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UNPACK routines based on the Level 2 BLAS 

Margreet Louter-Nool 
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The Extended or Level 2 BLAS is intended to improve the performance of portable programs on high
performance computers. In this paper we examine where Extended BLAS routines may be inserted in the 
UNPACK, such that no changes in the parameter list have to be made. We also discuss why, for some 
algorithms, a simple restructuring in terms of Level 2 BLAS fails. We do not attempt to re-design the algo
rithms or to change the data structure. We concentrate on the translation of calls to original ( Level 1 ) 
BLAS into calls to Level 2 BLAS in order to improve readability, modularity and efficiency. This examination 
results in a still portable subset of the UNPACK with a better performance than the original routines. The 
measured performances of original and modified UNPACK routines on the CDC CYBER 990, CDC CYBER 
205, CRAY X-MP and the NEC SX-2 are compared and analyzed. 

1980 Mathematics subject classification: Primary:65V05. Secondary:65FXX 
Key Words & Phrases: Matrix-vector operations, BLAS, Extended or Level 2 BLAS, Vector and parallel com
puters, Efficiency, Portability, Performance Measurements. 
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1. INTRODUCTION 
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On vector and parallel computers the number of floating point operations is not a suitable measure to 
check whether a particular algorithm is faster than another. It is well-known that on such machines 
optimization on vector-vector level like the original BLAS[l4] is not sufficient, and that larger units 
than the BLAS are required. More precisely, on uniprocessor vector machines the set of matrix
vector operations of the Extended BLAS[5] seems to be well suited. On multiprocessor machines, and 
machines where the performance is dominated by data traffic, better performance can be achieved by 
the use of Level 3 BLAS[4]. For those architectures the original matrices are partitioned into blocks 
and the matrix-matrix operations are performed on those blocks. As a consequence, algorithms must 
be recasted in terms of matrix-vector or matrix-matrix operations to reduce the number of memory 
references; such a reduction will increase the efficiency of high-performance computers. 

A well-known technique that is used to achieve high rates of execution is to overlap operations if 
two operations are independent. For the _AXPY operation ( y ~ y + a . x ) two floating point 
operations can deliver one result per clock cycle. The same rate can sometimes be obtained for the 
_DOT operation. Another way to reduce the number of memory references is the technique of loop
unrolling[7, 8], where the output register of one vector instruction is the same as one of the input 
registers for the next instruction. On a CRA Y-1 supervector performance can be achieved without 
resorting to assembler language when applying this technique. 

Van der Vorst[21] discusses the need to adapt and extend general numerical software libraries, so 
that they perform efficiently on vector and parallel computers as well. We will show that using the 
Level 2 BLAS may be a major step in this direction. Especially on high-performance machines, the 
use of existing libraries will be preferable; for small runs or for testing parts of a code, it is desirable 
to maintain portability to other machines. We have concentrated on the UNPACK as an example of 
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a widely used library. Moreover, the codes are easily available, via the NETUB facility[8]. 
Though we realize that often an extensive restructuring of the codes (see, e.g., Dongarra, Kaufman 

and Hammerling[9], and Dongarra and Sorensen[IO]) will be necessary in order to improve the perfor
mance, only small modifications are applied here. Our aim is to insert Level 2 BLAS routines in the 
UNPACK package without changing the parameter list and the data structure and to keep the same 
round-off pattern. We assume that users of portable software do not like to adapt their programs. 
Any adaptation of the parameter list will result in changes in the calling program. For that reason, we 
have excluded many routines from insertion of the Level 2 BLAS rather than to allow additional 
workspace or data restructuring. 

Currently, a new linear algebra package, the LAPACK{l] is being developed based on the LIN
PACK{3] as well as the EISPACK{l2,19] libraries. The use of the BLAS, including Level 2 and 3, 
will be the basis to achieve efficiency for that package. In order to improve the performance, the codes 
will be restructured extensively, whereas some algorithms may be deleted, others may be extended. As 
opposed to our strategy, we expect that the data structure and the calling sequence of the LAPACK 
library may be fairly deviate from the original LINPACK library. 

In Section 2, we discuss the recoding strategy and we also mention which loops cannot be replaced 
by calls to Level 2 BLAS. Examples of recoding for various types of matrices are given in Section 3. 
Throughout this paper timings on various machines are given. These timings, of course, depend on the 
properties of the Level 2 BLAS routines being called, and on the quality of the compiler. In Section 
4, the performances of the Level 2 BLAS are considered. We used its model implementation[6], and as 
far as available, a machine-dependent implementation. In Section 5, execution times of the original 
UNPACK and the modified codes are compared. Finally, some remarks on the use, the contents and 
the data structure of the Level 2 BLAS can be found in Section 6. 

2. RECODING STRATEGY 
The naming convention for the LINPACK routines that we have considered, is as follows. The first 
character indicates the data type of the matrix : 

S -REAL 
C-COMPLEX 

The second and third characters denote the kind of matrix : 

GE - General 
GB - General band 
PO - Positive definite 
PP - Positive definite packed 
PB - Positive definite band 
TR - Triangular 
GT - General tridiagonal 
PT - Positive definite tridiagonal 
SI - Symmetric indefinite 
SP - Symmetric indefinite packed 

For each form there are four subroutines : 

FA - Factor 
co - Estimate condition 
SL - Solve 
DI - Determinant, inverse, inertia 

The original LINPACK subroutines are based on the Level 1 BLAS. Most of the loops containing 
calls to _AXPY or _DOT can be replaced by a single call to a Level 2 BLAS routine. The advantages 
of the use of the Level 2 BLAS are : 
- the modularity and clarity of the UNPACK subroutines are improved. 
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- operating on the matrix-vector level offers more possibilities for speed improvement. 
- UNPACK still remains portable and can be executed on all kinds of serial and vector computers, 

for which the model implementation or a machine-dependent implementation of the Level 2 BLAS 
are present. 

