
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

Computer Science/Department of Software Technology

E.A. van der Meulen

Algebraic specification of a compiler
for a language with pointers

Report CS-R8848 December

f1ft:Jlf:Jtlleeft
Cenl.n;m voor ;·~ i;.,; ,.,;; .: ': (c ,., '' ,·-,·1~1'"'·"'~ ... ··"•·•

JJ.msterdaJ'f>

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

b '"' ~~ C\ (\
Vt, ·' •• A

-'

Algebraic Specification of a Compiler

for a Language with Pointers

E. A. van der Meulen

Department of Software Technology, Centre for MatJtematics and Computer Science
P.O.Box4079, 1009 AB Amsterdam, The Netherlands (email: emma@cwi.nl)

ASPLE is a simple programming language that has been used as an example in several
studies on formal language definitions. The major characteristic of ASPLE is a pointer system
in the spirit of Algol68. We present a complete definition of ASPLE in the formalism ASF+SDF.
First, a complete specification is given of syntax, as well as static and dynamic semantics.
Next, the simple stack machine language SML is introduced together with a definition of its
dynamic semantics. Finally, the translation from ASPLE to SML is specified.

Key Words & Phrases: software engineering, algebraic specification, specification lan­
guages, typechecking and evaluation of languages, pointer system.

1980 Mathematica/ subject classification: 68Bxx [Software].

1987 CR Categories: 0.2.1 [Software engineering]: Requirements/Specifications -
Languages; 03.1 [Programming languages]: Formal Definitions and Theory; F .3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning about Programs -
Specification techniques; F.3.2 [Logics and Meanings of Programs]: Semantics of
Programming Languages - Algebraic approaches to Semantics.

Note: partial support received from the European Communities under ESPRIT project 348
(Generation of Interactive Programming Environments - GIPE).

Report CS-R8848
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Table of contents

1. Introduction ... 1
2. Organization of this paper ... 1
3. The specification formalism .. 1

3.1. ASF .. 1
3.2. SDF .. 2
3.3. ASF+SDF ... 3
3.4. Booleans, naturals and identifiers .. 3

4.ASPLE ... 3
4.1. Modes. .. 4
4.2. The syntax of ASPLE ... 5
4.3. Static and dynamic constraints on ASPLE programs ... 6
4.4. Typechecking ASPLE .. 8

4.4.1. Mode environments ... 8
4.4.2. ASPLE-tc ...•.. 10

4.5. Translation to annotated ASPLE programs .. 11
4.5.1. ASPLE-extended-syntax .. 12
4.5.2. ASPLE-static semantics ... 13

4.6. ASPLE dynamic semantics. .. 15
4.6.1. Values and Value-environments .. 15
4.6.2. ASPLE-states ... 16
4.6.3. ASPLE-ds ... 16

5. SML ... 19
5.1. The syntax of SML ... 19
5.2. The dynamic semantics of SML ... 20

5.2.1. Label environments. ... 20
5.2.2. Evaluation stack ... 21
5.2.3. SML-states ... 21
5.2.4. SML-ds .. 22

6. Compilation of ASPLE to SML .. 24
7. Conclusions ... 26
Acknowledgements ... 27
References ... 27

1

1. Introduction
The goal of ESPRIT Project 348 (GIPE - Generation of Interactive Programming Environments) is to gen­
erate interactive programming environments from formal language definitions. In this context the Algebraic
Specification Formalism ASP [BHK85, BHK87] and the Syntax Definition Formalism SDF [HK86,
HHKR] have been developed. A shortcoming of ASP is that it only allows the use of prefix functions and a
limited form of unary and binary operators. Therefore it has been combined with SDF that permits a more
liberal use of syntax. We call the combination of both formalisms ASF+SDF. A typechecker of Mini-ML
has been specified in ASF+SDF [Hen87].

In [HK88] an attempt has been made to make ASF+SDF specifications shorter by introducing negative
conditions and omitting the specification of error cases. The toy language PICO has been specified in
ASF+SDF using these features.

ASPLE is a simple programming language originally introduced in [CU73]. In [BML76] four formal def­
initions of ASPLE were given with the purpose of comparing specification formalisms. In [CDDHK85] a
specification of ASPLE is given using TYPOL. Here we present a specification of ASPLE in ASF+SDF to
be compared with the one given in [CDDHK85].

2. Organization of this paper
Section 3 presents a brief description of the specification formalism used in this paper.

In Section 4 the programming language ASPLE is introduced. We give a short description of the lan­
guage and in particular of its pointer system in Section 4.1. The specification of the syntax of ASPLE is
given in Section 4.2. The static and dynamic constraints on programs are formulated in Section 4.3 and a
specification of the typechecking of ASPLE programs is presented in Section 4.4. In Section 4.5.1 we ex­
tend the ASPLE syntax with constructs that allow us to annotate programs with the type information that is
needed during execution. The translation from ASPLE programs to annotated programs is specified in
Section 4.5.2. These annotated programs are used in the specification of the dynamic semantics of ASPLE
in Section 4.6.

