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1. INTRODUCTION 

The inspiration for this paper came from previous work of Matsui [1] and from joint work with Carey 
[2]. Some of its results have been announced in [3]. In [1] Matsui proves an Atiyah-Singer type index 
formula for scattering operators arising for certain time-dependent external fields in the context of the 
four-dimensional single particle Dirac equation. He also obtains index formulas for time-independent 
unitary gauge transformations. His main tools are results from the theory of pseudo-differential opera
tors and an index theorem due to Hormander. Recently, he has lifted some technical restrictions and 
obtained extensions to 2N dimensions [4]. 

In as much as the results of this paper overlap with those of Matsui, they are arrived at in a quite 
different fashion. This will be clear from the sketch of the paper which now follows. After setting up 
notation in Subsection 2.1, we present our key result, Theorem 2.1 in Subsection 2.2. In this theorem 
the kernels of certain operators are determined explicitly. These operators are associated with special 
chiral gauge transformations (dubbed standard kinks) in the framework of the 2N-dimensional single 
particle Dirac theory. The kernel determination has algebraic aspects that are dealt with in Appendix 
A, cf. Lemmas Al, A2, and analytic aspects that are handled in Appendix B, cf. Lemma Bl. The 
proofs of the former lemmas are self-contained, whereas the proof of the latter lemma makes use of 
results from the theory of SchrOdinger operators, all of which can be found in [5-8]. 

In Subsection 2.3 properties of bounded matrix-valued multiplication operators are derived 
(Theorems 2.3 - 2.7) by using results on compactness and non-compactness of operators having 
Schwartz kernels with certain properties. The latter results are largely self-contained and can be found 
in Appendix C. Subsequently, unitary multipliers are studied in Subsection 2.4. Using the explicit 
information on the standard kinks and Bott periodicity, index formulas for continuous chiral gauge 
transformations with constant asymptotics and with 'hedge-hog' asymptotics for lxl~oo are proved in 
Theorems 2.8 and 2.9, resp. 

For N = I and vanishing particle mass the multipliers studied in Section 2 give rise to (matrix
valued) Wiener-Hopf operators. The kernel problem for the standard kinks is trivial in this case, since 
one is in essence dealing with one-sided shifts. However, the fact that the relevant kernels can be 
found explicitly for N = 1 and m >0 is already quite non-obvious and surprising. This state of affairs 
was first pointed out and exploited in [2] to study the gauge groups arising in the massive second
quantized Dirac theory in 2D via a rigorous version of boson-fermion correspondence. Specifically, in 
[2] the N = l standard kinks are proved to generate Bogoliubov transformations whose renormalized 
unitary implementers converge to the free Dirac field as a scale parameter describing the kink size 
goes to 0. The connection of this result to boson-fermion correspondence is discussed in [2], and a 
corresponding 'abstract' picture is sketched in [3]. 

In Section 3 we present the generalization of this convergence result and· its 'neutral analog' to the 
arbitrary N case, cf. Theorem 3.1 in Subsection 3.2 and Theorems 3.2 and 3.3 in Subsection 3.3. This 
entails a change in perspective detailed in Subsection 3.1, and some information on charge conjuga
tion assembled in Appendix A. Moreover, a crucial technical result is relegated to Appendix D. We 
should mention that the mathematical context of the results in Section 3 is possibly not sufficiently 
explained in this paper; for more background the reader might consult [2, 3, 9] and references given 
there. 

The paper is concluded with Appendix E, where the main text is linked up with the external field 
problem in the Dirac theory. The results obtained there should be compared with the external field 
index formulas obtained by Matsui [l]. Further work concerning index theorems on open manifolds 
includes the recent paper [10], which also lists other references in this area. 

Throughout the paper 2N denotes the space-time dimension, whereas the symbol n is reserved for 
the integer 2N - 1 • 
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2. MATRIX MULTIPLIERS IN THE ONE-PARTICLE DIRAC THEORY 

2.1. Preliminaries 
In this subsection we introduce operators arising in the Dirac description of a particle in a 2N
dimensional Minkowski space-time. (Several more such operators, which are not needeO till Section 
3, will be introduced in Subsection 3.1.) First of all, the Dirac Hamiltonian ii is the operator on 
L 2(R2N - 1 ,dx yn with domain the Sobolev space H 1 (R2N - l )2n, whose action is given by 

[
-icJ·\J mln l 
mln ia·\J ' 

m;;;a.O (2.1) 

Here and below, differentiations act weakly. Also, ai. ... , a2N - l denote self-adjoint n X n matrices 
representing the Euclidean Clifford algebra in R2N - l, and the decomposition of C2n ~Fa(CN) used in 
(2.1) is explained in Appendix A. Oearly, ii is a self-adjoint operator. 

We shall employ Fourier transformation 

?f.X= L2(n.2N-1,dx)2n ~:JC= L2(R.2N-1,dpfn 

(6.f/)(p) = (2w)-(2N-l)/2 f dxexp(-ip·x)f(x) 

to transform operators A on :it to operators A on :JC and vice versa, i.e., 

A= 6JA~ 1 • 

With this convention we obtain 

H = [:, ::p] = ap+{Jm 

Hence, 

(2.2) 

(2.3) 

(2.4) 

H2 = EiI2n, Ep =(p2+m2)v2, (2.5) 

so the projections P ± on the positive and negative spectral subspaces of H are given by the multi
pliers 

We shall use the notation 

~ = PaX, 

Aa8' = PaAPa', 

8 = +,-
8,8' = +,-

where A is an operator on '.JC. Note that 

AM,*= A*8'8 

Next, we introduce the parity operator 

(Pg)(x) = {Jf(-x) 

and the scaling group 

(D(E)/)(x) = ~2N-l)12/(u), 
Clearly, P and D(E) are unitary, and one has 

[P,PaJ = 0, 

whereas the relation 

[D(E),Pa] = 0, m = 0 

fE(O,oo) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 
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does not hold for m >0. Similarly, the chiral projections 

ef+ = [~ ~] ef- = [~ ~ l (2.14) 

satisfy 

[qs,Pll] = 0, s = +,-, m = 0 (2.15) 

but do not commute with P 6 for m >0. 
From now on, we shall assume that an internal symmetry space Ck(k~l) is tensored on to X and 

~ and we shall denote the resulting Hilbert spaces again by :JC and X.. Tensoring the above operators 
with lk yields operators that will be denoted by the same symbols, whenever no confusion is likely to 
arise. When this is done, all of the above formulas and relations are valid as they stand. 

2.2. The standard kinks 
In this subsection we study unitary matrix multiplication operators on X that reduce to the standard 
kinks of [2] for N = 1. First, we take Ck = en and set 

0 

o·x-(- \N id 
I ® ' n 
n o·x+(-fidn 

where t:E(O,oo). Note that one has 

PKs,EP = K-s,E , S = +, -
Ks,E = D(t:)" Ks, 1D(t:) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

in view of (2. lO)and (2.11 ). The importance of these multipliers (henceforth referred to as standard 
kinks) hinges on the following result. 

THEOREM 2.1. The kernel of K;,E- - is trivia~ whereas the kernel of Ks,E- _ is spanned by 

{
(o]· s=+ 

"s,E,-(p)= -exp(-wp)P-(p) (~], s=- (2.20) 

where u ECn @en is the unit vector of Appendix A. Moreover, the function 

(2.21) 

is given by 

{ 
(o]· 

"s,E,+(p) = exp(-ffip)P +(p) (~], 

s=+ 
(2.22) 

s=-

PROOF. Due to (2.18) and (2.12) we need only prove this for s=+. We shall from now on suppress 
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the subscripts +,t: to ease the notation. We begin by noting that the kernel of K __ consists of those 
vectors "- EX- for which Kie belongs to :JC+. Also, since K is unitary, one has 

Kerl(' __ = KKerK++ 

Therefore, we shall study the equation 

Kic8 = "-a ic8 E3{6 

(2.23) 

and show that (2.24) :t has no non-trivial solutions, and that any solution to (2.24) _ is a multiple of 

"+,£,-(p). To this end we set 

j =IC+ + IL , g =IC+ -ic_ (2.25) 

so that 

1 f= EHg, 
'P 

and rewrite (2.24)8 as 

[l·®;·V' 
Hence one concludes that (2.24)8 implies 

= _I [(Gp®ln)6l 
g = [ ~' f Ep mG j 

where G satisfies 

(In ®G· 'V)G(p) = ( - f- I !E (Gp® ln)G(p) 
'P 

(2.26) 

(2.27) 

(2.28) 

Conversely, if G8(p)EL 2 (IR2N-l)®Cn®cn satisfies (2.29)8 , then g,f defined by (2.28) satisfy 

(2.26), (2.27). Also, setting ic8 = ~ (f +8g) one infers that (2.24)8 holds true. Thus we need only study 

(2.29)a__. For N =I this is elementary: The solutions cexp(-t:Ep) to the first order ODE (2.29)_ are 
in L 2(11i), whereas the solutions cexp(t:Ep) to (2.29)-1::- are not. For N>l we invoke Lemma Bl to con
clude that (2.29)+ has no non-zero L 2-solutions, whereas any L 2-solution to (2.29)_ is proportional 
to 

G_(p) = exp(-t:Ep)u. (2.30) 

This gives rise to the functions "+,E,li(p) in the way just explained. D 

Next, we consider a second generalization of the N = 1 kinks of [2) which is more obvious, in as 
much as no internal symmetry space is needed. It consists in taking 

G·x-idn 

., _ [O'·x+idn 
K +,E = 0 (2.31) 

However, this generalization is 'wrong', as will be clear from what follows. 

THEOREM 2.2. For N>l one has 

dim KerK'*s,E-- = 0 (2.32) 
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dim KerK's,£- - = oo (2.33) 

PROOF. Proceeding as in the previous case, we arrive at obvious analogs of (2.23) - (2.29)8 . In partic-
ular, the kernel problem can be reduced to finding the L 2-solutions of ~ 

8£ 
o·\lG(p) = E opG(p). (2.34)8 

'P 

Picking 8 = + and stt.tting G = exp( EEp )H yields o· \1 H =O. But if G is L 2 , then H is also L 2 , so 
that o·xH(x)=O, with H the Fourier transform of H. Thus, we must have H =O, so (2.32) follows. 

Now consider (2.34)_. Setting G = exp(-wp)H, we get again o·\lH=O. But if we now take H 
equal to one of the columns of the matrix o· \1 P with P(p) an arbitrary harmonic polynomial, then G 
not only solves (2.32) _ , but is also L 2 • Therefore, we may conclude that (2.33) holds true. D 

2.3. Bounded multipliers. 
In this subsection we consider bounded operators on 

:it= L 2(a2N- 1,d.x) ® c2n ®ck, k;;;a.1 (2.35) 

of the form 

(M f)(x) = µ.(_x )f(x) /e:it (2.36) 

whereµ is a (2nkX2nk)-matrix-valued function on IR2N-I. Such operators form a W*-algebra hen
ceforth denoted ;. Our aim is to obtain conditions on µ guaranteeing that the off-diagonal parts 
M 8,_8 are compact or not, and Hilbert-Schmidt (HS) or not. Clearly, this is equivalent to [P +,M] 
having this property or not. We shall study this problem by applying the results of Appendix C to the 
Schwartz kernel of [P +,M]. This kernel is proportional to 

1 [op mln] " 
CM(p,q) = Ep mln -o·p µ,(p-q) 

.. I [o·q mln] 
-µ,(p-q) Eq mln -o·q 

Here, jJ. denotes the distributional Fourier transform of µ. 
To state our first result, we introduce the following subalgebras of?: 

?oo = { M e.fl[P + ,M] is compact} 

[
In®P.+(x) 0 l 

?x = {Me.flµ.(_x) = O In®P,-(X) ,JLs(X)EMk(C)} 

(Here, x stands for 'chiral'.) Note that.?x is a w* -algebra satisfying 

.?x = ?n {aI> ... ,a2N-I }' 

whereas ?oo is a unital c· -algebra. 