The subroutines have been rewritten in the following way : 
1. FORTRAN66 ~ FORTRAN77 

Examples: 
. GO TO statements have been replaced by IF THEN ELSE constructions to improve the readability . 
. omission of tests on empty loops . 
. array specifications have been adapted according to FORTRAN77. 

2. insertion of Level 1 BLAS routines with increment value greater than 1. 
Examples: 
. to determine the largest off diagonal element in a column, UNPACK uses LAMAX, and for the 
largest off-diagonal element in a row a loop is used. Now in both cases LAMAX is called . 

. to swap two rows a call to _sw AP has been inserted. 
3. loops with calls to _AXPY and _DOT have been replaced by a call to a Level 2 BLAS routine, if 

possible. 

Not nearly all UNPACK routines can be restructured in terms of Level 2 BLAS modules for the 
following reasons : 
I. The scaling that is done in _co routines makes it impossible to substitute Level 2 BLAS routines 

for sections of the existing code. Nevertheless, the performance can change, since each _co routine 
calls its corresponding _FA routine. 

2. Not every routine performs a matrix-vector operation. For example, SGBDI computes only the deter
minant of a factorized matrix. 

3. The absence of sufficient workspace prohibits a useful modification for subroutines computing 
Cholesky, QR or singular value decomposition, updating, downdating and exchanging; those are 
not considered in this paper. H sufficient workspace is missing in the parameter list, subsequent 
matrix-vector operations can not pass temporary information. Ail illustration : 

DO lOJ = JL,JU 
T = -SOOT (N-L+ l, U(L,L), 1, U(L,J), 1) I U(L,L) 
CALL SAXPY (N-L+ 1, T, U(L,L), 1, U(L,J), 1) 

10 CONTINUE 

Clearly, this loop could be replaced by 
T = - 1.0EO I U(L,L) 
CALL SGEMV ('Transpose', N-L+ l, ru-JL+ 1, T, U(L,JL), LDU, U(L,L), 1, O.OEO, WORK, 1) 
CALL SGER (N-L+ 1, JU-JL+ 1, 1.0EO, U(L,L), 1, WORK, 1, U{L,JL), LDU) 

if workspace of length ju - jl + 1 were available. Note that in the original code only a scalar value 
is passed. 

4. Operations on complex symmetric matrices have not been included in the Level 2 BLAS. Hence, 
the CSL subroutines could not be restructured. The subroutines for complex Hermitian matrices 
did not present additional problems, except that we missed a conjugated _SWAP. 

5. For the solution of Ax = b, by LU-factorization, the solution of Ly = b and then Ux = y is 
required. Since L is not explicitly stored, the same pivoting and elimination operations are applied 
to b and to the columns of A in the factorization routine, and this prohibits the use of Level 2 
BLAS routines. Of course, the solution of the second equation Ux = y can be translated into calls 
to BLAS2 modules. 
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3. SOME NOTES ON THE RECODING 

3.1. General matrices 
To give an illustration of the recoding we analyze a part of the routine SGEFA. This routine factors a 
real matrix by Gaussian elimination with partial pivoting. At each step in the original code, the k-th 
reduced submatrix is modified as follows: 

DO 30 J = K + 1, N 
T = A(L,J) 
IF (L .EQ. K) GO TO 20 

A(L,J) = A(K,J) 
A(K,J) = T 

20 CONTINUE 
CALL SAXPY (N - K, T, A(K + l ,K), 1, A(K + l ,J), l) 

30 CONTINUE 

Obviously, the k-th and /-th row starting in element k +I can be interchanged outside the loop. This 
modification does not only save superfluous tests on I equal k, but also this operation can be vector
ized now. The remaining part of the loop is a simple rank-I update. The original UNPACK code can 
be replaced by 

IF (L .NE. K) THEN 

CALL SSW AP (N - K, A(L,K + l ), LDA, A(K,K + 1 ), LDA) 
END IF 
CALL SGER (N-K, N-K, l.OEO, A(K+ l,K), l, A(K,K+ 1), LDA, A(K+ l,K+ 1), LDA) 

We have showed here a straightforward translation of the original code into a Level 2 BLAS code. In 
the literature, other algorithms are discussed to perform this factorization, including methods that can 
be carried out by calls to Level 2 BLAS. For instance, in Dongarra and Sorensen{IO], three alternative 
methods are given all updating only the k-th row or column instead of the entire submatrix of order 
k, as in the UNPACK code. Dongarra and Eisenstat[7, Table III] show how one of these methods, 
performing only matrix-vector multiplications, produces supervector speed on a CRA Y-1 without 
resorting to assembler language. For this purpose they suggested the technique of loop-unrolling to 
reduce the number of memory references. This technique is very convenient for vector-register 
machines, but on a direct-memory access machine, like the CYBER 205, the effect is less obvious. 

For SGEFA this has the following consequences. Though both methods have the same number of 
floating point operations, the number of vector operations is different. The UNPACK algorithm 
needs k vector operations for k = 1, · · · ,n -1 per step, whereas the Dongarra-Eisenstat approach 
requires n - I vector operations per step. It turns out that, on the CYBER 205 with its large startup 
times the Dongarra-Eisenstat approach doubles the execution time. We observe, that we have found 
two different algorithms, both performing the same factorization, though with a quite different pedor
mance characteristic. It seems that each architecture can claim its best algorithm. The LAPACK pro
ject aims to choose the structure that provides the best "average" pedormance over a range of target 
machines, we wonder what the "average" will be in this case. 

