performance in Mflops
CDC CYBER 990 16 : 60
CDC CYBER 205 20 200
CRAY X-MP/2 (1 proc.) 8.5 235
NEC SX-2 7 1300

TABLE 1 Cycle Times and Peak Performances

At this moment, on the CDC CYBER 205 optimized versions of all real Level 2 BLAS routines are
available as well as the complex rank 1 and 2 updates. For the other machines, only the model imple-
mentation[6], which is written in portable FORTRANT77, is available, although its performance is much




below the best possible. Timing results of the model implementation and of the machine-dependent
CWI BLAS?2, optimized for the CYBER 205, are listed in Tables 2a-b ( the symbol - denotes : not yet
available ). All dense matrices are of order 255 and all band matrices are of order 6500 with a max-
imum band width of 10, so all matrices contain approximately the same number of elements. For
each routine two Mflops values are given, one for INCX = (INCY = ) 1 and one for INCX = 1 and
INCY > 1, in case of two vector arguments, or INCX > 1 otherwise. These combinations of increment
values often occur in the implementation of linear algebra subroutines.

The routines for solving triangular equations _TRSV, _TPSV and _TBSV allow for the matrix to be
stored either in the upper or lower triangle, i.e., UPLO = "Upper’, or UPLO = ’Lower’. The parameter
TRANS is used to specify whether the operation is performed on the matrix or its transpose. The per-
formances of all possible cases are listed, where the suffices i mean :

1 UpLO = "Upper’, TRANS = ’No Transpose’
2 UPLO = "Upper’, TRANS = ’Transpose’
3 uPLO = 'Lower’, TRANS = ’No Transpose’
4 UPLO = ’Lower’, TRANS = "Transpose’
Mflops for Real Extended BLAS routines
INCX = INCY = 1 INCX = 1, INCY > 1

CYBER CYBER CRAY | NEC |CYBER CYBER CRAY | NEC
990 205 X-MP | SX-2 990 205 X-MP | SX-2
model | model { CWI | model | model | model | model | CWI | model | model
impl. | impl. | BLAS2| impl. | impl | impl | impl | BLAS2| impl | impl
SGEMV | 17 75 89 118 393 4 4 88 116 379
SGBMV 2 3 38 14 16 2 3 33 14 14
SSYMV 9 50 51 82 136 6 7 51 70 132
SSPMV 7 8 49 81 135 7 7 49 75 127
SSBMV 2 2 50 4 7 2 4 42 4 6
STRMV | 15 41 55 83 130 3 4 54 54 128
STPMV 4 4 51 84 132 4 4 51 54 124
STBMV 3 4 35 12 13 2 3 32 11 12
STRSV 1| 7 8 49 78 114 3 3 47 65 116
STRSV 2| 8 31 37 53 91 8 5 37 44 88
STRSV 3| 22 35 46 79 117 4 3 45 60 117
STRSV 4| 8 11 37 52 89 8 5 36 47 88
STPSV 1| 3 4 4 84 116 4 3 43 66 113
STPSV 2| 8 5 35 54 91 8 5 34 46 87
STBSV 1| 2 2 5 11 11 2 2 5 11 11
STBSV 2| 4 3 5 5 11 3 3 5 5 10
SGER 23 77 94 118 410 | 24 77 94 71 416
SSYR 16 47 60 99 257 4 4 60 63 231
SSPR 4 4 60 99 252 4 4 60 64 217
SSYR2 21 58 73 130 338 7 6 73 88 303
SSPR2 8 6 73 129 333 8 6 73 90 291

TaBLE 2a Mflops for Real Extended BLAS routines
n=6500, ki=ku=3 V k=9 for band matrices,
m=n=255 for dense matrices.
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Mflops for Complex Extended BLAS routines

INCX = INCY = | INCX = 1, INCY > 1

CYBER CYBER CRAY | NEC |CYBER CYBER CRAY | NEC
990 205 X-MP | SX-2 990 205 X-MP | SX-2

model | model | CWI | model | model | model | model | CWI | model model
impl. | impl. | BLAS2| impl impl. | impl. | impl. | BLAS2 impl. | impl