THEOREM 2.3. One has 

?oo C .?x 

PROOF. Assume M EJJoo. Picking e es2N-2, one obtains from (2.37) the distributional limit 

[
o·e 0 l >.~ CM(p+'Ae, q+"Ae) = O -o·e #i{p-q) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 
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[
o·e 0 l -P-<JJ -q) 0 -o·e (2.42) 

Invoking Lemma C2 and the compactness assumption, it follows that p.(x) commutes with a·e. In view 

of (2.40) this entails M E.fx. D ------

For N =I multipliers in .?x yield off-diagonal parts that are HS, provided a Sobolev-type condition 
is met, cf. [2], pp. 29-30. This is in sharp contrast to the case N>l, as will now be shown. (For N=2 
the following result dates back to [ 11 ]. ) 

THEOREM 2.4. One has M ±+ =O if and only if 

[
ln®A+ O l 

{ 

0 In@;\_ , As EMk(C), 

p.(x) = lin®A, AEMk(C), 

m = 0 

m>O 
(2.43) 

For N> 1, [P + ,M] is HS if and only if (2.43) holds. 

PROOF. If (2.43) holds, then P + commutes with M, cf. (2.37), so [P + ,M] is trivially HS. Conversely, 

assume [P + ,M] is HS. Then M E~00 , so M E.fx by virtue of Theorem 2.3. Hence we obtain 

A m A m A 

"2.(p,q)®µ+(p-q) -µ.-(p-q)--µ.+(p-q) 
Ep Eq 

CM(p,q) = (2.44) 
.!!!..ft+(p-q)- Em ft-(p-q) -"2.(p,q)®ft-(p-q) 
Ep q 

where 

"2.(p,q) = o·(f--j-) 
'P q 

The HS assumption implies that the distributions 

T3(p,q) = "'2.(p,q) ® fi.s(p-q), s= +, -
have matrix elements in L 2(R4N-2 ,dpdq). Now "2. is smooth and invertible on the set 

S = {(p,q)ER4N-2 lp:tf:O, q=/=0, f-=l=j-} 
'P q 

since 

";;'lp,q) = [t-tl' 1• 
Hence it follows that 

A 2 V<l 
P.s(p -q)EL1oc(S,dpdq1 . 

A moment's thought shows that this entails 

fi.s(p)ELfoc(R2N-I \ {0}, dpf 

But then we must have, using (2.48), 

J dpdq [...f!___...!L.]
2 ± lfi.s(p-q);l<oo 

p=foq Ep Eq i,j=I 

(2.45) 

(2.46) 

(2.47) 

(2.48) 

(2.49) 

(2.50) 

(2.51) 
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Invoking Lemma C3, we infer that for N> 1 this implies /Ls(k)=O, k=f=O. Thus, P.s(k) must have sup
port at the origin. But then the matrix elements of P.s(x) are polynomials. Since P.s(x) is bounded, it 
must be constant. The rest of the proof is obvious. D 

It remains to determine compactness conditions in terms of the functions P.s(x):l'he following 
result gives a sufficient condition. 

THEOREM 2.5. Suppose M E,?x and suppose there exist A± eMk(C) such that the functions 

a3 (x) = P.s(x)-As (2.52) 

are continuous and vanish at oo. Then M is in #oo for m = 0, whereas M is in #oo for m >0 if and only if 
A+ =A-. 

PROOF. It suffices to show A E#oo• where 

A= [ln®a+O 0 l 
0 ln®a_(·) (2.53) 

Moreover, we may take as(X)EC8°(1R2N-If, since#oo is norm closed. Then as(p)eL 1(1R2N-If2, so 
that compactness follows from Lemma Cl by noting that the matrix elements of CA(p,q) are kernels 
of the form (Cl) with B satisfying (C2) and (C3). D 

We now consider necessary conditions. It is presumably false that P.± must be continuous on 
IR2N - I to obtain M E#oo. (For N = 1 this follows from known results concerning Toeplitz operators, cf. 
(12, 13].) However, a particular kind of discontinuity to be described now does wreck compactness: 
We shall say that feL 00 (R.1) has a hedge-hog discontinuity at x 0 eR1 if there exists a non-constant 
function h on s1- 1 such that 

[ 
x-xo l lim f(€(X - xo)) = h I I pointwise a.e. 

(->0 x -xo 
(2.54) 

Note this amounts to a jump discontinuity when I= 1. 

THEOREM 2.6. Let M E#oo eh. Then (the matrix elements of) JJ.± have no hedge-hog discontinuities. 

PROOF. We assume that a hedge-hog does occur for P.+ (e.g.) and derive a contradi~tion. Since P + 
commutes with translations, we may assume the hedge-hog sits at the origin. 

First, consider the case m =O. Then P + commutes with the scaling group D(€) and with the chiral 

projection ~ ~' cf. (2.13), (2.15). Since 

w·lim D(€) = 0 
(->0 

(2.55) 

due to the Riemann-Lebesgue lemma, and since diag (ln®P.+(·),O) e;00 by assumption, it follows that 

v [ln®P,;_(-) ol 
s;~CP +, 0 0 ] = 0, µ.;_(x) = P.+(o:) (2.56) 

Moreover, by assumption we have pointwise a.e. 

Jim µ;_(x) = h(-lxl) (2.57) 
(->0 x 

where h is a non-constant matrix-valued function on s2N-2 • By dominated convergence, (2.57) also 
holds in the sense of strong convergence of bounded multipliers on L 2(1R2N-I,dxf. But then (2.56) 
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entails 

[
ln®h(·) OJ 

[P +, o o 1 = o (2.58) 

Invoking now Theorem 2.4, we conclude h is constant a.e., which is a contradiction. 
Next, we take m>O. From Theorem 2.5 we have 

[
ln ®</>(-) OJ • 

0 0 Egoo , t/JECW , </>(O) = lk (2.59) 

so we may assume supp µ+ is compact and I"- =O. Then we have µ+ ELr, Vr E[l, oo ]. Now it is easy 
to check 

P(m)+(p)-P(o)+(p)ELr, Vr>2N-l (2.60) 

where the dependence on the mass is explicitly indicated. Hence, we may use Theorem XI.20 in [7] to 
infer [P (m)+ - P (o)+ ,M] is compact. Since [P (m)+ ,M] is compact by assumption, it follows that 
[P(o)+,M] is compact. Thus we obtain the desired contradiction. 0 

Next, we study the behavior at oo. We say that jEL00 (R1) has a hedge-hog discontinuity at oo if 
there exists a non-constant function h on s1- 1 such that 

lim j(a) = h(-lxl ) pointwise a.e. 
£-+00 x 

(2.61) 

Now a distinction .arises between the cases m =O and m>O. 

THEOREM 2.7. Let m =O and assume M E?oo C?x: Then µ±(x) have no hedge-hog discontinuity at oo. 
Now let m >0 and assume µs(x) are continuous on R2N - I; moreover, suppose a continuous function h on 
s2N - 2 exists such that 

x µ8(x)-h("g) = o(l), lxl~oo, s = +, - (2.62) 

Then ME?oo· 

PROOF. Them =O assertion follows by arguing as in the proof of Theorem 2.6, taking t:~oo instead 
of t:~O. To prove the m>O claim, it suffices to show M E?oo for µ3 (x) of the form 

µ3 (x)=<P(ixl)h( 
1
;

1
), hEC(S2N-2f2, t/JEC((O,oo)), <P(r) = {y ~;! (2.63) 

The product of two such functions is again of this form, and this is also true for the sum, provided 
q,1 =tfJ2.Thus, if we can show M E?oo when his equal to the product of an arbitrary AEMk(C) and one 
of the functions x 1/lxl, ... ,X2N-1llxl, then it follows that ME?oo when his a matrix whose ele
ments are polynomials in these functions. By the Stone-Weierstrass theorem such polynomials are uni
formly dense in the continuous functions on S2N - 2 • Therefore, we may infer M E?oo when (2.63) 
holds. 

The upshot is, that we need only consider the multipliers Mi for which 

X· 
µs,i(x) = 

1 

2 112 A, AEMk(C), s = +, - , i = l, ... ,2N -1 (2.64) 
(1 +lxl ) 

Here, we have replaced <P(r) by the function r/(l +r2) 112 , the difference being a continuous function 
vanishing at oo and at 0. The point of this replacement is, that the Fourier transform of the functions 

ai(x) = x;l(l +lxl2
)

112 (2.65) 
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can be found explicitly. Indeed, we have 

I exp(ipx) _ {O(/njpl), 
R dx (1 + x2)112 "' K0 (IPI) - O(exp(-jpi)), 

p~o 

IPl~00 

and for N> 1 we can use 

j dx exp(ipx -Elxl) ,__, _1_ aW-3 Joo dr coslplr exp(-Er) 
R -• (1 +lxl2)112 !PI IPI o (1 +r2)112 

to infer 

2 112 1 W-3 - {O(jpl-2N+
2
), p~O 

§(1/(1 + lxl ) ) "' lPf alPI Ko(IPI) - O(exp(-jpl)), IPl~oo 

(2.66) 

(2.67) 

(2.68) 

(cf. e.g. [14)). The Fourier transform of a;(x) is then obtained by taking the ith partial derivative of 
(2.68) in the weak sense. This yields a distribution a;(p) that equals a smooth function on 
R2N-l \ {O}. This function has a non-integrable singularity at 0, but multiplication by 
Pj• j E { 1, ... ,2N - I}, suffices to render it integrable at 0. The result is then an L 1-function aij(p) which 
is easily seen to equal the distribution pja;(p ). 

The crux is now that (2.64) entails 
2N-I 

CM,(p,q) = ~ aij (p -q)Bj(p,q)®A. (2.69) 
j=I 

where the matrix elements of Bi. ... ,B2N-I satisfy (C2) and (C3). Indeed, let us set 

B(p,q) = (2.70) 

Using the Taylor expansion 

I 2N-I 

B(p,q) = B(p,p) + J ds ~ (qj-pj)(al/JB)(p,p +s(q-p)) 
O j=I 

and B(p,p)=O, we then obtain 
o· q· mqj 

_..:.L..+~(o·q) E3 
Eq Eq q 

!!!!Jj_ (1 . q. 