3.2. Band matrices 
For band matrix routines the modifications are more complicated. The storage convention of the 
Level 2 BLAS is similar to that of the UNPACK. Hence matrices are stored in rectangular arrays, 
such that diagonals of the matrix are stored in rows, and columns are stored in corresponding 
columns of the array. Consider SGBFA that factors a real band matrix. Again two rows must be inter
changed and in the original code the elimination part is carried out by SAXPY-operations: 



MM= M 
IF (JU .LT. K+ 1) GO TO 90 
DO 80 J = K+ 1, JU 

L = L - l 
MM=MM-1 
T = ABD(L,J) 
IF (L .EQ. MM) GO TO 70 

ABD(L,J) = ABD(MM,J) 
ABD(MM,J) = T 

70 CONTINUE 

CALL SAXPY (LM, T, ABD(M+ l,K), 1, ABD(MM+ l,J), 1) 
80 CONTINUE 

90 CONTINUE 
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The row interchanging can be implemented by means of a SSWAP with increment values LDA-1, i.e. 
one less than the leading dimension declared in the calling program. The same trick can be applied 
for the elimination; the reduced submatrix is then stored in a nonrectangular array. The modified 
code becomes 

IF (L .NE. M) THEN 
CALL SSWAP (JU-K, ABD(L-1,K+ 1), LDA-1, ABD(M-1,K+ 1), LDA-1) 

END IF 
CALL SGER (LM, JU-K, l.OEO, ABD(M+ 1, K), 1, 

+ ABD(M-1,K + 1 ), LDA-1, ABD(M,K + 1 ), LDA -1) 

In general, the band width and the corresponding vector length will be too small to obtain a high per
formance. 

3.3. Positive definite matrices 
The number of floating-point operations for factorizing symmetric positive definite full matrices is 
about half the corresponding number of operations for nonsymmetric matrices. The triangular factori
zation can easily be performed by calls to _TRSV, the triangular solver of the Extended BLAS. The 
basis operation to factorize a general matrix is the rank-I update _GER, as described in Section 3.1. 
The performance of this update is more than twice that of the triangular solver ( _ TRSV ) used for the 
symmetric case. Indeed, our experiments ( see Section 5 ) show that when factorizing symmetric 
matrices, it does not always pay to exploit the symmetric structure. This is another example of an 
algorithm that takes advantage of a special structure, although it will not always be faster than one 
that ignores the special structure. Algorithms designed for structured systems may have to be 
reworked to be competitive on a vector machine, as is shown by Kaufman(l3] and others. 

3.4. Symmetric indefinite matrices 
The recoding of the factorization of symmetric indefinite matrices (SSIFA, SSPFA, CSIFA, CSPFA, CHEFA 
and CHPFA) requires some explication. For the real symmetric case, the code used to perform the 
2 x 2 pivot block elimination in the original UNPACK looked like 

For j = k - 2 to 1 by - I 
mulk = du ajk + d12 aj,k-I 

For i = I toj 
aij ~ aij + mulk a;k 

End 
mulk-I = d11 ajk + d12 aj,k-I 

For i = I toj 
aij +- °'ij + mulk- I a;,k -1 

End 
ajk = mulk 

aj,k-I = mulk-I 

End 

(3.4.1) 
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where the d/s can be computed outside the outermost loop. Both i-loops have been implemented 
using _AXPY' s. If we wish to use matrix-vector operations rather than vector-vector operations we 
might replace (3.4. l) by 

Forj = k-2to 1 by -1 
mu9k =du ajk + d12 aj,k-1 

End 
For j = k - 2 to 1 by - 1 

For i = 1 toj 
a;j ~ a;j + mu9k a;k 

End 
End 
For j = k - 2 to 1 by - 1 

mu9,k-1 = d21 ajk + d22 aj,k-1 
End 
For j = k - 2 to 1 by -1 

For i = 1 toj 
aij ~ aij + mu9,k- I a;,k -1 

End 
End 
Forj = k-2to 1 by -1 

ajk = mu9k 

aj,k-1 = mu9,k-1 
End 

(3.4.2) 

Obviously, the matrix updates are no symmetric rank-I updates and Level 2 BLAS routines are not 
available. For that purpose we have to split the operations into 

For j = k - 2 to 1 by - 1 
For i = 1 toj 

aij ~ aij + d 11 ajk a;k 

End 
End 
For j = k-2 to 1 by -1 

For i = 1 toj 
aij ~ aij + d12 aj,k-1 a;k 

End 
End 
Forj = k-2to 1 by -1 

For i = 1 toj 
aij ~ aij + d21 ajk a;,k -1 (3.4.3) 

End 
End 
Forj = k-2to 1 by -1 

For i = 1 toj 
aij ~ a;j + d22 aj,k -1 a;,k -1 

End 
End 
For j = k-2 to 1 by -1 

ajk ~du ajk + d12 aj,k-1 

aj,k-1 ~ d21 ajk + d22 aj,k-1 
End 

Let a. k and a. k-I denote the k-th and (k -1)-st column of A. Then (3.4.3) becomes 



1: Ak(l) ~ Ak + d11 a. k a. kT 

2: Ak<2> ~ Ak(l) + d12 a. k a. k-/ 

3: Ak<3> ~ Ak<2> + d21 a. k-1 a. k T 

4: Ak<4> ~ Ak<
3> + d22 a. k-1 a. k-/ 

and two vector updates 

1: 

2: 

a (1) .k ~ d 11 a. k + d 12 a. k-1 

a. k-1<1> ~ d21 a. k + d22 a. k-1 
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(3.4.4a) 

(3.4.4b) 

The first and fourth updates are now symmetric rank-1 updates, and the second and third matrix 
update can be replaced by a single rank-2 update. However, the original loop takes 

2(k - 2)(k + 2) 

operations to compute the submatrix Ak and here we have 

4 ( k - 2 )( k - 3/2) 

operations. So, at the cost of about twice as many operations we could translate the }-loop of (3.4.1) 
into three calls to Level 2 BLAS routines. 