CGEMV | 14 34 - 147 551 9 8 - 131 541
CGBMV 4 4 - 37 27 6 7 - 33 25
CHEMV 8 13 - 110 232 7 12 - 104 228
CHPMV 9 13 - 110 231 7 12 - 105 229
CHBMV 4 10 - 10 11 3 9 - 9 11
CTRMV | 10 28 - 128 270 7 8 - 116 266
CTPMV 9 8 - 129 270 7 8 - 113 260
CIRSV 1| 7 2 - 127 252 8 8 - 113 255
CTRSV 2| 10 8 - 82 166 | 12 8 - 81 161
CTRSV 3} 17 26 - 125 259 8 8 - 114 256
CTRSV 4 7 8 - 76 161 | 15 8 - 79 160
CTPSV 1 9 8 - 124 254 | 10 8 - 113 254
CTPSV 2| 16 8 - 82 164 | 12 8 - 78 159
CTBSV 1 2 2 - 33 25 4 6 - 31 25
CTBSV2| 3 6 - 11 18 7 6 - 11 18
CGERC 14 34 124 150 567 | 17 34 123 149 560
CGERU | 17 34 134 150 571 | 17 35 133 149 564
CHER 13 28 89 129 299 7 8 88 136 298
CHPR 9 8 89 130 305 9 8 89 121 299

CHER2 15 29 99 157 331} 10 14 9% 146 330
CHPR2 11 14 9% 157 336 8 13 95 144 332

TABLE 2b Mflops for Complex Extended BLAS routines
n=6500, kl=ku=3 V k=9 for band matrices,
m=n=255 for dense matrices.

Obviously, the CYBER 205 compiler fails to vectorize the routines for packed forms, i.e., the rou-
tines with a P as third character. It should be noted that also a nonsequential storage (see the right
part of Table 2a ) degrades the performance of both CYBERs considerably. The optimized FTN200
version for the CYBER 205 as well as the model implementation on the CRAY and the NEC are less
sensitive to nonsequential storage. Because of the specific storage scheme for banded matrices (cf.
Section 3.2 ) the vector-length is at most k/+ku +1 for general banded matrices and k +1 for other
banded matrices, if operations are performed on columns rather than rows. However, operating on
diagonals stored in rows of the array, results in vector lengths close to n and consequently for large n
high performances can be obtained despite the stride problem. So, both the storage convention and
the column-oriented approach of the model implementation cause the low performance for the
~GBMV and _TBMV routines. For the CWI BLAS2, which operates on diagonals, much higher
Mflops-rates are obtained compared to the other machines. It would have been better if the model
implementation had been coded along these lines; its performance for banded matrices is very poor,
now.

Note that for the solution of a banded matrix in the _TBSV routines, the recurrence relations

&
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prevent vectorization. We remark, however, that for banded systems much higher performances can
be achieved than the Mflops-rates listed here. In this context we refer to [22] in which a number of
techniques for solving tridiagonal linear systems are discussed. Most techniques are also applicable to
more general banded systems.
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SSIDI | - + - - -« - - < o o o 4 4 - . L.

SSPFA | - - - -« -« « - o o < o < o o+ < %
SSPDI | - - 4 - =« « - - < o o 4 o . o . .

STRSL | - - - - + + + + - - - - - - .+ .+ -
STRDI | - - - - - - - .+ <« < - < 4% - . - -

+

TaBLE 3 Relation between Real Modified LINPACK routines and Level 2 BLAS

The overview in Table 3 explains which of the specific Level 2 BLAS routines were inserted in the
LINPACK subroutines. In practice, the Mflops-rates of Tables 2a-b will not be reached for LIN-
PACK routines: in most algorithms the Level 2 BLAS operations are performed on matrices of order
k, where k=1, - - - ,n for dense matrices; for banded matrices k will not exceed the band width.

5. EXPERIMENTS

In this section we compare the performance on vector computers of several original LINPACK rou-
tines (i.e., those based on Level 1 BLAS subroutines) with the performance of the modified LIN-
PACK routines (i.e., those based on the Level 2 BLAS subroutines). All new codes were primarily
tested on a serial machine, a CDC CYBER 750. As opposed to the high-performance vector comput-
ers discussed in this paper, this serial machine can be used interactively, a very pleasant circumstance.
Not only correctness tests have been carried out on this machine, but also some timings of the pro-
grams have been collected. Since, by replacing calls to the Level 1 BLAS by calls to Level 2 BLAS,
the number of floating point operations remains unchanged, we expected only a small effect from this
recoding on the CYBER 750. Nevertheless, in some cases we found significant deviations in perfor-
mance. It turns out that calls to the logical function LSAME in the Level 2 BLAS routines are much
more expensive than straightforward comparison of characters.
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We expect LINPACK based on Level 2 BLAS to run more efficiently than LINPACK based on
Level 1 BLAS because of the following reasons : less subroutine call overhead, less parameter check-
ing within the subroutines and less increment testing in loops. Actually, the use of any BLAS is
rather expensive, in particular, if no optimized implementations are available. Central to most algo-
rithms in linear algebra are inner product computations (_DOT operation) and additions of a scalar
multiple of one vector to another vector (_AXPY operation). If one should replace the BLAS routines
for these operations by single DO-loops, avoiding parameter checks and tests on increment values
(always equal to 1 in a LINPACK code), the execution time will decrease extremely. Of course, the
compiler must be able to recognize the loops and replace them by fast in line codes, as most com-
pilers do nowadays. ~

Table 4 shows the various BLAS implementations which we have used on four different vector com-
puters.