E3 ..:.L..-~(o·q) q = p+s(q-p) 
q Eq Eq 

I 

Bj(p,q) = I ds 
0 

(2.71) 

from which the assertion readily follows. Because ajk EL I' we can invoke Lemma Cl to complete the 
proof. D 

2. 4. Unitary multipliers 
In this subsection we study the groups G,Gx and G 00 obtained from #•#x and #oo by restricting to 
operators of the form 

(Uj)(x) = u(x)j(x), u(x)EU(2nk), /EX (2.72) 

(For most of what follows one can just as well consider multipliers with bounded inverses.) We start 



11 

with some simple observations concerning Fredholm properties of the diagonal parts of U. First, using 

unitarity we conclude 

U EG 00 ~ U ±± are essentially unitary (2.73) 

(Of course, this is meant in the sense of operators on ~, resp.) In particular, U88 '1iie Fredholm 

when U E G 00 • However, it is clear from Theorem 2.2 that there exist smooth u(x) with limit 1 for 

lxl~oo such that U66 are not Fredholm. 
On the other hand, U 88 can be Fredholm without U belonging to G 00 • Indeed, one need only pick 

Ur1Gx (and hence Ur1G 00 , cf. Theorem 2.3) whose eigenvalues stay in a sector 

Sq.= {zECllArgzl<cf>} (2.74) 

with et>< ; . For any unit vector fin :J4> one then gets 

(2.75) 

and hence 

(2.76) 

We continue by introducing a subgroup Ge of Gx whose elements have an obvious topological 

interpretation. By definition, UEGe if and only if the functions u±(x)EU(k) are continuous on 
R2N- I and satisfy 

u5 (x)-lk=o(1), lxl~oo, s= +,- (2.77) 

Thus, u±(x) may be viewed as continuous maps from s2N-I to U(k), reducing to lk at the north 

pole. (Here and from now on, we view R2N - I as arising from S2N - I by stereographic projection.) In 

view of Theorem 2.5 we have Ge C G 00 , so U 88 are Fredholm when U E Ge. 
Now it is clear that the standard kink 

l

l®a·x+(-fi 0 
• n a·x-(-f i 
K= 0 l'°'l n 'OI n 

of Subsection 2.2 belongs to Ge (taking k =n). Also, it follows from Theorem 2.1 that 

index K __ =dim Ker K __ -dim Ker/( __ = I 
Since the Fredholm index is norm continuous, the kink map 

·s2N-I U( ) rn2N-I cs2N-I a·x +(-fi 
UK· ~ n, XEll\\ H> Vi· 

a·x -(-, l 

cannot be null homotopic. 
Next, recall that by virtue of Bott's periodicity theorem one has 

'1T2N-1(U(k)) = Z, '1TZN-2(U(k)) = 0, k~N 

(2.78) 

(2.79) 

(2.80) 

(2.81) 

(cf. e.g. [15] and references given there). By convention we shall choose the 'winding number' wEZ of 

uK positive. We claim this implies 

w(uK) = I (2.82) 

Indeed, assuming w> 1, there would exist a continuous map u 1 with uf homotopic to uK. This would 

imply index K __ Ewl, which contradicts (2.79). Thus, the kink map is a homotopy generator. (This 

can also be seen directly; in fact, uK is in essence the map aN defined in [15], p. 228.) We are now in 
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a position to state the following theorem, which is one of the main results of this paper. 

THEOREM 2.8. One has Ge C G 00 and for k ;;a., N 

index U __ = w(u+)-w(u-) 'r/UEGe 

and hence 

index U __ = index U +,-- + indexU-,-

Furthermore, a continuous map 

u:s2N-I ---+ U(k), xi-+u(x), k;;;a.oN 

has the same winding number as the maps 

u1:s2N-I---+ U(k+l), xi-+u(x)®11, V/>0 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

It is also obvious that the Fredholm indices of the corresponding operators are equal. Using all this, 
the index formula (2.83) readily follows from its validity for the standard kink K (cf. (2.79), (2.82)) 
and its parity transform K-,I (cf. (2.18)). D 

In the remainder of this subsection we take m>O. We shall consider continuous multipliers in Gx 
for which there exists u00 EC(S2N-2 , U(k)) with 

(2.87) 

On account of Theorem 2.7 such multipliers form a subgroup of G00 , denoted Gh. Clearly, the map 
u+u= 1 is continuous at oo, and hence has a well-defined winding number wEZ when k;;;a.oN, cf. 
(2.81 ). This prepares us for our next result. 

THEOREM 2.9. Let UEGh and k;;;a.oN. Then one has 

indexu __ = w(u+u= 1) 

PROOF. For k;;;a.oN the map u00 is null homotopic in view of (2.81). Thus, a continuous map 

u(t,O):[O,l]XS2N-2 --+U(k), u(I,O) = u 00 (0), u(0,0) = Ik 

exists. Fixing TE[O, I] we define a map 

{

u(lxl, l~l ), lxl<T 
u ·R2N - I ---+ U(k) XI-+ 

T• ' X 
u(T,-g), lxl;;;a.oT 

and UrEGh by 

Ur = lo, ®urO 

Then it follows that UU! 1 E Ge and hence, using Theorem 2.8, 

indexu __ - index U1 __ = w(u+ul 1)-w(u_ul 1) 

(2.88) 

(2.89) 

(2.90) 

(2.91) 
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(2.92) 

Thus it remains to show index u1 __ =0. But this follows from the easily verified fact that Ur is 

norm continuous in T on (0, 1 ]. D 
~ 

Fork =n there exists a family H(EGh, EE(O,oo), for which index H(-- can be determined without 

invoking Bott periodicity. This 'standard hedge-hog family' is defined by 

v I [ln®(o·x+(-f if) 0 l 
H( = (lxl2 +~)112 0 In ®(o·x -( -f if) 

The point is the simple relation 

H; = K+,£K-,£ 

with the standard kinks: It entails 

indexH(-- = 1, 'v'EE(O,oo) 

(2.93) 

(2.94) 

(2.95) 

since Ks,£ has index 1. We also observe that one only needs the last part of the proof of Theorem 2.7 

to prove that H£±+ are compact. Indeed, the proof of this theorem hinges on reducing the general 

case to a special case which arises precisely for the standard hedge-hogs, cf .(2.64). 

3. APPROXIMATE QUANTUM FIELDS 

3.1. Preliminaries 
So far, we have not had occasion to use the positive and negative energy Dirac spinors in terms of 

which the Dirac and Majorana fields occur in the physics literature. However, in Subsections 3.2 and 

3.3 we aim to elucidate the intimate relation of these fields to fermion Fock space quadratic forms 

associated with the standard kinks. Therefore, we shall in this subsection elaborate on the classical 

(single particle) context as presented in Subsection 2.1, in preparation for the Dirac and Majorana 

quantizations to be described below. We again take k = 1 at first, so as to ease the notation. 
We shall work with Dirac spinors 

~(8p)EC2n, 8 = +, -, j = 1, ... ,n, pEIJl2N-I (3.1) 

yielding orthonormal bases for the positive and negative energy subspaces of the matrix multiplier 

H(p), so that 

H(p)~(8p) = 8EP ~(8p) (3.2) 

cf. (2.4). The positive energy spin ors are defined by 

. - [ 2Ee l 112 
w'+ (p) = Ep +m p +(p)bj (3.3) 

where bj are the unit vectors with components 

(bj), = i- 112(8j,l+8j+n,t), j = l, ... ,n, I = 1, ... ,2n (3.4) 

Using (2.6) and (2.4) it is readily seen that these spinors are indeed orthonormal. The negative energy 

spinors are now given by 

wi_ (p) = Ucwi+ (p), j = l, ... ,n (3.5) 

(As before, the bar denotes complex conjugation and not the Pauli adjoint.) The relations (A43) 

defining Uc imply that the spinors wi_ ( - p) yield an orthonormal base for the negative eigenvalue 

subspace of H (p ), as promised. 
Using these spinors we can now transform to a spectral representation for ii on 
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(3.6) 

in the sense that the transform of ii acts as multiplication by Ep In Ea - Ep In on this space. Of course, 
(3.6) is just the space X of Section 2, looked at from another perspective. We shall use the following 
device in an attempt to simultaneously prevent confusjon an<! ease the notation: The ~ X of Sec
tion 2 and operators A acting on it will be denoted X and A from now on, whereas the notation X 
and A will be reserved for the spt>..ctral representation space (3.6) and operators acting on it. 

Explicitly, the representation is set up by the unitary operator 

W:~% gi-+~ 1 6D- 1g (3.7) 
A 

where 'I is Fourier transformation, cf. (2.2), and 6D:~ X is the diagonalizing transformation 

(6D/)/,(p) = w{,(p)j(8p), 8 = +,-, j = 1, ... ,n 

whose inverse reads 

(6D- 1g)(p) = ~ gA(8p)w{,(8p) 
lJ,j 

Then one gets 

(Hf)lJ(p) = 8EpflJ(p) 

as announced. (We suppress the superscript j whenever it is not acted on.) 

(3.8) 

(3.9) 

(3.10) 

In the next two subsections we shall ~mploy the customary Euclidean group representation of the 
one-particle Dirac theory. Its action on X reads 

(U(a,R)fXx) = S(R)/(R- 1(x -a)), aER2N-I, RES0(2N-l) (3.11) 

(The spinor representation S(-) of S0(2N -1) is defined in Appendix A.) Using (A29) one gets 

[U(a,R),H] = 0, [U(a,R), P8 ] = 0. (3.12) 

We continue by introducing charge conjugation, which plays a crucial role in Subsection 3.3. It 
reads 

(C/)(x) = Ucf(x) 

and satisfies 

[C, U(a,R)] = 0 

due to (A50). Moreover, (A43) entails 

CH= -HC, CPB = P-lJC 

and from (A46)- (A49) we have 

2 {1,2 C = +l, N= 3,0 mod4 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The properties of Uc can also be used to calculate the transforms off> (cf. (2.10)) and C to X: These 
are given by 

(Pj)IJ(p) = 8/lJ(-p) 

f
f-lJ(p) 

(Cf)lJ(p) = -8f-1J(p) 

(3.17) 

{

1,2 
N = 3,0 mod4 (3.18) 

From now on we again assume that an internal symmetry space Ck is tensored on to X As before, 
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we keep the same notation and note that then all of the above relations still hold. 

3.2. Approximate Dirac fields 
The free Dirac field is a C2n®Ck-valued quadratic form on the fermion Fock space ~(5q~ 

~(%+ )®~(X... ), defined by -------

1/l(_t,x) = (2w)-<2N-I)/2 ~ jdp [aj,1(p)wi+ (p)®e1exp(-iEpt+zp·x) 
j=l, ... ,n 
l=l,. . .,k 

(3.19) 

Here, { e 1, ••• , ek} is the canonical basis of ck. Since the functions involved are bounded, we may 
and shall choose as form domain the dense subspace 6D:i,o of algebraic tensors whose constituent 
functions are in c~. One readily verifies 

f dxg(x)-1/l(_t,x) = ~(exp(itH)W- 1g), Vge:fc (3.20) 

where 

~(j) = a(P +f) + b*(P-f>, feX 

is the 'abstract' Dirac field. This smeared field satisfies the CAR 

{~(/), ~(g)} = 0, {~(f), ~(g)*} = (f,g) 

(3.21) 

(3.22) 

and hence the transformation ~(f)-'>~(Uf) yields an automorphism of the CAR (Bogoliubov 
transformation) provided U is unitary. 