In Section 5 we introduce the simple machine language SML. The specification of the syntax of SML is
given in Section 5.1, while Section 5.2 contains the specification of its dynamic semantics.

Finally, the compilation of ASPLE programs to SML programs is specified in Section 6.

3. The specification formalism
We give a brief description of the algebraic specification formalism ASP, of the syntax definition formalism
SDF and of the combined formalism ASF+SDF.

3.1. ASF
An ASP specification consists of a sequence of modules. Each module defines a signature and a set of
conditional or unconditional equations over the signature. A signature consists of sorts and functions over
these sorts.

Features in ASP to support the modular structure of a specification are:
•Exports: A module may have an exports-section with a (possibly incomplete) signature. The sorts and

functions in the exports section are visible outside the module.
• Hiding: Sorts and functions local to a module are declared in the sort and function section outside the

export section.
• Imports and Renamings: If a module uses other modules the names of those modules are given in the

imports section. Upon import of a module it is possible to bind its parameters and to rename its signature.
• Parameters: A module may have a parameter section. It consists of (possibly incomplete) signatures

which are formal parameters of the module and can be bound to actual parts of a module when the parame­
terized module is imported.

The semantics of an ASP specification is the initial algebra of its "normal.form", i.e. the flat specification
obtained by textual expansion of all modular constructs in the specification. The initial algebra can be
represented by a term model constructed in the following way. Take all closed terms over the signature and

2

divide these into sets according to their sorts. A congruence relation is defined on closed terms by defining
two closed terms to be equal if and only if their equality can be deduced from the equations using many­
sorted equational logic. Finally each set of terms is divided into congruence classes.

In [BHK87] is described how an ASF specification with compound modules can be normalized. The
result of such a normalization is one module that provides the initial algebra of the original specification.

An ASF system has been developed for compiling and testing ASF specifications [Hen88]. Equations are
interpreted as rewrite rules for a conditional term rewriting system. This leads to a discrepancy between the
formal semantics of a specification and the semantics that result from its implementation. The generated
term rewriting system is sound but not complete. For all open terms t1 and t2 the following holds: if the
implementation of the specification returns t2 as the result of evaluating tl, the equality of t1 and t2 can be
deduced from the equations of the specifications (sound); on the other hand if two terms t1 and t2 can be
proved equal using the equations of the specification they cannot always be shown equal using the imple­
mentation (not complete).

A first version of the specification presented in this paper has been written in ASF, implemented and
tested using the ASP-system. Its incompleteness did not cause problems.

As a preparation for the implementation of ASF+SDF some new features were added to ASF as well as to
the ASF implementation [Hen]. A second version of our specification has been written and tested using this
extended version of ASF. We will now briefly describe the new features: lists, partial functions and
negative conditions.

For each sort S lists can be defined: S+ denotes a list of one or more elements of sort S, S* denotes a list
of zero or more elements of sort S.

Partial functions are denoted by the attribute {partial} following a function declaration. If a function is
defined as partial the specification of error cases (e.g. the typechecking of incorrect programs) can be
avoided. It is not clear yet how partial functions should be interpreted in the formal semantics of a
specificati9n. In the ASF system we used they have been implemented as follows: If a function f is defined
as partial and a term say f(a) is offered to the resulting rewrite system and no equation is available to reduce
the term f(a), f(a) is considered undefined and a message "unable to reduce f(a)" will be given. If f is not
defined as partial, the reduction system will return the term f(a) as the normal form of f(a).

Negative conditions have been discussed in [HK88] as well. Using them does reduce the number of
equations considerable. However, this may introduce ambiguity in the initial algebra. For instance it is not
clear which elements can be put in one congruence class as result of the equation a= c when a'* b [HK88,
Kap87]. The implementation of negative conditions is as follows: Two terms x and yin a condition x '* y
can be compared if both terms are defined. In that case their normal forms are compared. If at least one of
the terms is undefined the condition x '* y fails.

3.2. SDF
In the syntax definition formalism SDF concrete and abstract syntax of a language can be defined simulta­
neously. The abstract syntax is a signature, the concrete syntax is described in the form of 'BNF rules in re­
verse order'. SDF will be described extensively in [HHKR].

The following information can be derived from an SDF definition:
A derived regular grammar and a derived BNF grammar, defining a set of well-formed strings.
A derived signature, consisting of the sorts defined in the specification, a prefix version of the functions

declared and some derived and predefined sorts and functions. The derived signature defines a set of well­
formed abstract syntax trees.

An SDF definition consists of five sections, the contents of which we describe briefly:

• Sorts: A listing of sort names.

• Lexical syntax: Here the lexical tokens of the language are defined. The section consists of one or more
function declarations, each consisting of a regular expression and a result sort. Character classes like
[a-z] or [0-9] can be used for abbreviating an enumeration of characters. The operators * and + can
be used to indicate a repetition. The sort LAYOUT is predefined and can be used only as a result
sort in the lexical section. Layout functions serve the purpose of defining layout characters,
comments etc.