Level 1 BLAS Level 2 BLAS
CDC CYBER 990 "rolled” model
CDC CYBER 205 CDC CWI / model
CRAY X-MP/2 SCILIB model
NEC SX-2 "rolled” model

TABLE 4 Survey of available BLAS implementations

We remark that analogous to [2], the "unrolled loops” in the model implementation of the original
BLAS were replaced by simple loops in FORTRAN. On the CYBER 205, optimizations of both the
Level 1 and Level 2 BLAS are available. It should be mentioned that, as a matter of fact, even two
Level 1 BLAS optimizations exist for the CDC CYBER 205: the CDC BLAS, distributed by CDC,
and the CWI BLAS[17]. In some cases the CWI BLAS runs significantly faster, e.g., for complex vec-
tors with a non-unit stride[16]. However, for small » and for unit stride the CDC BLAS runs faster
mainly because of the lack of error testing. If we want to present the actual speedup we have to select
the CDC BLAS, because the original LINPACK deals with unit strides. The implementation and
optimization of the Level 2 BLAS on the CYBER 205 are described in Lioen, Louter-Nool and Te
Riele[15]. The codes are available in the NUMVEC-library[18].

Let us first consider the performances of the real LINPACK routines in Table 5a. Both CYBER
compilers do not generate very optimal code for the model implementation of the Level 2 BLAS.
When we compare for the CYBERs the performance of the original LINPACK (Columns 1 and 3)
with those of the modified LINPACK executed with the model Level 2 BLAS (Columns 2 and 4) we
see that the performances do not always improve. Obviously, most _SL routines for solving a system
of linear equations become less efficient. Moreover, the modified routines operating on packed arrays
are slower; on the CYBER 205 more than a factor 3. By comparing the results of the original LIN-
PACK to those with a coded Level 2 BLAS (cf. Columns 3 and 5), one observes a considerable
increase of performance. Only the modified SPBFA has become slower; this is also true for the other
machines (cf. Section 3.2).

In Table 5a also the performances of the original and the modified LINPACK are compared on
both the CRAY X-MP (Columns 6-7) and the NEC SX-2 (Columns 8-9). At present, the system
library of the CRAY in Bracknell provides a coded version of the Level 1 BLAS but not of the Level
2 BLAS. For the real case, the modified LINPACK with the model Level 2 BLAS requires less time
than the original LINPACK with a coded Level 1 BLAS, except for the routines for banded matrices.
On the NEC, where optimized versions of both Levels of BLAS are lacking the modified LINPACK
based on the Level 2 BLAS is the best choice. Note that the performances of the routines for packed
(ie, —PP__ and _sP__ ) and unpacked (i.c., _PO__ and _SI__ ) arrays are identical.
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Timings of Real LINPACK routines in milliseconds

CYBER 990 CYBER 205 CRAY X-MP NEC SX-2
oignal | §ING | oignal | GRS | mias | ot | piag | o | gg

LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK
SGEFA | 696.3 3809 | 2875 192.3 150.6 129.5 94.6 91.2 47.1
SGESL o 9.652 203 4.063 114 3.386 1.766 1.569 1.533 1.898
SGESL 1} 10.1 16.9 4911 5.971 3.946 2.884 2477 2.056 2.483
SGEDI (1318.8 7740 | 505.7 398.6 3225 2422 189.1 164.8 714
SGBFA | 319.3 2528 | 227.6 319.2 219.8 36.8 86.4 137.8 1324
SGBSL 0| 124.8 1273 87.9 154.0 65.7 25.7 224 37.6 316
SGBSL 1| 137.5 101.4 91.6 124.2 70.6 354 40.6 43.7 35.0
SPOFA | 514.6 811.9 | 279.0 258.3 219.7 171.4 142.7 118.9 81.5
SPOSL 9.888 184 3.137 9.883 3.078 2.351 1.932 1.754 1.122
SpODI | 892.0 5195 | 469.2 3429 260.5 186.0 122.7 162.6 70.8
SPPFA | 503.5 7312 | 2885 1055.3 2384 165.5 140.9 120.8 81.7
SPPSL 9.369 217 4.380 29.7 3.354 2.274 1.924 1.792 1.152
SPPDI | 901.6  2410.5 | 450.1 3027.3 301.9 1727 136.0 165.2 86.2
SPBFA | 7123 7183 | 4103 1143.0 15070 169.2 356.9 188.4 360.7
SPBSL 140.5 101.8 94.8 1122 50.1 35.0 350 41.5 22.5
SSIFA 5196 2593 | 2878 176.4 133.9 108.8 70.0 92.1 32.5
SSIDI 946.7  1131.2 | 467.7 299.0 291.3 235.7 169.6 214.5 104.6
SSPFA | 5053 12530 | 2723 1507.3 133.6 1054 62.8 92.1 332
SSPDI 9354  1441.2 | 463.3 1502.9 307.5 256.0 159.8 215.8 106.2
STRSL 1 5.339 3.101f 2.488 2.084 1.613 0.997 0.843 0.842 0.654
STRSL 2| 5.196 64331 2493 7.969 1.538 1.061 0.853 0.805 0.560
STRSL 3 5.017 8.885] 2.875 6.441 1.964 1.577 1.288 1.121 0.717
STRSL 4 4.257 8.982| 2707 2.294 1.936 1.607 1.261 0.993 0.690
STRDI 1| 484.7 2416 | 216.7 169.6 1280 | 88.2 62.7 87.0 40.9
STRDI 2| 476.4 2538 | 247.1 171.2 129.6 91.0 62.8 86.3 41.0

TaBLE 5a Timings of Real LINPACK routines in milliseconds,

n=6500, kl=ku=3 V k=9 for band matrices,
m=n=255 for dense matrices.

The efficiency of the model implementation is highly dependent on the FORTRAN compiler avail-
able. Table 5b - containing the results of the complex LINPACK - shows that none of the Level 2
BLAS routines are vectorized well by the CYBER compilers; most operations are performed at scalar
speed. Since on the CYBER 205 for the timings of the original LINPACK (Column 3) an optimized
Level 1 BLAS was used, the performance decreases using the modified LINPACK executed with the
model Level 2 BLAS (Column 4). Nevertheless, when executed with the CWI BLAS2 (Column 5) a
considerable speed up is obtained, or can be expected (only COMPLEX rank updates are available, yet).
On the CYBER 990, the results of the original and modified complex LINPACK are comparable.
Due to the absence here of an optimized Level 1 BLAS also the original LINPACK performs badly.
It appears that, on the CYBERSs, the use of the model implementation of the complex BLAS and, in
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many cases, the real BLAS must be dissuaded.

On the CRAY, with a coded Level 1 BLAS, an optimized Level 2 BLAS is needed to improve the
performance of the modified LINPACK, and henceforth, this explains the execution time reduction
compared to the original LINPACK (cf. Column 6 and 7). From Columns 8 and 9, it follows that,
on the NEC, where optimized versions of both Levels of BLAS are lacking the modified LINPACK is
the best choice, also for the complex case (except for CPBFA).

Timings of Complex LINPACK routines in milliseconds

CYBER 990 CYBER 205 CRAY X-MP NEC SX-2
.. model .. model CWI .. model .. model
original | pyagy | original | pragy | prasy | original | pragy | origimal | pracy
LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK | LINPACK

CGEFA | 25135 25164 | 748.7 1420.4 4026 |3360 3481 175.8 122.1

CGESL 0| 334 32.7 10.5 110.9 - 4328 4612 2612 2246
CGESL 1 86.7 822 14.8 40.0 - 6.879 7319 4502  3.997
CGEDI | 49014 4949.7 |1451.7 28674 - 645.1 684.1 3358 2272
CGBFA 610.1 611.8 | 3875 5005 4175 | 106.7 110.3 154.0 138.9
CGBSL 0| 2948 2929 | 1734 326.6 - 370 35.2 60.8 49.9
CGBSL 1| 4004  405.8 | 191.6 152.4 - 46.3 67.8 96.7 80.5
CPOFA | 3967.3 4024.7 | 809.9  3021.5 - 361.7  409.5 2960 2142

CPOSL 56.3 60.7 132 138.8 - 5.634  5.777 3619 2773
cpoDI | 3090.7 3115.0 |1118.1 1873.0  587.7 [404.8 4009 |289.2 2104