It is well known that such a transformation can be unitarily implemented if and only if the off
diagonal parts U ±+ are Hilbert-Schmidt. Moreover, the structure of the unitary implementer is 
known (16, 17]. It involves a Jllultiplicative factor that is in essence an infinite determinant. Omitting 
this factor yields an operator f,(U) (r for renormalized) which is expressed in terms of an operator Z. 
When the HS condition is violated, this expression no longer defines an operator. However, it still 
makes rigorous sense as a quadratic form on the subspace 6Dar of algebraic tensors, provided the diag
onal parts U ±± are Fredholm. 

We have already seen that for N> 1 the unitaries of interest to us, viz., the multipliers of Subsec
tion 2.4, are trivial when one insists on the HS property, cf. Theorem 2.4. However, multipliers in G 00 

do have the Fredholm property, and in particular the standard kinks Ks,£ of Subsection 2.2 have 
Fredholm diagonal parts. Therefore, they give rise to well-defined quadratic fo:i;ms on 6Dat· 

We shall take 

(3.23) 

from now on. If k>n one can obtain analogous results, but k =n is the minimum value for which we 
can construct approximate Dirac fields, since we have no explicit information on winding-number-one 
unitaries in G00 for k<n. The approximate Dirac fields are expressed in terms of the form imple
menters of the Bogoliubov transformations generated by the standard kinks. Explicitly, we may and 
shall take 

- - " f ,(Ks,£) = a (ps,<, + )Ec(Zs,£) + Ec(Zs,£)b(i)3,t, - ). (3.24) 

Here, the operators Zs,£ are the kink conjugates defined in Appendix D, and 

Ps,t,8 = (2wr<2N - 1
>
12

6D1es,t,8 (3.25) 

cf. (2.20), (2.22); the norm of the kernel functions is chosen with an eye on what follows. Further-
more, 

(3.26) 
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where f(-) denotes the Pock space product operation. 
Next, we introduce the forms 

1{1;,E(a,R) = f(U(a,R))f,(Ks,E)f(- l)f(U(a,R))*, aER2N-I, RES0(2N-1) (3.27) 

and their adjoints l{ls,E(a,R) with form domain 6D0 ,. (This is well defined: 6D0 , is left invariant by f(U) 
when U ±+ =O and this is the case here, cf. (3.12).) Moreover, we set 

"'+(a,R) = [;]"1{0,Ra) (3.28) 

o/- (a,R) = [ ~ l "1{0,Ra) (3.29) 

where uR is defined in Appendix A, cf. (A35). Using (3.20) we then have, e.g., 

f - -I [/uR] l{l+(f,R) = daf(Ra)l{l+(a,R) = CI>(W 0 ) , 

By virtue of Lemma A3 this implies that the smeared fields 

{l{lr>(f,R)lfEL2(R2N-I), RES0(2N-l)} 

(3.30) 

(3.31) 

act irreducibly in <?fo(:Jq. We are now in a position to present a principal result of this paper, showing 
that the forms l{lr](a,R) may be viewed as approximate Dirac fields. . 

THEOREM 3.1. One has 

lim
0 

iff](a,R) = ifJr>(a,R) 
E-> 

in the sense of quadratic forms on 6D:l,o. 

PROOF. From (3.28) - (3.30) and (3.20) it follows that 

l{lr>ca,R) = f(U(a,R))l{lr>(o, l)f(U(a,R))" 

(3.32) 

(3.33) 

so that we need only prove this for a =O and R = 1, cf. (3.27). Also, we need only detail the case 
s = +, since the case s = - then follows by using parity. Evaluation of 

<F,f,(K+,E)G>, F,GE6D:i,o (3.34) 

yields a finite sum of products of terms that are inner products in X, so that we need only determine 
the t:~O behavior of these terms. Four types occur, viz., 

(f,g), (f,Z+,E,Mg), (f,Z+,(,8-8g), (f,P+,(,8) (3.35) 

where f,g E CW (R2N - I r'. Each product contains one and only one term of type 4, and using dom
inated convergence, (3.25) and (2.20), (2.22) one infers 

~ if,P+,E,8) = (2'1T)-<2N- 1>128. ~ f apJ"i2 (p)w~ (p)®e;, · (o] (3.36) 
1.,12-l 

Also, invoking Lemma DI, one sees that type 2 and 3 inner products converge to -(f,g) and 0, resp. 
Using these facts it now follows that 

~ f1-AO, 1) = l{l*(o,o)· [o] = 1/J~ (0, 1) (3.37) 

Indeed, one need only check that the factor f(-1) corrects signs where needed. Taking the form 
adjoint of (3.37) completes the proof of the theorem. D 
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3.3. Approximate Majorana fields 
The Majorana field is a C211 ®Ck-valued quadratic from on <?fa('.JC+ ), given by (3.19) with a-')>c and 
b * -')>C *. Its form domain is defined just as in the charged case, and will be again denoted 6D:,0 • Now 
one gets 

where 

B(f) = c(P +/) + c*(CP-f}, N = { 1
•
2 

mod4 - 3,0 

cf. (3.18). The 'abstract' Majorana field B clearly satisfies 

{B(f), B(g)"} = (/,g}, VJ, geX 

Moreover, using (3.16) one obtains 

B(j}* = B(Cf}, N = 1,2 mod4 

(3.38) 

(3.39) 

(3.40) 

(3.41) 

These two relations give rise to a c• -algebra, the so-called self-dual CAR algebra [18], which may also 
be viewed as a complex Clifford algebra. The second relation is the smeared version of the form 
equality . -

o/(_t,x) = Uco/(.t,x). (3.42) 

For N=3,0mod 4 no such local relation for 1// in terms of o/ exists. Moreover, (3.41) is replaced by 

B(j}*'=B(C(P+-P-}f}, N=3,0mod4 (3.43) 

cf. (3.18). Correspondingly, one again gets a self-dual CAR-algebra, the conjugation with square 1 
now being C(P + - P _ ). 

The transformation Bif)~B(Uf) yields an automorphism of these algebras, provided U is unitary 
and satisfies 

CU= UC, N = 1,2 mod4 

C(P + -P-)U = UC(P + -P-), N = 3,0 mod4 

Now it is readily verified that a unitary multiplier of the form 

v _ [ln®u+(-) 0 l 
U - 0 ln®u-(-) , u±(x)eU(k) 

commutes with C provided 

u±(x)eO(k}, N = 1 mod4 

u_(x) = u+(x), N = 2 mod4 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

cf. (A46), (A47). However, for N=3,0 mod 4 no non-trivial multipliers commuting with C(P + - P -) 
appear to exist, since the action of P + - P _ is non-local. Therefore, we shall henceforth restrict our
selves to a consideration of the cases N=I,2mod 4. 

First, let N=l mod 4. Then we take 

ck~cn ® c2 (3.49) 

(Generalizing what follows to the case C2-')>C1 is a matter of bookkeeping when />2, cf. [2], where 
N = 1 and /;a.2. However, we see no way to get similar results for I= I.) We now define neutral kinks, 
using notation that will be clear from context: 

K.n =Ml ®di [o·x-if. o·x+if. 1 I ].M* 
+,( - n ag X +. , _ , n• n 

o· lf. o·x-if. 
(3.50) 
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Kvn = Mvl '°'d. [· I o·x+iE o·x-iE]Mv* 
-(- n'CI iag n> n> • , 

' o·X-lE o·x+iE 
(3.51) 

M =I ® I ® i-112 (~ I.) - 2n n l -1 ,.-----
(3.52) 

Then it is easy to check that the matrices at the rhs of (3.50), (3.51) are real for any xER2N-l. 
Hence, K.'i,( commutes with C. Moreover, since M commutes with P 1i. the relevant properties of the 
neutral kinks can be read off from the above results on the charged kinks. Specifically, 

"sAP) = "s,£,+(p) ® rl/2 OJ 
spans Kerk:,:++, and 

(3.53) 

Its,£ =Ck;,£ ICs,£ = C(Ks,t,- @ 2-1/2 i ) (3.54) A A * A (1) 
spans Kerk:,£++• cf. Subsection 2.2; moreover, the operators K'i,( ~± are essentially unitary, cf. Sub
section 2.4. 

These properties suffice to conclude that the neutral Bogoliubov transformation B(j)-+B(K'i,J) can 
be implemented in form sense by 

f r(IG,E) = C * (ps,£)En(Z:,£) + En(z:,£ )c(p's,£). 

Here, one has 

P(') = (2'1T)-(2N -1)12 6j)"(') 
S,E'. S,€ 

· I • • f I En(Z) = exp(2Z+-C c ) (Z++)exp(-2Z-+cc) 

(3.55) 

(3.56) 

(3.57) 

and the neutral kink conjugate z;,( is defined via (D3). (The symbol E 8 -
1 now denotes the operator 

that vanishes on the one-dimensi011al kernel of E 8 and equals the inverse of E 8 on its orthocomple
ip.ent, cf. [2, 17].) Next, we note f(U(a,R)) is well defined on account of (3.14); in fact, one has 
f(U(a,R))=f(U(a,R)++) due to (3.12). Thus we may introduce the forms 

o/;,((a,R) = i'(U(a,R))f r(K'J,()f(- l)i'(U(a,R))*, a ER2N-l, R ES0(2N -1) (3.58) 

and their adjoints, with form domain 6D01 • We also put 

f+J(a,R) = r; ]Yj(O,Ra) j = 1,2 

o/-J(a,R) = [~] ·fj(O,Ra) j = 1,2 

cf. (A35). Thus, e.g., 

V+.1if,R) = f dafiRa"lf+.1(a,R) = B(w-1 ~· ). /EL2(R2N- 1) 

From Lemma A3 it then follows that the fields 

{o/8,j(j,R)lfEL2(R2N-l), RES0(2N -1)} 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

act irreducibly in ~(:JC+). The next theorem shows that the forms t{lr)(a,R) can be used to reach this 
irreducible set of fields for E-+0. 

THEOREM 3.2. For N=I mod 4 one has 



19 

(3.63) 

in form sense on ,6D;It,o. 

PROOF. This follows in the same way as in the charged case, cf. the proof of_A'heorem 3.1. 
Specifically, from Lemma Dl one readily concludes 

s·lim zn = -1 
0 

S,E 
E-+ 

so that, e.g., 

limo i/J~AO,l) =limo J dp[c*(p)·P+,E(p)-c(p)·p' +,E(p)] 
(--+ (-+ 

Moreover, using (2.22) one gets 

(P+,El+i,,j(p) = (2wr<2N-l)l2exp(-£Ep)(w;-l-(p) ® e;,)· [o]i- 112ij-l 

and using (2.20) and (3.18) one gets 

<P'+,.)";;,,;(p) = -(2w)-(2N-1)12exp(-dl,)(w'c(p) ® e;,)-[g]2-11'(-i)i-I 

where ii. i 2 = l, ... ,n and j = 1,2. Thus, one obtains 

!i!\) o/'ic,, (0, l) = 2-112 f (0,0)· [i] = r 112(o/+,1 (0, l)+ io/+ ,i(O, l)) 

in form sense. 0 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

(3.68) 

We remark that the corresponding result for N = 1 in [2] differs from (3.63) by a factor i-112, cf. 
I.e. Eqs. (4.44), (4.71). This can and should be corrected by adding a factor 2-v2 to I.e. Eq. (4.75). 

