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properties of this method are given. The algorithm is applied to Dutch nuptiality 
data. 

1980 Mathematics Subject Classification: 62P10, 62M05. 
Key Words & Phrases: multidimensional mathematical demography, multistate life table, Markov processes, 
aggregated data. 
Note: This report is a revised and extended version of NIDl-Working paper no. 68. 

Report MS-R8816 
Centre for Mathematics and Computer Science 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 



TABLE OF CONTENTS page 

ABSTRACT III 

1. INTRODUCTION 1 

2. MULTIDIMENSIONAL DEMOGRAPHIC MODELS 3 

2.1. Random jump processes 3 

2.2. Markov jump processes 6 

2.3. The linear integration hypothesis 9 

3. AGGREGATE DATA FROM POPULATION REGISTRATION SYSTEMS 12 

4. ESTIMATION UNDER THE LINEAR INTEGRATION HYPOTHESIS 15 

5. ESTIMATION UNDER THE CONST ANT INTENSITIES ASSUMPTION 17 

6. APPLICATION 20 

7. CONCLUSIONS 25 

REFERENCES 28 

APPENDIX 1. Properties of P =(I+ fh M) (I - fh Mf1 32 

APPENDIX 2. On the compatability of the strong linear inte

gration hypothesis, origin-independent o/e-rates 

and the Markov assumption 

I ..._ I • 

APPENDIX 3. The variance of n 2 ( µ - µ ) and of n 2 (P - P) 

LIST OF NIDI WORKING PAPERS 

35 

36 



1 

1. INTRODUCTION 

Multidimensional demographic models describe transitions which individuals 

experience during their lifetime as they pass from one state to another, for 

example: from being alive to being dead, from living in one region to residing in 

another, frnm being single to being married. Multidimensional life tables or 

multidimensional projection models are often viewed as parts of an underlying 

time-continuous Markov-model, which can be estimated with the aid of observed 

data. Even when the Markov assumption is not made explicitly, life tables are 

often computed and projections are often carried out as if the process were 

Markovian. In order to facilitate estimation of the model, simplifying 

assumptions are usually made. Demographers often employ the so-called "linear 

integration hypothesis" (also known as the assumption of a linear survival 

function), namely the assumption of a uniform distribution of events over age or 

time intervals. This linear integration hypothesis implies that the total amount 

of time a large group of individuals experience the risk of making a transition 

from one state to another (e.g. from being divorced to being remarried) in a 

certain age (time) interval, may be found by computing the simple average of the 

numbers of persons at risk (divorced persons) at the beginning and at the end of 

the interval. However, it has been argued that such "linear integration models" 

may produce implausible results, including negative transition probabilities. 

Examples may be found in Hoem and Funck Jensen 0982, pp. 156, 157, pp. 198-

201) and in Nour and Suchindran (1984, p. 325). As an alternative to the linear 

integration approach, an assumption often proposed is that of constant transition 

intensities over age or time intervals. This approach leads to estimators for the 

transition intensities which have good properties (under these assumptions) under 

quite weak conditions. But not all types of data can be handled by this approach. 

In this paper we investigate the estimation of multidimensional demographic 

models when population registration data are available. Although the registration 

takes place on the level of the individual, most statistical bureaus make them 

available in the form of tables (aggregated over individuals and applying to a 

certain period) only. It is argued that such aggregated data do not permit 

maximum likelihood estimation under the assumption of constant intensities. As 

an alternative, the linear integration approach is discussed in detail and reasons 

for implausible results are given. In particular we argue that a rather stronger 

form of this hypothesis than that given above is needed to justify the approach. 
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Since neither the assumption of constant intensities nor the linear integration 

hypothesis facilitates the estimation by traditional methods when population 

registration data are available, a new estimation algorithm for the constant 

intensities model is proposed. This method has recently appeared in a paper for 

mathematical statisticians (Gill, 1986). One of the main purposes of the present 

paper is to make the new estimator better known among demographers, and to 

add to the earlier results. Some preliminary results on the mathematical and 

statistical properties of this method are given. The method is applied to Dutch 

nuptiality data. 

The outline of this paper is as follows. Section 2 reviews multidimensional 

demographic models, considered from a stochastic process point of view. We 

introduce the general random jump process (section 2.1), the more specific 

Markov jump process and the even more specific constant intensities Markov 

process (section 2.2). Then we discuss the general jump process in which the 

linear integration hypothesis is assumed in both a weak and a strong form 

(section 2.3). Section 3 contains a description of the type of data we focus on in 

this paper: aggregate data from population registration systems. Estimation 

algorithms for the linear integration hypothesis model and the constant 

intensities model are given in sections 4 and 5 respectively. A numerical example 

with Dutch nuptiality data is given in section 6. We reanalyse the marital status 

model, containing five states, which was introduced by Schoen and Nelson (1974), 

and recently criticized by Nour and Suchindran (1984). The main findings of this 

paper are given in section 7, where they are placed in a proper perspective. 

The framework chosen for our analysis is that of a continuous-time random jump 

process, that is a stochastic process describing instantaneous jumps made by one 

individual between discrete states. The reason for this choice was that many 

issues which have been discussed in the literature on deterministic 

multidimensional demographic models may be studied with greater precision by 

considering an underlying individual-level stochastic process. In particular, this 

separates the issues of modelling a conceptually unlimited population from 

estimation with a finite sample. However, we present our findings mainly in 

terms familiar to demographers; for technical details we refer the reader to the 

ref ec.ences. 
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2. MULTIDIMENSIONAL DEMOGRAPHIC MODELS 

2.1. Random jump processes 

Let x )0 denote a continuous duration variable describing age or time and let 

E = { 1, •••• , p} be a collection of discrete states. Consider a random individual 

jumping from one state to another as x varies; we suppose the individual stays in 

each state a positive length of time and then jumps instantaneously to a new one, 

making a finite (possibly zero) number of jumps in each bounded time interval. 

The system is supposed to be closed (one state is always being occupied; 

immigration and emigration should be modelled by adding extra states to the 

system). We can describe the process by the collection of random variables 

I.(x) (i = l , •.• ,p; x ~O) such that I.(x) = 1 if the individual is in state i at time x+ 1 l 

and zero otherwise. 

From this process various probabilities and expectations can be defined. For 

instance the transition probability of being in state j at duration y, given the 

individual was in state i at duration x <Y is 

P .. (x,y) = Pr { I.(y) = 1 I I.(x) = 1 }. q J 1 
(1) 

If this conditional probability is a sufficiently smooth function of y there is a 

corresponding mean intensity. 

µ .. (x) = lim P .. (x,x + h) I h , i ~ j. 
lJ h-t-0 lj 

(2) 

This intensity equals the mean of the stochastic intensity of making a jump from 

i to j in (x,x + h) given the complete past history of the process (and that it is in i 

at duration x). 

