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0. INTRODUCTION 

1 

In this paper we consider a class of weakly * continuous semigroups of bounded linear operators on 
the dual of a Banach space X which are not necessarily the adjoint of a C0-semigroup on X. Such 
semigroups arise in a natural way as perturbations (in an appropriate sense) of adjoint C0-
semigroups: see CLEMENT, DIEKMANN, GYLLENBERG, HEDMANS and THIEME (part I-IV). There the 
perturbed semigroup is constructed by exploiting a variation - of - constants formula and duality 
arguments. 

We shall introduce the notion of integral weak * generator and use this to characterize the 
aforementioned class of weakly* continuous semigroups in a one-to-one manner. 
Report AM-f!/8810 
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Finally, we refer to JEFFERIES (1986) for some related results. 

1. FORMAL CALCULATIONS WITH w* -SEMIGROUPS 
A family Tx = {Tx(t):t;;;;.O} of bounded linear operators on a dual Banach space X* such that 

(i) Tx (0) = I (1.1) 

(ii) Tx(t +s) = Tx(t)Tx(s), t,s;;;;.O 

(iii) ti-+<x,Tx(t)x*> is continuous for any given xEX and x* EX* 

is called a weakly * continuous semigroup or, in abbreviated form, a w* -semigroup. The operator 
A x defined by 

Axx• = w*-lim.l(Tx(h)x*-x*) (1.2) 
h!O h 

with D(A x) = {x* :w* -lim hl (Tx (h)x* -x*) exists} is called the infinitesimal weak * generator or, 
h!O 

in abbreviated form, the w*-generator. 
The standard example of a w* -semigroup is a dual semigroup, i.e. 

Tx (t) = T(t)* 

where {T(t)} is a C0-semigroup on X. In that case Ax = A*, where A is the infinitesimal generator 
of T(t) and one can easily verify all the elegant and powerful relations between semigroup and gen
erator which are familiar from C0-semigroup theory, provided one replaces strong differentiation and 
integration by the corresponding weak* analogs (see BUTZER & BERENS, §1.4, 1967). In particular a 
dual semigroup is uniquely determined by its w*-generator. It is tempting to conjecture that this situa
tion extends to w • -semigroups in general. 

However, an easy counterexample can be constructed as follows. Consider the C0-semigroup T(t) 
of translations on X = C0(R), the space of continuous functions defined on R which vanish at 
infinity. So (T(t)x)(a) = x(t +a) and the dual semigroup T* on X* is defined by 

<x,T*(t)x*> = <T(t)x,x* > = [ x(t +a)x*(da). 

It is well known that x 0 : = D (A*) is the maximal subspace of X* on which T* (t) is strongly con
tinuous in t. In this particular case x0 is the subspace of measures which are Lebesgue absolutely 
continuous (so x0 ~L 1 (R)) and one has the direct sum decomposition 

x· = x 0 Eaxl_ 
where X 1- denotes the sub~ace of measures which are singular with respect to the Lebesgue measure. 
We emphasize that both X · and X1- are closed in x· and invariant under T*(t). So for any a ER we 
can define a w • -semigroup r; on X* by 

{

T*(t)x* if x* EX8 

r; (t)x* = T*(at)x* if x* EXJ_ (1.3) 

Obviously the maximal subspace of strong continuity does not depend on a and on this space x 0 the 
action does not depend on a either. So all these semigroups do have the same w* -generator! 

How can one distinguish the 'bad' semigroups r; (t) with a¥:1 from the 'good' semigroup T*(t) in 
a direct way, without invoking duality? The requirement that the semigroup operators are the solution 
operators corresponding to the Cauchy problem 

d* 
dtu(t) = Ax u(t) (1.4) 

u(O) = x* 
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is as such of not much help since in order to solve (1.4) one has to assume that x* ED(A x) (and even 
that does not guarantee that a solution exists since D (A x) is not necessarily invariant under rx (t)). 
However, if we integrate (1.4) formally we obtain 

t 

u(t)-x* =Ax ju(T)dT (1.5) 
0 

and it seems reasonable to require that this should hold for u(t) = Tx (t)x* and all x* EX*. But with 
r: (t) defined by (1.3) we find 

r: (t)x* - x* = 

t 

Ax Jr; (T)x*dT for x* EX0 

0 

t 

a.Ax jT;(T)x*dT forx*EX.L 
0 

showing that the requirement is fulfilled iff a = 1. 
In order to rewrite the requirement in terms of semigroup operators only, we continue our formal 

calculations. If x* ED(A x) we write 

t t 

Ax J Tx(T)x*dT = J Tx(T)Axx*dT 
0 0 

even though a justification cannot be given. If we now consider the identity 
t 

Tx(t)x* = x*+Ax J Tx(T)x*dT 
0 

and take x * of the special form 

we obtain 

h 

x* = J Tx(o)y*daED(A x) 
0 

h h t h 

Tx(t)j Tx(T)y*dT = J Tx(T)y*dT+ J Tx(T)A x J Tx(o)y*dodT 
0 0 0 0 

h t 

= J Tx(T)y*dT+ J Tx(T){Tx(h)y* -y* }dT 
0 0 
h 

= J Tx(t+o)y*do. 
0 

This formal calculation motivates the introduction of property 

h h 

(SI) Tx(t) J Tx(T)x*dT = jTx(t+T)x*dT, x*EX*, t,h~O. 
0 0 

(1.6) 

We will call w * -semigroups with property (S 1) 'integral w * -semigroups'. A straightforward calculation 
shows that r: defined by (1.3) is an integral w* -semigroup iff a = 1. 

REMARK. Define 
l 

sx(t)x* = J Tx(T)x*dT 
0 
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then {Sx(t)} is an 'integrated semigroup' in the sense of ARENDT (to appear), KELLERMANN and 
HIEBER (to appear) and NEUBRANDER (to appear) iff {Tx(t)} is an integral w*-semigroup. 