3

• Context-free syntax: A list of functions is defined. Functions are declared by giving their syntax and
their output type. Lists with or without separators can be defined using { } and the operators + and *.
Four attributes can be used to resolve ambiguities. The attribute {bracket} is used to define a bracket
function, which allows us to introduce parentheses in the concrete syntax without affecting the un­
derlying abstract syntax. It may also be used to improve readability of the specification. The at­
tributes {assoc}, {left} and {right} indicate the associativity, left associativity or right associativity
of a function.

• Priorities: The priority of functions can be declared. Functions with a higher priority bind more strongly.
This too helps in resolving ambiguities.

• Variables: A list of declarations of variables together with their sorts can be defined.

3.3. ASF +SDF
In the combination formalism ASF+SDF the signature definition in an ASP module is replaced by an SDF
definition. Partial functions and negative conditions are features of ASF+SDF as well. To find the seman­
tics of a specification in ASF+SDF it has to be translated to ASP. The initial algebra of the resulting ASP
specification is the meaning of the ASF+SDF specification. Translation of an ASF+SDF specification to
ASP implies:

replacing the SDF definition in each module by its derived signature,
changing all equations so that each function is written as a prefix function.

3.4. Booleans, naturals and identifiers
We will not give the specifications for the Booleans, natural numbers and the identifiers here, but only list
the required sorts and functions. The sort BOOL, with constants true and false is defined in a module
Bool-con. This module is imported by the module Booleans, in which the logical functions"-" (negation),
"I" (disjunction) and"&" (conjunction) are defined. This way the constants true and false can be im­
ported by modules (e.g ASPLE syntax) in which we need those constants but not Boolean expression like
true & false. For the same reason we define the natural numbers, sort NAT, in a separate module
Nat-con. Nat-con, in its turn, is imported by the module Naturals, in which we define the functions"+" and
"* ...

The module Identifiers only consists of a lexical syntax. Any string of characters starting with a letter
followed by zero or or more letters or numbers is an identifier.

4.ASPLE
ASPLE is a simple programming language derived from Algol68. Especially the pointer system of Algol68
is complicated and therefore interesting to specify even though this feature will turn out to be quite useless
in ASPLE itself. ASPLE has assignment, if-then, if-then-else, while-do, input and output statements. There
are two primitive types: integer and Boolean. Operators +, *, = and * apply to both integer and Boolean
expressions. Applied to integers,+ and* represent addition and multiplication, respectively. Applied to
Boolean expressions, they represent the logical 'or' and 'and' operations. The context-free syntax of ASPLE
is defined in [BML 76].

An ASPLE program consists of a declaration section and a statement section. Identifiers that are used in
the statements must be defined together with their modes in the declaration section. An identifier can have
mode integer, Boolean or reference-to-a-mode. We will discuss this pointer system in Section 4.1 An
example of an ASPLE program, which computes and prints the factorial of the input value x, is given in
example 1 [BML76].

ASPLE-program

begin
int x, y, z;
input x;
y := 1;
z := 1;
if (x -:/: 0)

then
while (z -:/: x) do

z ·= z + 1;
y := y * z

end
fi;
output y

end

4.1.Modes

4

example I

The mode of an identifier defines the number of indirection steps between the identifier and its value as well
as the type, integer or Boolean, of that value.

With each of the identifiers x, y, z in example l, a single pointer is associated. If, for instance, identifier
i has been given mode ref ref boo! in the declaration section, three pointers form the path from i to
a Boolean value. This identifier can refer to an identifier j of mode ref boo!, that, in tum, can refer to
an identifier k of mode boo! (figure 1).

We will call the mode that has been assigned to an identifier in the declaration section the declared mode.
It is clear that an identifier that has been given mode int is not an integer itself but refers to some integer.
So the declared mode has one reference less than the actual mode. In all figures the actual number of refer­
ences will be shown!

int ref ref ref bool

some integer ref ref bool

ref bool

some boolean value

figure I

If the last pointer in the path associated with an identifier points to an integer or a Boolean value this value
is called the primitive value of the identifier. The primitive mode of an identifier is the type of the values
that can be reached by its last pointer. We will also speak of the primitive mode of a mode meaning the
primitive mode of identifiers of that mode.

Modes are specified in the module Mode-con. The bracket function for modes is defined for reasons of
readability and will be used in combination with ref.

In the module Modes the result-mode of two modes is specified as their common primitive mode. It
may be integer or Boolean. We will need this notion when typechecking assignment statements or expres­
sions.