Note that these transition probabilities and intensities are well defined whether 

or not the jump process is Markovian (i.e. its behaviour at times y ~x given its 

history up to duration x only depends on the state occupied at duration x, and not 

on any information prior to this). However it is only in the Markovian case that 

they satisfy the well known Chapman-Kolmogorov equations and the Kolmogorov 

differential equations (discussed in the next subsection). 

Some further key quantities are the initial distribution 
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1.(0) = Pr { I.(O) = 1 } 
l l 

(3) 

and the distribution at duration x 

1. (x) = Pr { I. (x) = 1 } • 
l l 

(4) 

We gather the elements li(x) together into a row vector l(x), and the transition 

probabilities P .. (x,y) into a matrix P(x,y). Defining µ .. (x) = -l: µ .. (x) we also 
lj 11 •t lJ 

collect the intensities µij(x) into a matrix µ (x). We can cJ sb call l(x) the 

(expected) stock vector at duration x, per individual. 

We have the following result, showing how the probability distribution over the 

states is transformed by the transition probabilities: 

l(y) = l(x) P(x,y). (5) 

This is proved by simply writing out the definition of the conditional probabilities 

P .. (x,y) as a ratio of two unconditional probabilities. 
lJ 

We also consider the expected total time spent in each state (exposure time) 

over various periods, and the expected number of (direct) jumps between each 

two states in a given period. 

Because the individual spends an amount of time f ~ li(s)ds in state i between 

durations x and y, we have for its expected value 

L.(x,y) = f Y 1.(s)ds. (6) 
l x l 

We let d .. (x,y) denote the expected number of jumps between i and j in the period 
lJ 

(x,y), for i;~j. We define d .. (x,y) = - z; d .. (x,y), minus the expected number of 
u ·r i1 

jumps out of state i. From these we
1 f~rm the row vector L(x,y) and the matrix 

D(x,y). 

Since the difference between I.(y) and I.(x) equals the number of jumps into i 
l l --

minus the number of jumps out of i during (x,y] , on taking expected values we 

obtain 

1.(y) = l.(x) + z; d .. (x,y) - z; d .. (x,y). 
l l jJi Jl jJi lJ 

(7) 
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In matrix notation this can be written as 

l(y) = l(x) + 1 D(x,y) (8) 

where 1 is a row vector of one's. This is called the accounting equation (see 

Heern and Funck Jensen, 1982, p. 174). Under mild regularity conditions!) there 

is an interesting relation between the derivative of P .. (x,x + h) with respect to h 
lJ 

(at h = 0) and the derivative of dij(x,x + h) with respect to h at h = O, namely 

lim d .. (x,x + h) I h = l.(x) µ .. (x), i t j. 
h+O lJ 1 IJ 

(9) 

Intuitively, when h is small, there can only be one jump (at most) from i to j in 

the interval {x,x + h] , and this corresponds to the individual being in state i at 

duration x and in state j at duration x + h. The quantity 

1.(x) P .. (x,x + h)~ 1.(x) µ .. (x) h is the probability of this occurrence, which must be 
1 lJ 1 lJ 

approximately equal to the expected value of the number of jumps from i to j in 

(x,x + h J. 
Further interesting quantities are the occurrence/exposure rates m .. (x,x + h), 

] 
lJ 

defined as the expected number of jumps from i to j in (x,x + h divided by the 

expected length of time (exposure to the risk of an i + j jump) spent in i during 

this duration interval. Thus 

m .. (x,x + h) = d .. (x,x + h) I L.(x,x + h). 
lJ lJ 1 

By (9), d .. {x,x + h) = f x+h 1.(s) µ .. (s)ds, so together with (6) we have 
ij x 1 ij 

f x+h 
x 

1.(s) µ .. (s)ds 
1 lJ 

m .. (x,x + h) = IJ _x_+..,..h _____ _ 
J 1.(s)ds x 1 

(10) 

(11) 

Thus m .. (x,x + h) is a weighted average of the mean intensity µ .. (s) over the 
ij ij 

duration interval; weighted by the probability of being in i at each duration. 

Moreover 

lim m .. (x,x + h) = u, .(x). 
h+O 1J 'IJ 

(12) 
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Later we will need further quantities such as origin dependent expected numbers 

of jumps, expected exposure, and occurrence/exposure rates. Here we condition 

on a certain state being occupied at the start of the duration interval; thus 

d(i)jk(x,x + h) is the expected number of jumps from j to k in (x,x + h] given the 

individual was in i at duration x, L(i)j(x,x + h) is the expected exposure in j given 

the same ev.ent, and 

None of these collections of quantities fully determine the probabilistic 

behaviour of the individual. For this we need to know all the probabilities of 

being in any sequence of states at any finite sequence of durations x. or all the 
1 

conditional distributions of times and types of the k'th jump (k = 1,2, ••. ) given the 

times and types of the previous ones (together with the initial distribution 1(0)). 

2.2. Markov jump processes 

In a Markov jump process we assume that the probability distribution of the 

development of the process from some duration x given its complete history up 

to x only depends on the state occupied at x. This is a very severe restriction and 

puts a lot of interesting structure into the quantities we have been describing. 

The transition probability matrices satisfy the Chapman-Kolomogorov equations 

P(x,y) P(y,z) = P(x,z) 

from which we get the Kolomogorov forward differential equations 

a P(x,y) = P(x,y)µ (y). 

ay 

(13) 

(14) 

Since the probability the process occupies states i0, i 
1
, .... , ir at durations O, 

x
1
, ••• , x is, under the Markov assumption, 1. (0) P .. (O,x

1
) •••• P. . (x 

1
,x ), 

r I I i 1 1 11 r- r 
we s@e that l(O) and the P(x,y) completely desc<fibe tfi'e process. Mofeo.fer by (14) 

the P(x,y) are determined by the intensities µ (x) (here I is the identity matrix): 
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y 
P(x,y) = II (I + µ (s)ds). (15) 

S=X 

(Here we use product-integral notation; see e.g. Johansen, 1986; Gill and 

Johansen, 1987). Thus the initial distribution l(O) and the intensities µ (x) 

determine the whole process and hence all the quantities we described in 

Subsection 2.1. and others: the occurrence/exposure rates, the expected duration 

in state j over the duration interval (x,x+h J for those who were in state i at 

duration x, the mean duration elapsed since x for those who make a jump from i 

to j during (x,x+h] , the expected number of (i,j)-jumps during (x,x+h] , and so 

on. Formulas for such indicators in the demographic literature are given by 

Rogers (1975) for multiregional models, Krishnamoorthy (1979), Schoen and Land 

(1979), Willekens et al. (1982) for marital status models, by Hoem (1977), 

Willekens (1980), Schoen and Woodrow (1980), Brouard (1981) for working life 

tables, by Oechsli (1975), Chiang and Van den Berg (1982), Feichtinger and Lutz 

(1983) for fertility tables including parity, and surely by many others. Hoem and 

Funck Jensen (1982) give a comprehensive review of the increment-decrement 

model and its Markov process formulation. 