Up to now we are neither able to prove that (1.6) holds for all integral w*-semigroups nor to find a 
counter example within this class. So we are led to introduce the following concept of a generator: 

DEFINITION 1.1. x* ED(Af) andy* = A6- x· iff 
t 

Tx(t)x*-x* = Jrx(T)y*dT, Vt;;;i:O. (1.7) 
0 

Note that, for x* ED(Af ), y* is uniquely determined by (1.7). We will call Af the integral generator 
of Tx. Observe that (1.7) is equivalent to 

~: rx (t)x * = rx (t).y *, t ;;;::o (1.8) 

and that automatically D(Af) is invariant under Tx (t) and Af Tx (t)x* = Tx (t)A6- x*. Obviously 
A x is an extension of Af . 

One objective of this paper is to single out a large class of integral w*-semigroups for which the two 
generators A x and Af are actually the same. The theory of dual semigroups suggests a way to 
achieve this end. For those we have (BUTZER, BERENS, 1967, Corollary 2.1.5) 

D(A *) = Fav(T*) = {x* EX* :ti-+T*(t)x* is Lipschitz on [O, 1]} 

The fact that A x extends A(i< and the uniform boundedness principle imply that in general 

D(A(i< )CD(A x)cFav(Tx). 

Therefore our strategy will be to forget about the w *-generator for a while and to characterize those 
integral generators for which the domain coincides with the Favard class. The w*-generator then 
coincides with the integral generator automatically. 

2. THE CHARACTERIZATION THEOREM 

'THEOREM 2.1. Let A x be a linear operator on X*. The following sets (G) and (S) of properties are 
equivalent: 

(Gl) (A-A x)- 1 is an evflwhere defined bounded operator such that for some M>O, wER, 

ll(A-A x)-nll~ for nEN, A>w. 
(A-wf 

(G2) Ij(i) x:ED(Ax), (ii) llx:-x·ll~Ofor n~oo, and (iii) llAxx:ll~Cfor some C>O, then 
x* ED(A x) and Ax x:~A x x* weakly* for n~oo. 

(S) Ax is the w• -generator of an integral w*-semigroup Tx which in addition to 

(SI) rx (t) f~ rx (T)x* dT = f~ rx (t +T)x* dT, x* EX*' t,h ;;;::o 
satisfies 

(S2) If (i) x: is a bounded sequence in X* and (ii) S x (t)x: = f b Tx ( T)x:dT converges strongly as 
n~oo, uniformly in t;;;i:O after scaling with a factor e-At with Re A sufficiently large, then there 
exists x* EX* such that x:~x· weakly* as n~oo and llSx(t)x:-sx(t)x* 11~0 as n~oo. 

In the following we shall abbreviate the sentence 'Let A x be the w •-generator of an integral w • -
semigroup such that (G) or, equivalently, (S) in Theorem 2.1 are satisfied' to 'Assume GIS'. 



THEOREM 2.2. 

Assume G IS. Then 
a) A x is the integral generator of Tx. Hence D (A x) is invariant under Tx (t) and 

if._ rx (t)x* = Ax rx (t)x* = rx (t)A x x* for x* ED(A x) and t>O. 
dt 

00 

b) llTX(t)ll~Me"'1 and(>i.-AX)-I = Je-ATTX(T)dTforA.>w. 
0 

c) x0 : = D (A x) is the maximal subspace of strong continuity of Tx 
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d) D(Ax) = Fav(Tx) = {x*:llTx(t)x*-x*ll~Ct for O~t~I} = {x*:t~Tx(t)x* is locally 
Lipschitz on [O, oo)} 

t 
e) For x* EX*, fo Tx (T)x* dTED(A x) and 

f) 

t 
A x(jTx(T)x*dT) = Tx(t)x*-x*. 

0 

Jn particular D (A x) is w * - dense in X* 

Tx(t)x* = w* - lim(J-1.A x)-nx• 
n->OO n 

PROOFS. Let A 0 denote the part of A x in x0 = D (A x ). Assume (G 1 ). The Hille-Y osida theorem 
shows that A 0 generates a C0-semigroup T 0 (t) on x 0 . We claim that 

D(A x)cFav(T0 ) = {x 0 EX0 :limsup1..11r0 (t)x 0 -x 0 ll<oo} 
1tO t 

= {x0 EX8 :t~T0 (t)x 0 islocallyLipschitzon [O,oo)}. 

Take any 1;;;;.s;;;o.O and x 0 ED(A x) then 

T0 (t)x 0 -T8 (s)x 8 = lim(T0 (t)-T8 (s))A.(A.-A 0 )- 1x 0 
'A->oo 

I 

= lim jT0 (T)A 8 A.(A.-A 8 )- 1x 0 dT. 
'A->oo ' 

s 

Since x 0 ED (A x) we have A 0 A.(A. - A 0 )- 1x 0 = A.(A. - A x )- 1 A x x 0 and this remains bounded for 
A-?>OO. Hence llT0 (t)x 0 -T0 (s)x 8 ll~Clt -s I and the claim is proved. 

t 
Any x 0 EX0 can be strongly approximated by elements r 1 J r 0 (s )x 0 ds ED (A 0 ). If 

x 0 EFav(T8 ) then ° 
A 0 r 1 fo1

T 0 (s)x 0 ds = t- 1(T0 (t)x 0 -x 0 ) 

remains bounded as t .. 1.0- Assume (G2). It follows that any x 0 EFav(T0 ) necessarily belongs to 
D(A x). Hence D(A x) = Fav(T8 ). 

Obviously Fav(T0 ) is invariant under r 0 and so the following definition makes sense: 

Tx(t)x* = (A.-A x)T0 (t)(A.-A x)- 1 x* (2.1) 

for A.Ep(A x ). The resolvent identity shows that this definition does not depend on the choice of A.. 
Oearly {Tx(t)} is a semigroup. Because of (Gl), A.T8 (t)(A.-A x)- 1x* remains bounded for A-?>OO. 