Notice that in (3.4.4a) only two vectors a. k and a. k-I are involved for updating. The matrix opera
tion may be carried out by just one single Level 2 BLAS rank-2 update, performing 

Ak <4> ~ Ak + a x y T +a y x T 

For that purpose we have to construct the vectors, say 

x = C1 a.k + C2 a.k-1 

Y = C3 a.k + c4 a.k-1 

and solve the following equations for the symmetric case 

2ac1 c3 = d11 

2 a C2 C4 = d22 

a C1 C4 + a C2 C3 = d12 = d21 

and for the complex Hermitian case 

ac1 C3 + ac1 C3 = d11 

a C2 C4 + a C2 C4 = d22 

ac1c4 +ac2c3 =d12, 

(3.4.Sa) 

(3.4.5b) 

(3.4.6a) 

(3.4.6b) 

where d 11 and d22 are real numbers and d 12 = d21 are complex numbers for complex Hermitian 
matrices. In the real symmetric case, we can determine real values for the c/s and a. For real sym
metric or complex Hermitian matrices, we can use sSYR2 and SSPR2, or, CHER2 and CHPR2, respec
tively. The set of Level 2 BLAS, however, does not provide routines for complex symmetric matrices. 
Consequently, the CSIFA and CSPFA can not be adapted. 

Unfortunately, the subroutines to factorize real symmetric and complex Hermitian matrices does 
not use any workspace. Since we do not wish to change the parameter list, we have to use some space 
of the matrix A. In (3.4.7), the columns a. k and a. k-I are replaced by the the vectors x and y from 
(3.4.5b) and after updating of Ak they will contain the values of (3.4.4b); the same information is 
passed as by the original code. This implies that for instance a call to the modified SSIFA can be 
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followed by a call to the original SSISL, or SSIDI. The algorithm becomes 

Ifk:#=2tben 
Compute 6i,62,63,64, such that a. k and a. k-I will contain x andy of (3.4.5b) 
a.k ~ 61 a.k 
a. k ~a. k + 62 a. k-I 
a. k-I ~ 63 a. k-I 
a. k-I ~a. k-I + 64 a. k-I 

Compute a 
A 

_ T _ _ T 
k ~ Ak + a a. k a. k-1 + a a. k-1 a. k (3.4.7) 

Compute yi,y2,y3,y4 , such that a. k and a. k-I become the vector updates (3.4.4b) 
a. k ~'YI a. k 

a. k ~a. k + 'Y2 a. k-1 
a. k-1 ~ 'Y3 a. k-1 
a.k-1 ~ a.k-I + 'Y4 a.k 

End if 

We observe, that we have not changed the strategy, we have only changed the order of computa
tion. Tables 5a-b show that the rank-2 update codes require considerably less execution time. Note 
that the application of a rank-2 update would be much more profitable, if workspace were on hand. 

3.5. Tridiagonal matrices 
The general tridiagonal matrices in _QTSL and the symmetric positive definite tridiagonal matrices in 
_P'fSL are not stored according to the convention of general band matrices; their description consists 
of three or two array names, respectively. So, Level 2 BLAS routines can not be used for such 
matrices. Moreover, if as usual, the diagonals were stored in rows, the maximum vector length would 
not exceed the bandwidth of two or three, which would imply scalar speed. 

In the last few years, many techniques for bi- and tridiagonal systems have been developed for 
advanced computer architectures[20, 22]. If diagonals were stored by columns rather than by rows, 
efficient bi- or tridiagonal solvers could be implemented as special cases for band matrices. A Level 2 
BLAS implementation would be of much more interest, if such efficient codes for diagonal systems 
were included. 

4. PERFORMANCE OF THE LEVEL 2 BLAS 
The performance of both the original and the modified UNPACK is determined mainly by the per
formance of the Level 1 and Level 2 BLAS, respectively. In this section, we first review the peak per
formance of the machines considered in this paper. Then we list the speed in Mflops of the Extended 
BLAS routines. Finally, we show which Level 2 BLAS routines are called by the UNPACK routines. 

Table 1 contains the cycle time and peak performance of the various machines. 

Machine 
CDC CYBER 990 
CDC CYBER 205 
CRAY X-MP/2 (I proc.) 
NEC SX-2 

cycle time in nanoseconds 
16 
20 
8.5 
7 

TABLE 1 Cycle Times and Peak Performances 

peak performance in Mflops 
60 

200 
235 

1300 

At this moment, on the CDC CYBER 205 optimized versions of all real Level 2 BLAS routines are 
available as well as the complex rank 1 and 2 updates. For the other machines, only the model imple
mentation[6], which is written in portable FORTRAN77, is available, although its performance is much 
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below the best possible. Timing results of the model implementation and of the machine-dependent 
CWI BLAS2, optimized for the CYBER 205, are listed in Tables 2a-b ( the symbol - denotes : not yet 
available ). All dense matrices are of order 255 and all band matrices are of order 6500 with a max
imum band width of 10, so all matrices contain approximately the same number of elements. For 
each routine two Mfiops values are given, one for INCX = ( INCY = ) 1 and one for INCX = 1 and 
INCY > I, in case of two vector arguments, or INCX > 1 otherwise. These combinations of increment 
values often occur in the implementation of linear algebra subroutines. 

The routines for solving triangular equations _ TRSV, _ TPSV and _ TBSV allow for the matrix to be 
stored either in the upper or lower triangle, i.e., UPLO = 'Upper', or UPLO = 'Lower'. The parameter 
TRANS is used to specify whether the operation is performed on the matrix or its transpose. The per
formances of all possible cases are listed, where the suffices _i mean : 

CYDER 
990 

model 
impl. 

