
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J .W. de Bakker

Comparative semantics for flow of control in
logic programming without logic

"Computer Science/Department of Software Technology Report CS-R8840 October

Cen!rumvoor\·~""-::.'"'.· -·; '"'" ~1 tniof41"tJ'itit,~:~i
Amsterdam

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum, which was founded on February 11, 1946, as a nonprofit institution aim

ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure

Research (Z.W.O.).

It 1

Copyright © Stichting Mathematisch Centrum, Amsterdam

Comparative Semantics for Flow of Control in

Logic Programming without Logic

J.W. de Bakker
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We study semantic issues concerning control flow notions in logic programming languages by exploring a
two-stage approach. The first stage considers solely uninterpreted (or schematic) elementary actions, rather
than operations such as unification, substitution generation or refutation. Accordingly, logic is absent at this
first stage. We provide a comparative survey of the semantics of a variety of control flow notions in (unin
terpreted) logic programming languages including notions such as don't know versus don't care nondeter
minism, the cut operator, and/or parallel logic programming, and the commit operator. In all cases con
sidered, we develop operational and denotational models, and prove their equivalence. A central tool both
in the definitions and in the equivalence proofs is Banach's theorem on (the uniqueness of) fixed points of
contracting functions on complete metric spaces. The second stage of the approach proceeds by interpret
ing the elementary actions, first as arbitrary state transformations, and next by suitably instantiating the sets
of states and of state transformations (and by articulating the way in which a logic program determines a
set of recursive procedure declarations). The paper concentrates on the first stage. For the second stage,
only a few hints are included. Furthermore, references to papers which supply details for the languages
PROLOG, CONCURRENT PROLOG and GUARDED HORN CLAUSES are provided.

Keywords and Phrases: logic programming, operational semantics, denotational semantics, don't know
nondeterminism, cut operator, and/or parallel logic programming, don't care nondeterminism, commit
operator, fixed points of contracting functions, metric process theory, grain size of atomic actions.

1985 Mathematics Subject Classification: 60055, 68010, 68N15.
1987 Computing Reviews Categories: D.1.3, D.3.1, F.1.2, F.3.2.

1. INTRODUCTION

1

We report on the first stage of an investigation of the semantics of imperative concepts in logic pro
gramming. Logic programming being logic + control ([Kw]), one may expect to be able to profit
from the large body of techniques and results in the semantic modelling of control flow gathered over
the years. We shall, in fact, take a somewhat extreme position, and ignore in the analysis below all
aspects having to do with logic. Rather, we shall provide a systematic treatment of a number of fun
damental control flow concepts as encountered in logic programming on the basis of a model where
the atomic steps are uninterpreted elementary actions. This constitutes a major abstraction step at two
levels. Syntactically, we abstract from all structure in the atoms (using symbols from some alphabet
rather than terms involving variables, functions or predicate symbols). Semantically, we abstract from
any articulation in the basic computation steps, thus ignoring concepts such as unification, (SLD-)
resolution or substitution generation. Does there remain anything interesting after this abstraction
step? If yes, do the remnants shed any light on logic programming semantics? These two questions are
addressed in our paper, and it is our aim to collect sufficient evidence that the answers to them are
affirmative. More specifically, we want to argue that the semantic analysis of the collection of control
flow concepts as provided below is justified for at least three reasons:

It helps in clarifying basic properties of control flow phenomena. For example, we shall study
versions of the cut operator, notions in and/ or parallel programming such as don't know non
determinism versus don't care nondeterminism and the commit operator, and it may be difficult

Report CS-R8840
Centre fo{; Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

to grasp these concepts in the presence of the full machinery of logic programming.
We shall systematically provide operational and denotational models for the various example
languages introduced below, and develop a uniform method to establish the equivalence of these
semantics in all cases. We see as a main achievement the gathering of evidence that for such com
parative semantics it is sufficient to work at the uninterpreted level. For both the operational and
the denotational models, an interpretation towards the detailed level of logic programming may
then be performed subsequently, if desired. The demonstration of the power of the uniform proof
principle which turns out to be applicable in all cases studied, may be see as a subsidiary goal of
our investigation.
Altogether, we shall deal with six example languages, each embodying a small (and varying) col
lection of control flow concepts. Seemingly small variations in the language concepts require care
ful tuning of the semantic tools, sometimes involving substantial modification of the models
employed. Thus, leaving the origin of the concepts aside for a moment, one may view our paper
as a contribution to comparative control flow semantics in general. The confrontation of the (dis)
similarities encountered throughout may provide an illuminating perspective on some of its fun
damental issues. It should be added ·here that, from the methodological point of view, our
(exclusive) use of metric methods may be seen as well as a distinguishing feature.

The answer to the second question - what is the relevance of all this for full logic programming
semantics-awaits further work. Much will depend on the feasibility of obtaining this full semantics
simply by interpreting the elementary actions as computational steps in the sense of the relevant ver
sion of the logic programming language, leaving the already available (abstract) control flow model
intact. A substantial part of the detailed work in establishing this still has to be done. On the other
hand, there are already a few case studies available which may be seen as providing support for our
thesis. A promising first step is made in [Vi, BrV], where for a simple PROLOG-like language it is
firstly shown how to add interpretations of elementary actions as (arbitrary) state transformations to
the semantic model(s). This, in turn, allows a smooth transition towards a model incorporating essen
tial elements of a declarative semantics for PROLOG: instead of the delivery of (sequences of) states,
by suitably specializing them the semantic definitions are now geared to the delivery of (sequences of)
substitutions (in the familiar sense of logic programming). A second paper which follows the approach
indicated above is [BK]. This paper continues earlier work of KOK [Ko] reporting on a branching time
model for Concurrent Prolog (abbreviated as CP, and stemming from [Shl]), where the use of a
branching time model is in particular motivated by CP's commit operator. In [BK], an intermediate
language is introduced with arbitrary interpretations for its atomic actions, and operational and deno
tational models are developed for it. Next, by suitably choosing both the sets of atomic actions and of
procedure variables, by choosing one particular interpretation function (involving the determination of
most general unifiers), and by using the information in the CP program to infer the declarations for
the procedure variables, an induced comparative semantics for CP is obtained. Finally, in the paper
[BoKPR] the semantics of Guarded Horn Clauses (GHC) is studied both from the control flow and
from the classical (declarative) point of view. More specifically, first an approach following the inter
mediate language technique - the same one as that used for CP in [BK] - is described. Next, a
declarative semantics, in terms of familiar notions such as Herbrand base or immediate consequence
operator, is developed which allows one to determine the success set of a GHC program. (In an
appendix to the present paper, we shall present a brief sketch of the interpretation chosen for a rudi
mentary form of (and/or) parallel logic programming - based essentially on ideas of Kok from [BK]-,
in order to illustrate the feasibility of obtaining logic programming with logic by suitably interpreting
logicless languages.)

We shall now be somewhat more specific as to which control flow concepts will be investigated. In
various groupings, we shall deal with the following notions
o elementary action
0 (procedure declarations and) recursion

3

o failure
o sequential execution
0 backtracking or don't know non-determinism
0 cut (in two versions, to be called absolute and relative cut)
o parallelexecution
o (don't care) non-determinism
0 commit.
These notions are grouped into six languages, L 1 to L 6• Each has elementary actions, recursion and
failure, and the precise distribution of the other concepts over the languages can be inferred from the
syntax overview to be presented at the end of this introduction. Notable imperative concepts missing
from the above list-taking our decision to start from uninterpreted elementary actions for granted
are synchronization and process creation. We have omitted them for no other reason than our wish
not to overload the present paper. We plan to include these concepts which are indeed pervasive in
many versions of parallel logic programming in a subsequent publication.

For each of the languages L 1 to L 6 we shall present both operational and denotational semantics.
The operational semantics will be based on labelled transition systems ([Ke]), embedded in a syntax
directed deductive system in the style of Plotkin's Structured Operational Semantics ([HP, Pll,2]). The
denotational models will be built on metric structures (as will be the way in which we infer opera
tional meanings through the assembling of information in transition sequences). Partly, these struc
tures will be of the linear time variety, i.e., they will consist of (nonempty closed) sets of finite or
infinite sequences over some alphabet. Partly, we shall work with branching time domains. More pre
cisely, the meaning of a statement will be a process (in the sense of [BZ]), i.e., an element of a
mathematical domain which is obtained as solution of a domain equation to be solved using metric
tools. Roughly, such a process is like a tree over the relevant alphabet of elementary actions, satisfy
ing various additional properties (commutativity, absorption, closedness).

For the logic part of the semantics of logic programming we refer to the book [LI] or to the
comprehensive survey of APT [Ap]. A recent tutorial on and comparison of parallel logic program
ming languages is the paper by RINGWOOD [Ri]. Our interest in comparative logic programming
semantics, using techniques which fit more in the imperative than in the logic tradition was originally
raised by [JM]. Elsewhere, we have often used the term 'uniform' for uninterpreted or schematic
languages (in general), e.g. in [BMO, BMOZ, BKMOZ], and the present investigation may also be
seen as a semantic exploration of uniform versions of logic programming, with special emphasis on
the comparative aspects. Other papers which address operational versus denotational semantics for
PROLOG are [DM, ABe, VV, Vi, BrV]. We shall return to the latter two below. We already men
tioned [BK] on semantic equivalence for Concurrent Prolog. In [GCLS], both operational and denota
tional semantics are presented for Flat Theoretical Concurrent Prolog (from [Sh2]). Whereas in [Ko,
BK] the denotational models are based on processes as in [BZ], in [GCLS] the failure set model of
[BHR] is applied. In addition, (GCLS] discusses full abstractness issues. A detailed analysis of opera
tional semantics for (variations on) CP is provided in [Sa]. The papers such as [Ko, BK, JM, GCLS]
should all be situated primarily in the tradition of imperative concurrency semantics, rather than pur
suing the line of extending the declarative semantics approach of 'classical' logic programming in
terms of (generalizations of) Herbrand universes. It is the latter approach which is followed in [LP2],
where a detailed comparison is given of synchronization phenomena in a variety of parallel logic pro
gramming languages. The paper [LPl] concentrates in particular on the declarative semantics of CP's
read - only variables. Related references include [FL, FLMP, FOM, Le].

For some time now, we have been utilizing metrically based semantic models, e.g. in [BZ, BBKM,
BMOZ, BKMOZ, BM, ABKR]. An essential extension of the metric domain theory was provided in
[AR]. An important advantage of the metric framework, compared with the usual order theoretic one,
lies in the fact that many of the functions encountered in the semantic models are contracting and,
hence, have unique fixed points (by Banach's theorem). This property may be exploited both in the
semantic definitions proper (see [ABKR] for many examples), and in the derivation of semantic

4

equivalences. It is the latter technique, first described in [KR], which constitutes the powerful method
already referred to, and which will be applied throughout our paper. (For further examples of the
method see [BM].) Our model of the denotational semantics of backtracking is a uniform (schematic)
version of a definition from [Br]. The operational semantics for the cut operator(s) were supplied by
E.P. de Vink (personal communication).

We conclude this introduction with an outline of the contents of our paper. Section 2 contains
some mathematical preliminaries, mainly devoted to the underlying metric framework. The overview
of the remaining sections is best presented by listing the syntax of the languages studied in them. For
each L;, we define statements sEL; which are to be executed with respect to a set of declarations D.
Let A be the (possibly infinite) alphabet of elementary actions, with a ranging over A, and let Pvar be
the alphabet of procedure variables, with x ranging over Pvar. The following ope~ators will be en
countered:
o sequential composition s1; s2
o don't know nondeterminism s1 Os2
o absolute cut !
o relative cut ! !
o parallel composition s1 lls2
o don't care non-determinism s1 +s2
0 commit s1 :s2
The languages, corresponding section headings, and respective syntactic definitions are summarized in
L 1 : sequential logic programming with backtracking

s:: =alxl fail ls1 ;s2ls1 as2
L 2 : sequential logic programming with backtracking and absolute cut

s::=alxl fail ls1;s2ls1 as2I !
L 3 : sequential logic programming with backtracking and relative cut

s::=alxl fail !s1;s2ls1 as2I 11
L 4 : (and/or) parallel logic programming: the linear time case

s:: =alxl fail ls1 ;s2ls1 lls2ls1 +s2
Ls : (and/or) parallel logic programming with commit: the branching time case

s::=alxl fail ls1:s2lsills2ls1 +s2
L 6 : (and/or) parallel logic programming with commit: increasing the grain size

s::=alxl fail ls1;s2!s1:s2lsdls2ls1 +s2

For each language, a program in that language consists of a pair <Dis>, sEL;, D=<xj<i==gj>j,
where gj is a guarded statement from L;-guarded here meaning that occurrences of calls (of some
x ePvar) in gj are preceded by some elementary action. Languages L 1 to L 3 are deterministic, and
the main issue is how to model the backtracking and cut operators. Languages L 4 and Ls are (very
much stripped) versions of (and/or) parallel logic programming. The difference between these two
consists in the transition from (normal) sequential composition (;) to commit (:). This induces a
different failure behaviour which in turn leads to the definition of a linear time (L1) model for L 4 and
a branching time (B1) model for L 5• An LT model (over an alphabet A) consists, as we saw earlier, of
sets of sequences of elementary actions from A, whereas a BT model (also over A) consists of tree-like
entities (with the already mentioned extra features). Maybe the technically most interesting issue of
our paper is addressed in Section 8, where we combine the composition operations of sequential com
position (;) and commit (:) into one language. Whereas for L 4 we encounter meanings such as, e.g.,
{ ab, ac} and, for L 5 , processes such as

5

a
or

b c b c

in L 6 we shall make use of meanings which have forms such as

ab a a
or

cd e bed be

Viewing the entities labelling the edges in the trees as the 'grains' of our model, we see that, in going
from L 5 to L 6 , we increase the grain size. We shall (in the context of L 6) interpret sequential compo
sition as an operator which leads to larger atoms (or grains), and commit (just as for L 5) as an opera
tor which induces branches is the trees. In a final section (Section 9) we introduce an alternative
transition system for L 6 , and show that this leads to the same operational (and denotational) seman
tics as that defined in Section 8. The appendix provides a brief sketch of a possible translation from a
rudimentary logic programming language towards L 4 •

2. MATHEMATICAL PRELIMINARIES

2.1. Notation
The notation (x E)X introduces the set X with typical element x ranging over X. For X a set, we
denote with <3>(X) the power set of X, i.e., the collection of all subsets of X. '3lw(X) denotes the collec
tion of all subsets of X which have property 'IT. A sequence x0, xi. · · · of elements of X is denoted
by (x;)~o or, briefly, by (x;);. The notation/: x~Y expresses that f is a function with domain X
and range Y. We use the notation f(y Ix}, with x EX and y E Y, for a variant of f, i.e., for the func
tion which is defined by

f(y!x}(x') = y , if x=x'
= f (x'), otherwise.