Since Tx(t)x* is independent of A.,A x T0 (t)(A.-A x)- 1x* has to remain bounded as well. (Gl) 
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imflies that r 0 (t)(A.-A x)- 1x* tends to zero strongly for A~ao. It then follows from (G2) that 
A T 0 (t)(A-A xr 1x* tends to zero in the weak* topology. We conclude that 

Tx(t)x* = w* - limA.T0 (t)(A-A x)- 1x*. (2.2) 
A-+oo 

Using (Gl) once more we obtain the estimate 

llTx (t)x* ll:e;;;llT0 (t)llMllx* II (2.3) 
which shows that llTx(t)ll is exponentially bounded. Since ti-+T0 (t)(A-A x)- 1x* is norm continuous 
we deduce from (G2) that ti-+Tx (t)x* is weak * continuous. We now know that {Tx (t)} is a w* -
semigroup. In order to verify (SI) we need a lemma. 

LEMMA 2.3. Let Ax satisfy (G2). Let x*:[t 1 ,ti]~x· be continuous with values in D(A x) and such that 
llA x x*(t)ll=e;;;Cjor some C>O and t 1 :e;;;1=e;;;t2. Then ti-+A x x*(t) is w*-continuous on [t 1,ti1 

~ ~ ~ 

J x*(T)dTED(A x) and Ax J x*(T)dT = JA x x*(T)dT. 
t, t, t, 

PROOF. The w*-continuity of A Xx*(t) is an immediate consequence of (G2). As x*(t) is strongly con
tinuous the integral J~2 x*(T)dT is strongly approximated by Riemann sums ~x*(tj)(tj+ 1 -tj)eD(A x). 
Similarly ~xx*(tj)(tj+1-tj) approximates j,'2

A x x*(T)dT in the weak * sense since Ax x*(t) is 
weakly* continuous. The assertion now follows from (G2). D 

Armed with this lemma we can write 
h h 

Tx(t)jTx(T)x*dT = Tx(t)(A-A x)jT0 (T)(A-Ax)- 1x*dT 
0 0 

h 

= (A-A x)T0 (t)jT0 (T)(A-A x)- 1 x*dT 
0 

h 

= (A-A x)jT0 (t +T)(A-A x)- 1 x*dT 
0 

h h 
= j(A-A x)T0(t +T)(A-A x)- 1 x*dT = Jrx(t +T)x*dT 

0 0 

which is exactly (SI). It remains to verify (S2). 
The definition (2.1) implies that 

t t 
J e->.,.Tx(,,)dT =(A-A 8 )j e->-,.r0 (,,)dT()..-A x)-1. 
0 0 

Hence, for Re A sufficiently large, 
00 00 

(2.4) 

(A-A xr1 = I e-;\,.TX(T)dT =A f e->-,.sx(T)dT. (2.5) 
0 0 

Consider any bounded sequence x: in x· such that e-Aisx(t)x: converges strongly for n~ao, uni
formly in t;;;a.O. Put y: =(A-A x)- 1x:. Then y: converges strongly to a limit, say y*. Moreover, 
Ax y: is bounded since x: is bounded. So (G2) implies that y* eD(A x) and Ax y:~A x y* weakly *· 
Hence x: = (A-Ax)y: = i\y:-Axy:~Ay*-AXy• weakly *· Put x* = )..y*-AXy• then 
y* = (A.-A x)-1x*. From (2.1) we deduce 



sx(t) = (A-A 8 )S 8 (t)(A-Axr 1 = (AS 8 (t)-T8 (t)+J)(A-Ax)- 1 

and consequently 

sx(t)x~~(AS8(t)-T8 (t)+I)y* = (AS 8 (t)-T8 (t)+J)(A-A x)- 1x* = sx(t)x*. 

Hence (S2) holds. This concludes the (G) ==:? (S) part of the proof of Theorem 2.1. 
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Let Tx be a w* -semigroup with integral generator A(i. Applying the uniform boundedness theorem 
twice we deduce that llTx(t)ll is bounded on [0,1]. The semigroup property then implies that llTx(t)ll 
is exponentially bounded. Assume (SI). We claim that sx(t)x* ED(AC) and 
A(iSx(t)x* = Tx(t)x*-x*. In order to prove this claim we first note that 
sx(t +h) = Sx(t)Tx(h)+Sx(h). Hence (SI) can be rewritten as 

Tx(t)Sx(h) = sx(t+h)-Sx(t) = sx(t)Tx(h)+Sx(h)-Sx(t). 

Therefore Tx(t)Sx(h)-Sx(h) = sx(t)(Tx(h)-1) which, by the very definition of an integral gen
erator, proves the claim. 

Define x0 = D(A{i). If x*eD(A{i) then Tx(t)x*-x* = Sx(t)A{ix* and consequently 
ti-+Tx (t)x* is norm continuous. As Tx (t) is exponentially bounded, this property extends to the clo
sure D(A{i ). Assume, conversely, that llTx(t)x*-x*ll~O as tJ,0. Then 1- 1 usx(t)x*-x*ll~O as tJ,O 
as well. Since sx(t)x* eD(A{i) we conclude that x* eD(A{i ). So x0 is the maximal subspace of 
strong continuit)' for Tx. If we restrict Tx to the invariant subspace x0 we obtain a C0-semigroup 
which we call r 0 . The definition of integral generator is such that it immediateg follows that A 0 is 
the part of A(i in x0 . We now want to use the Hille-Yosida estimates for A · to prove (Gl). We 
show that AEp(_A{i) if Re A>6l. Define, for Re A>"' and x* eX*, 

