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0. INTRODUCTION
In this paper we consider a class of weakly * continuous semigroups of bounded linear operators on
the dual of a Banach space X which are not necessarily the adjoint of a Cy-semigroup on X. Such
semigroups arise in a natural way as perturbations (in an appropriate sense) of adjoint Co-
semigroups: see CLEMENT, DIEKMANN, GYLLENBERG, HEUMANS and THIEME (part I-IV). There the
perturbed semigroup is constructed by exploiting a variation - of - constants formula and duality
arguments.

We shall introduce the notion of integral weak * generator and use this to characterize the
aforementioned class of weakly * continuous semigroups in a one-to-one manner.
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Finally, we refer to JEFFERIES (1986) for some related results.

1. FORMAL CALCULATIONS WITH W -SEMIGROUPS
A family T* = {T*(¢):t=0} of bounded linear operators on a dual Banach space X* such that

@ T%O0) =1 (LD
(i) T*@+s) = TX@OT*(), 1,s=0
(i) #><<x,T(z)x*> is continuous for any given xe€X and x* X"

is called a weakly * continuous semigroup or, in abbreviated form, a w*-semigroup. The operator
A* defined by

A% = w—lim %(Tx(h)x*-*x*) (12)

with D(4%) = {x*:w* _%,if@ %(T>< (h)x" —x") exists} is called the infinitesimal weak * generator or,

in abbreviated form, the w*-generator.
The standard example of a w*-semigroup is a dual semigroup, i.e.

T*(t) = TGy

where {T(7)} is a Cy-semigroup on X. In that case 4% = A*, where 4 is the infinitesimal generator
of T(r) and one can easily verify all the elegant and powerful relations between semigroup and gen-
erator which are familiar from Cy-semigroup theory, provided one replaces strong differentiation and
integration by the corresponding weak® analogs (sec BUTZER & BERENS, §1.4, 1967). In particular a
dual semigroup is uniquely determined by its w*-generator. It is tempting to conjecture that this situa-
tion extends to w*-semigroups in general. '

However, an easy counterexample can be constructed as follows. Consider the Co-semigroup T'(¢)
of translations on X = Cy(R), the space of continuous functions defined on R which vanish at
infinity. So (T'(#)x)(a) = x(¢ +a) and the dual semigroup 7" on X* is defined by

<, T (x> = <T(Ox,x*> = l{ x(t +a)x*(da).

It is well known that X© := D(4*) is the maximal subspace of X* on which T*(z) is strongly con-
tinuous in ¢. In this particular case X© is the subspace of measures which are Lebesgue absolutely
continuous (so X®~L(R)) and one has the direct sum decomposition

X" = X%@pxt

where X denotes the subs(gace of measures which are singular with respect to the Lebesgue measure.
We emphasize that both X© and X are closed in X* and invariant under T* (?). So for any acR we
can define a w*-semigroup T on X" by
o o [Tr)x" if x*eXx©
Ta X" = Vv if x* e XL (13)

Obviously the maximal subspace of strong continuity does not depend on « and on this space X© the
action does not depend on « either. So all these semigroups do have the same w*-generator!

How can one distinguish the ‘bad’ semigroups T () with a=41 from the ‘good’ semigroup T”(¢) in
a direct way, without invoking duality? The requirement that the semigroup operators are the solution
operators corresponding to the Cauchy problem

*

‘;t () = A%u() (1.4)

u@ = x*
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is as such of not much help since in order to solve (1.4) one has to assume that x* €D (4*) (and even
that does not guarantee that a solution exists since D (4 *) is not necessarily invariant under T* (z)).
However, if we integrate (1.4) formally we obtain

u(t)y—x* = Axftu('r)d'r (1.5)
0

and it seems reasonable to require that this should hold for u(t) = T*(f)x"* and all x* €X". But with
T (¢) defined by (1.3) we find

t
A% jTgf (Mx*dr  for x*eX®
0
TX (Ox*—x* = .
ad ™ [T (n)x"dr for x*eX*
0

showing that the requirement is fulfilled iff &« = 1.
In order to rewrite the requirement in terms of semigroup operators only, we continue our formal
calculations. If x* € D(4 ) we write

Axft T>*(nx*dr = ft T*(1)A* x"dr (1.6)
0
even though a j?xstiﬁcation cannot be given. If we now consider the identity
T*()x" = x*"+4 Xj TX(r)x*dr
0
and take x* of the special form
x* = ; T*(o)y*docD(A™)
we obtain O

h h t h
T*@) [ T*@y dr = [ T*(@y dr+ [ T*@A™ [ T* (o)’ dodr
0 0 0 0

T*(vy*dr+ f'TX('r){Tx(h)y'—-y*}dT
0

T*(t +o)y*do.

Ot x O

This formal calculation motivates the introduction of property
h h

(S1) T*() f T*(r)x*dr = fo (t+mx*dr, x*eX*, t,h=0.
0 0

We will call w*-semigroups with property (S1) ‘integral w*-semigroups’. A straightforward calculation
shows that Ty defined by (1.3) is an integral w*-semigroup iff & =

ReMARK. Define

S*(tx* = ] T ()x*dr
0
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then {S(r)} is an ‘integrated semigroup’ in the sense of ARENDT (to appear), KELLERMANN and
HIEBER (to appear) and NEUBRANDER (to appear) iff {77 (¢)} is an integral w*-semigroup.