SGEMV 17 
SGBMV 2 
SSYMV 9 
SSPMV 7 
SSBMV 2 
STRMV 15 
STPMV 4 
STBMV 3 

STRSV l 7 
STRSV 2 8 
STRSV 3 22 
STRSV 4 8 
STPSV l 3 
STPSV 2 8 
STBSV 1 2 
STBSV 2 4 

SGER 23 
SSYR 16 
SSPR 4 
SSYR2 21 
SSPR2 8 

-
2 
3 
4 

UPLO = 'Upper', 
UPLO = 'Upper'' 
UPLO = 'Lower', 
UPLO = 'Lower'' 

TRANS = 'No Transpose' 
TRANS = 'Transpose' 
TRANS = 'No Transpose' 
TRANS = 'Transpose' 

Mfl.ops for Real Extended BLAS routines 

INCX = INCY = l INCX = 1, INCY > 1 

CYDER CRAY NEC CYBER CYBER 
205 X-MP SX-2 990 205 

model I CWI model model model model I CWI 
impl. BLAS2 impl. impl. impl. impl. BLAS2 

75 89 118 393 4 4 88 
3 38 14 16 2 3 33 

50 51 82 136 6 7 51 
8 49 81 135 7 7 49 
2 50 4 7 2 4 42 

41 55 83 130 3 4 54 
4 51 84 132 4 4 51 
4 35 12 13 2 3 32 

8 49 78 114 3 3 47 
31 37 53 91 8 5 37 
35 46 79 117 4 3 45 
11 37 52 89 8 5 36 
4 44 84 116 4 3 43 
5 35 54 91 8 5 34 
2 5 11 11 2 2 5 
3 5 5 11 3 3 5 

77 94 118 410 24 77 94 
47 60 99 257 4 4 60 
4 60 99 252 4 4 60 

58 73 130 338 7 6 73 
6 73 129 333 8 6 73 

TABLE 2a Mfl.ops for Real Extended BLAS routines 
n = 6500, kl= ku = 3 V k = 9 for band matrices, 

m = n = 255 for dense matrices. 

CRAY 
X-MP 

model 
impl. 

116 
14 
70 
75 

4 
54 
54 
11 

65 
44 
60 
47 
66 
46 
11 
5 

71 
63 
64 
88 
90 

NEC 
SX-2 

model 
impl. 

379 
14 

132 
127 

6 
128 
124 
12 

116 
88 

117 
88 

113 
87 
11 
10 

416 
231 
217 
303 
291 
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CGEMV 

CGBMV 

CHEMV 

CHPMV 

CHBMV 

CTRMV 
CTPMV 

CTRSV l -
CTRSV 2 -
CTRSV 3 -
CTRSV 4 -
CTPSV I -
CTPSV 2 -
CTBSV l -
CTBSV 2 -
CGERC 

CGERU 

CHER 

CHPR 

CHER2 

CHPR2 

Mflops for Complex Extended BLAS routines 

INCX = INCY = 1 INCX = 1, INCY > 1 

CYBER CYBER CRAY NEC CYBER CYBER 
990 205 X-MP SX-2 990 205 

model model I CWI model model model model I CWI imp I. imp!. BLAS2 imp I. imp I. imp I. imp!. BLAS2 

14 34 - 147 551 9 8 -
4 4 - 37 27 6 7 -
8 13 - llO 232 7 12 -
9 13 - llO 231 7 12 -
4 10 - 10 ll 3 9 -

10 28 - 128 270 7 8 -
9 8 - 129 270 7 8 -
7 2 - 127 252 8 8 -

10 8 - 82 166 12 8 -
17 26 - 125 259 8 8 -
7 8 - 76 161 15 8 -
9 8 - 124 254 10 8 -

16 8 - 82 164 12 8 -
2 2 - 33 25 4 6 -
3 6 - 11 18 7 6 -

14 34 124 150 567 17 34 123 
17 34 134 150 571 17 35 133 
13 28 89 129 299 7 8 88 
9 8 89 130 305 9 8 89 

15 29 99 157 331 10 14 98 
11 14 96 157 336 8 13 95 

TABLE 2b Mflops for Complex Extended BLAS routines 
n = 6500, kl= ku = 3 V k = 9 for band matrices, 

m =n =255 for dense matrices. 

CRAY 
X-MP 

model 
imp I. 

131 
33 

104 
105 

9 
116 
113 

113 
81 

114 
79 

113 
78 
31 
11 

149 
149 
136 
121 
146 
144 

NEC 
SX-2 

model 
imp I. 

541 
25 

228 
229 
ll 

266 
260 

255 
161 
256 
160 
254 
159 
25 
18 

560 
564 
298 
299 
330 
332 

Obviously, the CYBER 205 compiler fails to vectorize the routines for packed forms, i.e., the rou
tines with a P as third character. It should be noted that also a nonsequential storage (see the right 
part of Table 2a) degrades the performance of both CYBERs considerably. The optimized FrN200 
version for the CYBER 205 as well as the model implementation on the CRAY and the NEC are less 
sensitive to nonsequential storage. Because of the specific storage scheme for banded matrices ( cf. 
Section 3.2 ) the vector-length is at most kl+ ku + 1 for general banded matrices and k + 1 for other 
banded matrices, if operations are performed on columns rather than rows. However, operating on 
diagonals stored in rows of the array, results in vector lengths close ton and consequently for large n 
high performances can be obtained despite the stride problem. So, both the storage convention and 
the column-oriented approach of the model implementation cause the low performance for the 
_GBMV and _TBMV routines. For the CWI BLAS2, which operates on diagonals, much higher 
Mflops-rates are obtained compared to the other machines. It would have been better if the model 
implementation had been coded along these lines; its performance for banded matrices is very poor, 
now. 