A mode M is smaller than mode Ml if they have the same primitive mode and the number of refs in M
is smaller than the number of refs in M 1. The next section will make clear why comparing the number of
pointers of two modes is relevant

5

The is-bool predicate will be used to typecheck if and while statements.
The functions result-mode and :s; have the predicate {partia1}. Equations for those functions are

given only for modes that have the same primitive mode.

modul.a Mode-con
begin

exports
begin

sorts MODE
context-free syntax

bool
int
ref MODE
II(" MODE ")"

and

end Mode-con

modul.e Modes
begin

exports
begin

context-free syntax
MODE ":s;" MODE
is-bool MODE
result-mode"(" MODE

end

imports
Mode-con, Booleans

" " ' MODE")"

variabl.es
M, Ml -> MODE

equations

[Ml) M :s; M = true

[M2)

[M3)

[M4)

[MS]

M :s; Ml true
M :s; ref(Ml) =true

bool :s; M true
is-bool M = true

result-mode (Ml, M) = M
result-mode (ref(Ml), M) = M

result-mode (M, Ml) = M
result-mode (M, ref(Ml)) = M

result-mode (int,int) = int

-> MODE
-> MODE
-> MODE
-> MODE

-> BOOL
-> BOOL
-> MODE

[M6)

[M7] result-mode (bool,bool) = bool

end Modes

4.2. The syntax of ASPLE
The specification of the syntax of ASPLE is rather straightforward.

{bracket}

{partial.}
{partial.}
{partial.}

6

The sort STMS is introduced because lists are not allowed as output sort of functions. Though we do not
need the sort STMS yet, we will need it in the specification of the translation to annotated programs in
Section 4.5.2.

Due to the use of f i to finish an if statement no ambiguity problems with nested if statements (the
dangling else problem) will occur when parsing an ASPLE program. Operators + and * are left associative
which is indicated by the attribute { l.eft} . The operator * binds more strongly than the operator +. This
is defined in the priorities section. The bracket function for expressions is needed to be able to change the
priorities of * and +. In ASPLE, it is obligatory to write parentheses around expressions containing = or
=/:..

module ASPLE-syntax
begin

exports
begin

sorts PROGRAM, DECL, STM, STMS, EXP
lexical. syntax

[\t\n\r]
context-free syntax

begin {DECL ";"}* ";" STMS end
MODE {ID ","}+
{STM "; "}+
ID ":=" EXP
input ID
output EXP
if EXP then STMS f i
if EXP then STMS else STMS f i
while EXP do STMS end
EXP "+" EXP
EXP "*" EXP
" (If EXP "=" EXP
If (If EXP "*" EXP
If (" EXP ")It
NAT
BOOL
ID

priorities
{"*"} > {"+"}

and

imports

") "
") "

-> LAYOUT

-> PROGRAM
-> DECL
-> STMS
-> STM
-> STM
-> STM
-> STM
-> STM
-> STM
-> EXP
-> EXP
-> EXP
-> EXP
-> EXP
-> EXP
-> EXP
-> EXP

Mode-con, Boal-con, Nat-con, Identifiers

and ASPLE-syntax

4.3. Static and dynamic constraints oo ASPLE programs

-- tab, new line, return

{l.eft}
{l.aft}

{bracket}

We formulate the constraints on ASPLE programs that have to be checked either during typechecking or at
run time.

Rl An identifier can occur only once in the declaration section.
R2 An identifier must have been given a primitive value before it can be used in an operator expression.
R3 a. The operators +, *, = and -:f::. can be applied to any pair of identifiers or expressions with equal

primitive mode.
Since R2 has to be satisfied an operator applied to a pair of identifiers can actually act on their
primitive values and hence yield an integer or Boolean value. So
b. operator expressions and expressions consisting of integers or Boqlean constants have zero refer­
ences.

7

We need two auxiliary notions before we can formulate the remaining constraints. We introduce the nota­
tion n(exp) to indicate the number of actual references (pointers) of an expression. We will also need the
definition of a chain. A chain from x1 to Xk is a series {x1 ... Xk} in which

• Xk is a constant or an identifier, x1 .. xk-l are identifiers,

• n(xi) = n(xi+O + l,

• all Xi have equal primitive mode,

• Xi refers to Xi+l·
A chain can be constructed by means of assignment and input statements ..

R4 An assignment statement x := exp is correct if
a. x and exp have the same primitive mode, and n(x)::;; n(exp) + 1,

b. ifn(x)::;; n(exp), which means exp is an identifier, say y, a chain must exist from y to some iden­
tifier or constant a such that n(x) = n(a) + 1.

RS a. An input value must have the same primitive mode t as the identifier it is assigned to.

b. A chain must exist from the identifier in the input statement to some identifier of mode ref t
R6 If an output statement has an identifier as argument, a chain must exist from this identifier to an

identifier of actual mode ref t, with ta primitive mode.
R7 The expressions in if and while statements must be of mode Boolean.