Up to now we are neither able to prove that (1.6) holds for all integral w*-semigroups nor to find a
counter example within this class. So we are led to introduce the following concept of a generator:

DEFINITION 1.1. x* €D(4¢) and y* = A& x* iff
t
T*(0)x* —x" = [T*(@)y dr, V=0 1.7
0

Note that, for x* €D (Ag), y* is uniquely determined by (1.7). We will call 45 the integral generator
of T*. Observe that (1.7) is equivalent to

*

dt

and that automatically D(4¢‘) is invariant under T (r) and A5 T*(t)x* = T*(1)4& x*. Obviously
A is an extension of A .

One objective of this paper is to single out a large class of integral w*-semigroups for which the two
generators A* and A are actually the same. The theory of dual semigroups suggests a way to
achieve this end. For those we have ( BUTZER, BERENS, 1967, Corollary 2.1.5)

D(A*) = FaW(T") = {x*eX T (t)x" is Lipschitz on [0,1]}
The fact that 4™ extends A3 and the uniform boundedness principle imply that in general
D4 )CD(A*)CFaw(T™).

Therefore our strategy will be to forget about the w*-generator for a while and to characterize those
integral generators for which the domain coincides with the Favard class. The w*-generator then
coincides with the integral generator automatically.

T*(6)x* = TX(@y*, t=0 (1.8)

2. THE CHARACTERIZATION THEOREM

THEOREM 2.1. Let A be a linear operator on X*. The following sets (G) and (S) of properties are
equivalent:

(Gl) A—4")Visan evjeywhere defined bounded operator such that for some M >0, weR,

IA—4 X)_"Hgmfor neN, A>w.
(G2)  If (i) xneD(AX), (i) lIxp—x" -0 for n—o0, and (iii) 14X x;|<C for some C >0, then
x*eDAX) and A* x,—A* x* weakly* for n—co.

® A is the w* -generator of an integral w* -semigroup T which in addition to
(S1) T*@) [k T ()x*dr = [§ T*(t +7)x*dr, x* €X*, t,h=0
satisfies

(S2) If (i) x;, is a bounded sequence in X* and (ii) S*()x;, = [b T*(r)x;dr converges strongly as
n—o0, uniformly in t=0 after scaling with a factor e~ with Re X sufficiently large, then there
exists x* € X" such that x,—x" weakly x as n—>o00 and ||S* (#)x;; — S > (t)x* |-0 as n—o0.

In the following we shall abbreviate the sentence ‘Let 4 be the w*-generator of an integral w*-
semigroup such that (G) or, equivalently, (S) in Theorem 2.1 are satisfied’ to ‘Assume G/S’.

&




THEOREM 2.2.

Assume G/S. Then

a) AX is the integral generator of T*. Hence D(A™) is invariant under T* () and
d*
dt

T*()x* = AXT*(@x* = T*@WA*x" for x*€DA™) and t>0.
o0

b) IT*@I<Me” and A—A4*)"' = [e ™ T*(n)dr for \>e.
0

¢) X© := D(4%) is the maximal subspace of strong continuity of T*

d) D@A*) = FawW(T*) = {x":|IT*@Ox* —x*I<Ct for 0<i<1} = {x*uT>*@)x* is locally
Lipschitz on [0,00)}

e Forx'eX',f "TX()x*dreD(4X) and
A X(]Tx (Mx*dr) = T*(@)x* —x".
0
In particular D(A ) is w*- dense in X*
f) TX@x = w*—nl_i_)n;(l——:l—Ax)‘"x*

PrOOFs. Let 4© denote the part of 4% in X® = D(4*). Assume (G1). The Hille-Yosida theorem
shows that 4© generates a Cy-semigroup T°(f) on X©. We claim that

DAX)CFav(T®) = {x®eX® :lintll%up-%-NTo(t)xo —x%(l<o0}
= {x®eX®:uTOt)x® is locally Lipschitz on [0,00)).

Take any t=>5=>0 and x© €D (4*) then
TO()x® —TO()x® = Aﬁm TP () —TOE)AA—A49) " 1x®

t
= lim [TO(n)4°MA-4°)"'x dx.

Since x® eD(A*) we have ACAA—A4®) 1x® = AA—A4*)"14%x® and this remains bounded for
A—>00. Hence IT®(£)x® —TO(s)x®I<C|t —s| and the claim is proved.

Any x®eX® can be strongly approximated by elements ™' [ "TO(s)xOdseD(4®). If
x© eFav(T®) then 0

AQt“ljo'TG(s)xods = {(TO(1)x® —x©)

remains bounded as ¢}0. Assume (G2). It follows that any x© eFav(T®) necessarily belongs to
D(4™). Hence D(A*) = Fav(T®).
Obviously Fav(7'®) is invariant under T© and so the following definition makes sense:

T*()x* = A—AX)TOA—4%) 'x* @.n
for Aep(4 ™). The resolvent identity shows that this definition does not depend on the choice of A.