We continue with the case N=2 mod 4. Then we choose 

ck= en 
as in the charged case. To satisfy (3.48), we now take as neutral kinks the multipliers 

J<.n -+,E = 

1 ® cn+it: 
n . o·x-1£ 

0 

0 

o·x-iE ln®---
o·x+i£ 

1 ® o·x+i£ 
n - . 0 

J<.n -' -,( = 
o·x-u 

0 

(3.69) 

(3.70) 

Then K'J,E commutes with C, as desired. However, for m >0 the determination of the kernels of the 
diagonal parts is a problem on which the results obtained thus far shed little light. Indeed, if we 
proceed as in the proof of Theorem 2.1, then we get as the analog of (2.28), (2.29)8 , taking e.g. 
s=+: 

[
Gil [op®lnG1 +mG2 l 

g = G2 ' f = ip -ap®lnG2 +mG1 

where G1, G2 should obey 

8£ 
In ® o.'\JG1 = -E (ap®lnGl +mG2) 

'P 

In® o.'\JG2 = ; (-ap®lnG2+mG1) 
'P 

(3.71) 

(3.72) 

(3.73) 
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For m>O we do not know any non-trivial L 2-solutions to this system. Therefore, we leave the case 
m>O open and take m =O from now on. Then we get from Lemma BI and (A47) 

~ = - =::) G1 = aexp(-t:!fJl)u, Gz = 0 (3.74) 

~ = + =::) G1 = 0, Gz = aexp(-t:lfJl)In ® Vcu ~ (3.75) 

Thus, Keri<'+~•++ is spanned by K+,.,+ and, similarly, Keri<'-~.++ by L,.,+· We set 

(3.76) 

and note Ker.K.:,.+ + is spanned by 
A A * A 

IC
1
s ·= cK:.s • ICs. = CICs. -' ' , '' 

(3.77) 

We can now implement the kink Bogoliubov transformation with the form (3.55), where the change in 
meaning of the symbols need not be spelled out. Then we can use (3.59), (3.60) with the subscript j 
omitted to define Majorana fields o/r)(a,R), and we can use (3.58) to define approximate Majorana 
fields if{l(a,R). We are now prepared for the last result of this subsection, which justifies this termi
nology. 

THEOREM 3.3. For N-2 mod 4 and m =O one has 

1im o/rl<a,R) = o/r)(a,R) 
£->O 

in form sense on 6D~,O· 

PROOF. This follows as before. D 

APPENDIX A. FINITE-DIMENSIONAL CLIFFORD ALGEBRAS AND SPINOR GROUPS 

(3.78) 

As is well known, the Euclidean Clifford algebra in lll2N has an irreducible 2n-dimensional representa
tion (recall n=2N - I) which is unique up to unitary equivalence. This representation can be con
structed on the fermion Fock space 

'?fa(CN) = c Ea cN Ea /\2CN $ ... $ /\NcN (Al) 

by choosing 

t:zj-2 = cj + cj, t:zj-I = i(cj-cj), j = 1, ... ,N (A2) 

where the c)*> are the creation/ annihilation operators on '?fa. Indeed, using the CAR one verifies 

{t:j, t:k} = 28jk> t:j = lj. j,k = 1, ... ,2N -1 (A3) 

We shall use 2X2 matrix notation corresponding to the decomposition of '?fa into its sectors of even 
and odd particle number, 

(A4) 

Thus, the matrix of t:j is of the form (~ ~). From now on we choose orthonormal bases in ~ and <?Ji 

and correspondingly identify ~ and <?Ji with en. Moreover, we choose the bases such that 

[
O In] 

t:o = In 0 (AS) 

Next, we introduce the self-adjoint matrices 

(A6) 

Then {/J,ai. ... ,a2N-d also satisfy the Euclidean Clifford algebra in lll2N. Hence, the ak can be 
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written 

(A7) 

where { o1, ••• , o2N _ 1} are self-adjoint matrices satisfying the Euclidean Clifford algenra in R2N - I. 

The time-independent Dirac operator corresponding to a 2N-dimensional Minkowski space is now 
given by 

2N-1 
- i ~ Of.j aj + {Jm, m ~o (A8) 

j=I 

It arises when one writes the time-dependent Dirac equation 

(y"o" +m IZnN = o (A9) 

in Hamiltonian form. Here one has 

·t° = {J, f = /Jako k = l, ... ,2N -1 (AlO) 

so that 

{y", ·t} = 2g"", g = diag (1, -1, ... , -1) (All) 

We continue by proving two lemmas that are essential for proving Lemma B 1 below. The first one 
is concerned with operators 

1 I 
aj = z€j ® £Qf(-1N) + 2£o © £j, j = 1, ... ,2N-l (Al2) 

on the Hilbert space 

§'= '?fa(CN) © '?fa(CN) (A13) 

where r denotes the Pock space product operation. (Thus, f(- lN) acts as multiplication by 1/- l 
on C?Jii !§j .) The second lemma may be viewed as a corollary of the first. 

LEMMA A 1. The operators af> satisfy the CAR: 

{aj,ak} = 0, {aj,aZ} = 28jko j, k = 1, ... ,2N-1 

They leave the subspaces 

§°+ = ('?Jii ®'?Jii) $ (§j ®§j) 

§'_ = (C?Jii®§j) $ (§j ©'?Jii) 

invariant and act irreducibly there. The vector 

0 = v/llvll, v = a1a3 ... a2N-10 © 0 

is well defined and may be viewed as the vacuum in §°+. That is, one has 

j=l, ... ,2N-l 

Moreover, the number operator 
2N-I 

')L= ~ ajaj 
j=l 

can be written 

(A14) 

(A15) 

(A16) 

(Al7) 

(Al8) 

(Al9) 
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PROOF. Using {£_,-,f(-lN)}=O it is straightforward to verify (Al4). Since f(-lN)®f(-lN) has 
eigenvalue + 1 on §'±, and since the af> commute with this operator, they leave §'+ and '?f _ invariant. 
Next, we note 

dim§'+ = dim§'_ = 22N-I = dim <?Ia(ew- 1). ~ (A20) 

Since the a)*> satisfy the CAR over ew - I, this equality implies an irreducible action in §'+ and §'_. 

Consider now the vector vE'?f+. Using (Al2) and expanding the product, the first terms of each aj 

give rise to a vector of the form XNci ... c~n®fJ for N even, or ~wci ... c~O®cin for N odd, with 
XN=t=O, cf. (A2). The remaining terms in the expansion cannot cancel this vector, so that v=t=Q. To 
prove (Al 7) holds true, we first note this is clear for j odd, since aj = 0. Picking now j = 21, one need 
only verify a21a21 +1n®n=O, and using (Al2) and (A2) this is easy. Finally, (A19) follows from (Al2) 
and (A6). D 

LEMMA A2. There exists a unit vector u Een ®en, unique up to a phase, which satisfies 

(oj®ln)u = A(ln®oj)u, AEIR, j = 1, ... ,2N-l, (A21) 

if and only if A= ( - f + 1• The matrix 
2N-l 

<?]> = ( - f ~ O'j ® O'j (A22) 
j=l 

satisfies 

6Ju = -(2N - l)u (A23) 

and has eigenvalues -(2N -5), -(2N -9), ... ,2N -3 on the orthocomplement of u. 

PROOF. Setting i=O, 1 for N even, odd, the vacuum fJ is in ~ ®~. Hence, the number operator ~ has 
spectrum {0,2, ... ,2N -2} on~®~. Also, using (Al9) and (A7) we conclude 

I I 
~t ~ ® ~ ~2(2N-l)ln ® ln + 26J. (A24) 

Thus, 6J has spectrum { -(2N - 1 ), -(2N - 5), ... , 2N - 3}, the spectral value -(2N -1) 
corresponding to 

u = n (A25) 

and being non-degenerate. (Of course, the identification of~ and~ with en via the choice of bases 
made above is understood here.) Using the relation 

2N-l 
~ (oj®ln-Aln®oj)2 = (l+A2)(2N-l)ln®ln-2A(-f§> (A26) 
j=l 

the remaining assertions readily follow. D 

Next, let EES0(2N). Then there exists a unitary matrix S(E), unique up to phase, such that 
2N-l 

S (E)£_,-S (E)* = ~ Ekj £k (A27) 
k=O 

(Indeed, the matrices at the rhs are self-adjoint and satisfy the Clifford algebra.) Requiring det 
S(E)=l, the phase ambiguity is reduced to +1 and a faithful representation of the simply-connected 
spinor group Spin (2N) arises (for N> 1). Its Lie algebra is spanned by the matrices 

£jk = £j€k O:r;;;,j <k :r;;;,2N - 1 (A28) 

so that ~ and ~ are left invariant. The irreducible representations obtained by restriction are usually 
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denoted A+ and A- . ,. 
To avoid confusion, it should be mentioned at this point that the operators B(j) and f(U) of Sub

section 3.3 may be viewed as generalizations of the operators £o, ... , f.2N - I and S (E) to an infinite

dimensional context. However, normal ordering is not necessary in the finite-dimensional case, so that 

f.jk has non:zero vacuum expectation value for j =21, k =21+1, cf. (A2), in contrast Jo-operators of 

the form df(·). 
It is easily seen that the chiral Jarts of the standard kinks and hedge-hogs of Subsections 2.2 and 

2.4 belong to A± for fixed x Elll - 1, but we have no occasion to make use of this. In fact, we will 
only employ rotations in S0(2N -1), obtained by taking Eoj =Ejo =80j in (A27). Then one gets 

2N-l 

[S(R),/J] = 0, S(R)ajS(R)* = ~ Rkj ak> 'VRES0(2N-1) (A29) 
k=I 

Also, the Lie algebra is spanned by 

:!:jk = «;«t = [ •;;k •;:, l · l "'j <k ""2N - I (A30) 

Thus, the restrictions of S(R) to~ and §i. are given by two identical n Xn matrices, which will also 

be denoted S(R). The corresponding irreducible representation of Spin (2N -1) will be denoted A. 
From Lemma Al one can obtain the decomposition of A®A into its irreducible components. 

Indeed, due to (A12) and (A27) we have 

S(R) ® S(R)a*(v)S(R)* ® S(R)* = a*(Rv), 'VvEe2N-I, 'VRES0(2N-1) (A31) 

and since the a<*> satisfy the CAR, one infers 

S(R) ® S(R) ~ f(R)$f(R) (A32) 

(Here we are thinking of 1f' as '!f'+ El)'!f'_, cf. Lemma Al.) Therefore, denoting the defining representa
tion of S0(2N - 1) by D and noting /\ k D ~ /\ 2N - I -k D, it follows that 

N-1 
A® A~ $ f\k D 

k=O 
(A33) 

(This also follows from the theory of weights, cf. e.g. [19].) Since u spans the vacuum sector in '!f'+, we 

get in particular 

S(R) ® S(R)u = u, VR ES0(2N -1) (A34) 

In Subsections 3.2 and 3.3 we shall use the following cyclicity result. 