In some special situations a compact analytic solution for P(x,y) in terms of µ(x) 

may be found. This is the case for any hierarchical model, in which all µ .. (x)'s 
lj 

are zero whenever i >j. Other special models for which an analytic solution 

exists are given by Hoem and Funck Jensen (1982, p. 178). 

However for many purposes the general Markov model is still too general, and a 

further restriction is made: the assumption of (piece-wise) constant intensities. 

This gives us a so-called time-homogeneous Markov process; it figures 

prominently in the statistical literature. 

Assume that µ .. (x+t) = u,. for itj and O<t~h. Let again 
lj 'lj 

let µ be the matrix with elements µ ..• Then 
lJ 

t 
P(t) = P(x,x + h) = exp( µt) = II (I + µ ds) 

0 

µ ii = - L: µ .. , itj, and 
i lJ 

(16) 

where P(t) denotes the matrix of transition probabilities with elements P .. (x,x+t), 
lj 

O~t:::;;ht see for instance, <;inlar (l 975, p. 255); the exponential of a matrix is 

defined by the usual power series. (Note that we adopt the notation generally 

used in the statistical literature in the definition of µ. This leads to~ vectors 
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Also we have 

T L(x,y) l = y-x. (19b) 

For given µ , (19a) and (l 9b) give a collection of linear equations from which L 

can be easily calculated. 

Note that in a· constant intensities Markov process the origin dependent 

occurrence/exposure rate m(i)jk(x,x + h), the origin-independent rate 

mjk(x,x + h), and the intensity µ jk are all equal. This gives the result 

P(x,x + h) = exp(h M). (20) 

2.3. The linear integration hypothesis 

We now describe a different way to specialize from the general random jump 

process described in Subsection 2.1, the so-called linear integration model. 

A linear integration hypothesis usually involves the assumption 

L(x,x+h) = f h {l(x) + l(x+h)} . (21) 

In view of expression (8), a uniform distribution of the events d .. (x,x+t) for 
lJ 

x< t~x+h is a sufficient condition for (21) for a certain h. Note that with this, 

L(x,x+h) may be obtained with knowledge of the stock vectors at durations x and 

x+h only. We call the assumption "dij(x,x + t) is linear in t for all i,j" the (weak) 

linear integration hypothesis. 

The occurrence/exposure rates mij(x,x+h) may be collected in a matrix M(x,x+h) 

with the same configuration as the matrix of transition intensities µ (x). Then (8) 

can be rewritten after some easy algebra as 

l(x+h) = l(x) {I + f h M(x,x+h) } {I - f h M(x,x+h)} -l , (22) 

see Rogers and Ledent (1976). 

In view of (5) this suggests the relation 
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probability distribution over the states at duration x). The empirical counterparts 

of these two quantities are precisely the kind of data that are produced by 

population registration systems. By the accounting equation 

l(x + h) = l(x) + 1 D(x,x + h) and because of the weak linear integration hypothesis 

we have L(x,x + h) = f(l(x) + l(x + h)); thus we can derive 

M(x,x + h) =-(diag(L(x,x + h)))-1D(x,x + h) from l(x) and D(x,x + h) only. Our 

results are that, given any l(x) and D(x,x + h), one can find a random jump 

process with origin independent occurrence/exposure rates (over the duration 

interval (x,x + h] ) and satisfying the strong linear integration hypothesis if and 

only if the matrix defined on the right hand side of (23) is a transition matrix 

(i.e. has non-negative elements, summing rowwise to one). Of course this is then 

the transition matrix for the process we have found. However, any such process 

is not Markov. So the two assumptions above are mutually consistent provided 

(23) is sensible; but they are not consistent with a Markov assumption. A 

sufficient condition for (23) to define a legitimate transition matrix by the way 

is 

L: m .. (x,x + h) ~2/h 
• 1· lJ jFl 

or equivalently (by construction of mij(x,x + h)) 

L: d .. (x,x + h)~ l.(x) + t L: d .. (x,x + h): 
·1· lJ 1 •/• Jl 
JFl JFl 

(24) 

(25) 

the expected number of jumps out of i must be less than the probability of 

starting in i plus half the expected number of jumps into i; see Appendix 1. 

Finally note that if the assumptions here are compatible with a given l(x) and 

D(x,x + h), there are actually very many different jump processes having these 

properties (see Appendix 2). This is unlike the Markov constant intensities model 

when l(x) and µ completely determine the process. 
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3. AGGREGATE DAT A FROM POPULATION REGISTRATION SYSTEMS 

The data needed to estimate the parameters of stochastic process models may be 

collected in many different ways. The observational plan describes a number of 

different aspects: have the data been obtained for individuals or only for groups 

of persons? _Was the information collected over discrete time intervals or in a 

continous registration? Were the data used cohort data, period data or period

cohort data? Have all the members of the target population been included or has 

only a sample been surveyed? Have the data been collected retrospectively or 

prospectively? These questions demonstrate that the observational plan acts as a 

kind of filter between what is potentially observable and what is actually 

observed (Hoem and Funck Jensen, 1982, p. 168). 

The observational plan influences the proper statistical analysis in many subtle 

ways which need to be investigated for each separate case. The purpose of this 

paper is to investigate the estimation of the previously described models using 

population registration data. Such data are found in countries where a population 

registration system exists. The observational plan for data of this type may be 

characterised as follows: 

although the data are obtained for individuals, most statistical bureaus make 

them available in the form of tables {aggregated over individuals) only; 

the data consist of stocks {the population distributed over the states) at the 

end-points of the time intervals and flows (events) within these intervals. In 

particular, we have occurrences, but no exposures; 

when speaking in terms of the Lexis diagram, the data are of the period

cohort type. They apply to the behaviour of the members of a particular 

cohort during a certain period. The lifelines of these persons cover two 

successive age intervals; 

the data pertain to a complete (sub-)population; 

they are collected in a prospective manner, i.e. there is no selection of 

individuals according to the events of interest. For instance, persons dying 

during the particular interval under consideration should not be omitted from 

the study. 

Such an observational plan is just one possibility out of a multitude of data 

collection strategies. Ledent and Rees (1986) discuss the construction of 

(deterministic) multiregional life tables using various data types. They compare 

life tables derived from so-called migration or movement data with those based 
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on what they call migrant or transition data. The former data are derived from a 

registration of all changes in states (also called moves, direct transitions, ev,ents 

or jumps) in a given period, as in the case of a population registration system. 

The latter data are taken from population censuses, for instance, when 

respondents are asked to report their current state as well as the state they 

occupied at .some earlier time ("transitions"). Lee, Judge and Zellner (1970) have 

investigated the ·situation in which a sequence of stock vectors (the distribution 

of a group of individuals over the states of the Markov chain) are available. 