00 

R{' x* = J e->..srx(s)x*ds. 
0 

We note that by an approximation argument, 
s s 

Tx(t)jTx(r)jx(r)dr = jTx(t+r)jx(r)dr, s,t~O, 
0 0 

for every strongly continuous X* -valued function fx. In particular, 
00 00 00 

Tx(t) J e->..srx(s)x*ds = J e->..sTx(t +s)x*ds = J e-A(s-t)Tx(s)x*ds, 
0 0 0 

which is weak* differentiable with weak* derivative ATx (t)R{' x* -Tx (t)x*. Therefore 
R{' x * eD (A{i ) and A(i Rf x * = AR{' x * - x * which yields that (A - A(i )Rf = I. On the other 
hand, if Tx(t) is a weakly* continuous semigroup satisfying (S 1) then e-Alrx(t) is a weakly* con
tinuous semigroup satisfying (S 1) and its integral weak * generator is A(i - A with domain D (A{i ). 
Thus 

t 

e-AITx(t)x*-x* = Je-N;Tx(s)(A(i -A)x*ds 
0 

for x* eD(A{i ). If Re A>"' we can take t~oo and get that x* = R{' (A-A(i )x*. This shows that for 
Re A>6l, Aep(_A{i) and 

00 

R(A,A(i )x* = Rf x* = J e->..srx (s)x* ds. 
0 

Now note that for p.ep(_A{i) we have 

(A-A(i )-1 =(µ-A 0)(A-A 0)-1(µ-A{i )-1. 
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We want to control the term A 8 ()i.-A 0 )- 1(µ-Af )- 1. Since 

we obtain 

00 

A 8 ()i.-A 8 )- 1x 8 = A(A-A 0 )-1x 8 -x 0 = A J e-"J..1'T8 (T)x 8 dT-x 8 

0 

= lim j .l(e-"J..<r-h)_e-Al)T8 (t)x 8 dt-x 8 
h,j.O O h 

= lim j e-Ai.l(T8 (t +h)-T8 (t))x 8 dt 
h,j.O O h 

= lim j e-Air8 (t).l(T8 (h)-I)x 8 dt 
h,j.O O h 

llA 8 ()i.-A 8)- 1 x 8 11~_£__11x 8 II 
)i.-w 

provided T 8 (t)x 8 is Lipschitz. The definition of integral generator implies at once that Tx(t)x 8 is 
Lipschitz for x 0 ED (A<f ). Hence (G 1) is a corollary of the Hille-Y osida estimates for A 0 . 

Assume (S2) . Consider x~ ED (AC ) such that x~ ~x * strongly while llA<f x~ II is bounded. The iden
tity 

rx (t)x~ - x~ = s x (t)A<f x~ 

and (S2) imply that AC x~ converges weakly * to a limit, say y *, and that 

Tx(t)x* -x* = Sx(t)y*. 

By the definition of integral generator this implies that x* ED(AC) and y• = AC x*. Hence (G2) 
holds. 

Finally we claim that D(A<f) = Fav(T8 ). We know already that D(AC )CFav(T8 ). The fact that 
x 0 EFav(T8 ) imJ>lies x 0 ED(AC) follows from (G2) exactly as before. Let Ax be the w*-generator 
of rx then D(Ao )CD(A x)CFav(Tx) = Fav(T8 ). We conclude that A<f =Ax. 

We have now proved Theorem 2.1 but during the proof we have also shown that Theorem 2.2 
a,b,c,d,e are true. It remains to prove Theorem 2.2f. From the theory of C0-semigroups we know that 

(I-..!_A 0 )-n(A-A x)- 1x*~T8 (t)(A-A x)- 1x* 
n 

strongly as n~oo. By (Gl) 

(A-A x)(J _..!_A 0 )-n(A-A x)- 1 x* = (I _..!_A x)-nx• 
n n 

remains bounded as n~oo. The assertion now follows from (G2) and the intertwining formula (2.1). 
D 

REMARKS. (i) If Tisa C0-semigroup on X with generator A, then T* satisfies (Si)-(S2) and A* 
satisfies (G 1)-(G2). 
(ii) If Ax satisfies (G1)-(G2) and Bx :x0 ~x· is a bounded linear operator then Ax +Bx satisfies 
(G1)-(G2) as well. 

3. DuALITY 

Throughout this section we assume that ( G 1) is satisfied. Let A 0 be the part of A x in x0 . Then A 0 

is a densely defined operator on x 0 (even more, A 0 is the generator of a C0-semigroup T 8 ) and so 
we can define its adjoint A 8 *. Let X88 = D(A 8 *) and define A 88 to be the part of A 0• in x00. 
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Then A 00 satisfies the Hille-Yosida conditions and therefore is the generator of a C0-semigroup 
r00 onx00. 

In this section we show that x 00 can be continuously embedded in X** if (G1) is satisfied and 
that Tx is the restricted dual of r 00 if G/S is satisfied. To begin let us assume (Gi) and define a 
pairing between x 00 and X* in the following way. Choose µEp(A x). For x* EX* and 

x0° ED(A 88) we define 

[x00,x*] = <{µ-A00)x00,{µ-Ax)-Ix*> (3.1) 

(note that (µ.:.._A x )-1 x * ED (A x) ~ x 0 ). Our first result implies, among other things, that this expres

sion is independent of µ. 

LEMMA 3.1. For every x* EX* and x 88 ED(A 8 0), 

[x00 ,x*] = lim<x88 ,A(A-Ax)- 1x*>. 
A-->oo 

PROOF. 