If/: x~Xandf(x)=x, we call x a fixed point off

2.2. Metric spaces
Metric spaces are the mathematical structures in which we carry out our semantic work. We give only
the facts most needed in this paper. For more details, the reader is referred to [Du, En].

DEFINITION 2.1. A metric space is a pair (M, d) where M is any set and d is a mapping M X M ~
[O, I] having the following properties:
1. '1x,yEM[d(x,y) = 0 ~ x=y]
2. 'li'x,yEM[d(x,y) = d(y, x)]
3. '1x,y, zEM[d(x,y) ~ d(x, z)+d(z,y)].
The mapping d is called a metric or distance. In case d satisfies 3 · instead of 3:
3'. 'li'x,y, zEM[d(x,y) ~ max(d(x, z), d(z,y))]
we call d an ultrametric.

6

ExAMl>LES.

1. Let A be an arbitrary set. The discrete metric on A is defined as follows: Let x, y EA.

d(x,y) = 0 if x =y
= 1 if x=f=y.

2. Let A be an alphabet, and let A 00 =A* UA"' denote the set of all finite and infinite words over A.
Let, for x EA 00

, x (n) denote the prefix of x of length n, in case length (x);;;;:. n, and x otherwise.
We put

d(x,y) = 2-sup{nlx(n)=y(n)}

with the convention that 2- 00 =O. Then (A 00
, d) is an ultrametric space.

DEFINITION 2.2. Let (M, d) be a metric space and let (x;); be a sequence in M.
1. We say that (x;); is a Cauchy sequence whenever we have

V£>03NENVn, m>N[d(xn,Xm)<£].

2. Let x EM. We say that (x;); converges to x, and call x the limit of (x;); whenever we have

V £>0 3 N EN V n > N[d(x, Xn)<£].

We call the sequence (x;); convergent and write x =lim; x;.
3. (M, d) is called complete whenever each Cauchy sequence in M converges to an element of M.

DEFINITION 2.3. Let (M 1, d 1) and (M 2, d2) be metric spaces.
1. We say that (Mi. d 1) and (M2 , d 2) are isometric if there is a mapping/: M 1_,,M2 such that

(a) f is a bijection
(b) Vx,yEM1[d2(/(x), f(y)) = d1(x,y)].
We then write M 1 ,..,.., M2• If we have a function f satisfying only condition (lb), we call it an
isometric embedding.

2. Let/: M 1_,,M2. We call/ continuous whenever for each sequence (x;); with limit x in Mi> we
have that lim; f(x;)=f(x)

3. We call a function/: M 1_,,M2 contracting if there exists a real number c with O~c<l such that

V x,yEM1[d2(/(x), f(y)) ~ c.d1(x,y)]

4. A function f: M 1_,,M2 is called non-distance-increasing if

Vx,yEM1£d2if(x), f(y)) ~ d1(x,y)]

We shall denote the set of all non-distance-increasing functions (ndi) from M 1 to M2 by
M1_,,1M2.

THEOREM 2.4.
1. Let (M 1' d 1) and (M 2, d2) be metric spaces, and let f: M 1_,,M2 be a contracting function. Then f

is continuous. The same holds for non-distance-increasing functions.
2. (Banach.)

Let (M, d) be a complete metric space. Each contracting function f: M _,,M has a unique fixed point
which equals lim; l(xo) for arbitrary xo EM. (Here J°(xo)=xo and Ji+ 1 (xo)= f(ji(xo)).)

It may be instructive to recall the proof of Theorem 2.4-2. Since f is contracting, the sequence (ji(x0)); is
Cauchy sequence. By the completeness of (M, d), the limit x =lim; f(x 0) exists. By the continuity off
(part 1), j(x)=f(lim; Ji(xo))=lim; p+ 1(xo)=x. If, for some yEM, f(y)=y then, by the contractivity
off, d(x,y)=d(f(x), f(y))~c.d(x,y). Hence, since c<l we conclude that d(x,y)=O, and x =y fol
lows.

7

DEFINITION 2.5. Let (M, d) be a metric space. A subset X of Mis called closed whenever each con
verging sequence with elements in X has its limit in X.

DEFINITION 2.6. Let (M, d), (Mi. d 1), and (M2, d 2) be (ultra) metric spaces.
I. We define a metric dF on the set M1~M2 of all functions from M 1 to M 2 as follows: For every

f1,/2EM1~M2 we put

dFif1,J2) = ;~Jl. d2(f1(x),f2(x))

2. We define a metric dP on the Cartesion product M 1 X M 2 by

<ip((Xi.YI), (x2,y2)) = ;!1lft{l;(x;,y;)

3. With M 1 UM2 we denote the disjoint union of M 1 and M2, which may be defined as
({l}XM1)U{{2}XM2). We define a metric du on M1 UM2 as follows:

du(x,y) = d;(x,y) if x,yE{i}XM; for i=l or i=2

= 1 otherwise.

In the sequel we shall often write M 1 UM2 instead of M 1 UM2, implicitly assuming that M1 and
M 2 are already disjoint.

4. Let Pc(M)={XIXc;M, X closed}. We define a metric du on Pc(M), called the Hausdorff dis
tance, as follows:

du(X, Y) = max{suo d(x, Y), sup d(y, X)}
XE~ yE'f

where d(x, Z)=infzEZ d(x, z) (here we use the convention that sup 0 =O and inf 0=1).

THEOREM 2.7. Let (M, d), (Mi,d1), (M2,d2), db dp, du, and du be as in Definition 2.6. In cased, di.
d2 are ultrametrics, so are dF, · · · ,du. Now suppose in addition that (M, d), (Mi.di), and (M 2, d2) are
complete. We have that

1. (M1~M2, dF) (together with (M1~1 M2, dF))
2. (M1XM2,dp)
3. (M1 UM2, du)
4. (Pc(M), du).
are complete metric spaces. (Strictly speaking, for the completeness of MI ~M 2. the completeness of M 1

is not required)

In the sequel we shall often write M1~M2, M 1 XM2, M 1 UM2, Pc(M), etc., when we mean the
metric spaces with the metrics just defined.

The proofs of parts 1,2, and 3 of Theorem 2. 7 are straightforward. Part 4 is more involved. It can
be proved with the help of the following characterization of completeness of (Pc(M), du):

THEOREM 2.8. Let (Pc(M), du) be as in Definition 2.6. Let (X;); be a Cauchy sequence in Pc(M). We
have

~ X; = {~ x;lx;EX;, (x;); a Cauchy sequence in M}
l l

Theorem 2.8 is due to HAHN [Ha]. Proofs of Theorems 2.7 and 2.8 can be found, e.g., in [Du] or [En].
The proofs are also repeated in (BZ].

THEOREM 2.9 (Metric completion).
Let M be an arbitrary metric space. Then there exists a metric space M (called the completion of M)

8

together with an isometric embedding i: M ~M such that
1. M is complete.
2. For every complett;_metric space M' an!} isometric embedding j: M~M' there exists a unique iso

metric embedding j: M ~M' such that Joi= j.

PROOF. Standard topology. D

2.3. Metric domain equations
We shall be interested in developing mathematically rigorous foundations for branching structures
which are, in first approximation, nothing but (rooted) labelled trees (with labels from some set A)
which satisfy three additional properties suggested by
1. commutativity

=

2. absorption

= a

3. closedness (precise definition omitted)
We shall obtain the set of 'trees' satisfying these properties as the domain P of processes (with respect
to A; this notion of process was introduced in [BZ]) satisfying the domain equation (or isometry)

P ,_ '?Pc(A U(A XP)) (2.1)

(Note that, for reasons of cardinality, (2.1) has no solution when we take all subsets rather than all
closed subsets of A U(A XP).) More precisely, we want to solve (2.1) by determining Pas a complete
metric space (P, d) satisfying

(P, d) ,_ '?Pc(A U(A Xidt(P, d))) (2.2)

where the right-hand side is built up using the composite metrics of definition 2.6. In addition, we use
the mapping id+ where, for any real c>O, idc(M, d)=(M, de), with dc(x,y)=c.d(x,y). (The use of

the mapping itJ+ is a technical-though essential-trick. Note that it affects only the metrics

induced. Hence, (2.1) is a correct rendering of (2.2) when attention is restricted to the set com
ponents.) It has been shown in [BZ] how to solve equations such as (2.2): We define a sequence of
complete metric spaces ((Pn, dn))~=O• with (P0 , d0)=(0, d0), do arbitrary, and

Pn+I = '?P(AU(AXidl.(Pn,dn)))
2

dn + 1 = (d,Jn.

Here dn is the metric determined (according to Definition 2.6) on A U(A XitJ+(Pn, dn)), where we as

sume some given metric dA on A. Next, we put (P ,,,, d,,,)=(U Pn, U dn) (with the obvious inter-
- _n n

pretation of LJndn; note that Pn<;;;,Pn+ 1), and we define (P,d) as the completion (Theorem 2.9) of

(P ,,,, d,,,). Then we have.

THEOREM 2.10. (P, d) is a complete metric space satisfying (2.2). If dA is an ultrametric, then so is d.

9

PROOF. Essentially as in (BZ]. D

REMARKS.

1. The above explanation covers only one case out of a whole range of possible domain equations.
In [AR], a category - theoretic treatment of the general case is described.

2. The reader who wonders about the connection between the process domain P and the models
obtained through bisimulation from Milner's synchronization trees (or ACP's graph models) is
ref erred to [BeK 1,2]. In a nutshell, in all relevant cases (assuming appropriate restrictions on
the graph models) the domains considered are isomorphic.

3. SEQUENTIAL LOGIC PROGRAMMING WITH BACKTRACKING

The first language on our list, L 1, contains a combination of the features elementary action, recursion,
failure, sequential composition and backtracking. It is intended as a uniform (uninterpreted) approxi
mation to PROLOG, as yet without a cut operator (which will be added in Sections 4.5). We shall
develop operational (19) and denotational (6D) semantics for L 1• The two semantic models to be
presented bring together certain previously proposed ideas from the literature in such a way that a
smooth equivalence proof is made possible. The denotational model is a uniform variation of ideas in
[Br], whereas the operational semantics for L 1 owes much to [Vi]. In [Vi], a denotational model is
developed as well, though of the direct - no continuations - variety. An important technical difference
between our work and that of [Vi] is that the latter is built on cpo structures (to be contrasted to our
metric ones), and requires rather more effort to obtain the equivalence result. On the other hand, [Vi]
handles arbitrary interpretations (rather than no interpretations), thus preparing the way for a transi
tion towards actual PROLOG which consists in the choice of a specific interpretation: fixing the sets
of elementary actions and procedure variables, interpreting the elementary actions (in terms of most
general unifiers), determining the procedure declarations from the set of clauses in the PROLOG pro
gram, etc. This transition is described in detail in [BrVi], where also a continuation style denotational
semantics for PROLOG with cut is developed, together with an equivalence proof in the cpo frame
work.

The equivalence proof we present below is an instance (many more follow in later sections) of a
technique based on the idea that both 19 and 6j) are fixed points of a contracting higher order operator
(in a setting with an appropriate metric) and therefore coincide. This technique was first described in
[KR] (for the metric case; see [AP] for an earlier order - theoretic argument). Various further exam
ples can be found in [BM], all of which deal with programs with explicit (simultaneous) procedure
declarations - as our languages L 1 to L 6 - rather than with programs where recursion appears through
µ.-constructs.

We begin with the definition of the syntax for L 1• Recall that a ranges over A, the set of elemen
tary actions, and x over Pvar, the set of procedure variables. It will be convenient to assume that each
program uses exactly the procedure variables in the initial segment 'X= { x 1, • • • ,xn} of Pvar, for
some n;;;;.O.