Clearly {T*(¢)} is a semigroup. Because of (G1), AT®(f)A~4) " 'x* remains bounded for A—c0.
Since T*(f)x* is independent of A, AXTO(¥)A—A4>*)"'x* has to remain bounded as well. (G1)

&
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im)?lies that T®(#)A~A4*)"!x* tends to zero strongly for A—>oco. It then follows from (G2) that
A*TO()A—A4*)"'x" tends to zero in the weak * topology. We conclude that

T*@)x* = w* —-)‘]im)\TO(t)(}\—AX )~ Ix*, 22

Using (G1) once more we obtain the estimate
T () I<ITO @I MIlx* | (2.3)

which shows that |7 (£)|l is exponentially bounded. Since t->T® (f)(A—A4 %)~ 1x* is norm continuous
we deduce from (G2) that 1T (¢)x* is weak * continuous. We now know that {(T*@)} is a w*-
semigroup. In order to verify (S1) we need a lemma.

LeMMA 2.3. Let A™ satisfy (G2). Let x*:[t1,t,]>X"* be continuous with values in D(A>) and such that
4> x*(@I<C for some C>0 and t,<t<t,. Then tA > x*(t) is w* -continuous on [t1,1,),

ty 5 t

[x*(0)dreD(A>) and 4% [x*(@dr = [4%x*(r)dr.

L I3 t,
PrOOF. The w”-continuity of 4> x*(f) is an immediate consequence of (G2). As x*(z) is strongly con-
tinuous the integral ﬁf’x*('r)df is strongly approximated by Riemann sums Zx*(5,)(t; +1 —1;)eD (4 ¥).
Similarly 24*x*(¢;)(t;+1—1;) approximates ﬁ:zA Xx*(r)dr in the weak * sense since 4 *x*(¢) is
weakly * continuous. The assertion now follows from (G2). [

Armed with this lemma we can write

h h
T*@) [T*@x"dr = T*OQA—A4%) [T (DA—4%)"'x"dr
0 0
h
= A—A*)TO@) [TO@DA—4%) " x"dr
0
h
= A=A [TO@ +DA~4%)"'x"dr
0

h h
= [QA—A™)TO@ +1)A—4>)"x*dr = [T*@+m)x"dr
0 0

which is exactly (S1). It remains to verify (S2).
The definition (2.1) implies that

t t
[e™MT*(ndr = A—4°) [e M TO(m)drA—4>)". 24)
0 0
Hence, for Re A sufficiently large,
w0 0
A—4*)"t = [eMT*(r)dr = A [e s> (). 2.5)
0 0
Consider any bounded sequence x, in X* such that e “MS* (f)x; converges strongly for n— oo, uni-
formly in r=0. Put y; = A—4)7!x;. Then y; converges strongly to a limit, say y*. Moreover,
Ay, is bounded since x;, is bounded. So (G2) implies that y* €D (4 %) and 4 Yn—A*y* weakly *.

Hence x; = A—A™); = Mp—A4*y,oN*—4%p* weakly * Put x* = A*—A%y* then
y' = A—A4%)"1x*. From (2.1) we deduce

&




SX(@) = A—A®)S(OA—4")"! = ASO @) TP @)+ A—4%)"!

and consequently
SX (O —>ASC@O)—-TO@)+Iy* = ASP@)—TP@)+NHA—4%)"1x* = SX(r)x*.
Hence (S2) holds. This concludes the (G) = (S) part of the proof of Theorem 2.1.

Let T* be a w*-semigroup with integral generator A4°. Applying the uniform boundedness theorem
twice we deduce that [|7 ()|l is bounded on [0,1]. The semigroup property then implies that || T (¢)Il
is exponentially bounded. Assume (S1). We claim that S*()x*eD(45) and
AFS*(@)x* = T*(@)x*—x*. In order to prove this claim we first note that
S*(t+h) = SX@ET*(h)+S*(h). Hence (S1) can be rewritten as

TX()SX(h) = S*(t +h)—S*(£) = SX(O)T* (h)+S* (h)—S*(1).
Therefore T (£)S* (h)—S*(h) = S* ()T *(h)—1I) which, by the very definition of an integral gen-
erator, proves the claim.

Define X© = D(A{). If x*eD(4§) then TX()x*—x* = S*()4{'x* and consequently
tT* (£)x* is norm continuous. As T (¢) is exponentially bounded, this property extends to the clo-
sure D (A ). Assume, conversely, that ||7(f)x* —x*||—0 as £J0. Then ¢ =[S ™ (£)x* —x*||-0 as 2}0
as well. Since S*(£)x* €D (A{) we conclude that x* €D(A§). So X© is the maximal subspace of
strong continuity for T*. If we restrict T* to the invariant subspace X© we obtain a Cy-semigroup
which we call 7. The definition of integral generator is such that it immediateéy follows that 4© is

the part of A5 in X©. We now want to use the Hille-Yosida estimates for 4® to prove (G1). We
show that Aep(43° ) if Re A>w. Define, for Re A>w and x* X",