[x00,x*] = <{µ-A00)x00,{µ-Ax)-Ix*> = 
Jim <(µ-A 00)x00 ,A(A-A x)-1(µ-A x)-1 x*> = 

A-->oo 

Jim <(µ-A 00)x00 ,(µ-A 0)-1 A(A-A x )-1 x* > = 
A-->oo 

Jim <x88 ,>i.(>i.-A x)-1x*>. D 
A-->oo 

Using this characterization the following estimate is easily derived 

l[x 00 ,x*]I :s;;;;Mllx00 il·llx*ll (3.2) 

for x* EX* and x 00 ED(A 00 ). Since D(A 00 ) lies dense in x 00 we can extend the continuous 
linear functional x 00 ""'[x00 ,x*] to the whole space x 00 . Using the same notation for this exten
sion we find that for every x 00 EX80 and x* EX*, 

[x88 ,x*] = lim<x88 ,A(A-Ax)-1x*> 
A-->oo 

and (3.2) holds. Furthermore 

[x00 ,x0] = <x00 ,xo > 

if x 0 EX8 and x 00 EX88 . Let k be the embedding of x 00 into X** given by 

kx00(x*) = [x00 ,x*], 

(3.3) 

(3.4) 

(3.5) 

then, by (3.2), llkx 88 U:s;;;;MJlx 88 II. Furthermore, llkx 00 11;;;:. sup l[x 00 ,x8 ]1 = llx 88 II. Hence 
llx0 1r.;;1 

l:s;;;;llkll:s;;;;M. (3.6) 

THEOREM 3.2. Assume (G1). Then 

a) <A 0• x 00 , x 8 > = [x 00 ,Ax x 8 ], x 00 ED(A 8 *), x 8 ED(A x ). 

b) [(A-A 8*)- 1x 0 *,x*] = <x8 *,(>i.-Ax)- 1x*> ,x8 *EX8 *, x*EX*. 

PROOF. We only prove a). 
Let x 00 ED(A 8 *) and x 0 ED(A x). Then 

<A 0•x00 ,x0> = Jim <A0•x00 ,A(A-A 0)-1x0 > 
A-->oo 

= lim<x00,>i.(A-Ax)-IAXx0> 
A-->oo 
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Our next result gives a rather useful characterization of A x . 

THEOREM 3.3. Assume (G1). Let X be a closed subspace of X88 which is invariant under T88 and 
separates points in X*. Let x • ,y • EX* be such that 

[A 00" *]=[" *] x,x x,y 

for all xEXnD(A 00). Then x* ED(A x) and Ax x* = y*. 

PRqoF. 1:,et T be the restriction of r 00 to X and let A,. be the generator of T. ~en 
D(A) = XnD(A 88 ). Assume that x*,y*EX* are such that [Ax, x*J = [x,y*J for all xED(A). 
From Theorem 3.2.b we get that 

<x,(A-Axr 1y*> = [(A-A)- 1x,y*] 

= [A(A-.A}- 1 x,x*J 

= [A(A-A)- 1 x-x,y*J 

= [x,A(A-A x)- 1x*-x*] 

for all x Ex. Since x separates points in x· this yields 

(A-A x)- 1y* = A(A-A x)- 1x*-x*, 

hencex*ED(Ax)andy* =h*-(A-Ax)x* =Axx•. D 
From this point on we assume that G/S is satisfied. Let rx be the w* continuous semigroup gen
erated by A x . 

THEOREM 3.4. If G IS is satisfied then 

[T88(t)x00 ,x*J = [x 00 ,Tx(t)x*J, (3.7) 

for all x 00 EX88 and x* EX*. 

PROOF. 

[T00(t)x00 ,x*] = ,lim <T00(t)x00 ,A(A-A x)-lx*> 
1\-+00 

= lim<x88 ,T8 (t)A(A-A x)- 1x*> 
A-+oo 

= lim<x88 ,A(A-Ax)- 1Tx(t)x*> = [x 88 ,TX(t)x*J. 
A-+OO 

Here we have used the intertwining formula (2.1 ). D 

In Sections I and 2 we have seen two different characterizations of A x , namely as the w • generator 
of Tx and as the integral generator of Tx. The next theorem gives a third characterization, namely 
as the derivative of Tx (t) with respect to the u(X* ,x00)- topology at t = 0. 

THEOREM 3.5. Assume GIS and let x*,y* EX*. Then x* ED(A x) and A Xx• = y* if and only if 
[x 80 , ! (Tx(h)x* -x*)]-7[x00 ,y*] as h!O, (3.8) 

for every x 00 EX88. 
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PRooF. 'if. Suppose (3.8) is satisfied. If x 00 ED(A 00 ) then 

[x00' ! (Tx(h)x*-x*)] = [ ! (T00(h)x00 _x00),x*] ~[A 00x00 ,x*], h!O. 

Hence [A 00x 00 ,x*] = [x00 ,y*] for x 00 ED(A 00 ). Thus by Theorem 3.3 with X = x00 , we 

get that x* ED(A x) and Ax x* = y*. 
'only if. Assume that x* ED(A x) and Ax x* =y*, and let x 00 ED(A 00). Then 

[x00, !<Tx(h)x*-x*)] = [!(r00(h)x00_x00),x*]~ 

[A 00 x00 ,x*] = [x00 ,Ax x*] 

as h!O. Since D(A 00 ) is dense in x00 and {h- 1(Tx(h)x*-x*): O<h<l} is bounded (recall that 

D(A x) = Fav(Tx)) this result holds for every x 00 EX00 which proves the 'only if part. D 

THEOREM 3.6. Assume G IS. Then 
t t 

[x 00 ,jTx(s)x*ds] = j[x00 ,Tx(s)x*]ds, (3.9) 

0 0 

for every x 00 EX00 and x* EX*. 

PROOF. Let x* EX*,x 00 EX00 , and AEp(A x). Define y 0 =(A-A x)- 1x*. Theny 0 ED(A x). The 

characterization of Ax as the integral generator of Tx yields that 

t 

T0(t)y0-y0 = jTx(s)Axy0ds = 
0 

t I t 

jTx(s)(Ay0 -x*)ds = AjT0 (s)y 0 ds- jTx(s)x*ds. 
0 0 0 

This yields that 
t 

[x 00 , jTx(s)x*ds] = 
0 

t 

[x00 ,A jT0(s)y0 ds]-[x00 ,T0(t)y0 -y0] = 
0 

t t 

j[x00 ,AT0(s)y0]ds-[A 00 Jr00(s)x00 ds,y0] = 
0 0 

t t 

j[x00 ,AT0(s)y0]ds-[jT00(s)x00 ds,A x y0] = 
0 0 

t t 

flx00 ,AT0(s)y0]ds - fcr00(s)x00 ,Ax y0]ds = 
0 0 

I I 

j[T00 (s)x00 ,(A-A x)y 0 ]ds = j[x00 ,Tx(s)x*]ds. D 
0 0 

An immediate consequence of this result is the following characterization of the pairing[·,·]: 

(3.10) 
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for every x 00 EX08 and x* EX*. 
In the practically important case that Ax is the adjoint of a generator of a C0-semigroup on X (or 

a bounded perturbation of it: see CLEMENT et al (Part IV), this space X lies continuously embedded in 
x00 . Below we present two assumptions, one on Ax and one on rx, both of which guarantee that 
x lies embedded in x00 . 