Note that for the solution of a banded matrix in the _ TBSV routines, the recurrence relations 
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prevent vectorization. We remark, however, that for banded systems much higher performances can 
be achieved than the Mfiops-rates listed here. In this context we refer to [22] in which a number of 
techniques for solving tridiagonal linear systems are discussed. Most techniques are also applicable to 
more general banded systems. 

s s s s s s s s s s s s s s s s s 
G s s T T T T T T T T T G s s s s 
E y p p R R R R p p B B E y p y p 
M M M M s s s s s s s s R R R R R 
v v v v v v v v v v v v 2 2 

l 2 3 4 l 2 l 2 

SGEFA - - - - - - - - - - - - + - - - -
SGESL - - - - + + - - - - - - - - - - -
SGEDI + - - - - - - - - - - - + - - - -
SGBFA - - - - - - - - - - - - + - - - -
SGBSL - - - - - - - - - - + + - - - - -
SPOFA - - - - - + - - - - - - - - - - -
SPOSL - - - - + + - - - - - - - - - - -
SPODI - - - - - - - - - - - - + + - - -
SPPFA - - - - - - - - - + - - - - - - -
SPPSL - - - - - - - - + + - - - - - - -
SPPDI - - - + - - - - - - - - - - + - -
SPBFA - - - - - + - - - - - - - - - - -
SPBSL - - - - - - - - - - + + - - - - -
SSIFA - - - - - - - - - - - - - + - + -
SSIDI - + - - - - - - - - - - - - - - -
SSPFA - - - - - - - - - - - - - - + - + 
SSPDI - - + - - - - - - - - - - - - - -
STRSL - - - - + + + + - - - - - - - - -
STRDI - - - - - - - - - - - - + - - - -

TABLE 3 Relation between Real Modified UNPACK routines and Level 2 BLAS 

The overview in Table 3 explains which of the specific Level 2 BLAS routines were inserted in the 
UNPACK subroutines. In practice, the Mfiops-rates of Tables 2a-b will not be reached for LIN
PACK routines: in most algorithms the Level 2 BLAS operations are performed on matrices of order 
k, where k = 1, · · - ,n for dense matrices; for banded matrices k will not exceed the band width. 

5. ExPERIMENTS 

In this section we compare the performance on vector computers of several original LINPACK rou
tines (i.e., those based on Level I BLAS subroutines) with the performance of the modified UN
PACK routines (i.e., those based on the Level 2 BLAS subroutines). All new codes were primarily 
tested on a serial machine, a CDC CYBER 750. As opposed to the high-performance vector comput
ers discussed in this paper, this serial machine can be used interactively, a very pleasant circumstance. 
Not only correctness tests have been carried out on this machine, but also some timings of the pro
grams have been collected. Since, by replacing calls to the Level l BLAS by calls to Level 2 BLAS, 
the number of floating point operations remains unchanged, we expected only a small effect from this 
recoding on the CYBER 750. Nevertheless, in some cases we found significant deviations in perfor
mance. It turns out that calls to the logical function LSAME in the Level 2 BLAS routines are much 
more expensive than straightforward comparison of characters. 
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We expect UNPACK based on Level 2 BLAS to run more efficiently than UNPACK based on 
Level I BLAS because of the following reasons : less subroutine call overhead, less parameter check
ing within the subroutines and less increment testing in loops. Actually, the use of any BLAS is 
rather expensive, in particular, if no optimized implementations are available. Central to most algo
rithms in linear algebra are inner product computations (_DOT operation) and additions of a scalar 
multiple of one vector to another vector (_AXPY operation). If one should replace the BLAS routines 
for these operations by single DO-loops, avoiding parameter checks and tests on increment values 
(always equal to I in a UNPACK code), the execution time will decrease extremely. Of course, the 
compiler must be able to recognize the loops and replace them by fast in line codes, as most com
pilers do nowadays. 

Table 4 shows the various BLAS implementations which we have used on four different vector com
puters. 

CDC CYBER 990 
CDC CYBER 205 
CRAY X-MP/2 
NEC SX-2 

Level 1 BLAS 
"rolled" 
CDC 
SCIUB 
"rolled" 

TABLE 4 Survey of available BLAS implementations 

Level 2 BLAS 
model 
CWI I model 
model 
model 

We remark that analogous to [2], the "unrolled loops" in the model implementation of the original 
BLAS were replaced by simple loops in FORTRAN. On the CYBER 205, optimizations of both the 
Level I and Level 2 BLAS are available. It should be mentioned that, as a matter of fact, even two 
Level I BLAS optimizations exist for the CDC CYBER 205: the CDC BLAS, distributed by CDC, 
and the CWI BLAS[l7]. In some cases the CWI BLAS runs significantly faster, e.g., for complex vec
tors with a non-unit stride[l6]. However, for small n and for unit stride the CDC BLAS runs faster 
mainly because of the lack of error testing. If we want to present the actual speedup we have to select 
the CDC BLAS, because the original UNPACK deals with unit strides. The implementation and 
optimization of the Level 2 BLAS on the CYBER 205 are described in Lioen, Louter-Nool and Te 
Riele[l5]. The codes are available in the NUMVEC-library[l8]. 

Let us first consider the performances of the real UNPACK routines in Table 5a. Both CYBER 
compilers do not generate very optimal code for the model implementation of the Level 2 BLAS. 
When we compare for the CYBERs the performance of the original UNPACK (Columns 1 and 3) 
with those of the modified UNPACK executed with the model Level 2 BLAS (Columns 2 and 4) we 
see that the performances do not always improve. Obviously, most _SL routines for solving a system 
of linear equations become less efficient. Moreover, the modified routines operating on packed arrays 
are slower; on the CYBER 205 more than a factor 3. By comparing the results of the original UN
PACK to those with a coded Level 2 BLAS (cf. Columns 3 and 5), one observes a considerable 
increase of performance. Only the modified SPBFA has become slower; this is also true for the other 
machines (cf. Section 3.2). 