00
R¥x* = [e™T*(s)x"ds.
0
We note that by an approximation argument,
S s
@) [T*()f*()dr = [T*(+r)f*()dr, 5,620,
0 0
for every strongly continuous X*-valued function f*. In particular,
oo 00 o0
T*(@) [e ™MT*(s)x"ds = [e ™ T*(@+s)x"ds = [e XDT*(s)x"ds,
0 0 0
which is weak » differentiable with weak » derivative AT*($)R{x* —T>X(t)x*. Therefore
R{x"eD(A4¢) and AFREx" = AR{x* —x* which yields that A\—A4§)R{ = I. On the other
hand, if T%(¢) is a weakly » continuous semigroup satisfying (S ) then e M7 (¢) is a weakly * con-
tinuous semigroup satisfying (S) and its integral weak * generator is 4§ —\ with domain D (A ).
Thus
t
e NTX()x"—x" = [e™MTX ()45 —N)x"ds
0

for x* €D (A4 ). If Re A>w we can take t—>00 and get that x* = R{ (A—A§ )x*. This shows that for
Re A>w, Aep(4g) and

RAAL X = REx* = [e ™ TX(s)x*ds.

Now note that for pep(4g ) we have

A—4F)! = @=A®)A-4°) " (—4F)""

#
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We want to control the term A (A—A4©)"(u—A& )~ 1. Since
APA—A49)"1x® = \A—4©) 1xC —x© = Afe-MT@(T)defr——x@ =
w 0

= 1im [ L(o=Me=h) — =AY (11, O g — . O
%!h(e e MTO(NxPdr—x

o0
— 5 -xl ro O (e ©
lh%loe h(T @+h)—T®@)x"dt

o0
1 VPR W cY R W)
%Oe Tty (T (W)~ Dx

we obtain

uA@(A—A@)-IthtsAC oy

—W

Ix

provided T©(#)x® is Lipschitz. The definition of integral generator implies at once that 7> (£)x© is
Lipschitz for x® eD(4¢). Hence (G1) is a corollary of the Hille-Yosida estimates for 4©.

Assume (S2) . Consider x, €D (44" ) such that x;,—x" strongly while [|4& x; |l is bounded. The iden-
tity

T (Oxn—xn = S*(OAG x;
and (S2) imply that 4§ x, converges weakly * to a limit, say y*, and that
T*(@)x* —x* = S*(@y".

By the definition of integral generator this implies that x*€D(44) and y* = A§x*. Hence (G2)
holds.

Finally we claim that D(Ag) = Fav(T®). We know already that D(4{ ) CFav(T®). The fact that
x© eFav(T®) implies x® D (45 ) follows from (G2) exactly as before. Let 4> be the w*-generator
of T then D(A4§)CD(A>X)CFav(T*) = Fav(T®). We conclude that A& = 4.

We have now proved Theorem 2.1 but during the proof we have also shown that Theorem 2.2
a,b,c,d,e are true. It remains to prove Theorem 2.2f. From the theory of Cg-semigroups we know that

U —L4%)"—a*) 1x STOOA-4%) 5"
strongly as n—o0. By (G1)
A=A —L40) 2%y 15 = g =Ly e

remains bounded as n—co. The assertion now follows from (G2) and the intertwining formula (2.1).
O

RemMarks. (i) If T is a Cy-semigroup on X with generator 4, then T™ satisfies (S)—(S;) and 4"
satisfies (G1)—(G>).
(i) If 4 satisfies (G;)—(G2) and B*:X®—X" is a bounded linear operator then 4 X +B* satisfies
(G1)—(G,) as well.

3. DuALITY
Throughout this section we assume that (G) is satisfied. Let 4 be the part of 4> in X©, Then 4©
is a densely defined operator on X© (even more, 4© is the generator of a Cy-semigroup T°) and so

we can define its adjoint 4°*. Let X°® = D(4©*) and define 4°° to be the part of 4°* in X®©,

&
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Then A®® satisfies the Hille-Yosida conditions and therefore is the generator of a Cq-semigroup
T°° on X©°.

In this section we show that X®© can be continuously embedded in X™* if (G,) is satisfied and
that T* is the restricted dual of T if G/S is satisfied. To begin let us assume (G) and define a
pairing between X ©0 and X* in the following way. Choose pep(4*). For x*eX* and
x99 eD(4°9) we define

[X9© x*] = <(u—A4°®W®® (u—A4%)"1x*> (3.1)
(note that (u—A4 %) 1x*eD(A*)CX®). Our first result implies, among other things, that this expres-
sion is independent of g.
LeMMA 3.1. For every x* € X* and x®© eD(A°°),

[x®9,x*] = A]jm <x®° NA—-47)"1x*>.

->00

PROOF.