LEMMA A3. cn@en is spanned by the vectors 

UR = S(R) ® Inu, R ES0(2N -1) (A35) 

PROOF. Denote the span of the uR by V. From (A34) it follows that V can also be written 

V = span {In ® S(R)ulR ES0(2N - 1)} (A36) 

Thus, the w· -algebras 

~ = {S(R) ® ln}", ~={In ® S(R)}", RES0(2N -1) 

leave V invariant. But the S(R) act irreducibly on en, so that 

EtL = f(Cn) ® In, t':i'.R = ln ® f(Cn) 

Hence, V must equal en ®en. 0 

(A37) 

(A38) 
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Our last topic in this appendix is the charge conjugation matrix Uc, which plays an important role 
in Section 3. Its pr~erties depend on N mod 4 in a way which can be read off from an explicit 
representation on ® C2 in terms of the Pauli matrices 

[o l] [o -;] [1 o] 
TJ = 1 0 ' Tl = i 0 ' TJ = 0 - 1 (A39) 

Instead of presenting unwieldy general formulas, we shall detail the cases N = 1,2,3,4, from which it 
will be obvious how to continue. Using shorthand illustrated by T2 ©Ii ©T3-7203 we set: 

N=l: EQ=l N=2: EQ=lO 
t:1 =2 t:1 =22 

N=4: EQ=lOOO 
t:1 =2222 
t:2 =2223 
t:3 =2221 
£4=2230 
t:5 =2210 
€(; =2300 
t:7=2100 

From this one concludes: (i) (A3) holds true; (ii) one has 

t: = fo t:1 ... t:2N-I = iNT3@N-ll2 

(iii) one has 

t:2=23 
t:3=21 

N=3: EQ=lOO 
t:1 =222 
t:2=223 
t:3=221 
£4=230 
t:5=210 

n-[~]®N-1 [:], ~°" [~]®N-1c2, ~°" [~]®N-1c2 

(A40) 

(A41) 

(A42) 

(due to (A2) and t:....., f( -1N )); (iv) the ok are obtained from the t:k by omitting the first entry (since 
i7"2T1 =T3, cf. also (A5)- (A7)). 

The matrix Uc is the unitary matrix, unique up to phase, such that 

UcP = - /JUc, Ucak = ak Uc (A43) 

Equivalently, Uc satisfies 

Uc~ = -fo Uc, Uc'"i.k = t:k Uc 

From (A40) we then see that we may take 

Uc = 3, 22, 302, 2202,... N = 1,2,3,4, ... 

Hence, we conclude 

N = lmod4: Uc= [~ _ov,], UcUc = 12n 

N =2mod4: u = c [-OV, V,l 
0 ' UcUc = 12n 

N = 3 mod4: u. = c [~ _ov,]· UcUc = -12n 

N=Omod4: u = c [-ov, V,l 
0 ' UcUc = -12n 

(A44) 

(A45) 

(A46) 

(A47) 

(A48) 

(A49) 
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Note that the relation UcUc=+I2n is base-independent. It is known that for N = Imod4 one can 
choose orthonormal bases in~ and §"1 such that Ve transforms into In, but we shall not need this. (In 
view of (A40) this amounts to the existence of a unitary matrix M satisfying MMT =0202.) We do 
need the relation 

UcS(R) = S(R)Uc, VR ES0(2N - I) 

which follows by using (A30) and Ucajak =ajak Uc, cf. (A43). 

APPENDIX B. A ZERO-MODE LEMMA 

The following lemma is needed to complete the proof of Theorem 2. I. 

LEMMA BI. Let GEL2(11lw- 1,dp)®en@en. Then G satisfies 

(ln®<J·'V)G = (-f-l !£ (<1p®In)G 
'P 

if and only if 
G = 0, 8 = + 
G = a exp( -£Ep)u, a Ee, 8 = - , 

where u Een ®en is the unit vector of Lemma A2. 

(A50) 

(BI) 

(B2) 

PROOF. This is obvious for N =I, so we take N> I from now on. Also, from Lemma A2 it follows 
that (B2) implies (BI). Thus we henceforth assume (BI) holds, and show that this entails (B2). To this 
end we begin by noting that the multiplier (<Jp® In)! Ep is bounded, so that (BI) implies the com
ponents of G belong to the Sobolev space H 1 (lll2N - l ). For m >0 the multiplier is smooth. Hence, 
multiplying (BI) by ln®<J·\7 it follows that G satisfies the PDE system 

(-L\+ Wll(p))G = 0 (B3) 

- iL_ _ -1 ~ 2N-l __ I_ . . 
Wll(p) = 2 In ® In + ( f E ( ~ <1j®<1j 2 <1p®<1p) 

Ep 'P j=l Ep 

Since W 8 is bounded for m >0, this implies 

GEH2(11l2N-I) ®en ®en= 6j) 

(B4) 

(B5) 

Thus, for m >0 the existence of L 2-solutions to (BI) reduces to the existence of zero-energy bound 
states for the operator 

(B6) 

which is clearly self-adjoint on 6D. 
Form =O the multiplier (<1p®ln)1Ep is not continuous at 0. However, (B3) still follows for p-=/:=O. 

To handle the singularity at p =O, we exploit the 'uncertainty principle lemma' 

(;-1)2 J dplC(p)l2 IP1
12 
~J dp j~1 1<ajc)(p)l2 CEH1(lllk), k~3. (B7) 

(For CECff'(lllk) this follows by generalizing the k =3 argument on p. 169 of [6] in the obvious way; 
for C EH 1 it then follows by taking limits.) It implies that the components of G are in the domain of 
multiplication by I!IPI· Moreover, since W8(p) is smooth for p-=/:=O and L\ is hypo-elliptic, (B3) 
implies that the components are C 00 on lll2N-l \ {O}. Using this and the inequality (B7) one readily 
verifies 

(B8) 
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which holds in the sense that the distributional action on G of the commutator yields the L 2-function 
at the rhs. Thus, (B3) holds weakly for any p, and hence one again obtains G E6D. 

Next, we claim that Ha is self-adjoint on 6D form =O, too. To prove this, it suffices to show that 
the operator of multiplication by 

{

I r<,_R ~ 
</>(p)!jpl, c/>(r) = O r>R (B9) 

(say) is a relatively compact perturbation of !l, viewed as a self-adjoint orerator on 
H 2 (IR2N - 1) c L 2 (Ill 2N - 1 ). But this follows by noting that the functions c/>(jp I)/ IP I and 1/ (p + i) belong 
to L 2N-2(R2N-1) and using Theorem XI.20 of [7]. 

The upshot of the above is, that both for m >0 and for m = 0 we are reduced to finding the zero
energy bound states of the self-adjoint operator Ha with domain 6D. To this end we note that Lemma 
A2 entails 

where 

2N-l 
-(2N -3) ..;;,_ ~ Oj ® oj t UJ_ ..;;,_ 2N -3 

j ==1 

Wa(p)u = Va(IPl)u 

Va(r) =flr2!E2 + 8£.(2N-l-r2!E2 )!E, E =(r2+m2)112 

Combining this with the obvious estimate 

1 
- I ..;;,_ E2 op ® op ..;;,_ I 

p 

we conclude 

Wa(p) ;a: V -<IPD 

Hence we obtain 

Ha ;a: H ®In® In 

where His the self-adjoint Schrodinger operator 

H =-a+ v _, 6D(H) = H2(1R2N- 1). 

(BIO) 

(BII) 

(BI2) 

(Bl3) 

(Bl4) 

(BI5) 

(B16) 

We claim that His a positive operator whic~ has an isolated eigenvalue zero, the corresponding 
eigenspace being spanned by the function exp(-£.Ep). Accepting this for the moment, we can now 
prove (B2), as follows. First, recall that we have already shown that (BI) entails GEKerHa. By virtue 
of (B15) this implies 

G = exp(-£.Ep)V, vECn ® en. (Bl7) 

Since G satisfies (B 1 ), we conclude 

(oj®ln)V = (-f 8(1n®oj)v, j = 1, ... ,2N-l, (Bl8) 

so invoking Lemma A2 once more we infer v=O for 8= + and v=au, a EC, for 8= - , which is (B2). 
It remains to prove the claim just made. For the special case 

N = 2, m = 0 ~ H = -!l.3 + i1 - 2£.!IPI (B19) 

this is obvious (at least to a physicist), since H-fl is just the hydrogen atom Hamiltonian. More gen
erally, it is clear that exp(-£.Ep) is a zero-energy bound state of H for any N;;;a.2 and m;;;a:O, and this 
fact combined with the positivity of exp(-£.Ep) will suffice for an expert in Schrodinger operator 
theory. 
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We shall, however, add a few details so as to render the proof somewhat more self-contained, and 
also because in the case at hand we have extra information, compared to the general set-up to be 
found in Ch. XIII.12 of [8]. First, relative compactness arguments as used in the paragraph containing 
(B9) imply that H has essential spectrum [e2, oo ). Thus the eigenvalue 0 is isolated, and we have 

~ 

E0 = info(H) ~ 0 (B20) 

Secondly, we note that exp( - H) is positivity preserving. Indeed, for m >0 this follows from the 
Trotter product formula for exp( - H), using the fact that exp(ll) is positivity preserving and V _ is 
bounded for m >0. Also, using dominated convergence we have 

s·lim H(m)l/i = H(O)l/i, Vl/JEH2(R2N-I) (B21) 
mio 

so that 

s·lim exp(-H(m)) = exp(-H(O)) 
mio 

Hence, exp(-H) is positivity preserving form =O, too. 

(B22) 

Thirdly, suppose o/ is an eigenvector of H with eigenvalue E 0• We may assume o/ is real-valued. 
Since 

(B23) 

is positivity preserving, we have 

O~ (lo/I -o/,A(lo/I + o/)) = (lo/l,A lo/I) - (o/,Ao/). (B24) 

Hence, 

(B25) 

In view of (B23) this implies lo/I is an eigenvector of H with eigenvalue E0, too. Thus, we must have 
E0 =O and lo/I ,..., exp(-W'p), since lo/I cannot be orthogonal to the positive function exp(-W'p). 
Moreover, since o/ satisfies the PDE Hifl=O, it must be continuous for p=/=0. Because lo/I does not 
vanish, we must have o/= lo/I or o/= - lo/I. Thus, 0 is a simple eigenvalue of Hand the proof is com-
plete. 0 

For m>O the Dirac operator involved in (Bl) satisfies the assumptions guaranteeing that the index 
theorems of Callias [20] and Hormander [21] apply, cf. also [22]. Consequently, its index can be writ
ten in terms of an integral over s2N-i. Since the index can be read off from Lemma Bl, the value of 

the integral follows as a corollary. Conversely, if one is able to calculate the integral, then the value of 
the index results. This would suffice for the index formulas of Subsection 2.4. However, in Section 3 
the far more explicit information of Lemma B 1 is indispensable. 