DEFINITION 3.1. (Syntax)
a. (statements). The class (s E)L 1 of statements is given by

s::= alxl fail ls1;s2ls1 Us2 with xE'X

b. (guarded statements). The class (gE)Lf of guarded statements is given by

g::= al fail lg;slg1 Ug2

c. (declarations). The class (DE~ of declarations consists of n-tuples D =x1 <=gi. · · · ,Xn <=gn,
or <x 1 <=g;>;, for short, withx;E'Xandg;EL;, i=l,2, · · · ,n.

d. (programs). The class (oE~, of programs consists of pairs o= <Dis>, with DEDec/1 and
SEL1.

10

ExAMPLE (assuming a,b,c,dEA).

<x1 ~(a ;x2)0(b;x3), x2 ~(c;x1)0(d; fail), X3 ~failla ;x1; b>

REMARKS.
1. All g; occurring in a declaration D = <x; ~ g; >; are required to be guarded, i.e. occurrences of

x E'X in g; are to be proceeded by some g (which, by clause b, has to start with an elementary
action). This requirement corresponds to the usual Greibach condition in language theory.

2. We have adopted the simultaneous declaration format for recursion rather than the 1L-formalism
which features (possibly nested) constructs such as, for example, µ[(a; /LY[(b ;y) 0 c]; d) 0 e]. The
simultaneous format is natural in the context of logic programming. Moreover, it allows a
simpler derivation of the main semantic equivalence results presented below. (Certain additional
inductive arguments applied in [KR] to deal with /L-constructs can now be avoided.)

3. Usually, we do not bother about parentheses around composite constructs. If one so wishes,
parentheses may be added to avoid ambiguities.

We proceed with the definitions leading up to the operational semantics for sEL1 and aE~1 • We
introduce two auxiliary syntactic classes in

DEFINITION 3.2.
a. The class (r E ~1 of success continuations is defined by

r::= El(s;r)

b. The class (tE}ram1 of failure continuations is defined by

t:: = a1(r:t)

Here E and a are new symbols, and the parentheses around (s ;r) and (r :t) will be omitted when no
confusion is expected.

The semantic universe (both for operational and denotational semantics) for L 1 is quite simple. Let
8 be a new symbol not in A, the intended meaning of which is to model failure. We define the seman
tic domain (v,wE)R in

DEFINITION 3.3. R =A* UA"'UA*.{8}. In other words, the elements of R (which will serve as mean
ings of statements or programs) are either finite sequences over A, possibly empty (E) and possibly
ending with 8,or infinite sequences over A. By Subsection 2.2, we can introduce a distance don R
which turns it into a complete ultrametric space (in the definition of d, 8 plays the same role as the
elements of A).

We now give the definitions of the operational semantics for L 1 and ~1 • They are based on tran
sition systems (as in [HP, Pll, Pl2]). Here, a transition is a fourtuple inYam1 XA XDec/ 1 XYami. writ
ten in the notation

a
t ~D t' (3.1)

We present a formal transition system T 1 which consists of axioms (in the form as in (3.1)) or rules, in
the form

a
t1 ~D t"

Transitions which are given as axioms hold by definition. Moreover, a transition which is the conse
quence of a rule holds in T 1 whenever it can be established that, according to T 1, its premise holds
(or, in Section 9, premises hold). We shall employ below notational abbreviations for the rules such as

a
(dropping the a and Din ~D for convenience)

and

t1~t2lt3

t1'~t2'lt3'
as shorthand for

as shorthand for

DEFINITION 3.4 (transition system T1).

a
(a;r): t ~D (r:t)

a -
{g;r): t ~D t
~----, x~g in D

a -
(x;r): t ~D t

a -
(fail; r): t ~D t

a -
s1 ;(s2; r): t ~D t

. a -
(s1;s2); r: t ~D t

a -
(s1;r): ((s2;r): t) ~D t

a -
((s1 Os2); r): t ~D t

11

and

and

(Elem)

(Ree)

(Fail)

(Seq Comp)

(Backtrack)

The axiom (Elem) describes an elementary step. (Ree) embodies procedure execution by body replace
ment: for x ~gin D, execution of x amounts to execution of g. (Fail) replaces execution of (fail; r): t
by that of t, its failure continuation. (Seq Comp) should be clear. (Backtrack) executes ((s 1 Os2); r): t
by executing (s 1; r) and adding (s2 ; r) to the failure continuation t.

We shall now define how to obtain 19 from T 1• We need an auxiliary definition.

DEFINITION 3.5. Choose some fixed D.
a. Let t 1, t2 E9°am. The relation t 1 -?>>t2 is the reflexive l!fld transitive closure of the relation which

holds between t 1 and t2 whenever, for some aeA and tE!i«m, we have that

a
t1 ~D t

is a rule in T 1•

b. t terminates whenever t ~ E: t', for some t'
c. t fails whenever t ~ /l.
The following lemma is immediate:

a
LEMMA 3.6. For each t, either t terminates, or t fails, or, for some a, t', we have t ~D t'.

DEFINITION 3.7.
a. The mapping 0: ~1~R is given by

19[<Djs>B = l9D[(s;E): L\B

12

b. The mapping eD: .9"CO?Z1 --?R is given by

e[tB = E:, if t terminates

= 8, if t fails

a
= a. 0D[t'B, if t --7D t'

where the transitions are with respect to T 1•

It may not be obvious that the function eD is well- defined. This is in fact a consequence of the fol
lowing

LEMMA 3.8. Let the operator <PD: (.9"CO?Z1--7R)--7(.%0n1--7R) be defined as follows: For any FEYCO?Z1--?R,
we put

<PD(F)(t) =E:, if t terminates

= 8, if t fails
a

= a.F(t'), if t --7D t'.

Then <PD is a contracting mapping with eD as its fixed point.

PROOF. Clear from the definitions and Banach's theorem. D

The next step is the development of the denotational model. This model uses semantic counterparts
for the syntactic continuations 9lco?z1 and .9"CO?Z1, in the form of

(</>E)R --?R, the (semantic) success continuations

(v,wE)R, the (semantic) failure continuations

('1TE)R = (R--?R)--?R--?R, a set which shall remain nameless.

Moreover, the usual notion of environment to deal with recursion is applied, this time in the form of
(y E)f 1 defined as

f1 = ~R.

The denotational semantics function 6J) is of type

6D: L1--?f1--?R

i.e., it is well-defined to write 6J)[sh<f>v=w. The function 6J) will be used in the definition of
~~1--?R.

From now on, we shall often suppress parentheses around arguments of functions. The denotational
semantic definitions are collected in

DEFINITION 3.9 (denotational semantics for L 1, ~1).
a. 6D[a h<f>v = a.<f>v

6J)[x)y<f>v = yx<f>v
6D[failh</>v = v
6D[s1 ;s2Jr</>v = 6D[s1h(6D[s2Jr</>)v
6D[s1 as2Br</>v = 6Db1h</>(6D[s2Br</>v)

b. ~ ~1 --?R is given by ~ <D Is>] = 6D[s hD(Av.E:)(8), with 'YD as in clause c
c. 'YD = y{'1T;/x;};, where for D = <x; *=g;>;.

<'1Ti. · · · ,'1Tn> = fixed point <<Pi. · · · ,<Pn>,

with <Pj: Rn--?R given by <Pj('11"1) · · · ('1T'n)=6D[gj]y{'1T';lx;};.

13

REMARKS.
1. In clause a, we assume as known the operation of prefixing a symbol a to an element w in R,

yielding the result a. w.
2. Note the symmetry in the definitions of 6D[s 1 ;s2] and 6D[s 1 Os2], where in the former case the

success, in the latter case the failure continuation is extended.
3. In clause b the meaning of s is initialized with the empty success continuation AP.E and the empty

failure continuation 8.
4. The (unique) fixed point in clause c exists by the guardedness requirement which ensures contrac

tivity of the <I>j (details of a proof of a very similar claim are provided in [BM]).
We continue with the derivation of the equivalence e=~

First, we introduce two auxiliary denotational meaning functions cffi,D and 5D, working on elements
in ~1 and .9""con1, respectively. (We find it convenient to carry along D as a parameter, rather than
as explicit argument of the mappings 0l and~) The mappings 0lD: ~1~R~R and 5D: .%m1-7R

are defined in

DEFINITION 3.10.
a. ~[E]=A.P.£, ~[s;r]=6D[shD~[r), with YD as in Definition 3.9
b. 5D[M=8, 5D[r:t]=~[rB5D[t).
The following lemma is now easily established (cf. Definition 3.5 for ~).

LEMMA 3.11. Choose D fixed
a. 5D[E:t]=E, 5D[£l]=8
b. 5D[(a;r):t]=a.5D[r:t]
c. If t 1 ~t2, then 5D[t1]=5D[t2].

PROOF. We consider only one special case. Let t 1 =((s1 Os2);r): t, t2 =<s 1 ;r): ((s2;r):t). We have
5D[t1]=5D[((s1 Os2);r): t]=~Hs1 Os2);r]5D[t]=6D[s1 Os2h0tD[r]5D[t]=
6D[s1hD~[r](6D[s2]YD~[r]5D(t])= · · · =5D[(s1 ;r): ((s2;r): t)]. D

The key step in the proof that e=~ holds on ~1 is the following lemma (which constitutes an
application to L 1 of the general proof techniques of [KR], [BM]):

LEMMA 3.12. Let <I>D: (.9""am1-7R)~(.9""am1~R) be defined as follows (cf. Lemmo. 3.8). Let FE.9°"am1~R.
We put

<I>D(F)(t) = E, if t terminates

= 8, if t fails
a

= a.F(t'), if t ~D t'

PROOF. We introduce the following complexity measure c on t E.9°"con1 : c(E :t)=c(ll)=O, c((s;r): t)=
c(s)+c(t), c(a)=c(x)=c(fail)= 1, c(s1 ;s2)=c(s 1 Os2)=c(s1)+c(s2)+1. From the definition of T1
we see that, for each t 1, t 2 such that
(i) t1-~t2,
(ii) t 1=/=t2, and
(iii) t 1 of the form (g;r): t'
we have that c(t1)>c(t2).

We now prove that <I>D(5D)(t)='!JD[t], for each t. If t terminates or t fails, the result is clear by
a

definition. Otherwise, t is of the form t =<s ;r): t', and, for some a, t 0, we have t -7D t0 • We organize

14

the proof in two stages. Let us call a failure continuation t guarded if t = !l or if t is of the form
(g;r):t', with t' guarded. We first consider the case of a guarded t of the form (g;r):t', and prove the
result by induction on c((g;r):t'). The following cases are distinguished:

g =a. ~D(~D)((a ;r): t') = (def. ~D)a. ~D[r :t') =(Lemma 3.11) ~D[(a ;r): t').

g =fail ~(~D)((fail; r): t') = (def. ~D)~D(~D)(t') = (ind. hyp.) ~D[t') =(Lemma 3.11) ~D[(fail; r): t'].

g = (g,;s).

~D(~D)(((g,;s);r): t') = (def. ~D)

~D(~D)((g1 ;(s ;r)): t') = (ind. hyp.)

~D[(gi;(s ;r)): t') = (Lemma 3.11)

~D[((g 1 ;s);r): t')

g=(g1 0g2). Similar
As next stage, we prove the desired result for t of the form (s ;r): t', for any s EL 1 and any t'. The

structure of the argument is as in stage 1, but for the case s = x. We then have

~D(~D)((x ;r): t') = (def. ~D)

~D(~D)((g;r): t') =(stage 1)

~D[(g;r): t') = (Lemma 3.11)

~D[(x ;r): t') D

The main result of the present section is now a direct consequence of this lemma:

THEOREM 3.13. For each O'E~1, e[a) =~a).

PRooF. By Lemma 3.8 and Lemma 3.12, ~Dis a contracting mapping, hence its fixed points eD and
~D coincide. Now

e[a) = e[<Djs>) =eD[(s ;E): !l) =%[(s ;E): !l) =6j)[slyD(i\v.£)(8)=

~<Djs>)=~a]. D

We conclude this section with the discussion of an alternative definition for the denotational seman
tics for L 1• We do this to prepare the way for an understanding of a definition using similar tech
niques in Section 5. Whereas in the present context the new definition is no more than a (maybe
somewhat far-fetched) alternative, in Section 5 the situation will be such that a definition following
the pattern as presented in a minute will be the only one possible.

We recall our use of the set R =(R_,,R)_,,R_,,R, It is now necessary to be more precise about the
various functions encountered in R. Therefore, till the end of this section we take R as

R = (R_,,1 R)_,,1 R_,,1 R

(See Definition 2.3.4 for the _,,I notation for functions.)

DEFINITION 3.14. Let 'I'D be a mapping

'I'D: (L1_,,R) __,, (L,_,,R)

which we define by putting, for each fixed D, each FEL 1 _,,R, each 'f>ER_,,1 R, and each v ER:

'I!DFa'f>v = a.'f>v

'I! DFx'f>v = 'I! DFg'f>v, for x ~ g in D

'I!DFfail'f>v = v

VDF(s1 ;s2)</>v = vDFs1(Fs2cf>)v

VDF(s1 Ds2)</>v = vDFs1cf>(i'DFs2cf>v)

Moreover, we put 6DD = fixed point v D.