[x®°,x*] = <(u—A°9)}x®°,(u—4%) x> =

lim <(u—A®)O° MA—AX) N p=A") x> =

> 00

lim <(u—A°®)xO%, (14 ) AA=4>)"'x"> =

—00

)‘lim <xP9 AA—A4X)1x*>. O

—>00
Using this characterization the following estimate is easily derived

I[x®®,x* 1 <Mllx®®|-llx*| (3.2

for x*eX* and x®®eD(4°®). Since D(4°®) lies dense in X®© we can extend the continuous
linear functional x©© —[x®®,x*] to the whole space X°©. Using the same notation for this exten-
sion we find that for every x®® e X®® and x* X",

[x®%,x*] = }‘lim <x®9 MA—4%)"1x*> (3.3)
—>00

and (3.2) holds. Furthermore

[x®°,x®1 = <x®°x®> 349
if x©eX® and x®© eX©®. Let k be the embedding of X®© into X** given by

kx®O(x*) = [x©°,x"), (3.5)
then, by (3.2), llkx©® |<M|lx©®||. Furthermore, llkx@© |I>" 80111&1][)600,)(@]‘ = |Ix®9||. Hence

1<llkll<M. (3.6)

TueorEM 3.2. Assume (G,). Then
a) <A®x%9, xO> = [x®° 4%x®], x®®eDU®"), x® D).
b) [A—A4°9)"1x% x*] = <x®,A-4%)"1x*> x©eX®, x"eX".
PROOF. We only prove a).
Let x®®eD(4°*) and x© €D (4 ). Then

<A®*x09 x°> = A1£n3°<AO*x®o,)\(A—Ao)“x0>

= Alim <x®9 AA—A4X)14* x>
—>00
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=[x99,4%x®). O
Our next result gives a rather useful characterization of 4*.
THEOREM 3.3. Assume (Gy). Let X be a closed subspace of X®9 which is invariant under T®® and
separates points in X*. Let x*,y" € X" be such that
[4°%xx"] = [xy’]
for all e XND(A®®). Then x* eD(A*) and A*x* = bal
PrOOF. Let T be the restriction of T®° to X and let A4 be the generator of T. Then

D(4) = XND(A®®). Assume that x*,p*eX* are such that [A%, x*] = [x,y'] for all XeD(4).
From Theorem 3.2.b we get that

<EA=4%)Tr> = [(A-A) iy’
= [AA—4)"1%,x"]
= PMA—A) R —5y"]
= [KAMA—4X) " Ix* —x*]
for all ¥ eX. Since X separates points in X* this yields
A—47)"ly" = MA—A%) " Tx*—x",

hence x*eD(A*) and y* = Ax*—(A—4")x* = 4%x*. O
From this point on we assume that G/S is satisfied. Let 7 be the w* continuous semigroup gen-
erated by 4.

TueoreM 3.4. If G/S is satisfied then
[TOO(Ox®%,x"] = [x®°,T*(0)x"], (3.7
for all x°® eX®® gnd x* e X",

PROOF.
[TOP()x©° x*] = Alim <TOP()x®° AMA—A4X)"1x*>
~>00
= A]jm <x®°, TOMAA—-4")"1x*>
~>00
= Alim <x®O AMA-AX)TITX (x> = [x©°, T (O)x*].
—00
Here we have used the intertwining formula (2.1). 0O
In Sections 1 and 2 we have seen two different characterizations of 4 ¥, namely as the w* generator
of T and as the integral generator of 7. The next theorem gives a third characterization, namely
as the derivative of T (¢) with respect to the o(X*,X©®)- topology at ¢ = 0.
THEOREM 3.5. Assume G/S and let x*,y* €X". Then x* €D(4™*) and A*x* = y* if and only if
(290, (T % ()x” —x")}-{x°© »*] as A0, : (33)

OEXOO.

for every x°
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PROOF. ‘if’. Suppose (3.8) is satisfied. If x®© €D (4 ©®) then
[xoo,-}lT(Tx(h)x* —x")] = [-;ll-(TGG(h)x@‘D —x90),x*] -[4°° x99 x*], hJ0.
Hence [49%x99,x*] = [x®°9,y*] for x®®eD(4°°). Thus by Theorem 3.3 with X = X°°, we
get that x*eD(A*) and A*x* = y*.
‘only if’. Assume that x* €D(4*) and 4*x"=y", and let x99 eD(4°9). Then
(xO0, L X (et —x)] = [TOOWx° —x°°)x’}>
[AG)OxOO,x*] = [XGO,A Xx*]

as h}0. Since D(4®®) is dense in X®© and {h~'(T* (h)x* —x"): 0<h<1} is bounded (recall that
D(A%) = Fav(T*)) this result holds for every x®© e X®© which proves the ‘only if’ part. I

THEOREM 3.6. Assume G/S. Then
1 ]
[x©0, [T (s)x"ds] = [x©O, T (s)x"1ds, (39
0 0
for every x°° € X and x* €X".

PROOF. Let x* € X*,x®® € X, and Aep(4 *). Define y© = A—4 %) !x*. Then y® eD(4*). The
characterization of A% as the integral generator of T yields that

¢
TO(t)yO__.y@ = /TX(S)AXyOds‘ —_
0

t t ]
f T*(s)\y® —x*)ds = A j TO(s)y®ds — [ T (s)x" ds.
0 0 0

This yields that

[xoa,ij(s)x'dS] =
0

[(xO0 A [TO(s)y Cds]—[x°°, TO 1y ® —y®] =
0

[ix OO ATO (s ~14°° 0/ TOO(s)x O ds,y®] =

ft[xOO,ATO(S))’O]dS “‘[iTGO(S)xOOdS,A *y®] =
0 0
j[xGG,ATO(S)yG]ds' ~][T®O(s)xOO,A XyOds =
0 0

][Teo(s)xoo,()\—Ax)yO]ds = i{xOG,TX(s)x*]ds. 0
0 0

An immediate consequence of this result is the following characterization of the pairing [, ]:

t
[x®9,x*] = 1351<x0®,r' f T (s)x*ds >, (3.10)
0
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for every x©® e X©© and x* e X".