Knowing R4 we can reformulate the first part of R2 as: a chain must exist from an identifier to a primitive
value. When we combine R3b and R4 .it is clear that a statement like x:= x + 1 is only correct when the
declared mode of x is int Similarly x:= y * z is correct when x, y and z have the same primitive mode t and
the actual mode of x is ref t. Example 2 illustrates R2, R3 and R4.

begin
int x,
ref int
u := 5;
x := u;
v ·= u;
u := x

end

u;
v;

+ v

R4a
R4b
R4a
R2,3,4a

example 2

The statement v : = u can be pictured as making the first pointer of the chain emanating from v point to
the first pointer of the chain emanating from u (figure 2a). Changing the value of u in the assignment u
: = x + v also changes the primitive value of v (figure 2b).

int

ref int

figure 2a

9ref
czref

5 10

ref int

int

figure 2b

Example 3 illustrates R4b: n(u) = n(y) - 1 so R4b for statement y := w is satisfied. The primitive value
of y is the primitive value of w.

begin
int" u;
ref int v, y;
ref ref int w;
u := 5;
v := u;

w := v;
y := w --

end

8

ref ref int

R4b

example3

~ ref ref ref int

~ ref ref int

9 ref int

5

figure 3

Example 4 shows that evaluating the statement input w can be seen as making the last pointer in the
chain emanating from w point at the input value (figure 4).

begin
int u;

ref int v;
ref ref int w;
u := 5;
v := u;

w := v;
input w;
output u;
output v;
output w

end

ref ref ref int

ref ref int

5 input value

example4 figure4

When running the program in example 4 with some integer, say 8, as input, the output will be 8, 8, 8.
Note that replacing input w by input v or input u would lead to the same output

When an ASPLE program is evaluated Rl, R3, R4a and R7 are checked in the typechecking phase.
Obviously, RSa can only be checked at run time since we need to know the value that occurs as input As
for the checking of the required construction of chains in R2, R4b, RSb and R6: since the evaluation of as­
signment or input statements may depend on the evaluation of conditions in if statements or while loops,
chains can not be detected during typechecking. So whether or not a chain has been constructed has to be
checked at run time as well.

4.4. Typechecking ASPLE

4.4.1. Mode environments
When typechecking the· declaration section of an ASPLE program a table called Mode-environment is con­
structed for the declared identifiers together with their mode. First, we define a parameterized module
Tables. Next we instantiate this module to obtain Mode-environments.

module Tables
begin

parameters
begin

sorts KEY, ENTRY
end

exports
beg.in

sorts PAIR, TABLE
context-free syntax

KEY ":" ENTRY
table"(" {PAIR "it"}*")"
lookup KEY in TABLE
add PAIR to TABLE
modify PAIR in TABLE
KEY is in TABLE
"("PAIR")"

end

.imports
Boo leans

variables
Pair
Key, Key'

equations

-> PAIR
-> KEY

9

->
->
->
->
->
->
->

PAIR
TABLE
ENTRY {partial}
TABLE
TABLE
BOOL
PAIR {bracket}

Pairs, Pairs'
Ent, Ent'

[Tl] add Pair to table (Pairs) table (Pair it Pairs)

[T2]

[T3]

[T4]

[T5]

lookup Key in

lookup Key
lookup Key

modify (Key
table ((Key

in
in

table ((Key Ent)

Kei :F- Ke:£'
table ((Key': Ent)
table (Pairs)

Ent) in table ((Key
Ent) it Pairs)

Key :F- Key'

it Pairs) = Ent

it Pairs) =

Ent') it Pairs)

Ent') it Pairs)

-> {PAIR "it"}*
-> ENTRY

modify (Key : Ent) in table ((Key'
table ((Key' : Ent') it modify (Key Ent) in table (Pairs))

[T6] modify (Key : Ent) in table ()

[T7] Key is in table

[T8] Key is in table

[TlO] Key is in table

and Tables

module Mode-environments
beg.in

.imports
Tables

Keys bound by
sorts

() = false

((Key : Ent)

Ke
((Key' Ent)

KEY -> ID to Identifiers
Entries bound by

sorts

it

ENTRY -> MODE to Mode-con
renamed by

sorts
TABLE => MENV
PAIR => MPAIR

functions

= table (Key : Ent)

Pairs) = true

:F- Ke I

it Pairs) Key is in table (Pairs)

table => menv
end renaming

end Mode-environments

4.4.2. ASPLE-tc

10

Typechecking an ASPLE program consists of two phases. First, all declaration information is collected in a
mode environment {Tc2-5). Next, this information is used to check the statement section of the program
{Tc6-19). In the mode environment the actual mode of an identifier is recorded so one more ref is added to
the declared mode of each identifier {Tc5). The condition of Tc5 states that an identifier cannot be declared
more than once. This forms a check of Rl.

In the typechecking of operator expressions R3 is checked {Tcl6-19). Since the result-mode of two modes
is defined for modes with equal primitive mode only, the conditions in Tc16-19 make sure that operators are
applied to pairs of expressions with equal primitive mode (R3a). The mode of an operator expression is the
result-mode of the modes of its arguments. This result-mode is a mode without references (R3b).