APPENDIX C. COMPACTNESS AND NON-COMPACTNESS 

Due to Schwartz's nuclear theorem any bounded operator Kon L 2(R1,dp) can be represented by a 
tempered distribution K(p,q)ES'(R.21). In this appendix we isolate conditions on K(p,q) guaranteeing 
compactness or non-compactness of K (Lemmas Cl and C2). We also prove a lemma (Lemma C3) 
that will enable us to show that certain operators occurring in the main text are not Hilbert-Schmidt. 

LEMMA Cl. Let K be an operator on L2(R1) with kernel 

K(p,q) = F(p-q)B(p,q), FEL 1(R1), BEL00 (R21). 

Assume that for any r >0 one has 

1im 
R-+oo 

sup IB(x +y, x)I = 0 
Ix I ::>R 
lyl<r 

(Cl) 

(C2) 
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fun sup jB(x, x +y)I = 0 
R-H£J lxl:>R 

lyl<r 

Then K is compact. 

(C3) 

~ 

PROOF. The proof is based on two well-known facts. First, norm limits of compact operators are 
compact, and second, an operator T with measurable kernel T (p,q) satisfies 

llTll2 ~sup J dp IT(p,q)I sup J dqlT(p,q)I. (C4) 
q p 

(This follows either from the Riesz-Thorin theorem or directly from a slightly subtle application of the 
Schwarz inequality.) 

Due to (C4) and (Cl) we have 

llKll ~ llBll 00 llFlli (C5) 

Now er is dense in L 1' so we need only prove compactness of K for FECW by virtue of (C5) and 
the first fact. Thus we assume from now on 

supp FC Br={yER1j lyl <r}. (C6) 

Next, we take R > 2r and set 

K=KR + HR, KR(p,q)=[l-XR(p)XR(q)]K(p,q) (C7) 

where XR denotes the characteristic function of BR. Then HR(p,q) has support in BR XBR, and since 
F and B are bounded, one concludes HR(p,q)EL 2(R 21 ). Thus, HR is Hilbert-Schmidt. Invoking the 
first fact once more, it remains to prove 

fun llKRll =0 
R->oo 

To this end we exploit the second fact, cf. (C4). We shall show 

sup J dp IKR(p,q)I ~o, R~oo 
q 

(CS) 

(C9) 

by invoking (C2); the second supremum behaves in the same way due to (C3). (In fact, the alert 
reader will have noted that (C2) and (C3) are equivalent.) To prove (C9) we fix q and consider 

f dp IKR(p,q)I = f dy[l-XR(q +y)XR(q)]IF(y)B(q +y,q)I (CIO) 
B, 

cf. (C6)-(C7). Since r< ~,the function in brackets vanishes on Br when lql ~ ~. Thus, we obtain 

J dp IKR(p,q)I ~ supR J dy IF(y)B(x +y,x)I (Cll) 
lxl>T lyl<r 

for any qER1• As promised, this yields (C9) due to (C2). D 

LEMMA C2. Let K be an operator on L 2(R1) whose kernel K(p,q)ES'(R21) has the following property: 
There exist f,gES(R1) and eES1- 1 such that 

fun j dpdq f(p)K(p +Ae, q+Ae)g(q)=j=O. (Cl2) 
A->oo 

(Here, the integral stands for distributional evaluation.) Then K is not compact. 

PROOF. We assume K is compact and derive a contradiction. Denote by U;i. the translation over Ae. 
Then U;i. weakly converges to 0 for A~oo by the Riemann-Lebesgue lemma. Hence, KU;i. converges 
strongly to 0, so that 
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s·lim U_A KUA =0 
A-->oo 

(Cl3) 

But this implies 

Jim (UAf, K UAg) = 0 
A-->oo 

(Cl4) 

which contradicts (Cl2). D 

LEMMA C3. Let po be a measurable function on R1, l> 1, and let c;;;;.O. Then one has 

fdxdyf(y)[ (x+yi + (x-y)2 -2 (x2
-y

2
) ]<oo (Cl5) 

11~, (x +y)2 +c (x -y)2 +c [((x +y)2 +c)((x -y)2 +c)]* 

if and only if f = 0. 

PROOF. We assume f-=l=O and show that when (Cl5) holds a contradiction arises. Indeed, (Cl5) 

implies by virtue of Fubini's theorem that there exists y 0=FO with f(y 0 )>0 such that the x-integral of 
the bracketed function withy =y0 converges. Now introduce 

- 8 1-1 - 2 b-x=re, e E , a ;Yo, eyo. 

Invoking Fubini's theorem again, we infer that there exists e such that a=fob2 and 

where 

00 

J dr r1- 1 l(r) < oo 
0 

(Cl6) 

(Cl7) 

l(r)= r
2
+2br+a + r

2
-2br+a _ 2 (r

2
-a) (ClS) 

- r2 +2br+a+c r2 -2br+a+c [(r2 +2br+a+c)(r2 -2br+a+c)]* 

But one has 

I(r)= 2(1-..£)-2(1-..!!...)(l +-1 [2b2 -a -c]) + O(r-3) 
r2 . r2 r2 

= { (a-b2) + O(r-3 ), r~oo 
r 

and since a=fob2 and l> 1, this contradicts (Cl7). D 

APPENDIX D. A CONVERGENCE LEMMA 

(Cl9) 

This appendix contains the definition of the kink conjugates Zs,( and a lemma that is a crucial 

ingredient in the proofs of Theorems 3.1-3.3. We shall use notation explained in Subsection 3.1. Sup
pose U is a unitary with compact off-diagonal parts for which Ker lf_ _ is trivial and Ker U _ _ is 

one-dimensional. Then Ker U + + is trivial and Ker lf+ + is one-dimensional, since U is unitary. 
Thus, the operators 

E_ =u __ u* __ =P- - u_+ u* +

E+ =u* ++ U++ =P+ - u* +- U-+ 

have bounded inverses (as operators on H 8), and we can define an operator Z by 

Z++ =-U++ E+ -I 

z _ + = - u· __ E _ - 1 u _ + 

Z+- =-U++ E+ -I U-+ * 

z __ =-u· __ E_ -1 

(Dl) 

(D2) 

(D3) 

This operator is referred to as the conjugate of U; it is related to the associate A used in [16] by 
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Z ( U) = 1 + (P + - P _)A( - U). (This sign convention ensures absence of signs in the associated Pock 
space implementer, cf. Eq. (5.15) in [16].) 

We have shown that the operators Ks,E satisfy all of the above assumptions, cf. Theorems 2.1 and 
2.5. Thus we may introduce operators E ±,s,E and Zs,E in the way just described. This prepares us for 
the following result. ~ 

LEMMA DI. One has 

s·lim Z = -1 
E....0 S,E 

s=+,- (D4) 

PRooF. Once this is proved for s = +, the s - case follows by using parity. Thus we take s = + and 
suppress this index henceforth. First, we shall handle the massless case. We claim that 

llKE-+ II= C<l, V't:>O, m =O (D5) 

Indeed, using (2.13) we obtain 

llKE-+ II= llD(t:). P _K1P + D(t:)ll = llK1-+ II =c 

and since E+,I has a bounded inverse we must have C<l, cf. (D2). 
Next, we note 

s·lim KE= 1 
E->0 

(D6) 

(D7) 

(This is immediate from (2.16).) By majorizing the tail in the Neumann series for Ei 1 with the uni
form bound (D5) it readily follows from this that 

Moreover, combining (DI), (D2) with (D5) we get 

11£8,E -Ill= (l-C2)- 112, V't:>O, m = 0 

Using all this, it is routine to verify (D4): One has, e.g., 

ll(ZE+ + + P + )Jll .;;;;;; llKE+ + E +,E - 1(£ +,E - P + )Jll + ll(KE+ + - P + )Jll~o. t:~o 

cf. (D3). 
The massive case involves more work. Suppose we can show 

(D8) 

(D9) 

(DIO) 

llKE-+ II .;;;;;; C'<l, V't:E(O, 1], m>O. (Dll) 

Then we can argue as in the massless case to prove (D4); we need only replace (D9) by 

11£8,E -I II .;;;;;; (l-C'2)- 112, V't:E(O, l], m>O. (Dl2) 

To prove (DI 1) we observe that 

llKE-+ II = llKE-+ II = llP(m)-D(t:}* K1D(t:)P(m)+ II = 11.P(Em)-K1P(Em)+ II =f(t:m) (Dl3) 
A A 

(Here and from now on the mass dependence of P 8 is made explicit.) Since P (!')8 is norm continuous 
inµ. on (O,oo), the function j(µ.) is continuous on (0, l]. Moreover, one has j(µ.)<l on (0, l]. There
fore, f is bounded away from 1 on compact subintervals of (0, 1 ]. But then we need only show 

A A A 

limj(µ.) = llPco>-K1Pco>+ II = C<l (Dl4) 
p.->0 

to obtain the desired bound (D 11 ). 
We shall prove (Dl4) by making suitable use of the estimate 

llf(p)g(-iY'p)ll, .;;;;(2'11')-11' lljll, llgll,, J,gEL'(R.1), rE[2,oo) (Dl5) 
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where 11·11, denotes the Schatten norm at the left and the L' norm at the right, cf. Theorem XI.20 in 
[7]. To this end we introduce (omitting the carets from now on) 

C(p.) = [P {Jl)- - p (0)- ' K I] (Dl6) 

and note 

C(p.) = (P(JL)-(p)-P(o)-(p))M(-i\Jp) -M(-i\Jp)(P(JL)-(p)-P(o)-(p)), M(x) = K1(x)-l.(Dl7) 

Now it is easily seen that the matrix elements of M(x) and of P{Jl)-(p)-P(o)-(p) belong to 
L'(R2N-I) for rE(2N- l,oo]. Moreover, by dominated convergence the latter matrix elements con
verge to 0 in L' for p.-'>0 and rE(2N -1,oo). Hence, the estimate (D15) entails 

limllC(p.)11 = 0 (Dl8) 
,......o 

since the operator norm is dominated by any Schatten norm. 
Next, we multiply C(p.) by P (JL)- from the left and by P (JL)+ from the right, and conclude 

limllP (JL)-K Ip (JL)+ - p (JL)- p (0)-K Ip (0)+ p (JL)+ + p (JL)-P (O)+ K Ip (0)-P {Jl)+ II = 0. 
/.l->0 

(Dl9) 

Since the projections P (JL'J8 strongly converge to P (O'J8 for p.-'>0, the norm of the second operator has 
limit 11Pco)-K1Pco>+ II. Hence, (Dl4) will result from (Dl9), provided one has 

(D20) 

But this can be proved by another application of (Dl5): We may replace K 1 by K 1 -1, and since 
P{Jl)-(p)Pco>+(p) has matrix elements that converge to 0 in L' for p.-'>0 and rE(2N -1,oo), (D20) 
holds true. 0 · 

APPENDIX E. THE CONNECTION TO EXTERNAL FIELDS-OPERATORS 

In this appendix we present some results on the (interaction picture) evolution operators and S
operators corresponding to the Dirac equation with certain time-dependent external fields. This will 
yield a different context for the above results, which is closer to the physical picture of chiral 
anomalies [23]. We shall make use of concepts and results that are detailed in [24,25]. Using the nota
tion of Subsection 2.1, the external field Dirac operator is given by 

H(t) = H + AV(t). (El) 

Here, AEC is the coupling constant and 

(V(t)/)(x) = V(t,x)f(x), /Ecf4 (E2) 

where V(t,x) is a 2nkX2nk matrix valued function on 2N-dimensional Minkowski space. 
First, we shall assume V(t,x) is continuous and vanishes at oo, so that llV(t)ll is continuous and 

vanishes at oo. In addition, we assume 

II V(t)ll EL I (R). (E3) 

These two assumptiop.s guarantee that the evolution operator Ux(T2,T1) is norm entire in A and 
norm continuous on R

2
, where R = RU { + oo} with the obvious topology, cf. [24], Section 2. 