In the practically important case that 4™ is the adjoint of a generator of a Cy-semigroup on X (or
a bounded perturbation of it: see CLEMENT et al (Part IV), this space X lies continuously embedded in
X©©. Below we present two assumptions, one on A% and one on T, both of which guarantee that
X lies embedded in X©©.

Let j:X—>X©* be the embedding jx(x®) = <x,x®>, for xeX, x® €X®. If we give X the new
but equivalent norm

xll” = sup{| <x,x®>|: x®eX®,lIx®|<1}

then j is an isometry from X onto j(X) (see HILLE AND PHILLIPS, 1957, Chapter XIV). We introduce
the following assumptions.

(GO)  Viex: <x,T*(0)x* —x* >0, t]0, uniformly in ||Ix*||<]1.
(S0) Vyex: <x,TX(Ox" —x* >0, £|0, uniformly in [lx*||<]1.
Note that both (G0) and (S0) are trivially satisfied if 7> is the adjoint of a Cy-semigroup on X.

LeMMA 3.7. Assume G/S. For every xeX and x* X",
Alim <x,MA—A4*)7Ix*—x*> = 0.
~—>00

PRrOOF. Take x" € X". Then x* = (A—4>)x} where x; = A—4%) " 'x*. Then
Mp—A>)"1x5 = x5 +(p—A>)A x5 >xf, poo,

in norm. Furthermore, A pp—A4>)"'x} = p(u—4*)"'4*x} is bounded for p—>co. Thus, by
(G2), x, eD(4*) and

AXpp—A>) 1y =A% %}, p—>o0,
with respect to the weak * topology. We already saw that
A(p—A )" 1xx =M}, p—o0,
in norm. By subtraction we get,
A=A )p—A4") 1xi 5A—47)x3, pooo
in the weak » sense. Thus
pp—A*) Ix*5x*, p—>oo

in the weak » sense. [

THEOREM 3.8. Assume G/S. Then (GO) and (S0) are equivalent. Moreover, if one (hence both) of these
assumptions is satisfied then j(X)CX®® and [jx,x*] = <x,x*>, for x€X and x* € X".

PROOF. Assume (GO). We first show that j(X)CX®®. For xeX,
INA—A49*) " Ljx —jxl| = L | <AA—4°) " jx — jx,x® > |

= _ 401,60 _.0
"xsg}&ll<x,7\(}\ AP) ' xP—x9>]50, Aoo

by (GO), hence jx € X°©. Furthermore
[ix,x*] = }\lim <jx,MA—47) 1x*>
—>00
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= }‘lilg<x,}\(}x—A Nlxt> = <x,xt>
by Lemma 3.7.
We show that (S0) is satisfied.
f<x, TX@)x* —x*>| = |[jx, T*@Ex" —x*]l
= [[T®®@)jx —jx,x"]l
< IT99@)jx —jxl-lx* 1-0, 1}0,

uniformly for |lx*||<1. Thus (S0) is satisfied.
Assume (S0). We first show that j(X)CX®® and that [jx,x*] = <x,x">.

I1T®* (@)jx —jxll = e | <TO*(t)jx —jx,x© >|
= o | <x, TO(x® —x®>1-0, ¢|0,

by (S0), hence jx € X®©. Furthermore, by (3.10),

3 *] — 1 lt X *
[]x,x]—ltli%l<x,tb[T ()x*ds>

{
= lim—l-f<x,Tx(s)x*>ds = <x,x*>.
tj0 t0

Finally we prove (GO0).
[<x, AA=AX) " Ix*=x*>] = |[MA—4°9)"Ljx —jx,x*]]
<IAMA—4°9)Ljx —jx|l-llx* -0, A> o0
uniformly for |Ix*||<1. O
4. AN ALTERNATIVE CHARACTERIZATION OF X ©©
In the previous section we have seen that X©© lies continuously embedded in X**, the embedding
operator being denoted by k. In this section we give a direct definition of k(X®®) in terms of the

adjoint of A\ —A4 *)™!. Throughout this section we assume that (G1) is satisfied.
We define

X = {x™eX™: IMA—47) Px" —x" ][50, A>oo}. 4.1
From (Gl) one easily derives that X*© is a closed subspace of X** which is invariant under
(A—A>)"!*. For future use we prove the following lemma.

LeMMA 4.1. Let x** e X*© satisfy <x**,x*> = 0 for every x* €D(A™), then x** = 0.

PrROOF. From the assumption it follows that <x**,A—4>)7!x*> = <\—4*)""x" x*> =0
for every x* €X*. Taking the supremum over all x*€X* we get that [AA—4>)"'x"|| = 0. Now
letting A—>co and using that x** € X*© we find that x™ = 0. O

Let p:X**—X©* be the projection operator given by
px(x®) = <x",x9>. 4.2)

For a Banach space Y we denote by Iy the identity operator on Y. We are ready to state the main
theorem of this section.