In Table 5a also the performances of the original and the modified UNPACK are compared on 
both the CRAY X-MP (Columns 6-7) and the NEC SX-2 (Columns 8-9). At present, the system 
library of the CRAY in Bracknell provides a coded version of the Level 1 BLAS but not of the Level 
2 BLAS. For the real case, the modified UNPACK with the model Level 2 BLAS requires less time 
than the original UNPACK with a coded Level 1 BLAS, except for the routines for banded matrices. 
On the NEC, where optimized versions of both Levels of BLAS are lacking the modified UNPACK 
based on the Level 2 BLAS is the best choice. Note that the performances of the routines for packed 
(i.e., _pp __ and _gp __ ) and unpacked (i.e., _po __ and _g1__ ) arrays are identical. 



SGEFA 

SGESL 0 

SGESL I 
SGEDI 

SGBFA 

SGBSL 0 

SGBSL I 

SPOFA 

SPOSL 

SPODI 

SPPFA 

SPPSL 

SPPDI 

SPBFA 

SPBSL 

SSIFA 

SSIDI 

SSPFA 

SSPDI 

STRSL I -
STRSL 2 

STRSL 3 
STRSL 4 
STRDI I 
STRDI 2 

Timings of Real UNPACK routines in milliseconds 

CYBER990 CYBER205 CRAYX-MP 

original 

UNPACK 

696.3 
9.652 

10.1 
1318.8 

319.3 
124.8 
137.5 

514.6 
9.888 

892.0 

503.5 
9.369 

901.6 

712.3 
140.5 

519.6 
946.7 

505.3 
935.4 

5.339 
5.196 
5.017 
4.257 

484.7 
476.4 

model original model CWI original model 
BLAS2 BLAS2 BLAS2 BLAS2 

UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK 

380.9 287.5 192.3 150.6 129.5 94.6 
20.3 4.063 11.4 3.386 1.766 1.569 
16.9 4.911 5.971 3.946 2.884 2.477 

774.0 505.7 398.6 322.5 242.2 189.1 

252.8 227.6 319.2 219.8 86.8 86.4 
127.3 87.9 154.0 65.7 25.7 22.4 
101.4 91.6 124.2 70.6 35.4 40.6 

811.9 279.0 258.3 219.7 171.4 142.7 
18.4 3.137 9.883 3.078 2.351 1.932 

519.5 469.2 342.9 260.5 186.0 122.7 

731.2 288.5 1055.3 238.4 165.5 140.9 
21.7 4.380 29.7 3.354 2.274 1.924 

2410.5 450.1 3027.3 301.9 172.7 136.0 

778.3 410.3 1143.0 1507.0 169.2 356.9 
101.8 94.8 112.2 50.1 35.0 35.0 

259.3 287.8 176.4 133.9 108.8 70.0 
1131.2 467.7 299.0 291.3 235.7 169.6 

1253.0 272.3 1507.3 133.6 105.4 62.8 
1441.2 463.3 1502.9 307.5 256.0 159.8 

3.101 2.488 2.084 1.613 0.997 0.843 
6.433 2.493 7.969 1.538 1.061 0.853 
8.885 2.875 6.441 1.964 1.577 1.288 
8.982 2.707 2.294 1.936 1.607 1.261 

241.6 216.7 169.6 128.0 88.2 62.7 
253.8 247.1 171.2 129.6 91.0 62.8 

TABLE 5a Timings of Real UNPACK routines in milliseconds, 
n = 6500, kl= ku = 3 V k = 9 for band matrices, 

m = n = 255 for dense matrices. 
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NEC SX-2 

original model 
BLAS2 

UNPACK UNPACK 

91.2 47.1 
1.533 1.898 
2.056 2.483 

164.8 77.4 

137.8 132.4 
37.6 31.6 
43.7 35.0 

118.9 81.5 
1.754 1.122 

162.6 70.8 

120.8 81.7 
1.792 1.152 

165.2 86.2 

188.4 360.7 
41.5 22.5 

92.1 32.5 
214.5 104.6 

92.1 33.2 
215.8 106.2 

0.842 0.654 
0.805 0.560 
1.121 0.717 
0.993 0.690 

87.0 40.9 
86.3 41.0 

The efficiency of the model implementation is highly dependent on the FORTRAN compiler avail
able. Table Sb - containing the results of the complex UNPACK - shows that none of the Level 2 
BLAS routines are vectorized well by the CYBER compilers; most operations are performed at scalar 
speed. Since on the CYBER 205 for the timings of the original UNPACK (Column 3) an optimized 
Level I BLAS was used, the performance decreases using the modified UNPACK executed with the 
model Level 2 BLAS (Column 4). Nevertheless, when executed with the CWI BLAS2 (Column 5) a 
considerable speed up is obtained, or can be expected (only COMPLEX rank updates are available, yet). 
On the CYBER 990, the results of the original and modified complex UNPACK are comparable. 
Due to the absence here of an optimized Level 1 BLAS also the original UNPACK performs badly. 
It appears that, on the CYBERs, the use of the model implementation of the complex BLAS and, in 



14 

many cases, the real BLAS must be dissuaded. 
On the CRAY, with a coded Level l BLAS, an optimized Level 2 BLAS is needed to improve the 

performance of the modified UNPACK, and henceforth, this explains the execution time reduction 
compared to the original UNPACK (cf. Column 6 and 7). From Columns 8 and 9, it follows that, 
on the NEC, where optimized versions of both Levels of BLAS are lacking the modified UNPACK is 
the best choice, also for the complex case (except for CPBFA). 