15

We show that VD is well-defined and contracting in F, hence justifying the definition of 6DD. This
follows by the following

THEOREM 3.15. Choose D fixed (and then suppress it in the notation). Let F, Fi.F2EL1~1R, cf>, cf>i.
cf>2 ER~1 R, v, Vi, V2 ER
al. For all gEL;.

d(i'Fgcf>vi. i'Fgcf>v2) ~ d(vi, v2)

a2. For all sEL1

d(v Fscf>vi. v Fsc[>v2) ~ d(vi. v2)

bi. For all gEL;
l

d(i'Fgcf>i. i'Fgct>i) ~ 2d(cf>i. cf>2)

b2. Similarly for s EL1
cl. For all gEL;

I
d(i'F1g, i'F2g) ~ 2d(Fi. F2)

c2. Similarly for s EL1.

PROOF. We exhibit various selected subcases.
al. g =fail. d(i'Ffailcf>Pi. i'Ffailcf>v2) = d(vi, V2)

g = g1;s. d(i'F(g1;s)</>vi, i'F(g1;s)</>v2) = d('l!Fg1(Fscf>)vi. i'Fg1(Fscf>)v2)

~(ind. hyp., and since Fscf>ER~1 R) d(vi. v2)

a2. s = x. d(i'Fxcf>vi. i'Fxcf>v2)=d(i'Fgcf>vi. i'Fgcf>v2) (with x <;=gin D) ~ d(vi, v2) by part al.

bl. g =a. d(i'Facf>i. i'Fac[>i)=supveRd(i'Facf>1v, i'Fac[>iv)=supveRd(a.cf>1v, a.c[>iv)=

I I
2supveRd(cf>1 v, cf>iv) = 2d (cf>i. cf>2)

g = g1 Og2. d(i'F(g1[]g2)</>i. i'F(g1[]g2)cf>i)=supveRd(i'F(g1 Og2)</>1v, i'F(g1 Og2)cf>2v)=

SUPveRd(i'Fg1cf>1 (i'Fg2cf>1v), i'Fg1cf>i(i'Fg2cf>iv))~(d is an ultrametric)

SUPveRmax(d(i'Fg1cf>1('1'Fg24>1v), i'Fg1cf>1('1'Fg2cf>iv)),

b2. Similar to a2.

d(v Fg1 cf>1 (v Fg2cf>iv), qr Fg1 cf>i(V Fg2cf>2v)))

~ (part al, ind. on g1)
1

SUPveRmax(d(i'Fg2cf>1v, i'Fg2cf>iv), 2d(cf>i. cf>2))

~(ind. on g2) ; d(cf>1, cf>2).

cl. g =gi;s. d(i'F1(g1;s), VF2(g1;s))=supc1>eR-->'R,veRd(i'F1(g1;s)</>v, i'F2(g1;s)</>v)

16

~(dis an ultrametric)

supq.ER->'R,vERmax(d('1'F1g1(F1scp)v, '1r F1g1(F2scp)11),d('l! F1g1(F2scp)v, '1r F2g1 (F2scp)v))

~ (part b, ind. hyp. for g I)
I I I

supq.ER->'R,vERmax(2d(F1scp, F2sct>), 2d(Fi, F2))~2d(Fi, F2)

g = g1 []g2. d('l! F1 (g1 []g2), '1r F2(g1 []g2))=supq.ER--+' R, vERd('lr F1 (g1 []g2)ct>v, '1r F 2(g1 []g2)ct>v)

= supq.ER--+' R, vERd('lrF 1g1cp('lrF1g2cpv), '1r F2g1 cp('1'F2g2cpv))~

(similar to part bl, using the ultrametric property, twice the ind. hyp., and part a)

I
2d(Fi. F2). D

CoROLLARY 3.16. For each sEL1> 6DD[sD=6D[sDYD·

4. SEQUENTIAL LOGIC PROGRAMMING WITH BACKTRACKING AND ABSOLUTE CUT
We add a preliminary version of the cut operator, written as '!' and inspired by PROLOG's cut, to
the language Li, obtaining L 2 • This version we call 'absolute cut'. Its operation is rather drastic:
when the operator'!' is encountered, all alternatives (kept available for possible subsequent backtrack
ing through a fail statement) collected as a result of previous executions of s 1 []s2-statements since the
beginning of the whole program are deleted. In the next section we shall deal with a more realistic ver
sion of the cut operator, denoted by'!!' and called 'relative cut'. The operator'!!' deletes all alterna
tives (kept available for possible subsequent backtracking through a fail statement) collected as a
result of previous executions of s1 []si-statements since the beginning of the execution of the most recent
procedure call in which this'!!' occurs. We emphasize that the !!-operator is the one which interests us.
The'!' is studied only to help in understanding our treatment of'!!' in the next section. In particular,
the mechanism developed in the present section introducing the so-called dump stack is not so much
motivated by our wish to model '!' (in fact, all applications of transition system T 2 leave the dump
stack constant), but rather designed for modelling'!!' (in T 3 the dump stack indeed varies).

We shall design operational and denotational models for L 2 (and for L 3 in the next section) involv
ing a more subtle use of continuations. The operational semantics for L 3 (and its approximation L 2)

are due to De Vink, cf. [Vi, BrVi)]. Our continuation based denotational semantics for L 2 will be
designed such that the equivalence 0=6D on ~2 is a straightforward extension of the results in Sec
tion 3.

DEFINITION 4.1. (syntax)

a. (statements). The class (sE)L2 of statements is given by

s:: = alxl fail ls1 ;s2ls1 []s2I!

b,c,d. The classes~. ~2, ~2 are derived from L 2 analogously to Definition 3.1, parts b,c,d. We
now present the new continuations:

DEFINITION 4.2.
a. The class (u E)~ of statement continuations is defined by

u:: = nill(s;u)

b. The class (r E ~2 of success continuations is defined by

r:: = El(u:t); r

c. The class (t E }ram2 of failure continuations is defined by

t:: = ai(r:t)

17

As before we define a transition system is terms of fourtuples in ,3tmz XA X~2 X9'"am2, employing
the notation

a
t -7-D t'

DEFINITION 4.3 (transition system T2).

a
(((a ;u): t);r): t' -7-D ((u :t);r): t' (Elem)

a -
r ;(-7-D t

(Nil)
a -

((nil:t);r): t' -7-D t

a -
(((g;u): t);r): t' ~D t ...;..;..;;;..__ ______ ' x *= g m D

a -
(Ree)

(((x ;u): t);r): t' -7-D t

a -
(Fail)

(((fail;u): t);r): t' ~D t

a -
(((si;(s2;u)): t);r): t' -?>v t

(Seq Comp)
a -

((((s1;s2);u): t);r): t' -7-D t

a -
(((s1;u): t);r): ((((s2;u): t);r): t') -7-D t

a
(Backtrack)

((((s1 []s2);u): t);r): t' ~D t

a -
((u :t);r): t ~D t

a -
(Cut)

(((!;u): t);r): t' -7-D t

It may be instructive to compare T 2 with T 1• The system is organized by the various cases for s in
t0 =(((s;u): t);r): t'. In t0 , t' is the failure continuation, also to be called failure stack, which serves
the same purpose as in the constructs (s ;r): t' encountered in T 1• On the other hand, t in t 0 is the
'dump stack' (terminology from [Vi]). Its function is as follows: When, as a result of (!acktrack) s~me
t0 =((((s1[]s2);u):t);r):t' is transformed (by --3>>) into t 1=(((s1;u):t);r):t (where t=
(((s2;u): t);r): t'), in t 1 the stack t is preserved. In case we encounter, while processing s1;u, an

occurrence of'!', we shall transform the then current t" = (((!;u'): t);r): t into ((u':t);r): t, thus reins
talling the dump stack t instead of the currently active failure stack t =, effectively throwing away the
alternatives built up so far in t = as a result of the []-statements processed up to now. The other rules
in T 2 should be clear: Once the formalism involving a second (dump) stack is understood, the axioms
(Elem) and the rules (Ree), (Fail), (Seq Comp) and (Backtrack) are direct extensions of similar rules
in T 1• Rule (Nil) expresses the natural fact that execution of ((nil: t);r): t' amounts to execution of
r: t'. We already announce that in transition system T 3 dealing with relative cut, we shall only vary
the recursion rule (and replace'!' by '!!' in the (Cut) rule).

We next define how to obtain e from T 2 • The notions of terminating or failing t are as in

18

Definition 3.5.

DEFINITION 4.4.
a. The mapping 19: f!Pw:?2~R is given by

e[<Dis> D = 19v[(((s ;nil): ll);E): llD

b. The mapping '9v: !Trmi2~R is given by

19v[tD = £, if t terminates

= 8, if t fails
a

= a.19v[t'], if t ~D t'

where the transitions are with respect to T2 •

Well- definedness of 19 for f!Pw:?2 follows as before.
We continue with the denotational semantics. Following the general strategy as first adopted in the

previous section, we shall structure the denotational definitions in direct correspondence with the
operational ones in T 2 • We first introduce the various domains

(v, WE)R

(c/>E)R~R

(pE)R~(R~R)~R~R

af
('1TE)(R~(R~R)~R~R)~(R~(R~R)~R~R) = R

(yE)f2 = ~R

The mappings 6D: L2~r2~R and~: f!Pw:?2~R are given in

DEFINITION 4.5.
a. 6D[aDypvc[>w = a.pvcf>w

6D[xhpvc[>w = yxpvcf>w
6D[failhpvcf>w = w
6D[s1;s2hPPcf>W = 6Dls1h(6DH:s2hP)Pc/>W
6Dls1 Us2Dypvc[>w = 6Dls1hpvcf>(6D[s2hpvcf>w)
6D[!)ypvc[>w = pvc[>v

b. rv='Y{'1T;lx;}i> where <'1Ti. · · · ,'1Tn> is the (unique) fixed point derived in the usual way from
D=<x;<=g;>;

c. ~<Dis>] =6D[shv(Av.Acf>.cf>)(8)(Av.£)(8)

REMARK. The definitions in part a follow the axiom and rules in T 2 • The following correspondence is
maintained:

UE~ ~ pER~(R~R)~R~R

rE~~cf>ER~R

t, t'E!!iami ~ v, WER

Also, a construct ((u :t);r): t' corresponds with the semantic entity pvc[>w.
Similar to what we did in Section 3, on our way to establish that 19=~ we use some (auxiliary)

denotational semantic functions 621v, 0lv, ~D with types

621v : ~ ~ R~(R~R)~R~R

defined in

~ : Y'am2 ~ R~R

'5'D :~ ~R

DEFINITION 4.6.
a. ~[nil) = °Av.Acp.cp

~[s ;u) = 6ilshD~[u)
b. ~[E) = AP.E

~[(u :t);r) = 6l1D[u)'5'D[t)~[r]
c. '5'D[AJ = 8

'5'D[r:t) = ~[r)'5'D[t)

The following lemma is now easily established:

LEMMA 4.7. Choose D fixed
a. '5'D[E: t] = E, '5'D[A) = 8
b. Ift1-?!>t2, then '5'D[t1J = '5'D[t2J

PROOF. Clear from the definitions. 0

We finally have

THEOREM 4.8. Let <I>D: (Y'am2~R)~(Y'am2~R) be defined as follows. Let Fe~~R.

<I>D(F)(t) = E, if t terminates

= 8, if t fails
a = a.F(t'), if t ~D t'

PROOF. We employ the following complexity measure

c(E: t)=c(A)=c(nil) = 0

c(((nil: t);r): t') = l+c(r: t')

c(((u :t);r): t') = c(u)+max(c(t), c(t')), u¥=nil

c(s ;u) = c(s)+c(u), c(s1 ;s2)=c(s1as2)=1 +c(s1)+c(s2),

c(a)=c(x)=c(fail)=c(!) = 1

19

Let us call t guarded if either t =A, or t is of the form (((g;u): t');r): t" or ((nil: t');r): t", with t' and
t" guarded. From the definition of T2 we can infer that, for guarded ti. if t 1-?!>t2 then we have that
c(t 1)>c(t2). Now follow the same argument as in the proof of Lemma 3.12. 0

CoROLLARY 4.9. For each CJE~2. e[a)=~a].

PROOF. Cf. the proof of Theorem 3.13. 0

20

5. SEQUENTIAL LOGIC PROGRAMMING WITH BACKTRACKING AND RElATIVE CUT

Thanks to the preparations in Sections 3 and 4, we can now be quite brief. In L 3, we replace'!' by
'!!',and assume all induced syntactic definitions. We define the transition system T3 in

DEFINITION 5.1. T3 coincides with T2 (with !! replacing ! in the (Cut) rule), but for the rule (Ree) of
T 2 which is now replaced by

a -
(((g;nil): t'); ((u :t);r)): t' ~D t
-~---------' x <==g in D

a -
(((x ;u): t);r): t' ~D t

(Ree')

As a result of (Ree), if t0 =(((x;u): t);r): t' -?>> t 1 =(((g;nil): t'); ((u:t);r)): t', with x<==g in D, u
keeps its dump stack t, but the dump stack for g is initialized at the current failure stack t'. As a
consequence, occurrences of!! in g cause (re) activation oft' as failure stack rather than that oft.

From T3 the operational semantics definitions for L 3 and ~3 are obtained in the, by now usual,
way.