The mode environment is used to typecheck statements. Tc7 specifies the typechecking of assignment
statements. In the condition ofTc7 R4a is checked. In Tcl0-12 the is-bool function is used to check that
the expression in if and while statements are Boolean expressions. This forms a check of R7.

modul.e ASPLE-tc
begin

exports
begin

context-free syntax
tc " ["
tc " ["
tc U [II

tc " ["
end

imports

PROGRAM "]"
{ DECL " ; " } *"] " in MENV
{STM "; "}+ "]" in MENV
EXP"]" in MENV

-> BOOL
-> MENV
-> BOOL
-> MODE

{partial.}
{partial.}
{partial.}
{partial.}

ASPLE-syntax, Modes, Mode-environments

variabl.es
Id
Deel
Mode, M, Ml, M2
Stm
Exp,Expl,Exp2
Nat
E

equations

->ID
-> DECL
-> MODE
-> STM
-> EXP
-> NAT
-> MENV

-- typechecking programs

Id-list ->{ID","}+
Decls -> {DECL ";"} *

Stms, Stmsl, Stms2 -> STMS

Bool, Booll -> BOOL

[Tel]
tc[Decls] in menv() = E, tc[Stms] in E =true

tc[begin Decls ; Stms end] = true

-- typechecking declarations

[Tc2] tc[Decl; Decls] in E = tc[Decls] in tc[Decl] in E

[Tc3] tc[] in E = E

[Tc4] tc[Mode Id, Id-list] in E =
tc[Mode Id-list] in tc[Mode Id] in E

[TcS]
Id is in E = false

tc[Mode Id] in E =add (Id:ref(Mode)) to E

11

-- typechecking statements

tc [Stm] in E = true, tc [Stms] in E true
[Tc6]

tc[Stm; Stms] in E = true

tc [Id] in E = Ml, tc[Ex;eJ in E = M2, Ml :;;; ref(M2)
[Tc7]

tc[Id :=Exp] in E = true

[Tc8]
tc[Id] in E = M

tc[input Id] in E = true

[Tc9]
tc[Ex;eJ in E = M

tc[output Exp] in E =true

[Tel OJ
is~bool (tc[Ex;eJ in E) =true, tc(Stmsl] in E

tc[if Exp then Stmsl fi] in E = true

[Tell] is-bool (tc[Exp] in E) =true,

[Tcl2]

tc[Stmsl] in E =true, tc[Stms2] in E =true
tc[if Exp then Stmsl else Stms2 fi] in E =true

is-bool (tc[Exp] in E) =true, tc[Stms] in E
tc[while Exp do Stms end] in E = true

-- typechecking expressions

[Tcl3] tc [Nat] in E = int

[Tcl4] tc[Bool] in E = bool

[Tcl5] tc[Id] in E = lookup Id in E

true

true

true

[Tcl6]
tc[Ex;ell in E =Ml, tc[Ex;e2J in E = M2, result-mode(Ml,M2) = M

tc[Expl + Exp2] in E = M

tc [Ex;elJ in E =Ml, tc[Exp2] in E = M2, result-mode(Ml,M2)
[Tcl7]

tc[Expl * Exp2] in E = M
M

tc [Ex;ell in E =Ml, tc[Ex;e2J in E = M2, result-mode(Ml,M2)
[Tcl8] tc[(Expl = Exp2)] in E = bool

M

tc [Ex;ell in E =Ml, tc[Ex;e2J in E = M2, result-mode(Ml,M2)
[Tcl9]

tc[(Expl ~ Exp2)] in E = bool
M

and ASPLE-tc

4.5. Translation to annotated ASPLE programs
Annotated ASPLE programs are now introduced to simplify the specification of both the dynamic semantics
of ASPLE and the tran.slation of ASPLE to SML. An annotated program contains all the type i:nformation
needed during its execution.

The most complicated part of the translation from ASPLE programs to annotated ASPLE programs re­
gards the dereferencing of identifiers. To come closer to or obtain the primitive value of an identifier we can
dereference the identifier to another mode. So we go down the pointer chain from the identifier towards its
primitive value. We describe dereferencing by introducing a new sort V AR (variable) and a function deref.
All identifiers are variables. The function deref applied to a variable yields another variable that is one step
closer to the primitive mode of the former (figure 5).

12

~6 • t
deref deref V ~nuu5

ref ref int

ref int

figure 5

The following rules are applied in the translation:
• Identifiers in expressions are dereferenced to their primitive modes. This will be used to check R2 at run

time.
• The operators +, *, = and* are overloaded as they apply to integer as well as to Boolean expressions.

In the machine language SML the operators = and * are overloaded likewise but + and * apply to integers
only, whereas I and & are the corresponding operators for Boolean expressions. In ASPLE-stat + and * ap­
plied to Boolean expressions are translated to I and & respectively.

•In case the expression on the right hand side of an assignment statement is an identifier, it is derefer­
enced to a mode that has one reference less than the mode of the identifier on the right hand side. We will
use this to check R4b at runtime.

• The identifier in an input statement is dereferenced to an actual mode ref t, where t is a primitive mode.
Type t is added as annotation to the input statement. We will use this to check RS at run time.