CGEFA 
CGESL 0 -
CGESL I -
CGEDI 

CGBFA 
CGBSL 0 -
CGBSL I -
CPOFA 
CPOSL 
CPODI 

CPPFA 
CPPSL 
CPPDI 

CPBFA 
CPBSL 

CHIFA 
CHIDI 

CHPFA 
CHPDI 

CTRSL I 
CTRSL 2 -
CTRSL 3 -
CTRSL 4 -
CTRDI 1 -
CTRDI 2 -

Timings of Complex UNPACK routines in milliseconds 

CYBER 990 CYBER205 CRAYX-MP NEC SX-2 

original model original model CWI original model original BLAS2 BLAS2 BLAS2 BLAS2 
UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK UNPACK 

2513.5 2516.4 748.7 1420.4 402.6 336.0 348.1 175.8 
33.4 32.7 10.5 110.9 - 4.328 4.612 2.612 
86.7 82.2 14.8 40.0 - 6.879 7.319 4.502 

4901.4 4949.7 1451.7 2867.4 - 645.1 684.l 335.8 

610.1 611.8 387.5 500.5 417.5 106.7 110.3 154.0 
294.8 292.9 173.4 326.6 - 37.0 35.2 60.8 
400.4 405.8 191.6 152.4 - 46.3 67.8 96.7 

3967.3 4024.7 809.9 3021.5 - 361.7 409.5 296.0 
56.3 60.7 13.2 138.8 - 5.634 5.777 3.619 

3090.7 3115.0 1118.1 1873.0 587.7 404.8 400.9 289.2 

3914.5 3919.1 808.2 2856.2 - 363.8 407.4 294.9 
59.7 59.6 13.2 65.4 - 5.604 5.933 3.922 

2998.5 2981.2 1096.0 5582.8 - 400.8 413.1 288.7 

1927.1 1934.0 859.3 1535.5 - 228.6 567.1 436.7 
405.2 399.4 201.6 390.1 - 55.4 67.9 82.l 

1617.2 1624.9 646.8 962.3 333.8 234.0 217.0 189.3 
5580.0 5177.8 1253.5 3531.7 - 548.8 521.2 416.9 

1620.7 1622.6 641.0 2839.7 349.6 233.5 216.3 188.2 
5305.3 5302.7 1241.2 3433.l - 554.4 525.9 415.2 

16.3 16.4 5.909 10.3 - 2.367 2.434 1.427 
16.2 16.2 5.978 106.1 - 2.399 2.528 1.393 
44.4 44.4 8.119 33.2 - 3.569 4.122 2.326 
40.6 45.l 8.082 33.2 - 3.498 4.082 2.302 

1561.5 1552.4 549.3 922.7 305.2 197.0 197.4 151.9 
1543.7 1536.7 550.7 921.6 301.9 202.1 191.1 149.4 

TABLE 5b Timings of Complex UNPACK routines in milliseconds 
n=6500, kl=ku=3 V k=9 for band matrices, 

m =n =255 for dense matrices. 

model 
BLAS2 

UNPACK 

122.1 
2.246 
3.997 

227.2 

138.9 
49.9 
80.5 

214.2 
2.773 

210.4 

216.5 
2.820 

211.2 

577.7 
57.2 

112.2 
254.7 

108.9 
257.0 

1.089 
1.046 
1.908 
1.938 

106.2 
106.1 
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6. CONCLUSIONS AND REMARKS 

In this paper we have shown that by replacing in the UNPACK library calls to Level 1 BLAS rou
tines by calls to Level 2 BLAS routines - without changing the algorithm, the data structure and the 
round-off pattern - a considerable speedup can be obtained, especially when a machine-optimized 
Level 2 BLAS code is available. Moreover, the use of the Level 2 BLAS enhances the modularity and 
readability of the programs. The subset, which we have developed, can substitute the corresponding 
subset of the original UNPACK without the need to adapt any calling program, since the parameter 
lists have not been changed. Unfortunately, this restriction prohibits the adaptation of a larger set of 
subroutines, like those for QR, SVD and Cholesky factorization, since all suffer from the lack of 
sufficient workspace. 

Section 4 shows that the model implementation of the Level 2 BLAS achieves a moderate efficiency 
on vector-processing machines, although we expect that, by means of small modifications in the model 
code, a considerably higher performance can be obtained. We mentioned the alternative implementa
tion of routines for banded matrices (see Section 4 and [6, Section 3.3]) and the straightforward com
parison of characters. In the optimized CYBER 205 implementation[l5], the test on zero elements is 
omitted to achieve better performances for general nonsparse vectors. In [11], techniques to optimize 
the Level 2 BLAS code on the NEC SX-2 in particular are presented. Many of them will also be 
suited to a more efficient "model" implementation. As long as specialized implementations are want
ing, an efficient portable set of FORTRAN77 is required. We hope that optimized implementations of 
the original and Extended BLAS will be distributed in a similar way as the source codes of the UN
PACK and the model implementations of the BLAS which are easily available via the NETLIB facil
ity[8]. 

The present UNPACK with Level 1 BLAS routines is not attractive for many vector- and parallel 
machines. The results of Section 5 illustrate that much better performances can be achieved by means 
of a library based on the Level 2 BLAS. However, we believe that the production of a new linear 
algebra library makes more sense than the adaptation of the present library. The substitution of 
Level 2 BLAS modules by calls to Level 1 BLAS is too limited. New algorithms have been, and will 
have to be developed minimizing the amount of data transfer rather than the number of floating point 
operations. Also the data structure becomes more and more important. For instance, the partitioning 
of matrices into submatrices or blocks can be useful. Obviously, the poor performances of the algo
rithms for banded matrices are closely related to the data storage. Moreover, this storage does not 
provide for a fast solution of bi- and tridiagonal systems. On many vector machines, the FORTRAN 
storage convention of the complex vectors and matrices is rather inconvenient. The COMPLEX data 
type to maintain a close correspondence between UNPACK routines for REAL and COMPLEX matrices 
causes many superfluous data transfers, because most operations on complex vectors involve a stride 2 
problem. Sometimes, it is better to separate the real and imaginary parts, in other cases operations 
must be performed controlled by bit vectors. However, in all cases, the performance decreases. 
Another difficulty arises when compilers don't provide complex arithmetic, like the two CYBER com
pilers considered in this paper. 
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