14

THEOREM 4.2.

a) k(X°9)CcX*® and <kx®9 x*> = [x©° x*]
b) II(X"O)QXG)(D and [px**,x'] = <x™,x*>.
c) k°P - Ix.e.

d) Pok = Ixee

PrROOF. a) Let x©© €X©©, Then
IMA—AX) " kx®C —fxCO) = | Qll1lp : [<AMA—AX) P kx©C —fx00 x*>|
x I

L | <kx®® AA—A4X) 1x* —x*>|
= OO A A=A XV 1 — 5+
nf"‘ﬁgl”x Al )=l
= s.ug l[}\(A—A OO)—leO _xGO,x*]I
llx* =<1
<IAA—499)"1x00 500 _,0 A—o0,
which proves the first assertion. The second assertion follows from definition (3.5).

b) Let x*®eX®*. Then
IMA—=4©*)"1px*® —px*®|| = su [I<AA-4 O px*® —px*@ xO>| =

Ix®ls

= su,p [<x*® AA—49)"1x© —xO >
<1

hx®

o [<AMA—AX) I x*O —x*0 O

< AA—A4X) " 'x*® —x*9 |50, A> o0,

which proves the first part of b). The second part is proved by
[px*®,x*] )‘lim <px*® MA-A4%)1x*>
— 00

= lim <x*® AMA—4X)"1x*>
A- o0

lim <AA—A4 %) " x*O x*>
A—>oo
= <x*© x*>,
¢) For every x*©® €X*© and x* X",
<kopx*®,x*> = [px*®,x*] = <x*© x*>.

Here we have used a) and b).
d) For every x°©eX®® and x*eX*,

[pokx®® x*] = <kx®®,x*> = [x©9 x*],
and d) is proved. O
This theorem says among other things that k:X®®—X"® is an isomorphism, and that k! = p
Now suppose that G/S is satisfied, and define T**(f) = T*(¢)*, t=0. One might suspect that
X = (x" X" T (O —x™ -0, 1]0).

And indeed, the inclusion C is proved as follows: by Theorem 4.2b:
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NT** @)x*® —x*®|l = e 11<T><*(t)x*® —x0 x*>| =
X
sup |<x*©,T*@Ox*—x*>| = su x*O TX(x*—x*]| =
||x'||gll ( ) ‘ “x.“gll[p 4 ( ) ]l

= 1|[T00(t)17~7¢’0 —px*© x| <IT®®(t)px*® —px*®11-0, 1{0.
X

But the reverse inclusion in general does not hold as the example below shows.

ExampLE. Let S! be the one-dimensional circle group with + being the addition modulo 27. For a
function y:S'—>R we define its translate y, as: y,(6) = y(t +0), 0<<f<2m. Let Y be some vector
space of bounded functions on S' such that

i) Y contains the constant functions

ii) yeY implies y,€Y,teR.

For example Y = L®(S!) or Y = C(S*). (In what follows we mean by C(S') the embedding of the
space of continuous functions into L*(S").) A linear functional y* on Y is called an invariant mean if
L y'0) =y'(), yey, teR,

2.y =1

3. '()l=<sup ly@).

Here [ stands for the element of Y which is identically one. On C(S') the only invariant mean is
given by the Haar integral. " This also defines an invariant mean on L*(S"), but on this latter space
there are many others: see RUDIN (1972). Now let X = LY(S!) and let T be the Cy-group of transla-
tions on X, i.e.

T(t)x = x, teR.

Then X* = L®(S!), X© = C(S!) and X = L*(S!)". By the result of RUDIN (1972) mentioned
before there exist at least two different invariant means x}*,x3* € X** on X*. The restrictions of xi"
and x}* to X© coincide and both correspond with the Haar integral. Let v** = xi’ —x5*. Then
v* eX™ and for every x* €X":

<T*(tp"™ —v* x*">= <y, T (" —x" >
=<y xL,—x">=0
by property 1 of an invariant mean. Thus 7**(¢)v** = v**. Suppose v** €X*®. Since <" x9> =0
for every x® € X®, Lemma 4.1 now implies that v** = 0, a contradiction. Thus v** ¢X 0,

We conclude this section with an alternative characterization of 4®®. Let the operator 4*© on
X*© be defined as follows: if x*©,y*®eX*® and <x*©,A4%x*> = <y*®,x*> for every
x*eD(4%) then x*©eD(4%®) and 4*®x*® = y*©. Lemma 4.1 guarantees that this is a good
definition.

THEOREM. 4.3. D(4 %) = k(D(A°®)) and A*®ck = koA®® on D(4°°).