Similar types of aggregate data are being handled by Kalbfleisch, Lawless and 

Vollmer (1983), by Van der Plas (1983) and by Kalbfleisch and Lawless (1984). 

Other observational plans are discussed by Hoem and Funck Jensen (1982, pp. 

219-236) in the context of Markov processes. Their review includes transition 

data, retrospectively collected data, data involving a few recent events and data 

which involve occurrences with sufficient subspecifications by relevant type of 

risk, but in which the distribution of corresponding exposures over the same 

categories of risks is unobtainable ("incidence data"). Finally, we mention 

observational plans in which only a segment of the life history of each individual 

is collected. The treatment of censored data of this kind may be found in any 

text on life-history analysis. One may have random left truncation (delayed 

entry) as well as right censoring without having to fundamentally revise the 

statistical procedure; see Andersen, Borgan, Gill and Keiding (1988). 

In the situation of population registration data, consider the duration interval 

(x,x + h). Then our data consist of the vectors Y(x) and Y(x + h) giving the 

numbers in which the population is distributed over the p states of the model at 

durations x and x +h. We are also given the matrix N = N(x,x + h) with total 

numbers of direct moves from state i to state j during (x,x + h] , with N .. = -
11 

Z:: N ..• Similarly to (8), we have 
j/i lj 

Y(x + h) = Y(x) + 1 N(x,x + h). (26) 

Let n = Z:: Y .(x) be the total size of our population or sample. 
• 1 
1 

We suppose that each of these n individuals have, independently of one another, 

moved~from state to state according to the (probabilistically) same random jump 

process. We assume that other quantities, in particular the total exposure times 

f x+h Y(s)ds, are not available. Also the numbers of individuals starting in i and x 
finishing in j, for each pair of states i and j, are not available either. This means 
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that direct estimation of the transition matrix P(x,x + h) on the basis of observed 

'net transitions' is not possible. Also the actual occurrence/exposure rates for the 

period (x,x + h) are not available (these would be (diag( fx+hY(s)ds)f 1N(x,x + h)). 
x 
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4. ESTIMATION UNDER THE LINEAR INTEGRATION HYPOTHESIS 

Because of (23), authors using the linear integration hypothesis estimate the 

matrix of transition probabilities by 

A 

P(h) 
A A 1 

= { I+ fh M(x,x + h)} lh - fh M(x,x + h)} - , (27) 

A 

where M(x,x + h) is the matrix of estimated occurrence/exposure rates using the 

linear integration hypothesis and I is the identity matrix: 

A 1 
M(x,x + h) = (diag( f h(Y(x) + Y(x + h)))f N(x,x + h). (28) 

It has been pointed out that this approach contains a number of drawbacks 

(Ledent, 1980, p. 554; Hoem and Funck Jensen, 1982, p. 157, p. 160, pp. 194-201; 

Land and Schoen, 1982, pp. 316-320; Nour and Suchindran, 1984, pp. 325). One is 

that P(h), as given by expression (27), may contain negative elements. This can 

only be the case, when E fil .. (x,x + h) > 2/h, or equivalently when 
jli lj 

E N .. (x,x + h) > Y.(x) + t E N .. (x,x + h) for some i, see Subsection 2.3 and 
jli lj l jli Jl 

Appendix 1. This result generalises the findings of Ledent (1980, p. 555) for the 

two-state model. Hence negative estimated transition probabilities can occur in 

the linear integration model when the total number of jumps out of state i during 

(x,x + h] exceeds the number initially present at duration x in state i by an 

amount of more than half the number of direct transitions into state i. This may 

be the case, for instance, when: (i) all individuals in Yi(x) leave state i before 

duration x + h and (ii) more than 5096 of the individuals that enter (possibly re

enter) state i during (x,x + h] leave state i once again before duration x +h. It 

will be clear that the chance of encountering the situation 

E N .. (x,x + h) > Y.(x) + tL N .. (x,x + h) is greater, the longer the interval (x,x + h) 
lj l Jl 

is, provided thatµ .(y), x< y < x + h is sufficiently large. Hence the (strong) linear 
l 

integration hypothesis may be ruled out completely by the data, independently of 

the estimation method to be used, and even when immigration has been taken 

account of; for an example see Appendix 1. 

Even if the strong linear integration hypothesis is assumed, it is not possible to 

derive useful statistical properties of the estimator (27), because for instance ,, 
the large sample variances of the elements of P(h) depend on more than on just 

the quantities l(x) and D(x,x + h) (which are basically all we can estimate). This is 

because many different random jumps processes exist (satisfying the hypothesis) 
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all with the same values of l(x) and D(x,x + h): the model is not identifiable with 

the given data. In principle one could calculate large sample variances for the 

special case of the model mentioned in Appendix 2: Markov with hyperbolic 

intensities given each initial state. 

One may ask why (27) still gives reasonable results even if its derivation 

depended on strong assumptions which can hardly ever be true. In our opinion this 

is because for short duration intervals (which is precisely when the method is 

known to be reasonable) the strong linear integration hypothesis is true to a good 

approximation, as also is the assumption of origin independent 

occurrence/exposure rates. The latter is of course moving towards a Markov 

assumption. For the same reasons the 'Markov based estimate' exp (h M) (cf.(20)) 

gives similar, reasonable results when h is small. 
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5. ESTIMATION UNDER THE CONST ANT INTENSITIES ASSUMPTION 

x+h ( ) Had one observed the total exposures f Y s ds one would have calculated the x 
actual occurrence/exposure rates 

M(x,x + h) = (diag( f x+hY(s)ds)r1 N(x,x + h) x 

and hence 

,...., ,..., 
P(x,x + h) = exp (h M(x,x + h)). 

(29) 

Large sample properties of these estimators are well known; see e.g. Aalen and 

Hoem (1978, p. 97). When only Y(x) and N(x,x + h) is available, an obvious 

compromise is to approximate M by using (28): thus a hybrid approach between 

those appropriate under the linear integration and the homogeneous Markov 

models. This is rather unsatisfactory and hence one of us derived a new 

estimator working consistently in the assumed model; see Gill (1986) and for 

further results Wieseman (1987). 

The new estimator is actually based simply on the rather old method of 

moments. That is, for convenience replacing (x,y J by the interval (O,h J , we 

write down the expected values of Y(O) and N = N(O,h); these are functions of the 

model parameters 1(0) and µ ; we then solve the estimating equations 

"observed = expected". This gives immediately i(o) = Y(O) In; µ then has to be 

derived from the equation (cf.(18a,b)) 

h.. .. 
N I n = diag( f 

0 
l(O) exp ( µ s)ds) . (29) 

This looks hard to solve but from (l 9a,b) we can discover that an equivalent set 

of equations is: 

.. ( . )-1 I µ = d1ag L N n (30) 

.. .. 
L = l(O)(exp( µ h) - I) (3la) 

.. T 
•L 1 = h. (3lb) 

.. 
This suggests a very easy iterative solution method: given an initial guess of L, 

.. 4 • 

compute µ by (30). Now recompute L by substituting µ in (3la,b) and solving 
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for t. (One would at first think that Ola) is enough: µ is a pxp matrix and t 
contains p unknowns. However µ generally has rank p-1 or less, and then we 

need the extra equation (3lb); see Gill (1986) for more details). This iterative 

method resembles the EM-algorithm (cf. Dempster, Laird and Rubin, 1977), in 

that we compute in each cycle the expected total exposure time n L as a 

function of ih given Y(O) = n 1(0); the EM-algorithm for computing the maximum 

likelihood estimator would require one to compute n L as a function of µ , given 

Y(O) = n 1(0) and N = n D. 