We now discuss how to design the denotational semantics for L 3• We want to follow the general
strategy (denotational equations derived from the transition system), but then face a complication in
the new rule for procedures (Ree): A call of some x does not simply amount to body replacement (g
replacing x in the current t), since, in addition, various parameters are changed around. Thus, a direct
definition involving rv=Y{'1T;lx;}; as in the previous section, with <'17;>; fixed points derived from
the declaration D = <x; <==g;>; is not feasible. Rather, we follow the route as described at the end of
Section 3, and obtain 6j) as fixed point of a higher order operator i'v. In the equations defining this
operator, we once more can mimick the axioms and rules of transition system T 3 . As we did at the
end of Section 3, we add to our various domains the information that all relevant functions are (at
least) non distance increasing:

(v, we)R

(f[Je)R~ 1 R

(pe)R~1 (R~1 R)~1 R~1 R

('1Te)(R~ 1 (R~1 R)~1 R--'>1 R)~1(R~1(R~1 R)~1 R~1 R) = R

We define i'v: (L3~R)~(L3~R) in

DEFINITION 5.2.
a. Let FeL3~R. (In part a, we suppress subscripts D)

i'Fapvf[Jw = a.pvf[Jw

i' Fxpvf[Jw = V Fg(Av.AfjJ.f[J)w(pvrp)w, x <== g in D

i'Ffailpvf[Jw = w

i'F(s1;s2)pvf[Jw = i'Fs1(Fs2p)vf[Jw

VF(s1 Os2)pvf[Jw = i'Fs1pvq,(i'Fs2pvrpw)

VF(! !)pvf[Jw = pvf[Jv

b. 6Dv= fixed point (i'v), ~<Dls>]=~[s], ~=A8.6Dv[s](Av.Al/J.1/J)(6)(Av.€)(6).
We show that i'v is well-defined and contracting in D, hence justifying the definition of 6Dv.

THEOREM 5.3.
a. d(i'Fgpvf/Jwi. 'l!Fgpv<f>w2) ~ d(wi. w2),for all gel,§, and similarly with s(eL3) replacing g

b. d(i'Fgpvf/Ji. i!Fgpv4'2) ~ i d(f/Ji. 4'2), for all gel,§, and similarly with s(eL3) replacing g

21

c. d('YFgpvi. 'YFgpv2) :e;;; d(vi. v2),for all gEL,i, and similarly with s(EL3) replacing g

d. d('YFgp1, '11FgP2) :e;;; ~ d(p1, Pi), for all gEL,i, and similarly with s(EL3) replacing g

e. d('l'F1g, '11F2g) :e;;; ~ d(Fi. F2),for all gEL,i, and similarly with s(EL3) replacing g.

PROOF. The proof is very similar to that of Theorem 3.15. We consider just two subcases. The first
concerns clause d, subcase g=g1 ;s. We have

d('1.TF(g1;s)pi. '11F(g1;s)P2) = d('l'Fg1(Fsp1), '11Fg1(FsP2)).e;;; (ind. hyp.)
I I

1d(Fspi. FsP2) :e;;; (def. F)2d(pi. P2)

Next, we consider clause d, cases =x. We have

Now that we have justified the definition of 6Dv, by the usual argument we immediately obtain

COROLLARY 5.4. For each OE~3, '9[o] = ~o].

6. (AND/OR) PARALLEL LOGIC PROGRAMMING: THE LINEAR TIME CASE

We next turn our attention to the imperative features underlying the general model of logic program
ming (rather than the PROLOG-like variant discussed so far). Accordingly, we now allow parallel
execution, and, moreover, replace the backtracking choice s 1 Us2 (don't know) by the general non
deterministic choice s 1 +s2 (don't care). We shall find it advantageous to also keep sequential compo
sition in our language. Parallel execution will be taken here in the interleaving sense: The favorite
example is allb, which obtains as meaning the set {ab, ba}. Thus, we have a computational model
which allows, in general, many outcomes of a computation, and sets rather than single elements are
yielded as a result of the semantic mappings.

The simultaneous presence of sequences of elementary actions and of (an element modelling) failure
in the sets of entities which are the meaning of a statement or program leads to the following well
known phenomenon (we use v, wER as before but now also consider subsets X, Y!:R): Firstly, if
there is a choice between failure or something else (some X !:R), we want to keep only the something
else:

{8}UX = X, for X=/=0

Secondly, we want that, for any v,

8.v = 8

(6.1)

(6.2)

(no visible result after failure), but we do not want that v.8=8, for all v. That is, we do not want that
failure collapses all previous results. The last property explains that it is not adequate to simply model
failure by the empty subset of R, since we do have the v. 0 = 0, for all vER. Note that this argument
depends on the interpretation of'.' as the usual concatenation operator; in a moment, we shall discuss
an alternative interpretation for'.'. Thirdly, we have the choice (in our semantic model) as to how to
model the interplay between failure and sequence formation. In the present section we shall take the
sequencing operator in the usual sense of concatenation (' .') of sequences of symbols, and treat 8 as a
special symbol satisfying (6.1) and (6.2). Accordingly, we then have that

(6.3)

with as corollary that v.{8} Uv.X=v.X, for X=/=0. By the semantic definitions to follow, (6.3) is at the
bottom of the equivalence

22

(s;s1)+(s;s2) = s;(s1 +s2)

In a variety of phrasings stemming from different sources, we say something like
sequential composition is left-distributive with respect to nondeterministic choice
we have a 'linear time' or trace model for the denotational semantics
the nondeterminacy is local or internal.

(6.4)

In the next section, we shall adopt an alternative view, and use a different operator for sequence for
mation, denoted by':', which does not satisfy (v:X1)U(v:X2)=v:(X1 UX2). We then obtain a model
in which it is not, in general, true that s:(s1 +s2) and (s:s1)+(s:s2) have the same meaning. This
model, to be described in detail in Section 7, is called 'branching time', and the operator':' is, in the
framework of parallel logic programming languages, called (don't care) commit. In Section 8, finally,
we shall investigate what happens when we combine the two sequential operators ';' and ':'into one
language. This will give rise to some interesting ensuing problems which can, somewhat metaphori
cally, be described as having to do with the grain size of atoms in computations. Most of the material
in Sections 6,7 is essentially known. The semantic definitions go back to papers such as [BMOZ,
BKMOZ], and the equivalence proofs are versions of the results in [KR] (the syntactic format for
recursion adopted in [KR] causes some technical complications not encountered below) or [BM].
What may be new is the emphasis on the comparative analysis of ';' versus ':' (without involving
different versions of nondeterminacy). The idea to investigate properties of the commit operator as a
semantic operator in a branching time framework is due to KoK [Ko].

After these explanations, we can be rather concise in the subsequent definitions.

DEFINITION 6.1. (Syntax for L4).
a (statements). The class of statements (se)L4 is given by

s:: = alxl fail ls1 ;s2ls1'ls2ls1 +s2

b (guarded statements). The class of guarded statements (ge).l4 is given by

g::= alfaillg;slgillg2lg1 +g2

c. (De)!'kt'4 and (ae~4 are as usual.

From now on, we take R =A+ UA"'UA*.{8}: We have no more use for EER.

DEFINITION 6.2. ~ = '31nc(R) is the set of all nonempty closed subsets of R.

The metric framework employed below relies on

LEMMA 6.3. Let d be the Hausdorff distance on ~- Then (~, d) is a complete ultrametric space.

PRooF. See, e.g., [Ni]. D

Below, we shall assume as known the operation of prefixing a EA to X E~ yielding a.X E~.
The transition system T4 is defined in terms of transitions in L 4 XA X~4X(L4 U{E}), written as

a
S "°4D S

1

or

DEFINITION 6.4 (transition system T4). Lett range over L 4 U {E}.

23

a
a -+v E (Elem)

a
g-+v t
------, x $=g in D

a
(Ree)

X -+v t
a

s -+v s'IE
a

s ;s -+v s';sfS (Seq Comp)
a

sllS -+v s'llS[S
a

ills ---+ D slls'fS
(Par Comp)

a
s -+v t

(Choice)
a

S +s -+v t
a

s+s -+v t

Note that there is no transition for fail.
Preparatory to the definitions of e and 6D for L 4 , we first introduce the operator of reduction,

denoted by red, from £ to £. Informally speaking, for each X e£, red(X) delivers the result of apply
ing all possible 'simplifications' { 8} U Y = Y (for Y::F 0) in X. In the formal definition of red(X) we
use the auxiliary notation (for any aeA, Ye£) Ya=def(vla.veY and rr.:;6£}. Note that Ya may be
empty.

DEFINITION 6.5. red({8})={8},

red(X) = {alaeX}U U {a.red(Xa)laeA and Xa¥:0}, if X:;6{8}

Well-definedness of red follows as usual.
The operational semantics, collecting successive steps in a way which is an adaptation of the one

used previously, is given in

DEFINITION 6.6.
a. 8: ~4--+£ is given by 8[<Dls>]=8vls].
b. (')D: L4-+£ is given by

a a
8vlsl = red({als -+v E}+ U {a.0vls] Is -+v s'}) the argument of red is nonempty

= { 8}, otherwise.

Well-definedness of ev is established by the usual contractiVity argument.
For the denotational semantics for L 4 , we first have to define the semantic operators '0 ', '+ ', 'II'

(and the auxiliary operator of left merge 'lL').

DEFINITION 6.7 (the semantic operators +, 0 , II, lL). Let X, Ye£.
a. X + Y=red(XU Y), where 'U' is the set-theoretic union of elements in£.
b. Let th~ operator <Po: (£X£-+1£)-+(£X£-+1£) be defined as follows: Let q,e£X~1 £, and let us

write 'l>o for <Po('/>). We put

4'o({8})(Y) = {8}

'l>o(X)(Y) = LJ {a.q,(Xa)(Y)laeA and Xa¥:0}+ LJ {a.YlaeX} for X:;6{8}

24

c. Let th~ operator <P11 : (£X£-.+1£)-+(£X£-.+1£) be defined as follows: let cf>ES>X£-.+1£, and let us
write cp11 for <P11 (cp). We put

- - -
cf>n (X)(Y) = cp.(X)(Y) + cf>o (Y)(X)

d. Let 0 = fixed point (<P.), II= fixed point (<Pu), IL =<P.(11). I

LEMMA 6.8. The above definitions are well-defined In particular, <P.: (S>XS>-.+1£)-+ 2 (£X~1 S>), and
similarly for <P11. Also, the operators+, ., II, IL are ndi.

PROOF. Standard. Apart from minor variations, the required calculations can be found, e.g., in
appendix B of {BZ]. D

We proceed with the denotational semantics proper. Let f 4 =~£. The mappings 6D: L 4-+f4-+£
and ~ ~4-+£ are given in

DEFINITION 6.9.
a. Gt(aly={a}, 6Dl[xly=yx, 6D[fail)y={8}
b. 6D)s 1ops2h=6D[s1hop6D[sz]y, where op ranges over the syntactic operators ;, II, + and op

ranges or the semantic operators 0 , II, +,respectively.
c. '!)R[<Dis>] =6D[shv, where, for D = <x; «=g;>;, we put (as usual) rv=r{Xilx;};, and

<Xi. · · · ,Xn> = fixed point <'1'i. · · · ,'11n>

with 'l'j =hY1. · · · .hYn.6DIIgj)y{Y;lx; };.
We have the usual equivalence theorem

THEOREM 6.10. 8[o]='!)R(o],for a/l OE~4.

PROOF. Let i'v: (L4-+£)-+(L4-+£) be defined as follows. Take any FEL4-+£. We put

a a
'1rv(F)(s) = {als -+v E}+ U {a.F(s')ls -+v s'} the argument of red is nonempty

= {8}, otherwise.

Let 6Dv: L 4-+£ be defined by 6Dvls]=6D[shv· We shall show that(*) Vv(6Dv)=6Dv, thus establishing
that 6Dv=8v and, hence e=~ by the usual argument.

STAGE l. First we prove that Vv(6Dv)(g)=6Dv[d for each gEL(, using induction on the complexity
of g. The cases g=a or g=fail are clear. For the other cases, we first observe that it is easily

a
verified (by an inductive argument on the complexity of g) that g has no transitions g -+v · · · iff
6Dv[gD={8}. (Note the g has no transitions iff g obeys the syntax g::=faillg;slg1llg2lg1 +g2.) We
now consider the case that g has indeed transitions. We then have

g=gi;s.
a a

'1'v(6Dv)(g1;s) = {alg1;s-+ E}+ LJ {a.6Dv[S]llg1;s -+v s}=

a a
({alg1 -+v E}+ U {a.6Dv[s']lg1 -+v s'})0 6Dv[s]='1'v(6Dv)(g1)0 6Dv[s] =

(ind. hyp.) 6Dv[g1]0 6Dvls1 = 6Dv[g1 ;s]

a a
U {a.6DD[g1llg2 ~DE}+ U {a.6DD[gills"l lg2 ~D s"} =

a a
(U {alg1 ~DE}+ U {a.6DD[s']lg1 ~D s'})IL 6DD[g2]+

a a
(U {alg2 ~DE}+ U {a.6D»[s"]lg2 ~D s"})IL 6DD[g1]+

('1'D(6DD)(g1)IL 6j)D[g2l)+('l'D(6DD)(g2)IL 6J)D[g1]) = (twice the ind. hyp.)

(6DD[g1]1l 6J)D[g2])+(6DD[g2]IL 6j)D[g1]) = 6J)D[gl llg2].

g=g1 +g2. Left to the reader.