• In the statement output x, for any identifier x, x must be dereferenced to its primitive mode. We will
use this to check R6 at runtime.

We will first describe extensions to the ASPLE-syntax needed for the annotations, next we describe the
translation from ASPLE programs to annotated ASPLE programs.

4.5.1. ASPLE-extended-syntax
Sorts and functions that are needed in annotated ASPLE programs are introduced in the module ASPLE­
extended-syntax.

module ASPLE-extended-syntax
begin

exports
begin

sorts VAR
context-free syntax

EXP "&" EXP
EXP "I" EXP
deref VAR
tinput VAR ":" MODE
VAR
ID

priorities
{"*", "&"} > {"+", "l"J

end

imports
ASP LE-syntax

end ASPLE-extended-syntax

-> EXP
-> EXP
-> VAR
-> STM
-> EXP
-> VAR

{left}
{left}

13

4.5.2. ASPLE-static semantics
As an example of the translation of ASPLE programs, we give the translation of the program in exam­
ple 1. Note that the dereferencing of identifiers is made explicit and that type information has been added to
input statements.

program
begin

int x, y, z;
input x;
y := 1;
z := 1;
if (x -:f:. 0)
then
while (z -:f:. x) do

z := z + 1;
y := y * z

end
fi;
output y

end

annotated program
begin

int x, y, z;
tinput x : int;
y := 1;
z := 1;
if (deref x -:f:. 0)
then

while (deref z * deref x) do
z ·= deref z + 1;
y := deref y * deref z

end
fi;
output deref y

end
example 5

The translation to annotated programs is specified in the module ASPLE-stat. The translation function uses
the typechecking function defined in Section 4.4.2. When an ASPLE program is translated, a mode envi­
ronment is constructed by typechecking the declaration section. Statements will be translated when they are
"type-correct" only, since no equations are given for incorrect statements.

We first have a look at the translation of expressions (Trll-23). Of course, translating integer and
Boolean values does not cause any change (Trl 1,12). Translating an identifier in a context of a certain mode
may require dereferencing it (Tr13-15). The function dereference then yields a variable that is some references
closer to the primitive mode of the identifier, as required by the context. Dereference uses the function deref
(figure 6).

dereference y from ref ref int to int = deref deref y

ref ref int

ref int

figure 6

Translating an operator expression implies dereferencing of all its identifiers to their primitive mode and re­
solving the overloading. of the operators * and + (Tr16-23).

The translation of an assignment statement is the translation of the expression on the right hand side into
an expression with a mode that has one reference less than the mode of the identifier on the left hand side
(Tr3). The conditions in Tr3 correspond to R4a.

Identifiers in input statements are dereferenced and their primitive mode is added to the annotated statement
(Tr4,5). The expression in output statements (Tr6,7) is translated to its primitive mode. In case this
expression is a single identifier the identifier is dereferenced to its primitive mode.

The translation of if statements and while loops is the translation of the expressions to primitive mode
bool and the translation of the statements.

module ASPLE-stat
begin

exports
begin

context-free syntax
tr "[" PROGRAM "]"
tr "[" STMS "]" in MENV
tr "["EXP "]" in MENV to MODE
dereference ID from MODE to MODE

end

imports
ASPLE-extended-syntax, ASPLE-tc

variables
Deel -> DECL
Id, Id' -> ID
M, Ml -> MODE
Stm, Stm' -> STM
Stms, Stmsl, Stms2 -> STMS
Exp, Expl, Exp2, -> EXP
Nat -> NAT
E -> MENV

equations

-- translation of programs

14

-> PROGRAM
-> STMS
-> EXP
-> VAR

Decls
Id-list

{partial}
{partial}
{partial}
{partial}

Stms',Stmsl',Stms2'
Exp',Expl',Exp2'
Bool
Var

[Trl]
tc[Decls] in menv () = E, tr(Stms] in E = Stms'

tr[begin Decls ; Stms end] = begin Decls ; Stms' end

translation of statements

[Tr2] tr[Stm; Stms] in E = tr[Stm] in tr[Stms] in E

[Tr3]
lookuE Id in E = ref (M), tr[Exp] in E to M= EX£!'

tr[Id := Exp] in E = Id := Exp'

-> {DECL ";"} *
-> {ID ", "}+

-> STMS
-> EXP
-> BOOL
-> VAR

[Tr4] tr[input Id] in E tinput tr[Id] in E to ref(int) : int

[TrS]

[Tr6]

[Tr7]

[Tr8]

[Tr9]

[TrlO]

tr[input Id] in E tin put tr[Id] in E to ref(bool)

tr[output Exp] in E output tr[Exp] in E to int

tr[output Exp] in E output tr[Exp] in E to bool

tr[if Exp then Stmsl fi] in E =
if tr[Exp] in E to bool then tr[Stmsl] in E fi

tr[if Exp then Stmsl else Stms2 fi] in E =
if tr[Exp] in E to bool then tr[Stmsl] in E
else tr[Stms2] in E fi

tr[while Exp do Stms end] in E =
while tr[Exp] in E to bool do tr[Stms] in E end

translation of expressions

[Trll] tr[Nat] in E to int Nat

[Trl2] tr[Bool] in E to bool = Bool

: bool

[Trl3]