There are some questions which should be answered: do these equations always 

have a solution, is it unique, do the suggested iterations converge, and finally 

what are the statistical properties of the resulting estimators (e.g. as n + co)? 

At least the first question has a positive answer. There always is a solution -that 

is, there always is a homogeneous Markov process which matches exactly a given 

1(0) and d(O,h). Compare this with the unsatisfactory result on the strong linear 

integration hypothesis. 

On uniqueness and convergence there are very few theoretical results. Practical 

experience is however excellent. We conjecture uniqueness, and believe that the 

iteration technique given here is very useful. 

Finally, because this is an identifiable model the distribution of the estimator 

around the parameter to be estimated can also be estimated: it only depends on 

n, 1(0) and µ. In Gill (1986) it is shown that /rl( µ - µ ) is approximately normally 

distributed for large n with mean zero and with a variance which in principle can 

be computed. Wieseman (1987) has supplied the (horrific) formulas for this 

approximate variance which all the same are quite easy to calculate in practice. 

We give some practical results in Section 6 and the formulas themselves in 

Appendix 3. 

Note that these resu!ts o~ µ A carry over to similar results for P = exp(µ ). One 

has the nice identity l(h) = l(O)P, just as in the linear integration hypothesis case. 

An approximate variance of Ji and hence of P is also rather easy to find: since 

our estimator cannot be better than the maximum likelihood estimator of µ 

when more data is available, the actual occurrence/exposure rates, estimate the 

variance of the latter by a2 = (diag n f.S2 N (see Aalen and Hoem (1978)) and 

use •H as a lower bound to the variance of our estimates: thus use the off

diagonal elements of o 2 as a lower bound to the variances of the corresponding 

elements of p. In Appendix 3 we mention how to go from here to an approximate 
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variance of P. Our practical experience is that this works well for states with 

large exposures and low occurrence/exposure rates. In the opposite situation the 

lower bound grossly underestimates the actual variance. This is an important 

finding: it shows that population registration data can severely impair estimation 

of some important intensities. 

We remark .that it is computationally impossible to derive maximum likelihood 

estimators for l(O), µ based on Y(O), N. However in large samples the new 

method of moment estimators is just as good (the asymptotic variances are the 

same). 
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6. APPLICATION 

We consider here the marital status model with five states which was studied 

earlier by Schoen and Nelson (1974), Willekens et al. (1982) and by many others 

(see figure 1). 

Our example is based on nuptiality patterns of Dutch females born in 1945, 

observed during the period 1965-1969. The data used are of the population

registration type, generously made available to us by the Netherlands Central 

Bureau of Statistics. The duration interval (O,h) now represents the period 

between 1 January 1965 and 31 December 1969. The input data are given in table 

1. Net immigration was disregarded and therefore the final population 

distribution Y(h) is not observed, but merely calculated. The initial number of 

persons in the state "dead" was taken as zero for the sake of convenience. 

Figure 1. Marital status model 

single married dead 

divorced 

Table 1. Input data, nuptiality patterns of female birth cohort 1945, the 
Netherlands, 1965-1969 

s m w v d 

Initial distribution Y(O) 81773 10296 5 57 0 

~ingle -58673 58540 0 0 133 
married 0 -1116 136 921 59 

Direct transitions N widowed 0 30 -31 0 1 
divorced 0 342 0 -343 1 
dead 0 0 0 0 0 

Final distribution Y(h) 23100 68092 110 635 194 

Source: The Netherlands Central Bureau of Statistics. 
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Three different estimates of the matrix P of transition probabilities were 

computed. 

I. The "linear solution" P1 =(I+ th M1)(I - th M1r
1, where M1 = (diag t 1r

1N 

and i.
1 

= fh(Y(O) + Y(h)), see expressions (27) and (28). As was argued in 

section 4, it is not possible to give standard deviations of these estimates • 
.,. .. .. .. 1 

2. The "exact exponential solution" P 2 = exp(M 2 h), where M2 = (diag L2f N and 

i.
2 

is the (a?) solution to the equations l(h) = l(O)exp(M
2 

h), L2 • 
1 T = h, 

compare expressions (20), (18a), (5) and (19b) respectively. Standard 

deviations of the estimators P 2 and M2 were computed using the expressions 

in Appendix 3. The standard deviations of the estimated matrix of 

occurrence/exposure rates M2 (or, equivalently, of the estimated intensities 

ii in this exponential model) are compared to those that would be obtained 

when occurrences as well as exposures would be observed. The latter standard 

deviations serve as a lower bound to the standard deviations of our estimates .. 
M2, as was argued in Section 5. 

3. The "approximate exponential solution" P 3 = exp(M 1 h). .. ... 
Both P 1 and P 2 are exact solutions, and hence they fit the data exactly, i.e. 

l(O)P 1 = l(O)P 2 = l(h). When checking the results it should be kept in mind that the 

length of the interval is h = 5 years, and that the total number of observed 

women is n = 92131. 

Table 2 shows estimation results for the matrices of occurrence/exposure rates 

(expressed in occurrences per year) and for exposure times. To begin with the' 

latter, differences between the linear estimator i 1 and the exponential .. 
estimator L2 are 12-14 per cent, except for the state "dead" where the exact 

exposure is estimated to be 7 per cent higher than the approximate exposure. 

Percentage differences between exposure times are directly reflected in 

differences between estimations of occurrence/exposure rates contained in M 
1 .. 

and M2• For instance, the estimated approximate exposure time spent in the 

single state is 13 per cent higher than the corresponding estimated exact 

exposure time. Hence we see an estimate of the first marriage rate which is 13 

per cent lower in the linear estimator M 1 than in the exact exponential 

estimator M2• 

When we consider exact estimations of standard deviations corresponding with 

elements of the exact exponential estimator M2 it becomes clear that even a 

relatively large cohort of more than 90,000 persons, observed over a 5-year 

period, results in reliable estimates of nuptiality intensities only for those 

women who were initially single. We can have some confidence in the divorce 
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Table 2. Solutions: occurrence/exposure rates and exposures!) 