25

STAGE 2. We now prove that '11D(6DD)(s)=6DD[s], for all seL4 , by induction on the complexity of s.
All cases are as in stage 1, but for the cases =x. We only consider the subcase that vD(6DDXx):;C:{6}.

a a
We have '11D(6DDXx)={alx ~DE}+ u {a.6DD[s]lx ~D s}=

a a
{alg ~DE}+ u {a.6DD[fllg ~D s}='11D(6DD)(g) (with x ~gin D)= (stage 1)
6DD[g)=(def. 6DD)6DD[x]. D

7. (AND/OR) PARALLEL LOGIC PROGRAMMING WITII COMMIT: THE BRANCHING TIME CASE

In the next language studied (Ls) we replace the (noncommitting) sequential operator';' by the com
mit':'. We recall that the essential difference between L4 and Ls consists in the fact that, in L4 , we
have the equivalence(*) (s ;s 1)+(s ;s2)=s ;(s 1 +s2). In particular, we have

(a;fail)+(a;b)=a:(fail+b) = a;b

On the other hand, in L 5 we do not have, in general, that(*) holds. In particular, we have that

(a: fail)+(a :b)=Fa: (fail+b) (=a :b)

Our task is, therefore, to develop an underlying mathematical structure which makes sufficient distinc
tions not to identify (the meaning of) the two Ls-statements (a: fail)+(a :b) and a :(fail+b). For this
purpose, we use the (metric) process theory as first described in [BZ] (and further elaborated in [AR]),
and sketched briefly in Section 2.3. We introduce the domain (p,qe)P of processes as solution to the
equation (isometry, to be precise)

P,..., '?Pc1ose<1(A U(A XP)) (7.1)

Elements in P are, for example, p 1={a}, p 2={<a,{b}>}, p 3 ={<a,{b}>, <a,{c}>},
p4={ <a,{b,c}> }, ps={ <a, 0> }, p6={ <a,{ <a, {<a, · · · > }> }> }, p1={a, <a, {a}>,
<a, {<a, {a}>}>, · · · }. We observe, for example, that p3 and p4 are different processes. In a pic
ture, we can represent them as

a

b c

respectively. Process p 6 can be obtained as lim,,pn', with p0' arbitrary, p'n +I={ <a,p'n> }. Process
P1 equals lim,,p"n, with p"o arbitrary, p"n+I ={a}U(p"n: {a}) (see below for the operators U, : on
processes). We emphasize that the empty set 0 is a process (in (7.1) we use '?Pc1osed (·) rather than

26

~nonempty closed (•)); The empty process has indeed the appropriate properties to model failure (note
that 8 has disappeared from the scence in Section 7): We shall subsequently define the semantic
operators 'U' and':' such that 0 Up=pU 0 =p, 0:p = 0, butp: 0¥=0 (in general).

After this introduction, we first give the syntax for L 5 :

DEFINITION 7 .1.
a (statements). The class of statements (sE)L5 is defined by

s:: = alxl fail ls1 :s2lsills2ls1 +s2

b. The classes ~, .@J5 and ~s are defined as usual.

REMARK. The reader who would like to see constructs :s or s : (commit with empty left- or right
operand) will have to take the trouble to incorporate a silent atomic action T in A, and read T: s for :s,
S :T for s:.

For the definition of the operational semantics for Ls, we introduce the transition system Ts. For
tunately, only one minor variation in the system T4 is required. We replace the rule for (Seq Comp)
by

a
s --7D s'IE

(Commit)
a

s:s --7D s':sls
and keep all other rules of T4 unchanged (including the rules for (Par Comp)).

The essential new element in the operational semantics for Ls is the way in which the individual
transitions, based on Ts, are assembled together to form a process p EP (rather than a set X E£ as
was the case for L 4). This is described in

DEFINITION 7 .2.
a. l9: ~s--7P is given by l9[<Djs>]=l9v[s].

a a
b. l9vls]={als --7D E}U{<a,l9v[s']>ls --7D s'}.

Comparing this definition with Definition 6.5, we see the essential difference in the clause
· · · {<a, l9v[s']>I · · · } which replaces · · · U {a.l9v[s']I · · · }. In addition, there is no special

treatment for the case that the right-hand size in clause b is empty, since the empty process 0 is a
valid outcome requiring no amendments (in the form of some { 8}).

ExAMPLES.

1. 6Dv[(a:b)+(a:c)]={<a,{b}>, <a,{c}>}
2. 6Dv[a:(b +c)]={ <a, {b,c}>}
3. 6Dv[a +fail]= {a}
4. 6D[<x <=(a:x)+blx>]=p, where p =lim,,pn,Po arbitrary,pn+l ={ <a,pn>, b}.

For the denotational semantics, we define the operators +, ., II (and ID on processes p,q in P. We fol
low the pattern of definition as in Definition 6.7. Note, however, that in the present context there is
no need for the reduction operation.

DEFINITION 7.3. Letp,qEP.
a. p Uq is the set theoretic union of (the sets) p,q
b. Let the operator Y:: (P XP--71 P)--7(P XP--71 P) be defined as follows. Take cf>EP XP--71 P.

Y:(cf>)(p)(q) = { <a,q>laEp} U {<a, </>(p'Xq)>l<a,p'>Ep}

c. Let the operator '1'11 : (PXP~1P)~(PXP~1 P) be defined as follows. Take q,ePXP~1 P.

'1'11(1/>)(p)(q) = 'fl:(!f>)(pXq)Ui':(!f>)(q)(p)

d. Let:= fixed point (i':), II= fixed point ('1'11). lL ='1':(11).

As before, U, :, II, lL are well-defined and ndi.
Let f 5 =Gfi.,~P. The mappings 6D: L 5 ~r5 ~p and~ Prog5 ~pare given in

DEFINITION 7.4.
a. 6J)(aly={a}, 6J)[x)y=yx, 6£(fail)y= 0

27

b. 6£(s1 ops2]y=6J)i[s 1h op 6£(s2)y, where op ranges over the syntactic operators +, :, II, and op
over the semantic operators U, :, II, respectively.

c. GJR.[<Dls>)=6J)[shD, with YD as usual.

The equivalence of e and ~ for ~5 is established in almost the same way as this was done for
~4• In fact, the only difference is that in the present case the proof is slightly simpler, since the
complications having to do with the reduction operator have disappeared. Thus, we have

l'HEoR.EM 7.5. For each CJE~5, e[a) =GJR.[a].

By way of conclusion of this section we observe that the way our definitions are organized have as
remarkable benefit that the definitions of e and ~ and the proof of their equivalence, are almost
identical for ~4 and ~5 , notwithstanding the essential difference in the underlying mathematical
structure: the objects in~ are very much simpler than the objects in P.

8. (AND/OR) PARALLEL LOGIC PROGRAMMING WITH COMMIT: INCREASING THE GRAIN SIZE

The last language, L 6, of our list of abstractions of logic programming languages embodies a version
of (and/or) parallel logic programming which combines both the (noncommitting) sequential composi
tion (;) and the commit(:) operator. This language was designed as a step on the way towards the
semantic modelling of logic languages such as Concurrent Prolog (CP from [Shl]). The emphasis is
here on CP's commit operator, see [BK] for a discussion of its notion of read-only variables. We do
not want to go into details here (once more referring to [BK]). Rather, we give a brief hint as to how
CP's constituent concepts appear in L 6• Take a CP program with clauses

head ~ guard I body

Here head is some (logical) atom, guard and body are conjunctions of (logical) atoms, and I is CP's
commit. Such a clause would induce, in a corresponding L 6 program, a declaration of the form

x <= (unification step; parallel execution of atoms in guard):

(parallel execution of atoms in body)

From this declaration (cf. also the appendix), it should at least be clear that the combined presence in
L 6 of ';' and ':' is necessary to model normal sequencing together with committing behaviour. (In
[BK] another operator is introduced which turns some statement s into an atomic
noninterruptible-version, denoted by [s].)

Why the 'increase in grain size'? Consider, by way of example, a statement such as s 1 =a :(b + c)
which we compare with s2 =(a1 ;a2): ((b1 ;b2)+(c1 ;c2)). We shall design our semantic model such
that the meanings of s 1 and s2 are (pictorially) represented by

28

b c

Thus, the atoms or grains a,b,c are enlarged to a 1a 2 , b1b2 , c1c2• In the precise mathematical nota
tion, we obtain the processes {<a, {b,c }>} and { <a1a 2,{ <b1b2 , c1c2}> }. The presence of entities
of the latter form necessitates an extension of the process domain as introduced in Section 7. Instead
of P satisfying P """~c(A U(A XP)) we now work with Q satisfying Q:::: ~nc(R U(A + X Q)). Details
follow. Furthermore, the combined presence of';' and ':' requires a refinement of the transition sys-

a a
tern T6 which now involves two types of transitions ~1 and ~2, corresponding to steps of a noncom-
mitting (a. · · ·) versus steps of a committing (<a, · · · >) kind.

After these introductory remarks, we are now ready for the precise definitions:
We start with the syntax.

DEFINITION 8.1.
a (statements). The class of statements (sE)L6 is defined by

s:: = alxl fail ls1 ;s2ls1 :s2lsdls2ls1 +s2

b. The syntactic classes Li, !?aJ6 , ~6 are obtained from L 6 as usual.

The operational semantics for L 6 is defined in terms of a transition system T6 and associated
definition of e which provides a synthesis of the ideas for T4 and T5 (and their associated definitions
of 0).

We first discuss the process domain (p,qE)Q which we use as semantic universe. Q may be seen as
a domain incorporating notions both from the linear time model ~=~nc(R) (with special role of B; R
as in Section 6) and the branching time model P. We define Q as solution to the isometry

Q """~nonemptyclosed(RU(A+XQ)) (8.1)

In a moment, we shall describe formally how a domain Q satisfying (8.1) can be obtained. Informally,
we add the following comments. First, note that we do not include 0 as a valid element in Q. This is
motivated by the reappearance of BER which, as before, plays the role of modelling failure. Secondly,
we consider a few examples of processes q in Q:q1 ={<ab,{c}>}, q2 ={a"'}, q3=
{<ab,{cd,e}>}, q4={aB,b"'}=lim,4n, where qo' is arbitrary, ifn+I={aB,<bn,{c}>}. Thirdly,
we note that entities { <11, q>} are processes for PEA+, but not for PEA"' or PEA *.{B}. Intuitively,
it makes no sense to 'perform' q after some 11 which is infinite or ends in B. Altogether, we observe a
certain interplay between linear time objects intermingled with branching structure. The definitions
below will be organized such that';' influences the linear time aspects. Thus, the semantic operator '0 '

modelling';' will yield, for example, {ab} 0 { <cd, q> }={ <abcd, q> }. On the other hand, the com
mit operator will impose branching structure. E.g., { ab}: { c, d} = { <ab, { c, d} >}.

The way in which we solve (8.1) does not completely follow the usual pattern of solving domain
equations as described in [BZ] or (AR]. Rather, we apply a somewhat more adhoc technique which is
a uniform variant of the definitions in [Ko]. We construct a sequence of complete ultrametric spaces
(Qm dn)n, defined in the following way:

A

(Qo, do) = (~nc(R), d)
A

with (~=~nc(R) and d the usual metric on~- Furthermore,

29

Qn+1 = 0lnc(RU(A+ XQn))

where 0lnc(.) abbreviates 0lnonempty closed(.), and dn + 1 is defined as follows: 'ijle distance dn + 1 is the
Hausdorff metric (on sets in Qn + 1) derived from the point metric dn +1 (on elements in
R U(A + XQn)) defined in

dn+i(v,w) = d(v,w), for v,wER

dn+1(v, <w,q>) = d(v,w) if v#=w

= 2-n, if v =w and length (v)=n

dn+1(<v,p>,w) similar

dn+1(<P,p>, <w,q>) = d(v,w) if v#=w

=2-n,dn(p,q), if v=w andlength (v)=n

Observe that Qn~Qn+h n=O,l, ···.Now let (Q..,,d..,)=(LJnQm LJndn), where, for any p,qEQ..,,

d..,(p,q)=dm(p,q), with m =min {kjp,qEQk}. Next, we define (Q, d) as the completion of (Q..,, d..,). By
techniques as in [BZ], it can be shown that (Q, d) satisfies the isometry (8.1).

REMARK. By way of example, note that, by the above definitions, we have that
limn{a8, <bn ,{c }> }={a8, b"'}.

NOTATION. For qEQ, we shall usey to range over (the set) q. Thus,y is element of R or of A+ XQ.

Below, we shall need various semantic operators involving q E Q. The first of these is prefixing a finite
nonempty word P to some q:

DEFINITION 8.2. Let PEA+' qEQ. We put

P.q = {P.y!YEq}

where v.w is as usual for weR, and P.<w,q'>=<v.w,q'>.