-2 
THEOREM EL For any (A,T1,T2)ECXR the operator Ux(T2,Ti) has compact off-diagonal parts and 
Fredholm diagonal parts with vanishing index. 

PROOF. We shall first prove this under the extra assumption that the matrix elements of V(t,x) are in 
S(R2N). Then the operators U=Ux(oo,-oo) and V Ux(-00,00) have Hilbert-Schmidt off-diagonal 
parts, as follows by generalizing the relevant arguments of [25] in a straightforward way, cf. also [26]. 
Since UV= VU= 1, it follows- that U and V have Fredholm diagonal parts; furthermore, these have 
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index 0 since U and V are norm entire in A. and equal to 1 for A.=O. Now consider (e.g.) U>.(T,O) with 
TE(O,oo). Multiply V(t,x) by a C 00 function .p.(t) that is 1 on [t:,T-E],O on (-oo,O] and [T,oo), and 
monotone on [O,t:] and [T-t:,T]. Then the corresponding evolution operator UA,.(T,O) equals the S
operator for the Schwartz space external field A..p.(t)V(t,x) and, therefore, has HS off-diagonal parts. 
Using the Dyson expansion to estimate U>,(T,0)- UA,£(T, 0), it readily follows that this~erence con
verges to 0 in norm for t:~O. Hence, U>.(T,O)a-B and, similarly, U>.(T2 ,T1)a-B are compact. 

Next, consider the general case. Since V(t,x) is continuous and vanishes at oo, one can find a fam
ily V((t,x) with matrix elements in S(IR2N) such that 

llV((t)-V(t)ll :s;;;; t:, 'v'tE[Ti.T2]CIR (E4) 

Telescoping the Dyson expansion in the obvious way, one infers n·lim UA,£(T2 , T1)= U>.(T2 , T1). 
£->0 -

Thus the assertions follow for A.EC and Tj EIR, and taking norm limits for T; E!R, too. D 

The second assumption (E3) is critical. Indeed, in [1] Matsui proves (for N =2 and m =O) there 
exist external fields that are continuous and vanish at oo, yet lead to an S-operator with index 
s __ ::foO. For these fields one has llV(t)ll""'ltl- 1 for large times, so (E3) is violated. His fields are in 
essence pure gauge for large times, but they have a time dependence which leads to considerable com
plications. Here, we shall obtain S-operators with non-zero index (for N;;a. I and m ;;a.O) corresponding 
to external fields that are time-independent for large times (so that both assumptions are violated). 

Specifically, let us assume V(t,x) is continuous and self-adjoint on IR2N, vanishes for lxl~oo and t 
fixed, and is equal to time-independent matrices VT(x) for Tt;;a.T>O, where T= +, - . Then the issue 
of existence of the S-operator for the field V(t,x) reduces to the existence problem for the wave 
operators W +(H,H +)and W-(H-,H), where 

HT = jj + AVT(·), T = +, - (E5) 

Indeed, one has 

U(t,s) = eitHe-i(t-DH+e-iTHU(T, -T)e-iTHei(s+nH-e-isH, t>T, s<-T (E6) 

cf. Eqs. (2.27), (2.106) in [24]. If V ± ::foO, the norm limits of the rhs for t ~oo and s~ - oo do not 
exist, but the strong limits may exist. Since Fredholm indices can jump under strong limits, the S
operators associated with such fields may yield diagonal parts with non-zero index. 

To study this, we further restrict ourselves to the case 

• [ln®uT,+(·) 0 l 
HT = CJ*,.HU,., UT = 0 ln®UT,-(·) 

where uT,s(x) are U(k)-valued functions with the following properties: 

UT,s(X)EC1, T,S = +,
\i'UT,s(x) = o(l), lxl~oo 

(E7) 

(ES) 

(E9) 

Then it is easy to verify that HT is indeed of the previously assumed form (E5), with A.=l, say. 
Specifically, one obtains 

. 2N-I [-oj®u;,+(x)(ajuT,+)(x) 0 l 
V(t,x) = 1 ~ O '°' * a 

j =I Oj'OIUT,- (x)( juT,-)(x) 

[ 

0 ln®[u;,+ (x)uT,-(x)-lk]l 

+ m ln®[u;,-(x)uT,+(x)-lk] 0 ' 
Tt;;a. T (ElO) 

Recall that the interpolation of the two fields involved need only be continuous, self-adjoint and 0 at 
oo. First, we require in addition to (ES), (E9) 



Thus one has U.r E Ge C G 00 , cf. Subsection 2.4. 

THEOREM E2. Under the assumptions just made, the S-operator 

s·lim U(T2,T1) 
T,->oo 

T1->-oo 

exists and is given by 
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(Ell) 

(E12) 

eiTH U+e-iTH U(T,-T)e-iTH c/'_ eiTH=s (E13) 

Moreover, the operators S ±+ are compact and the operators S ±± are Fredholm, and one has 

index SM= index U+M-index U-u (E14) 

PRooF. In the case at hand we can rewrite (E6) as 

U(t,s) = [eitHlf'+e-i'H] S [eisHU_e-isH], t>T, s<-T (E15) 

Therefore, the first assertion follows if we show that the bracketed operators have strong limit 1 for 
t_.,oo and s_.,-oo, resp. To this end we need only prove 

s·lim M(-)exp (itH) = 0 (E16) 
t->OO 

where M(x) is continuous and vanishes at oo. Let /be of the form (ii +i)-1g, gE:i'c. An application 
of the trace ideal estimate (D15) shows that M(x)(-ia·"V+/Jm+i)- 1 is compact when 
M(x)~O(lxl- 1 ) (say), and hence (taking a norm limit) when M(x)=o(l) for lxl_.,oo, too. Since 
exp(itH) weakly converges to 0 for t_.,oo by the Riemann-Lebesgue lemma, we conclude 

s 
MO exp (itH)f = M(-Xii +i)- 1 exp (itH)g_.,o, t--,oo (E17) 

From this (El6) readily follows. 
Next, we note that Theorem El implies U(T, -T)8_ 8 are compact and U(T, -T)88 are Fredholm 

with index 0. Since U,,EG 00 , this entails the validity of the second assertion. D 

We shall now relax the assumption (El2). Assume continuous functions u,,, 00 :s2N-2--,U(k) exist 
such that 

(El8) 

That is, we allow hedge-hog asymptotics at oo. In particular, U,,EGhcG 00 for m>O, cf. Subsection 
2.4. 

THEOREM E3. Under these assumptions the S-operator (El2) exists and is given by 

- * JLJf_ - JLJf_ 
sh - U+,oo( IPI Ep) s u-,oo( IPI Ep) (E19) 

where S is defined by (E13). Moreover, for m >0 the operators Sh±+ are compact and the operators 
Sh±± are Fredholm, and one has 

index ShM = index U +88 - index U -u (E20) 

PROOF. Because (E15) still holds when (Ell) is replaced by (El8), and because of the above argu
ment containing (E16), we need only show 
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(E21) 

(E22) 

------(The notation used here calls for a comment: When Aj=aj®lk> j= 1,. .. ,2N -1, are commuting self-
adjoint operators and u a map from IR2N-I to U(k), then the operators u1m(ai, ... ,a2N-i} are defined 
by the functional calculus, and 

k 
u(A)= ~ U1m(a)®e1m 

l,m=I 

is unitary, where { e1m} is the obvious basis of Mk(C).) 
To prove (E21}, (E22) we set 

vj(t)_eitH (i'd/ t)e-itH , t=tf=O 

and exploit the fact that 

lim v{t) = p·I H (strong resolvent sense) 
ltl->oo 1 1 

Taking (E25) for granted, it follows that 

s·lim vj(t)!lv(t)I = pjH !lfJIEP 
ltl->oo 

(E23) 

(E24) 

(E25) 

(E26) 

(To see this, note the discontinuity of the function at the lhs is harmless, since Vj(t) has no point spec
trum.) Since one has 

eitH~xj!lxl)qr-- 1 e-i1H = +vj(t)/lv(t)I, t ~ 0 (E27) 

and since u~. 00 and U-,oo are continuous on s2N- 2, (E21) and (E22) follow. 
It remains to prove the relation (E25). Its validity was first shown by Thaller and Enss [27], who 

were studying the (interacting) N = 2, m >0 case, but their argument generalizes to any N ~ l and 
m~O. (Cf. also [1] for .what .follows.) Indeed, following [27], we set FJ=aj-p/H and note 
FjH= -HFj, so that Fje- 11H =e11HFj. This can be rewritten 

ei1H[oj,H]e-i1H = fJi + e2i1H(aj-fJi). (E28) 

Denoting the domain of ioj by 6D, one readily verifies ei1H6D=6D. Hence, (E28) entails that on 6D one 
has 

P. (e2itH -1) p· 
eitH(io·ft)e-itH = io·/t + !:.L + (a·-!:.L) 

1 1 H 2itH 1 H 
(E29) 

But it is obvious that the first term converges strongly to 0 on 6D, whereas the third term has norm 
.;;;;2 and strongly converges to 0 by virtue of a routine argument. Hence, (E25) follows. D 

It is clear from the above proofs that the assumptions can be relaxed to obtain similar conclusions, 
but we shall not pursue this. We do point out that one may allow V(t,x) to have jumps as a function 
of time. (Indeed, this is clear from the relation U(T3,T1)=U(T3,T2) U(T2,T1).) In particular, we 
may take T =O and U _ = l in the above. Then we conclude that unitary multipliers (J EGe for which 
u8(x ), s = +, - , satisfy (E8), (E9) may be viewed as S-operators corresponding to external fields that 
vanish for t<O and are given by the rhs of (EIO) (with uT,s-4Us) for t~O. 

In particular, the standard kinks Ks,• of Subsection 2.2 and any finite product of their transforms 
under translations and rotations satisfy (E8), (E9) and (Ell). From the viewpoint sketched in this 
appendix the results of Theorem 2.1 can be interpreted as follows: Scattering at the external field 
associated with Ks,• via the rhs of (EIO) can move states in the negative energy subspace of H to the 
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positive energy subspace (viz., those states proportional to "s,•, _ ), but not vice versa. Equivalently, 
these states are negative energy states w.r.t. H, but positive energy states w.r.t. H +, defined via (E7) 
with U + =Ks,•• but no states exist that have positive energy w.r.t. H and negative energy w.r.t. H +. 

For the (massive) standard hedge-hogs (2.93) the assumptions {E8), (E9) and (El8) are fulfilled. 
Herice, the index of the corresponding Sh _ _ equals 1, cf. Theorem E3. However, iIYthis case we 
have no explicit information on the relevant kernel states but for the dimension difference. 
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