Let j :X-7X0 * be the embedding jx (x 0 ) = <x,x 0 >, for x EX, x 0 EX8 . If we give X the new 
but equivalent norm 

llx II' = sup{ I <x,x 0 > I : x 0 EX8 , llx 8 11 ~I} 

then j is an isometry from X onto j(X) (see HILLE AND PHILLIPS, 1957, Chapter XIV). We introduce 
the following assumptions. 

(GO) Vxex: <x,Tx(t)x* -x* >--70, ttO, uniformly in llx* 11~1. 

(SO) Vxex: <x,Tx(t)x* -x* >--70, ttO, uniformly in llx*ll~l. 

Note that both (GO) and (SO) are trivially satisfied if rx is the adjoint of a C0-semigroup on X. 

LEMMA 3.7. Assume G!S. For every xEX and x* EX*, 

lim<x,A(A-Ax)- 1x*-x*> = 0. 
A->oo 

PROOF. Takex*EX*. Thenx* = (A-Ax)xA wherexA = (X-Ax)- 1x*. Then 

µ(p.-A xrl x~ = XA +(µ-A x)A x XA-7XA, µ--700, 

in norm. Furthermore, Axµ(p.-Ax)- 1xA = µ(p.-Ax)- 1AxxA is bounded for µ--700. Thus, by 
(G2), xx ED(A x) and 

Ax µ(p.-A x)- 1 Xx-7A x XA, µ--700, 

with respect to the weak* topology. We already saw that 

xµ(p.-A x )- 1 xx ""'Xxx, µ""'oo, 

in norm. By subtraction we get, 

(A-A x)µ(p.-A x)- 1Xx-7(A-A X)xX, µ--700 

in the weak * sense. Thus 

µ(p.-A x)- 1x*-7x*, ~oo 

in the weak * sense. D 

THEOREM 3.8. Assume G!S. Then (GO) and (SO) are equivalent. Moreover, if one (hence both) of these 
assumptions is satisfied then j(X)<;;,X88 and Ux,x*] = <x,x*>,for xEX and x* EX*. 

PRooF. Assume (GO). We first show that j(X) r;;,x00 . For x EX, 

llA(X-A 0 *)- 1jx-jxll = ~up l<A(X-A 8 *)- 1jx-jx,x 8 >1 
llx 1r.;;1 

= sup l<x,A(A-A 0 )- 1x 8 -x 8 >1""'0, A--700 
11x0 1r.;;1 

by (GO), hence jxEX00 • Furthermore 

Ux,x*] = 1im <jx,X(A-A x)- 1x*> 
>.--+oo 



= 1im <x A.(A.-A x)- 1x*> = <x x*> 
j\ ' ' -+00 

by Lemma 3.7. 
We show that (SO) is satisfied. 

I <x,Tx(t)x*-x*> I = ILJx,Tx(t)x*-x*]I 

= l[T88(t)jx-jx,x*]I 

.;;;; llT88 (t)}x -Jxll·llx*ll~O, 1io, 

uniformly for llx * 11.;;;; 1. Thus (SO) is satisfied. 
Assume (SO). We first show thatj(X)k:X00 and that LJx,x*] = <x,x*>. 

llT8 *(t)jx -jxll = sup I <T8 *(t)jx -jx,x0 >I 
11x0 1r..;1 

= !%,UP l<x,T8 (t)x 8 -x 8 >1~0, ttO, 
11x· 1r..;1 

by (SO), hence jxex00 . Furthermore, by (3.10), 

LJx,x*] = lim<x,l.jrx(s)x*ds> 
t,j,O t 0 

1 t = lim-j<x,Tx(s)x*>ds = <x,x*>. 
t,j,O t O 

Finally we prove (GO). 

I <x,A.(A.-A x)- 1x* -x*> I = l[A(A-A 00)- 1jx -jx,x*]I 

.;;;;U>..(>..-A 00 )- 1jx-jxll-llx*ll~O, A~oo 

uniformly for llx • II.;;;; 1. D 

4. AN ALTERNATIVE CHARACTERIZATION OF X 88 

13 

In the previous section we have seen that x00 lies continuously embedded in X**, the embedding 
operator being denoted by k. In this section we give a direct definition of k(X88 ) in terms of the 
adjoint of (A-Ax )- 1• Throughout this section we assume that (Gl) is satisfied. 
We define 

(4.1) 

From (Gl) one easily derives that x•0 is a closed subspace of X** which is invariant under 
(A - A x )-1 *. For future use we prove the following lemma. 

LEMMA 4.1. Let x •• eX*0 satisfy <x ** ,x • > = 0 for every x • eD (A x ), then x ** = 0. 