Linear solution 

Exact exponential 
solution 

.. 
Approximate exposures L1 

Exact exposures 

s 

m 

w 

v 

d 

s 

m 

w 

v 

d 

Marital status 
s m w v d 

-.2238 .2233 0 0 .0005 

0 -.0057 .0007 .0047 .0003 

0 .1050 -.1085 0 .0035 

0 .1975 0 - • 1980 • 0006 

0 0 0 0 0 

-.2529 .2523 0 
(.0010) 

0 .0006 
( .0001) 
(.0001) 

0 

0 

0 

0 

(. 0011) 

-.0050 .0006 .0041 .0003 
(.0001) (.0001) (.0000) 
(.0003) (.0017) (.0001) 

.1206 -.1246 0 
(.0220) 
(.2341) 

.0040 
(.0007) 
(.0085) 

.2223 0 
(.0120) 
(.2421) 

-.2230 .0007 

0 0 0 

( .0006) 
(.0009) 

0 

(yrs) 2.8458 2.1271 .0031 .0188 .0053 

(yrs) 2.5189 2.4561 .0027 .0167 .0057 

1) First figure in parentheses under estimated occurrence/exposure rates of 
exponential model is lower bound to corresponding standard deviation, second 
figure in parentheses is exact estimation of standard deviation. 

rate (estimated to be .0041, with an estimated standard deviation of .0017), but 

no information can be obtained from other rates for married women, or from all 

rates for divorced women or widows. Observe that lower bounds of standard 

deviations give a misleading impression of the reliability of the estimated rates 

for all women, except for those who are single. Stated differently, population 
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registration data with information aggregated over individuals and over. time 

would not permit us to estimate nuptiality rates of this five-state model. But 

when occurrences as well as exposures would be available, all rates but one (the 

death rate of divorcees) would have reliable estimates for this sample. 

Table 3 co!ltains estimated transition probabilities according to the "linear 

approach" (P 
1 
), the "exact exponential approach" (P 2> and the "approximate 

Table 3. Solutions: transition probabilities l) 

Marital status 

s m w v d 

.. 
Linear solution PI s .2825 .7088 .0010 .0056 .0022 

m 0 .9802 .0027 .0156 .0015 

w 0 .4067 .5760 .0032 .0141 

v 0 .6543 .0009 .3423 .0025 

d 0 0 0 0 1 

.. 
Exact exponential p2 s .2825 .7083 .0010 .0060 .0022 
solution (.0016) ( .0017) ( .0001) (.0004) (.OOO!) 

m 0 .9843 .0022 .0121 .0013 
(.0008) (.0003) (.0010) ( .0005) 

w 0 .4481 .5330 .0035 .0154 
(.6132) (.6389) (.0056) (.0250) 

v 0 .6634 .0010 .3332 .0025 
(.3876) {.0008) (.3900) (.0025) 

d 0 0 0 0 1 

.. 
Approximate exposures PI s .3266 .6635 .0011 .0067 .0021 

tial solution m 0 .9811 .0027 .0147 .0015 

w 0 .3986 .5839 .0037 .0138 , .. 

v 0 .6194 .0010 .3772 .0024 

d 0 0 0 0 1 

.. 
1) Figures in parentheses under elements of P 2 are estimated standard deviations. 
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exponential approach" (P 3). Estimated standard deviations for the elements of P 2 
are given as well. Transition probabilities in P 1 are very close to those in P 2, the 

largest differences being 4 percentage points (cf. the remarriage probability and 

the retention probability of widows). Differences between elements of P 2 and P 3 
are of the same magnitude, although they appear somewhat more frequently. 

Observe that estimated standard deviations for transition probabilities of women 

who were initially widowed or divorced are so large, that no conclusions can be 

drawn about these probabilities. 
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7. CONCLUSIONS 

In this paper we investigated the estimation of multidimensional demographic 

models when population registration data are available. Data of this kind are 

most often made available by statistical bureaus in the form of stocks and 

flows. The l_atter are aggregated over time and over individuals. In particular, 

this means that for each event information on the total number of occurrences 

(direct transitions) is known, but that we have no exposures. This means that the 

Markov model with constant intensities cannot be estimated by methods 

developed earlier. On the other hand, we argued that the linear integr9tion~r,,.y; 

model, based upon the assumption of a uniform distribution of events, may lead 

to transition probabilities outside the [0,1]-range. Conditions which lead to such 

unreasonable parameter values were discussed. Moreover, it was argued that the 

derivation of an expression for the transition probabilities in the linear 

integration model requires the so-called strong linear hypothesis (for each type 

of direct transition, for each initial state subpopulation, direct transitions are 

uniformly distributed over time) and the assumption of origin-independent 

occurrence/exposure rates. But this rules out the Markov assumption. Since one 

makes projections by multiplying successive transition probability matrices, this 

makes the linear integration model aesthetically unsatisfactory. 

Because of the deficiencies of the linear integration model and the fact that 

known estimation methods for the constant intensities model cannot be applied 

to population registration data, we presented a new estimation method. It is 

based on a Markov model with constant transition intensities. It uses an iterative 

algorithm for which a solution always exists; uniqueness of the solution could 

only be verified for some special cases (and convergence not at all). However, in 

all practical examples the iterations converged quickly to one limiting value, 

independently of the initial value. Therefore, we conjecture that the new 

estimation method always has exactly one solution. Asymptotic distributions of 

the proposed estimators were given. 

Our findings indicate that in most practical cases there is little difference 

between the solution of the proposed method and that of the linear integration 

method. Moreover, the solution of a third approach, the approximate exponential 
" model, is very similar to these two solutions. The approximate exponential model 

involves a Markov process with constant intensities. It is estimated by 

approximating the exposures using the linear integration hypothesis. 
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When a multidimensional demographic model has to be estimated from 

population registration data we recommend the following approach. When 
transition intensities are moderate or small, it is a good strategy to approximate 

the exposures by the linear integration hypothesis and next to estimate the 

intensities of the Markov model (with constant intensities) using "observed

approximated" occurence/exposure rates. When particular emphasis is placed on 

an exact solution of the model, i.e. an exact matching by the estimated model to 

the observed data, the linear integration hypothesis or our new method may be 

used. However, large transition intensities can prevent the former model from 

being applicable and its non-Markovian character makes a projection by 

multiplication of successive transition probability matrices aesthetically 

unsatisfactory. In such situations, application of the estimation algorithm 

proposed in this paper will be useful. 

Finally, the main findings of this paper should be placed in proper prospective. 

First, we only considered two types of models: the constant intensities model and 

the linear integration model. Many more possibilities exist, for which the 

accompanying models exhibit different local behaviour of the intensity functions 

over the duration interval. For instance, Land and Schoen (1982) investigate 

Markov-generated multidimensional models with polynomial direct transitions, 

leading to rational polynomial intensity functions. Such an assumption may be 

useful for long duration intervals or strongly fluctuating intensities (e.g. infant 

mortality in the first few months after birth or seasonal patterns in marriage 

behaviour). But in most practical cases the solution of a more refined model of 

this type will be very close to that of the constant intensities model or the linear 

integration model. 