CPPFA | 39145 3919.1 | 808.2  2856.2 - 363.8 4074 (2949 2165
CPPSL 59.7 59.6 132 65.4 - 5.604  5.933 3922 2.820
CPPDI | 2998.5 - 2981.2 [1096.0  5582.8 - 400.8 413.1 288.7 2112
CPBFA | 1927.1 19340 | 8593 1535.5 - 2286  567.1 436.7 5717
CPBSL 4052 3994 | 201.6 390.1 - 55.4 67.9 82.1 57.2
CHIFA | 16172 1624.9 | 646.8 962.3 3338 2340 2170 189.3 112.2
CHIDI | 5580.0 5177.8 [1253.5  3531.7 - 5488 5212 | 4169 2547
CHPFA | 1620.7 1622.6 | 641.0  2839.7 349.6 |[2335 2163 188.2 108.9
CHPDI | 5305.3 5302.7 [1241.2  3433.1 - 5544 5259 | 4152 2570
CTRSL 1 16.3 16.4 5.909 10.3 - 2367 2434 1.427 1.089
CTRSL 2 16.2 16.2 5978 106.1 - 2399 2528 1.393 1.046
CTRSL 3| 444 44.4 8.119 332 - 3.569 4122 2326 1.908

CTRSL 4| 40.6 45.1 8.082 332 - 3498 4082 | 2302 1.938
CTRDI 1| 1561.5 1552.4 | 549.3 9227 305.2 |197.0 1974 151.9 106.2
CTRDI 2| 1543.7 1536.7 | 550.7 9216 3019 |202.1 191.1 149.4 106.1

TaBLE 5b Timings of Complex LINPACK routines in milliseconds
n=6500, kl=ku=3 V k=9 for band matrices,
m=n=255 for dense matrices.
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6. CONCLUSIONS AND REMARKS

In this paper we have shown that by replacing in the LINPACK library calls to Level 1 BLAS rou-
tines by calls to Level 2 BLAS routines - without changing the algorithm, the data structure and the
round-off pattern - a considerable speedup can be obtained, especially when a machine-optimized
Level 2 BLAS code is available. Moreover, the use of the Level 2 BLAS enhances the modularity and
readability of the programs. The subset, which we have developed, can substitute the corresponding
subset of the original LINPACK without the need to adapt any calling program, since the parameter
lists have not been changed. Unfortunately, this restriction prohibits the adaptation of a larger set of
subroutines, like those for QR, SVD and Cholesky factorization, since all suffer from the lack of
sufficient workspace. ‘

Section 4 shows that the model implementation of the Level 2 BLAS achieves a moderate efficiency
on vector-processing machines, although we expect that, by means of small modifications in the model
code, a considerably higher performance can be obtained. We mentioned the alternative implementa-
tion of routines for banded matrices (see Section 4 and [6, Section 3.3]) and the straightforward com-
parison of characters. In the optimized CYBER 205 implementation[15], the test on zero elements is
omitted to achieve better performances for general nonsparse vectors. In [11], techniques to optimize
the Level 2 BLAS code on the NEC SX-2 in particular are presented. Many of them will also be
suited to a more efficient “model” implementation. As long as specialized implementations are want-
ing, an efficient portable set of FORTRAN77 is required. We hope that optimized implementations of
the original and Extended BLAS will be distributed in a similar way as the source codes of the LIN-
PACK and the model implementations of the BLAS which are easily available via the NETLIB facil-
ity[8].

The present LINPACK with Level 1 BLAS routines is not attractive for many vector- and parallel
machines. The results of Section 5 illustrate that much better performances can be achieved by means
of a library based on the Level 2 BLAS. However, we believe that the production of a new linear
algebra library makes more sense than the adaptation of the present library. The substitution of
Level 2 BLAS modules by calls to Level 1 BLAS is too limited. New algorithms have been, and will
have to be developed minimizing the amount of data transfer rather than the number of floating point
operations. Also the data structure becomes more and more important. For instance, the partitioning
of matrices into submatrices or blocks can be useful. Obviously, the poor performances of the algo-
rithms for banded matrices are closely related to the data storage. Moreover, this storage does not
provide for a fast solution of bi- and tridiagonal systems. On many vector machines, the FORTRAN
storage convention of the complex vectors and matrices is rather inconvenient. The COMPLEX data
type to maintain a close correspondence between LINPACK routines for REAL and COMPLEX matrices
causes many superfluous data transfers, because most operations on complex vectors involve a stride 2
problem. Sometimes, it is better to separate the real and imaginary parts, in other cases operations
must be performed controlled by bit vectors. However, in all cases, the performance decreases.
Another difficulty arises when compilers don’t provide complex arithmetic, like the two CYBER com-
pilers considered in this paper.
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