We are now sufficiently prepared for the definition of T6 and associated l9. In the present section,
we shall use transitions of three forms

a a a
s ~D E, s ~l.D s', s ~2,D s'

a
(From now on, we drop the subscript D for easier readability.) Transitions s ~1 s' are intended to
model noncommitting sequential steps - which in the associated definition of 19 will reappear as

a
a. e[s'). On the other hand, transitions s ~2 s' model commit steps which we find back in the
definition of 19 as <a, e[s'B >. Thus, we see the combined appearance of features from Sections 6
and 7. Moreover, the semantic definitions will be organized such that, on the one hand, (y.p 1)IL
p2 = P.(pi[Lp2), and, on the other hand, {<11,p 1>}[_p2={<P,pillp2 >}. (More about this alter

the definition of T6 .) In order to have the operational semantics respect these identities, the transi
tions for parallel composition are phrased in terms of 'IL' rather than of 'II' (as before). As last intro
ductory remark we already announce that we shall devote the next section to the analysis of a related

a a a
system where the transitions s ~ E, s ~1 s', s ~2 s' are replaced by transitions with a larger grain
size: instead of aEA we shall allow arbitrary PEA+ as 'atomic' steps, and we shall design T1 in terms

JI ., "
of s~ E, s~1 s', s~ s'. To avoid confusion, we emphasize that in the present section we have
already increased the grain size of the processes, working with processes such as

30

{ <ab, { <cd,{e,f}> }>}instead of (only) with processes such as {<a, { <b, { <c, {e,f}> }> }> }.
a

We present the system T6 for L 6 • We shall also use the notation S-»; s' as shorthand for any of the
a a a

three possibilities s-» E, s-»1 s', s-»2 s'.

DEFINITION 8.3 (transition system T6).

a
a-»E

a
g -'>; s
---, x<=g in D

a
x -'>; s

a
s -»; s'

a
s +s -'>; s'

a
s+s -'>; s'

a
s ills2 -»; s'

a
s2lls1 -»; s'

a
s ;s -»1 s

- a -
s :s -'>2 s

a
slls -'>2 s

a
s ;s -»1 s';s

a
s :s -»1 s':s

a
slls -»1 s'lls

a
s ;s -»2 s' ;s

a
s :s -'>2 s' :s

a
slls -'>2 s'lls

(Elem)

(Ree)

(Choice)

(Par Comp)

(Seq Comp)

(Commit)

(Left Merge)

The axiom and first two rules of T6 are clear. The rule for (Par Comp) states that a step from s 1 lls2 is
either a step from s1 (case s 1 lls2) or from s2 (case s2lls1). The next two rules introduce the -»1 and
-»2 transitions. In the final group of rules, the type of transition (-»1 or -»2) is always inherited. We

a
draw in particular attention to the rules for left merge. After performing an -»1 step from s lls, the
step after that has again to be from the (new) left operand in s'lls. On the other hand, after taking an
a
-»2 step, next a step from both operands (in s'lls) is possible.

Before defining e and 6D for L6 , due to the reappearance of 8, we again have to reduce processes by
applying, wherever possible, simplifications {8} Up=p (note that p is now nonempty by the definition
of Q). Reduction is defined in

31

DEFINITION 8.4.
a. For pEQ, PEA+ we put

p,, = {ylP.yEp}

b. We define the mapping red: Q~Q by red({8})={8}. For p:;6:{8}, we put

red(p) = {alaEp}U U {P.red(pv)lp,:;6:0} U{ <a, red(p')>l<a,p'>Ep}

REMARK. Note that, in clause a, p,, may be the empty set and that, since y ranges over R U(A + X Q),

y cannot bet: in the definition of p,,.

ExAMPLES. red({8, a})={a}, red({a8, ab, c })={ab, c },
red({a8, <ab,{c }> })=a.red({8, <b, {c}> })={ <ab, {c }> }.

We can now give

DEFINITION 8.5.
a. e: ~6 ~Q is defined as e(<Dls>]=eD[s].

a a a
b. eD[s] =red ({als ~ E} u u {a.eD[s']ls ~Is'} u { <a,eD[s']>ls ~ s'})

if the argument of red is nonempty
= { 8}, otherwise.

We see the already discussed mixed character of the right-hand side delivering both noncommitting

and committing outcomes (a. · · · and <a, · · · >).
eD is well-defined by the familiar contractivity argument. It may be enlightening to observe that the

presence of an empty process 0 in our domain would invalidate this argument. Allowing p or q to be

empty we no longer have that d(a.p, a.q)~ ~ d(p,q), a property which does hold for nonempty p and

q. Note that in fOth scenarios (with or without empty processes), we have that

d(<a,p>, <a,q>)=2d(p,q).

We proceed with the denotational definitions. The definition of the various semantic operators is now

somewhat more involved. The operators +, 0 , :, II, lL are defined in

DEFINITION 8.6. Let p, qEQ
a. p +q=red(p Uq), where 'U' is the set-theoretic union of (the sets) p,q
b. The higher order mapf,ings «I>o, «I>:, «1> 11 , all from (QXQ~1 Q) to (QXQ~1 Q) are defined as fol-

lows. Let<f>EQXQ~ Q.

«l>o(</>)(p)(q) = {P.qlPEp nA + }+{PIPEp n(A"' UA*.{8})} +{ <P, <f>(p')(q)>l<P,p'>Ep}

«l>:(<f>)(p)(q) = { <P, q>IPEp nA +} + {PIPEp n(A"' UA *.{8})} +{ <P, </>(p')(q)>l<P,p'>Ep}

«I>u(</>)(p)(q) = «I>:(</>)(p)(q)+«I>:(<f>)(q)(p)

c. We put 0 = fixed point («l>o), : = fixed point(«l>:), II= fixed point («I>n), lL =«1>:(11).

The definitions of 6D and ~are now standard. Let f 6 ='%-+Q. We define 6D: L6~r6 ~Q and

~~6~Qin

DEFINITION 8. 7.
a. 6D[aly={a}, 6D[x]y=yx, 6D[fail]y={8}, 6D[s 1ops2b=6D[s 1]yop6Dls2b, with op ranging over

;, :, II, +, op ranging over o, :, II, +, respectively
b. ~<Dls>]=6D[s]yD, with 'YD as usual.

32

We conclude this section with the proof of

THEOREM 8.8. For 0v, 6D, 'YD as before, and s EL6:

0v[sD = 6D1Isbv

PROOF. Let e =As. 6D1Is Dr D. As always, it. is sufficient to show that 6Dv is a fixed point of the operator
'l'v: (L6 -+Q)_,.(L6 _,.Q) given (for FeL6 _,.Q) by

a a a
i'v(F)(s) = red({ als --+ E} U U {a.F(s')ls _,.1s'} U {<a, F(s')>ls _,.2 s'})

if the argument of red is nonempty

= { 8}, otherwise.

The proof follows the pattern as in the proof of Theorem 6.10. Essential intermediate results are the
following:

'11v(6Dv)(g;s) = i'v(6Dv)(g)0 6Dv[sD

(this uses that (a.p)oq=a.(poq) and { <a,p > }oq={ <a,poq>})

i'v(6Dv)(g:s) = '1'v(6Dv)(g):6Dv[sD

(this uses that (a.p): q=a.(p :q) and { <a,p > }: q={ <a,p :q>})

'11v(6Dv)(g1 +g2) = i'v(6Dv)(g1)+'1'v(6Dv)(g2)

i'v(6Dv)(g1 llg2) = '11v(6Dv)(g1 lL.g2)+'1'v(6Dv)(g2 lL.g1)

'l'v(6Dv)(g1 lL.g2) = i'v(6Dv)(g1)IL 6Dv[g2D

this uses that (a.p)llq = a.(pllq) and { <a,p> }llq = { <a,pllq>})

These results are to be embedded in an argument which is very much like that of the proof of
Theorem 6.10. D

9. INCREASING THE GRAIN SIZE IN THE TRANSITIONS

We conclude our study of flow of control concepts in uninterpreted logic programming with the dis
cussion of a somewhat more specialized topic. We ask (and shall answer affirmatively) whether it is
also feasible to base e for L6 on transitions

p p p

s __.,. E, s _,.1 s', s -+2 s',

thus increasing the grain size of the atomic steps. One might defend the case that this is a more
natural style of transitions since the semantic domain is designed such that 'steps' 11,w etc. (appearing
in the process domain Q) take the place of the 'steps' a,b, · · · (from the process domain P). In other
words, we are now dealing with processes such as { <11,{ <w, · · · > }>} rather than
{<a, { <b, · · · > }> }, explaining why it is natural to also increase the step size in the transitions.
We shall indeed demonstrate in this section that, on the basis of a rather natural extension of T6, we

p

can define an operational semantics (derived from transitions s_,.; s') which is equivalent to the deno-
tational semantics of Section 8 (Definition 8. 7) and, hence, also with e as in Definition 6.8. The price
to be paid for this somewhat more satisfactory operational semantics is rather more effort to be spent
on the equivalence proof.

DEFINITION 9.1. The system T1 consists of
a

a. The axiom a --+ E

b. All rules of T 6 , with a throughout replaced by v
c. The new rule

Jf1 "2

s 1 ~ E, s2 ~; s'

The accompanying definition for e* is

DEFINITION 9.2.
a. e*: ~6 ~Q is given by e* [<D Is> B = 6DD(s]

p p p

b. fJD[s] = red({vls ~ E} U U {v.fJi>ls']ls ~1 s'} U { <v, fJi>ls'B>ls ~2 s'}),

if the argument of red is nonempty
= {8}, otherwise,

where the transitions are with respect to T 7 •

We shall prove, for~ as in Definition 8.7,

THEOREM 9.3. For each oe~6• fJ*[o]=~oJ.

PROOF. We define the usual mapping 'i'D: (L6 ~Q)~(L6~Q). Take FeL6 ~Q. We put
p p p

'i'D(F)(s) = red({vls ~ E} U LJ {v.F(s')ls ~1 s'} U { <v,F(s')>ls ~2 s'})

if the argument of red is nonempty

= {8}, otherwise.

33

(Inc Atom)

We show that '11D(6DD)=6DD (=df.A8.6D(s]yD)· The proof follows the standard pattern, but the rule (Inc
Atom) causes some complications. We first state the key properties of '11D(6DD)(s), for s ranging over
L6.

s=a
s=x
s=fail

s=s1;s2
s=s1:s2
s=s1 +s2
s=s1lls2
s=s11Ls2

'11D(6DD)(a) = {a}
'11D(6DD)(x) = '11D(6DD)(g), x ~gin D
VD(6DD)(fail) = {8}

p

VD(6DD)(s1;s2) = VD(6DD)(s1)0 6DD[s2B+{vls1 ~ E}0 '11D(6DD)(s2)
'11D(6DD)(s1 :s2) = VD(6DD)(s1):6DD[s2B
'11D(6DD)(s1 +s2) = VD(6DD)(s1)+'1'D(6DD)(s2)
'11D(6DD)(s1 lls2) = '11D(6DD)(s11Ls2)+'1'D(6DD)(s21Ls1)
'11D(6DD)(s11Ls2) = VD(6DD)(s1)IL 6DD[s2]

We give some details of the cases s =s 1 ;s2 and s =s 11Ls2. We consider only the cases that the out
comes are :;i={8}.

34

P1 P2

+{ <v1P2, 6Dv[s"]>j(s1 ~ E)/\(s2 ~2 s")})

P1

{ <vi. 6Dvls']>ls1 ~ s'}lL 6Dv[s2] = i'v(6Dv)(s1)lL 6Dv[s2]

Next, we show that i'v(6Dv)=:6Dv, thus establishing that ev_=6Dv, whence e* =~on ~6·
We abbreviate i'v(6Dv) to i'v, and we prove that d(6Dv, Vv)=O.

STAGE 1. For each geI.,g,
- I -

d(6Dvld, Vv(g))...; 2d(6Dv, i'v)

(Note that, clearly, for alls, d(6Dv[s], q,v(s))...;d(6Dv, q,v).) We use induction on the complexity of g,
and treat here only the (most complex) case g=g1;s. We have

- - V1 -

Yv(g1;s) = (Vv(g1}0 6Dv[s]}+({vlg1 ~ E}0 Yv(s))
- . I

Oearly, we have d(6Dv[g1]0 6Dv[s], i'v(gi)0 6Dv[s]}...; d(6Dv[g1], i'v(gi})...; (md. hyp.) 2d(6Dv, i'v).

Also
p y - p

d({vlg1 ~ E}0 6Dv[s], {vlg1 ~ E}0 '11v(s)) ...; (since £~{vlg1 ~ E})
I - I -
2 d(6Dv[s1, Vv(s}) ...; 2 d(6Dv, Vv}

Putting these two inequalities together, we have shown that
- I -

d(6Dv[g1;s], Vv(g1;s}}...; 2d(6Dv, Vv)

(We use here that, ford any Hausdorff metric, d(X1 UX2, Y1 U Y2}...;max{d(.X;, Y;)ji = 1,2}.}

- I -
STAGE 2. We now show that d(6Dv[s], Vv(s))...;2d(6Dv, i'v), for alls, by induction on the complex-

ity of s. _For each case _this proceeds as in stage 1, except for
1
the cas~ s =x. Then

d(6Dvlx], i'v(x))=d(6Dv[g], Vv(g))...; (since g is guarded, stage I applies) 2 d(6Dv, i'v). Altogether,
- I - -

we have d(6Dv[s], i'v(s))...;2d(6Dv, i'v), for alls. Hence, d(6Dv, Vv)=O, as was to be shown. D

We have one lemma still to be filled in. For convenience, we use the notation (for p,qeQ) p <;;;,q as
short hand for p +q =q.

LEMMA 9.4. For each s eL6,

PROOF. We introduce the auxiliary relation s 1 ~vs2 by the transition system

x-7> vg, for x $= g in D

s1 +s2 -?>>v s1

s1 +s2 -?>>v s2

35

S1 -7>>D S2 .