PROOF. From the assumption it follows that <x**,(A.-Ax)- 1x*> = <('A.-Ax)- 1*x**,x*> = O 
for every x*eX*. Taking the supremum over all x*eX* we get that llA.(A.-Axr 1x**ll = 0. Now 
letting >..~oo and using that x** eX*0 we find that x** = 0. D 

Let p :X** ~x0• be the projection operator given by 

(4.2) 

For a Banach space Y we denote by ly the identity operator on Y. We are ready to state the main 
theorem of this section. 
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'THEOREM 4.2. 
a) k(X00)kX*0 and <kx00 ,x* > = [x00 ,x*] 
b) p(X*0 )kx00 and fpx** ,x*] = <x** ,x* >. 
c) kop = lx•0. 
d) pok = fx00 

PROOF. a) Let x 00 EX00 . Then 

llX(li.-A x)-1*kx00 -kx00 11 = s.u~ I <li.(li.-A x)- 1*kx 00 -kx00 ,x*> I 
llx Jli;;;I 

= ~u~ l<kx 00 ,X(li.-Ax)-1x*-x*>I 
llx Jl;;,;;;1 

= s.uo l[x 00 ,li.(li.-A x)- 1x* -x*]I 
llx 11~1 

= ~uo l[li.(li.-A00)-1x00_x00,x•]I 
llx 11~1 

...;;llli.(li.-A00)-1x00_x0011~0, x~oo, 

which proves the first assertion. The second assertion follows from definition (3.5). 
b) Let x*0 EX0*. Then 

llX(X-A 0*)- 1px*0 -px*0 11 = sup l<li.(X-A 0 *)px*0 -px*0 x 0 >1 
11x0 1ros;;1 ' 

= sup I <x*0 li.(li.-A0)-1x0-x0> I 
llx0 1ros;;1 ' 

= snp l<l\(l\-Axrl*x*0_x•0 x0>1 
llx~r.,;;1 ' 

,,.;;;; llli.(li.-A x)- 1*x*0 -x·0 11~0. x~oo, 

which proves the first part of b ). The second part is proved by 

fpx*0 ,x*] = .Jim<px*0 ,X(li.-Ax)-1x*> 
1\-+00 

= lim<x*0 ,X(li.-Ax)-1x*> 
>.-+oo 

= Jim <li.(li.-A x)-I*x•0 ,x*> 
>.-+oo 

= <x*0 ,x*>. 

c) For every x•0 EX*0 and x* EX*, 

<k 0px•0 ,x*> = fpx* 0 ,x*] = <x*0 ,x*>. 

Here we have used a) and b). 
d) For every x 00 EX00 and x* EX*, 

fp ok 00 *] = <k 00 • > = [ 00 *] x ,x x ,x x ,x ' 

and d) is proved. D 

This theorem says among other things that k:x00~x·0 is an isomorphism, and that k- 1 = p. 
Now suppose that G/S is satisfied, and define Tx*(t) = Tx(t)*, 1;;;;.o. One might suspect that 

X*0 = {x** EX**: llTX*(t)x** -x**ll~O, ttO}. 

And indeed, the inclusion C is proved as follows: by Theorem 4.2b: 
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llTX*(t)x*0 -x·0 11 = SUD l<TX*(t)x*0 -x·0 x*>I = 
11x· 11t;; l ' 

suo I <x*0 Tx (t)x* -x* >I = SUD I fpx* 0 Tx (t)x* -x*] I 
llx"llt;;I ' llx·llt;;I ' 

11_:.Yi~ 1 l[T00 (t)px*0 -px*0 ,x*]l .;;;;llT88 (t)px* 0 -px·0 n~o, tJ,O. 

But the reverse inclusion in general does not hold as the example below shows. 

Ex.AMPLE. Let S 1 be the one-dimensional circle group with + being the addition modulo 2'lf. For a 

function y :S1 ~R we define its translate y1 as: y1(8) = y(t +8), 0.;;;;8.;;;;2'lf. Let Y be some vector 

space of bounded functions on S 1 such that 
i) Y contains the constant functions 
ii) y E Y implies y1 E Y,t ER. 

For example Y = L 00 (S1) or Y = C(S1). (In what follows we mean by C(S 1) the embedding of the 

space of continuous functions into L 00 (S1 ).) A linear functional y * on Y is called an invariant mean if 

1. y*(y1) = y*(y),yEY, !ER, 

2. y*(O) = I 
3. ly''(y)l .;;;;sun ly(8)1. 

8eS' 
Here 0 stands for the element of Y which is identically one. On C(S1) the only invariant mean is 

given by the Haar integral. ·This also defines an invariant mean on L 00 (S 1), but on this latter space 

there are many others: see RUDIN (1972). Now let X = L 1(S 1) and let Tbe the C0-group of transla

tions on X, i.e. 

T(t)x = x17 t ER. 

Then X* = L 00 (S1), x0 = C(S 1) and X** = L 00 (S 1)*. By the result of RUDIN (1972) mentioned 

before there exist at least two different invariant means xj* ,xi* EX** on X*. The restrictions of xj* 

and xj* to x0 coincide and both correspond with the Haar integral. Let v ** = xj* - xi*. Then 

v** EX** and for every x* EX*: 

<T**(t)v** -v** ,x* > = <v** ,T*(t)x* -x* > 

= <v**,x:.1 -x*> = 0 

by property I of an invariant mean. Thus T**(t)v** = v**. Suppose v** EX*8 . Since <v** ,x 0 > = 0 

for every x 0 EX8 , Lemma 4.1 now implies that v** = 0, a contradiction. Thus v** f1.X*0 . 

We conclude this section with an alternative characterization of A 0 0 . Let the operator A x 0 on 

X*8 be defined as follows: if x"8 ,y*8 EX*8 and <x*8 ,AXx*> = <y*8 ,x*> for every 

x* ED(A x) then x·0 ED(A x 0 ) and A x 0 x·0 = y•0 . Lemma 4.1 guarantees that this is a good 

definition. 

THEoREM. 4.3. D(A x 0 ) = k(D(A 88)) and A x 0 ok = koA 00 on D(A 88 ). 

PRooF. ':J': let x 00 ED(A 00) and x* ED(A x). From Theorem 3.2a we get that 

<kx00 ,A Xx*> = [x00 ,A xx*] = 

[A00x00,x*] = <kA00x00,x*>, 

whence it follows that kx00 ED(A x0 ) and A x 0 kx00 = kA 00 x00. 