Second, when small data sets are used, the randomness of estimates of model 

parameters may be important and a statistical approach should be used. 

However, for very large data sets, estimates of standard deviations will 

generally be small compared to those of model parameters and functions thereof 

and a strictly deterministic analysis will often be sufficient. However as we saw 

in our case a sample size of 100,000 is not 'large' at all. 

Thirq, we want to stress the fact that a Markov model with constant intensities 
should often be seen as no more than a rough approximation of reality. 

Therefore, an "exact" statistical solution for this model is usually not very 

important. However, the contribution made in this paper has a methodological 

nature. We hope that it helps to clarify the controversy surrounding the linear 
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integration hypothesis. Also, this paper illustrates the value of choosing a 

mathematical model with the aid of which elements of the probabilistic model, 

questions of numerical approximations and problems of data availability can be 

discussed systematically. We see that even with fairly large data sets, sampling 

variances can be very large and it is important to use models which enable them 

to be evaluated. 
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Notes 

1) For instance if for each k the conditional distribution of the time of the k'th 

jump given the times and types (state i to state j) of the previous ones has a 

uniformly bounded hazard rate. 

2) Available from Artemis Systems Inc., 125 Berry Corner Lane, Carlisle, Ma. 

01741 USA or Datavision AG, P.O. Box 7250, Klosters, Switzerland. 
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APPENDIX 1. Properties of P =(I+ !hM) (I - !hMf1 

This appendix contains the proof of the following lemma given in section 3. For a 

matrix M = (m .. ) of occurrence/exposure rates and a duration interval of length 
lJ 

h, the condition 

-m .. 
11 

implies that 

p 

= ~ m .. ~2/h 
jli lJ 

= (I+ !h M)(I - !h Mf1 (Al) 

is a transition matrix i.e. a matrix with nonnegative elements that add up to one 

rowwise. 

We use the following not~tion: vectors are column vectors, l and 0 are vectors 

with all elements equal to 1 and 0 respectively, and for a vector x or a matrix A 

we write 

x ~ 0 (A~) if the inequality holds elementwise; 

x > o if x ~o and x I O; 

x >> 0 if we have elementwise strict inequality. 

Furthermore, zPXP = { A = (a .. )€ R pxp : a.·~ o, i I j }, i.e. zPXP is the set of all 
lJ lJ 

real (pxp) - matrices with non-positive off-diagonal elements. 

Berman and Plemmons (1979), in chapter 6 on "M-matrices", give 50 equivalent 

necessary and sufficient conditions for A€ zPXP to be a "non-singular M-matrix". 

Two are: 

(I 27) ~ x » 0 with Ax>> O, and 

( ) -1 . -1 N 38 A exists and A ~ 0. 

Now the proof is as follows: 

Let M be a pxp intensity matrix, that is -M € zPXP and M 1 = 0. If -m .. ~2/h Vi, 
11 

then (I + !h M) is a transition matrix. The product of two transition matrices is a 

transition matrix, so it suffices to show that (I - !h Mf1 exists and is a 

transition matrix. But we have I - !h M € zPXP and 1>>0. Therefore (I -

!h M)l = 1 » O. So by the equivalence of conditions (I 27) and (N 38), we find 

that (I - !h Mf1 exists and that (I - !h Mf1 ~O. Since (I - !h M)l = 1 we find by 

premultiplying with (I - !h Mf1 that 1 =(I - !h Mf1 .1. Hence (I - !h Mf 1 is a 

transition matrix and so is (I + !h M)(I - !h Mf 1. This completes the proof. 
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It should be noted, that in the linear integration model 

m .. (x,x+h) = 2d .. (x,x+h) I { h(l.(x) + 1.(x+h)} • 
lj lJ l l 

Therefore, the condition -m .. (x,x+h) = L: m .. (x,x+h~2/h is in this model 
11 jti lJ 

equivalent to 

L: d .. (x,x+h) ~ 1.(x) + 1.(x+h) • 
jJi lj l l 

But 1.(x+h) equals 1.(x) - ~ d .. (x,x+h) + L: d .. (x,x+h) and therefore 
1 l j,::i lJ i~j Jl 

-m .. (x,x+h)~2/h is equivalent to 
11 

~ d .. {x,x+h)~.(x) + -21 L: d .. (x,x+h). 
j#i lJ l iJj Jl 

(A2) 

Hence, when in the linear integration model condition (A2) is fulfilled, then the 

matrix P according to (Al) is a transition matrix. Otherwise it may not be (but 

(A2) is not a necessary condition). 

As an illustration, consider a small part of the data set given by Schoen and 

Nelson (1974) which has recently been used by Nour and Suchindran (1984) to 

illustrate the occasional breakdown of the linear integration model (Al). The 

latter authors started from the following matrix M belonging to a five-state 

nuptiality model for the U.S. male population in the age interval (20, 25) in 1960: 

-.2313 .2291 0 0 .0022 

0 -.0172 .0007 .0153 .0012 

M(20, 25) = 0 .1551 -.1603 0 .0052 

0 .4860 0 -.4897 .0037 

0 0 0 0 0 

(1) (2) (3) (4) (5) 

(1) Never married 

(2) Currently married 

(3) Widowed 

(4) Divorced 

(5) Dead 
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(Note that we adapted their notation to ours). It may be observed that the 

diagonal element for divorced males -m44 exceeds 2/h = .40. Indeed, the 

corresponding transition matrix P computed according to (Al) is 

.2672 .7104 .0009 .0122 .0093 

0 .9577 .0025 .0337 .0061 
p = 0 .5419 .4285 .0093 .0203 

0 1.0694 .0013 -.0824 .0117 

0 0 0 0 l 

which is not a transition matrix. This is caused by the value of the matrix of· 

direct transitions 

-40176 40043 0 0 133 

0 -6537 373 5971 193 

0(20, 25)= 0 146 -148 0 2 

0 4009 0 -4021 12 

0 0 0 0 0 

and that of the initial distribution 

1(20) = (54177 41955 59 544 3265) • 

We observe a number of remarrying or dying divorced males (4021) which 

exceeds the initial number of divorcees (544) by more than half the number of 

new divorcees (5971). This may be due to estimations carried out by Schoen and 

Nelson which were necessary because their initial data were partly defective. 