C[] . C[]
• for each arbitrary L 6-context C[·]

S1 -7/>D S2

It is direct from the definition of -?i>v that, if s 1 -7>>v s2 holds, then 6DD[s 1];;~6DD[s2). We use -7/>D
in the formulation of the following straightforward

JI •

CLAIM. If s ~ E then either
o (v=a)/\(s -7>>D a), or

J'1 "2
0 there exists., s2, v., v2 EA+ such that v =v1.v2, s 1 ~ E, s2 ~ E, and s -?i>v s1;s2
We now prove the assertion of the lemma by induction on the length of v. If v=a, we have

J1'1 P2

ae6DD[a)k6DD[s). If 11=111112 (vi. v2EA +), then s1 ~ E, s2 ~ E, and s -7/>D s1;s2. By induction,
v1 e6DD[s1I, v2 e6DD[s2I, and we obtain v1 v2 e6Dvls1 ;s2I. Since 6Dv[s1 ;s2I k6DD[sl, the desired result
follows. 0

Altogether, we have completed the investigation of the transition system T6 , establishing that increas
ing the grain size in its transitions does not affect the associated operational semantics for e6•

ACKNOWLEDGEMENTS

Our paper owes much to the insights and criticisms of the Amsterdam Concurrency Group, consisting
of Frank de Boer, Arie de Bruin, Joost Kok, John Meyer, Jan Rutten and Erik de Vink. We have
already acknowledged above specific contributions from Arie de Bruin, Joost Kok and Erik de Vink.
Joost Kok showed that a previous version of the transition system for L 6 did not work, and Jan Rut
ten showed how to correct it. We are grateful to Erik de Vink for detailed criticism on a draft of our
paper.

APPENDIX
We provide a brief sketch of the translation of a rudimentary (and/or) parallel logic program into, for
example, the language L 4 • The approach followed in the translation is a (considerably) simplified ver
sion of the translation (due to Joost Kok) as described in [BK].

Let a, a 1, • • • , a, · · · be elements of~ the set of (logical) atoms as used in logic programming.
We consider clauses c of the form a~a 1 /\ ···/\an (n;;;:i:O),programs.,, which consist of a finite set
of clauses {ci. ···,ck}, k;;:;i:I, and goals of the form iii./\··· /\am, m;;;:i:O. We provide a translation
into L 4 of a pair <.,,,g>. The translation assumes a version of L 4 (with corresponding semantics)
which works for arbitrary interpretations (rather than for no interpretation). That is, we assume a set
~ of states, and interpret the elementary actions in A as, possibly partial, state transformations. One
further technical step is required to cope with possible clashes between (individual) variables in the
clauses or goal. We assume that the set of individual variables .Ar.u is partitioned into disjoint sets
.Ar.ua, with ael\I*, the set of all finite, possibly empty, sequences of natural numbers. Moreover, we
assume that all individual variables in .,, and g are initially from .Ar.u0 and we assume injections
a: .Ar.ua~.Ar.ua.a. for each a, ael\I*. The injections a are extended in the natural way to the atoms in
Jllf@m. We now describe the translation:

o For A we take J1Jf@m X J1Jf@m

o For ~ we take J1Jf@m X 1\1*
° For ~ we take the set of substitutions (in the usual sense of logic programming)
0 As interpretation of an elementary action (a., a 2) we take [(ai. a 2))(o)=mgu(ai. o(a2))0 o, where

mgu denotes a fixed most general unifier
0 We define the auxiliary mapping trl:rclo.uae X ~~by putting

trl(a~a1 /\ · · · /\am@, a)) = (a(a), ii); ((a(a1), a.1)11 · · · ll(a(an), a.n))

36

0 Let '11'= { ci, · · · ,ck}. Take for the set of L 4-declarations D:

D =<@,a)*=' trl(ci.(ll, a))+ · · · +trl(ck>(ll, a))>@,a)e9'wt

Note that, returning for a moment to the general L 4 syntax, Dis of the form

<x *=adxu 11 · · · llx1nJ+ · · · +ak;(xkI II · · · llxkn, >xe9'wt

° Finally, take as translation of <'11',g> the L 4-program

<Dl@i. 1)11 · · · ll@m,m)>.

REFERENCES
[ABKR]

[AR]

[Ap]

[AP)

[ABe]

[BBKM)

[BK]

(BKMOZ]

[BM)

[BMO]

{BZ]

[Be]

[BeKl]

{BeK2]

{BoKPR]

P. AMERICA, J.W. DE BAKKER, J.N. KOK, J.J.M.M. RUTIEN. A denotational semantics of
a parallel object-oriented language, CWI Report CS-R8626, to appear in Information and
Computation.
P. AMERICA, J.J.M.M. RUTIEN, Solving reflexive domain equations in a category of com
plete metric spaces, in Proc. of the Third Workshop on Mathematical Foundations of
Programming Language Semantics, (M. Main, A. Melton, M. Mislove, D. Schmidt, eds.)
LNCS 298, Springer, pp. 254-288.
K.R. APT, Introduction to logic programming, Report CS-R8741, Centre for Mathematics
and Computer Science, Amsterdam (1987), to appear as a chapter in Handbook of
Theoretical Computer Science, North-Holland.
K. APT, G. PLOTKIN, Countable nondeterminism and random assignment, Journal of the
Association for Computing Machinery, Vol. 33, No. 4, (1986) 724-767.
B. ARBAB, D.M. BERRY, Operational and denotational semantics of PROLOG, Journal of
Logic Programming 4 (1987) 309-330.
J.W. DE BAKKER, J.A. BERGSTRA J.W. KLoP, J.-J.CH. MEYER, Linear time and branching
time semantics for recursion with merge, TCS 34 (1984) 135-156.
J.W. DE BAKKER, J.N. KOK, Uniform Abstraction, Atomicity and Contractions in the Com
parative Semantics of Concurrent Prolog, Report CS-R8834, Centre for Mathematics and
Computer Science, Amsterdam (1988), also to appear in Proc. Fifth Generation Com
puter Systems, Tokyo, 1988.
J.W. DE BAKKER, J.N. KOK, J.-J.CH. MEYER, E.-R. 0LDEROG, J.I. ZUCKER, Contrasting
themes in the semantics of imperative concurrency, in Current Trends in Concurrency:
Overviews and Tutorials (J.W. de Bakker, W.P. de Roever, G. Rozenberg, eds.), Lecture
Notes in Computer Science, Vol. 224, Springer (1986) 51-121.
J.W. DE BAKKER, J.-J.CH. MEYER, Metric semantics for concurrency, Report CS-R8803,
Centre for Mathematics and Computer Science, Amsterdam (1988), to appear in BIT.
J.W. DE BAKKER, J.-J.CH. MEYER, E.-R. 0LDEROG, J.I. ZUCKER, Transition systems,
metric spaces and ready sets in the semantics of uniform concurrency, Journal of Comp.
Syst. Sc. (1988), 158-224.
J.W. DE BAKKER, J.I. ZUCKER, Processes and the denotational semantics of concurrency,
Inform. and Control 54 (1982) 70-120.
L. BECKMANN, Towards a formal semantics for concurrent logic programming languages,
Proc. Third Int. Conference on Logic Programming (E. Shapiro, ed.), LNCS 225,
Springer, (1986), 335-349.
J.A. BERGSTRA, J.W. KLoP, A convergence theorem in process algebra, Report CS-R8733,
Centre for Mathematics and Computer Science (1987).
J.A. BERGSTRA, J.W. KLoP, Bisimulation semantics, in Linear Time, Branching Time and
Partial Order in Logics and Models for Concurrency (J.W. de Bakker, W.P. de Roever,
G. Rozenberg, eds.), LNCS, Springer, to appear.
F.S. DE BOER, J.N. Kmc, C. PALAMIDESSI, J.J.M.M. RUTIEN, Control Flow versus Logic:

[BHR]

[Br]

[BrV]

(DM]

[Du]
[En]
[FL]

(FLMP]

[FOM]

[GCLS]

[Gi]

[Ha]
[HP]

[JM]

[Ke]

[Ko]

{KR]

[Kw]
[Le]

[LPl]

[LP2]

[LI]
[Pll]

[P12]

(Pl3]

37

a Denotational and a Declarative Model for Guarded Hom Clauses, Report CS-R88 ,
Centre for Mathematics and Computer Science, Amsterdam (1988), to appear.
S.D. BROOKES, C.A.R. HOARE, A.W. ROSCOE, A theory of communicating sequential
processes, J. ACM 31(1984)499-560.
A. DE BRUIN, Exercises in continuation semantics: Jumps, backtracking, dynamic networks,
Dissertation, Free University, 1986.
A. DE BRUIN, E.P. DE VINK, Continuation semantics for PROLOG with cut, Technical
Report, Department of Computer Science, Free University of Amsterdam, to appear.
S.K. DEBRAY, P. MISHRA, Denotational and operational semantics for PROLOG, Journal
of Logic Programming 5 (1988), 61-91.
J. DuGUNDn, Topology, Allen and Bacon, Rockleigh, N.J. 1966.
R. ENGELKING, General topology, Polish Scientific Publishers 1977.
M. F ALASCHI, G. LEVI, Operational and fixpoint semantics of a class of committed-choice
languages, Technical Report, Dipartimento di Informatica, Univ. di Pisa, 1988.
M. F ALASCHI, G. LEVI, M. MARTELLI, c. p ALAMIDESSI, Declarative modeling of the
operational behaviour of logic languages, Technical Report, Dipartimento di Informatica,
Univ. di Pisa, 1987.
K. FURUKAWA, A. OKUMURA, M. MURAKAMI, Unfolding rules for GHC programs, in D.
Bjomer, A.P. Ershov and N.D. Jones, eds., Workshop on Partial Evaluation and Mixed
Computation, Gl. Avemaes, Denmark (1987), to appear in New Generation Computing.
R. GERTH, M. CODISH, Y. LICHTENSTEIN, E. SHAPIRO, Fully abstract denotational seman
tics for Concurrent Prolog, Proc. 3rd Symp. on Logic in Computer Science, Edinburgh
(1988), 320-335.
G. GIERZ, K.H. HOFMANN, K. KEIMEL; J.D. LAWSON, M. MISLOVE, D.S. Scorr Acom
pendium of continuous lattices, Springer-Verlag, 1980.
H. HAHN, Ree/le Funktionen, Chelsea, New York, 1948.
M. HENNESSY, G.D. PLOTKIN, Full abstraction for a simple parallel programming
language, in: Proceedings 8th MFCS (J. Becvar ed.), Lecture Notes in Computer Sci
ence, Vol. 74 Springer (1979) 108-120.
N.D. JONES, A. MYCROFT, Stepwise development of operational and denotational semantics
for PROLOG, Proc. 1984 Int. Symp. on Logic Programming, Atlantic City, N.J. (1984).
R.M. KELLER, Formal verification of parallel programs, Comm. ACM 19 (1976) 371-
384.
J.N. KOK, A compositional semantics for Concurrent Prolog, Proc. STACS 1988, LNCS
294, Springer, pp. 373-388.
J.N. KOK, J.J.M.M. RUTIEN, Contractions in comparing concurrency semantics, Proc 15th
ICALP (T. Lepisto, A. Salomaa, eds.) LNCS 317, Springer (1988) 317-332.
R.A. KOWALSKI, Algorithm= Logic+ Control, Comm. ACM 22 (1979), pp. 424-435.
G. LEVI, A new declarative semantics of Flat Guarded Hom Clauses, Technical Report,
!COT, Tokyo (1988).
G. LEVI, C. PALAMIDESSI, The declarative semantics of logical read-only variables, Proc.
Symp. on Logic Programming, IEEE Comp. Society Press (1985) 128-137.
G. LEVI, C. PALAMIDESSI, An approach to the declarative semantics of synchronization in
logic languages, Proc. 4th Int. Conference on Logic Programming, Melbourne, (1987)
877-893.
J.W. LLOYD, Foundations of Logic Programming, Springer (1984), (Second edition 1987).
G.D. PLOTKIN, A powerdomain construction, SIAM Journal of Computing, Vol. 5, no. 3,
(1976) 452-487.
G.D. PLOTKIN, A structural approach to operational semantics, Report DAIMI FN-19,
Comp. Sci. Dept., Aarhus Univ. 1981.
G.D. PLOTKIN, An operational semantics for CSP, in : D. Bj0mer (ed.): Formal

38

description of programming concepts II, North-Holland (1983) 199-223.
[Ri] G.A. RINGWOOD, Parlog 86 and the dining logicians, Comm. ACM, Vol. 31 (1988) 10-

25. .
[Sa] V.A. SARASWAT, The concurrent logic programming language CP: definition and opera

tional semantics, in: Conference Record of the Fourteenth Annual ACM Symposium on
Principles of Programming Languages, Munich, West Germany, January 21-23, 1987,
pp. 49-62.

[Shi] E.Y. SHAPIRO, A subset of Concurrent Prolog and its interpreter, Techn. Report TR-003,
ICOT, Tokyo (1983).

[Sh2] E.Y. SHAPIRO, Concurrent Prolog, a progress report, in Fundamentals of Artificial Intelli
gence (W. Bibel, Pb. Jorrand, eds.), Lecture Notes in Computer Science, Vol. 232,
Springer (1987).

[Vi] E.P. DE VINK, Equivalence of an operational and denotational semantics for a Prolog-like
language with cut, Technical Report IR 151, Free University, Amsterdam, 1988.

[VV] E. DE VINK, S. VAN VEEN, Semantics of logic programming, Report CS-N8508, Centre
for Mathematics and Computer Science, Amsterdam (1985).