'C' is proved analogously. 0 
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5. GENERATORS WITH NON-DENSE DOMAIN 
The generator Ax on X* satisfying (GI)-(G2) is nothing but a special member of a class of genera
tors with non-dense domain. Let (X, 11·11)_ be an arbitrary Banach space and let A :D(A)~X be a 
linear operator satisfying (GI). By setting A = A -wl and renormalizing X by the equivalent norm 

llxll' = suosuoll(I-hArnxll, xEX, 
h >'On;;.'O 

we may replace this assumption by 

(HI) A ism -dissipative on (X, 11·11). 

Following AMANN (I988), DA PRATO & GRISVARD (I984), NAGEL (1983) and WALTHER (I986) we 
define 

lllxlll = ll(I-A)- 1xll, xEX 

as a new norm on X. By (HI) 

lllxlllo;;;;llxll, xEX. 
A 

In general X is not complete with respect to Ill · Ill (it is if and only if A is boun~ed), and we define X 
as the completion of X. Obviously, X is densely and continuously embedded in X. 

Let X 0 = D (A) and let A 0 be the part of A in X 0 • Then A 0 is densely .defined and m-dissipative in 
X0• Let To be the C0-contraction semigroup on X 0 generated by Ao. If D(A) is invariant under T 0 
we can define 

T(t) = (I-A)To(t)(I -A)- 1, t~O. (5.1) 

Then T is a semigroup of bounded linear operators which is not necessarily strongly continuous. 
Clearly, 

and 

111 T(t)x Ill = llTo(t)(I -A)- 1xllo;;;;ll(J -A)- 1 xii = lllx Ill, xEX, 

lllT(t)x-T(s)xlll = llT0(t)(I-A)- 1 x-To(s)(I-A)- 1 xll~O 

as lt-sl~O, 
A 

which yi~lds that T is a C0-contraction semigroup on X with respect to )II· Ill. Let T be the extension 
of T to X. Th~ Tisa C0-contraction semigroup on the Banach space X. We denote its infinitesimal 
generator by A. If D(A) is not invariant under T 0 , ~en qefinition (5.1) makes no sense. However, as 
the theorem below shows, we still have an extension T(t):x~x of T 0 • 

THEOREM 5.1. Assu111e (HJ). Then 
i) X 0 is dense in (X, Ill· Ill) A A 

ii) f o has a unique continuous extensio11 T on ( X, Ill · Ill ) 
iii) T isA a C 0 -contraction semigroup on X 
iv) D(A) = Xo A 

v) 1 is the part ef A in X A 

vi) T(t) = (J-A)T0(t)(I -A)-;:-1, t~O A 

vii) ~io 111 T(t)x-To(t)(I-hA)- 1.X Ill = o, 1~0. xEX 
A A A h A 

viii) x ED (A) and Ax = y iff T(h )x - x = l T(s }jds, h >0 
ix) X is invariant under T if! D(A) is invariait under T 0. 

From (viii) it follows that for every xEX and t~O, 
A t A A 

' S(t)x := jT(s)xdsED(A) = Xo 
0 
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and 

ls<t>x = Tct)x - x. 
A 

Let S (t) be the restriction of S(t) to X Then S (t) is the integrated semigroup associated with A. 
We assume 

A 

(H2) {xEX:llxll~l} is closed in (X, 111·111). 

REMARK. One can easily show that (H2) is equivalent with 
(H2') XnED(A), n;;a.I, Xn-?X, n-?OO, and llAxnll bounded implies that xED(A) and 

II(/ -A)xll~liminf II(/ -A)xnll· 
n->oo 

THEOREM 5.2. Assume (Hl)-(H2). Then 
i) D(A) = Fav(T0) " 

fi.o in particular, D (A) is invariant under T 0 and X is invariant under T. Let T be the restriction of 
TtoX 

ii) llT(t)xll~llxll, t;;a.O, xEX 
iii) T(t)S (h )x = S (h )T(t)x 
iv) xED(A) andy =Ax iff T(h)x -x = S(h)y, h >0 
v) If {xn} is a bounded sequence in X such that {e-'S(t)xn} converges uniformly as n-?OO, then there 

exists an x EX such that 111 Xn - x 111-70 and llS (h )xn -S (h )x ll-70, h >0. 

Weakly* continuous semigroups satisfying (Sl)-(S2) fit into this framework surprisingly well. Let Ax 
be a linear operator ~n the dual Banach space X* satisfying (Gl)-(G2) (with M = 1, and w = 0). 
Then (HI) holds. Let x* be the completion of X* with respect to the norm Ill· Ill. 

LEMMA 5.3. Let y:EJ_(*, l[y;ll~M and llly:-.Y 111-70 as n-?oo for some yEJ(. Then JEX* and y:-7.Y 
weakly* as n-?oo. 

PROOF. Define x:ED(A x) by x: =(/-A x)- 1y;. By (Gl), llx:ll~l[y:ll~M, and 
llA x x; II = 11-y: + x; II ~2M. Since {y;} is a Cauchy sequence with respect to Ill · Ill , { x:} is a Cau
chy sequence with respect to IHI, hence there exists a x* EX* such that llx:-x* ll-70 as n-700. Now 
(G2) implies that x* ED(A x) and Ax x;-?A x x* weakly * as n-?oo. Thus y;-7(/ -Ax )x* weakly * 
n-?oo. From llx:-x*ll-70 we also deduce that llly:-(J-A x)x* 111-70 as n-?oo, hence 
y = (/-Ax )x *. D 

This lemma shows in particular that (H2) is satisfied. Thus from Theorem 5.1 and 5.2 it follows 
that A x generates a semigroup Tx on X* which is continuous with respect to Ill • Ill , hence weakly * 
continuous by Lemma 5.3. Furthermore (SI) follows from Theorem 5.2(iii) and (S2) from Theorem 
5.2-(v). 
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