PROOF. ‘O’; let x®® €D (4°°) and x* €D (4 *). From Theorem 3.2a we get that
<kx®® AXx*> = [x99,4%x"] =
[APPxO0 x*] = <kA®®x®® x*>,

whence it follows that kx®® eD(4*®) and 4 *Ckx®® = k499x©0,
‘C’ is proved analogously. [
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5. GENERATORS WITH NON-DENSE DOMAIN

The generator 4™ on X* satisfying (G1)-(G2) is nothing but a special member of a class of genera-
tors with non-dense domain. Let (X, [lll) be an arbitrary Banach space and let 4:D(4)—X be a
linear operator satisfying (G1). By setting 4 = 4 —«wI and renormalizing X by the equivalent norm

4 — — ~ -n
fix il 2‘;%2‘;%”(1 hA) "xll, xeX,

we may replace this assumption by
(H1) A is m —dissipative on (X, ||-Il).

Following AMANN (1988), DA PRATO & GRISVARD (1984), NAGEL (1983) and WALTHER (1986) we
define

Mxil = I —4)"'xll, xeX
as a new norm on X. By (HI)
lx il <lixll, xeX.

In general X is not complete with respect to lll-lll (it is if and only if 4 is bounded), and we define X
as the completion of X. Obviously, X is densely and continuously embedded in X.

Let Xo = D(A) and let A, be the part of 4 in X,. Then 4 is densely defined and m-dissipative in
Xo. Let Ty be the Cy-contraction semigroup on X, generated by 4. If D(A4) is invariant under T
we can define

T(t) = (I —A)To(e)I —A)~", t=>0. .1)

Then T is a semigroup of bounded linear operators which is not necessarily strongly continuous.
Clearly,

NT@Ex Nl = ITo()d —4) xlI<II —4) xll = lixll, xeX,
and
NT@x —T)xll = 1To(tWI —4) 1x —To(s)T —A4) ' xl1—=0
as |t —s|-0,

which yields that T is a Co-contraction semigroup on X with respect to [i[-|ll. Let T be the extension
of T to X. Then T is a Cy-contraction semigroup on the Banach space X. We denote its infinitesimal
generator by 4. If D(4) is not invariant under Ty, then definition (5.1) makes no sense. However, as
the theorem below shows, we still have an extension T'(¢):X—X of T.

THEOREM 5.1. Assume (HI). Then

1) X is dense in (X H-H .

i) Ty has a unique continuous extension T on (X -1

iii) T is a Cy-contraction semigroup on X

ivy DA)=X, .

V) Aisthepartof Ain X

Vi) T() = (J —DTo(I —4)7}, =0

vii) limy o Ill T(t)x — To(t)I — hA) xil =0, t>0 eX
viii) €D (4) and A% =  iff T(h)x—% = j T(s)pds, h>0
ix) X is invariant under T iff D(A) is invariant under T,,.

From (viii) it follows that for every x €X and >0,

~ t A ~
S@x := [T(s)xdseD(A) = X,
“ 0
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and
AS@x = T —3.

Let S(z) be the restriction of .§’(t) to X. Then S (¢) is the integrated semigroup associated with 4.
We assume

(H2) {xeX:lxlI<1} is closed in &, 1-10).

REMARK. One can easily show that (H2) is equivalent with
(H2) x,eD(4), n=1, x,—x, n—>o0, and {|4x,|l bounded implies that xeD(4) and

I —A)xlI<liminf [|(7 —A)x, I

THEOREM 5.2. Assume (H1)-(H2). Then

i) D(4) = Fav(To) .
So in particular, D(A) is invariant under Ty and X is invariant under T. Let T be the restriction of
T X

i) IT@Oxl<lxll, £=0, xeX

iii) T@OShx = ST (E)x

iv) xeD(A)andy = Axiff T(h)x —x = S(h)y, h>0

v) If {x,) is a bounded sequence in X such that {e 'S (t)x,} converges uniformly as n—oo, then there
exists an x € X such that || x, —x Il >0 and ||S (h)x, — S (h)x]|—0, h >0.

Weakly * continuous semigroups satisfying (S1)-(S2) fit into this framework surprisingly well. Let 4
be a linear operator on the dual Banach space X* satisfying (G1)-(G2) (with M = 1, and v = 0).
Then (H1) holds. Let X be the completion of X* with respect to the norm |||-{l|.

LemMa 5.3. Let yyeX*, llysll<M and lly;—y -0 as n—>oo for some peX'. Then yeX* and y—p
weakly * as n—o0.

PrROOF. Define x,eD(A>X) by xp=T—=A4%)"'y,. By (GI), lxli<ly;li<M, and
4> xxll = ll—yp+x,lI<2M. Since {y,} is a Cauchy sequence with respect to lil-ll, {xz} is a Cau-
chy sequence with respect to ||-ll, hence there exists a x* €X* such that [lx; —x*||->0 as n—oco. Now
(G2) implies that x* € D(4*) and A x;—A* x* weakly * as n—o0. Thus y,—(I —4*)x* weakly *
n—oo. From |lxj—x*l>0 we also deduce that |lly;—(—A4%)x"|l—>0 as n—oo, hence
y=I-A%)x". O

This lemma shows in particular that (H2) is satisfied. Thus from Theorem 5.1 and 5.2 it follows
that 4% generates a semigroup 7™ on X* which is continuous with respect to ll-[ll, hence weakly
continuous by Lemma 5.3. Furthermore (S1) follows from Theorem 5.2(iii) and (S2) from Theorem
5.2+(v).
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