They consider the accuracy and adequacy of their data and state that the number 

of divorced seems to be underreported and that their remarriage figures are 

probably high (Schoen and Nelson, 1974, p. 289). On the other hand, even when 

accurate figures could have been obtained, unrealistic remarriage patterns are 

likely to have been produced by the linear integration model, for remarriage 

rates may well have exceeded 40% for young divorced males in the l 960's. The 

constant intensities model will cure this anomaly; as an alternative, one may 

consider the linear integration model for single ages. 
"'' 
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APPENDIX 2. On the compatability of the strong linear integration hypothesis, 

origin-independent occurrence/exposure rates and the Markov assumption 

In this appendix we prove that under a natural condition the two conditions (i) 

the strong linear integration hypothesis, and (ii) origin-independent 

occurrence/exposure rates, are consistent, but are not consistent together with 

the Markov assumption. Suppose l(O), D and 1(1) = l(O) + l D are given, such that 

the transition matrix P =(I+ t M)(I - t Mf1 is a stochastic matrix, with M a 

matrix of occurrence/exposure rates for the interval [o, 1] defined as M = (diag 

Lf1 D. Now a (stochastic) jump process can be constructed with initial 

distribution 1(0) and expected number of direct transitions D, such that for each 

initial state i the (weak) linear integration hypothesis holds and the 

occurrence/exposure rates are the same. However, this process is not Markovian. 

The argument is as follows. 

Since we know P, we also know l(i)(l), that is the final distribution conditional on 

state i at duration 0. For the rows of P are the conditional distributions of "state 

at duration l" conditional on "state at duration 0". Now condition (i) implies that 

L (i) = f (l(i)(O) + l(i)(l)) for each i. Here l(i)(O) is the vector with value 1.(0) in the 

i-th element and zeros otherwise, whereas L (i) is the vector of 
1

exposures 

conditional on being in state i at duration O. Furthermore, condition (ii) means 

that the matrix of occurrence/exposure rates conditional on state i at duration O, 

denoted by M(i), is independent of i and therefore M(i) = M for each i. Then we 

compute a matrix with direct transitions conditional on state i at duration 0 as 

D(i) = (diag L (i))M. For each i a jump process exists with this l(i)(O) and D(i) which 

satisfies the (weak) linear integration hypothesis, namely the Markov process 

with initial distribution l(i)(O) and time-dependent (hyperbolic) intensities 

µ (i) (t) = diag(l(i)(O) + t l D(i)fl o<O. (There also exist many non-Markov 

processes which could be used here: they just have to have the right values of 

d(i}jk(t), 0 ~t ~l.). Thus we can construct a stochastic process with properties 

described by conditions (i) and (ii), which means that these conditions are 

mutually consistent. But any process satisfying (i) and (ii) cannot be Markovian. 

For, conditions (i) and (ii) together with the Markov assumption lead to 

hyperbolic intensities µ (i){t) given above, which are different for each initial 

state i, whereas for a Markov process intensities are independent of initial 

states.'' 
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APPENDIX 3. The variance of n 2 ( µ - µ ) and of n 2 {P - 1:1) 

Consider a duration interval (0,1] and let l(O), 1(1) and D be the expected 

initial distribution, the expected final distribution (at duration l) and the matrix 

of expected numbers of moves between two states, all 'per individual' • 
... 

We estimate µ replacing l{O), 1(1) and D by estimates l(O) = Y{O) I n, 
... ... .... -
1(1) = Y(l) In, D =NI n and then solving for Land µ the equations: 

µ = 
.. 1 .. 

(diag Lf D 

... .. .. 
l(O)exp µ = 1(1) 

.. T ... T ... T 
subject to Ll = 1(0)1 = 1(1)1 = 1. 

Wieseman (1987), working out ideas of Gill (1986), show that, conditionally on 
"' I .. 

Y(O) In(= l(O)), n 2 ( µ- µ ) is approximately normally distributed with mean zero ... 
and variance-covariance matrix Asvar µ which can be calculated (and hence .. 
estimated by substituting µ by µ etc.) as follows. 

Firstly we solve linear differential equations for three quantities l(t), K(t) and 

VarN(t) (0 ~ t ~1); the first is a lxp vector, the second a pxpxp array, the third a 

p(p-1} x p(p-1) matrix induced by ordered pairs of different states i,j. 

The initial conditions are 

... 
l(O) = 1(0) (given) 

K(O) = 0 

Asvar0(0) = 0 

Then the differential equations themselves are 

l(t + dt) = l(t).(I + µdt) 
. T 

K(t + dt) = K(t).(I + µ dt) + l(t) ~I dt 

Asvar0(t + dt) =(I+ A dt)T Asvar0(t).(I +A dt) + B(t)dt 

where 
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Also • is the ordinary matrix product and ® is the Kronecker product (so in the 

expression K(t).(I + µ dt) we sum over the third index of K, which equals the first 

index of (I .+ µ dt)). These equations can be solved by the difference scheme 

which they suggest. We then work further with 1(1), K = K(l) and 

AsVarN = AsVarN(l) respectively. As a check, one can verify that 1(1) computed 

this way also eqals 1(0) + 10; that L:(K) .. k = L.; that L:(K) .. k = l(l)k; and that 
k 11 1 i 11 

Eµ .. K .. k = 
j lJ lJ 

l:K ... l.l "k" 
j HJ J 

Next we define matrices U,V,W and Z (pxp; p(p-l)xp; pxp(p-1) and p(p-l)xp(p-1) 

respectively) by 

1 
U.k = - - (K. µ ) .. k 

1 L u 
i . 

with the p'th colum replaced by l 's 

1 
V .. k = (-(K .. k - K .. k) + o k" - o .k) i/j 

lJ, L lJ 11 J i 

i 

with the p'th column replaced by O's; 

- 0·· l.l 1.k 
W lJ J. _lk 

i,jk = 1= 

2 ij,kl = 

L. 
1 

o·· kl lJ' 

L. 
l 

Then we calculate 

-1 X .c -VU W + Z 

ii j, kll 
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and finally 

AsVar ... - X T AsVar • X· µ - D ' 

this p(p-l)xp(p-1} matrix contains the asymptotic variances and covariances of 
I 

the off diag~n~l elements of n 2 ( µ -µ ). 

As a final check, the matrix 

AsVar • - diag(vec ((diag Lr1 µ)) 
µ 

should be positive definite (here vec means: form the p(p-l)xl vector with the 

nondiagonal elements of the given matrix). 

"' .. One can go on to compute the approximate value of AsVarp where P = exp(µ). 

a P .. 
lJ 

Since ---= Kiklj - Kikkj 

a µ kl 

where Kijkl is, for given i, the pxpxp array K(l) obtained ealier when we replace 

1(0) by the vector having a 1 at the i'th place and zero's elsewhere, we can 

collect these partial derivatives into a p2xp(p-1) matrix S and apply the delta 

method giving 

These calculations appear complicated but can be radily carried out using a 

matrix oriented programming language such as APL (we actually recommend P.J. 

Huber's statistical programming environment ISP2» which combines APL-like 

features with a friendly, statistically orientated environment). The actual 

program is then not much longer than the number of formulas above. 

A further check: compare var P with the multinomial covariances one would 

have had if transitions had been observed. We have less data but more structure 

(mod~l assumptions), hence these two types of variances could be comparable. 