[Trl4]

[Trl5]

[Trl6]

[Trl7]

[Trl8]

[Trl9]

[Tr20]

[Tr21]

[Tr22]

[Tr23]

15

lookup Id in E = M, Ml ~ M = true
tr[Id] in E to Ml = dereference Id from M to Ml

Ml ~ M = true
dereference Id from ref(M) to Ml = deref dereference Id from M to Ml

dereference Id from M to M = Id

tr[Expl] in E to int = Expl', tr[Exp2] in E to int = Exp2'
tr[Expl + Exp2] in E to int = Expl' + Exp2'

tr[Expl] in E to bool = Expl', tr[Exp2] in E to bool Exp2'
tr[Expl + Exp2] in E to bool = Expl' Exp2'

tr[Expl] in E to int = Expl', tr[Exp2] in E to int Exp2'
tr[Expl * Exp2] in E to int = Expl' * Exp2'

tr[Expl] in E to bool = Expl', tr[Exp2] in E to bool Exp2'
tr[Expl * Exp2] in E to bool = Expl' & Exp2'

tr[Expl] in E to int = Expl', tr[Exp2] in E to int = Exp2'
tr[(Expl = Exp2)] in E to bool = (Expl' = Exp2')

tr[Expl] in E to bool Expl', tr[Exp2] in E to a= Exp2'
tr[(Expl = Exp2)] in E to bool = (Expl' = Exp2')

tr[Expl] in E to int = Expl', tr[Exp2] in E to int = Exp2'
tr[(Expl * Exp2)] in E to bool = (Expl' * Exp2')

tr[Expl] in E to bool = Expl', tr[Exp2] in E to bool = Exp2'
tr[{Expl * Exp2)] in E to bool = (Expl' * Exp2')

end ASPLE-stat

4.6. ASPLE dynamic semantics
When executing an ASPLE program a value environment, a table with identifiers and their values is used.
Input values will be taken from a list called INPUT and output values will be added to a list called
OUTPUT.

First, we will specify the auxiliary notions Values, Value-environments and States. Then we will present
the specification of the dynamic semantics of ASPLE.

4.6.1. Values and Value-environments
Values for input and output can be integer or Boolean constants. We also need identifiers as values, since
they can be assigned to other identifiers.

modu1e Values
begin

exports
begin

sorts IO-VAL, VAL
context-free syntax

BOOL
NAT
IO-VAL
ID

and

imports ,,

-> IO-VAL
-> IO-VAL
-> VAL
-> VAL

Bool-con, Nat-con, Identifiers

and Values

modu1a Value-environments
begin

import a
Tables

Keys bound by
aorta

KEY -> ID to Identifiers
Entries bound by

aorta
ENTRY -> VAL to Values

renamed by
aorta

TABLE => VALENV
functions

table => valenv
and renaming

and Value-environments

4.6.2. ASPLE-states

16

A state consists of a value environment, a list of input values and an output list. The effect of evaluating a
statement is described by modifications to a given state.

modu1a ASPLE-states
begin

export a
begin

aorta STATE, INPUT, OUTPUT
context-free syntax

input "("{IO-VAL ","}* ")"
output"(" {IO-VAL ","}* ")"
"<" VALENV II," INPUT "," OUTPUT ">"

and

import a
Value-environments

and ASPLE-states

4.6.3. ASPLE-ds

-> INPUT
-> OUTPUT
-> STATE

The dynamic semantics of ASPLE is defined in module ASPLE-ds. A program is translated (and thus type­
checked) before it is executed (Ev I).

We will now discuss the evaluation of expressions and of statements in some detail.
The equations Ev13-i5 are straightforward: the evaluation of an integer value, a Boolean value or an iden­

tifier is the value itself. Evl6 handles the evaluation of dereferenced identifiers. Example 6 illustrates how
the value environment is affected by the evaluation of the statements in a program. Only assignment and
input statements cause updates of this table.

fil!nOtated 11!'.0gram
begin

int u;
ref int v, y;
ref ref int w
u := 5;
v := u;
w ·= v;
y := deref deref w;
tinput deref deref w int;
output deref u;
output deref deref v;
output deref deref deref w

end
with input 8

17

value enyironment

valenv ()
valenv ()
valenv ()
valenv (u: 5)
valenv (u: 5 #
valenv (u: 5 #
valenv (u: 5 #
valenv (u: 8 #
valenv (u: 8 #
valenv (u: 8 #
valenv (u: 8 #

We explain the evaluation of deref deref win example 6:

v:u)
v:u #
v:u #
v:u #
v:u #
v:u #
v:u #

w:v)
w:v
w:v
w:v
w:v
w:v

*

y:u)
y:u)
y:u)
y:u)
y:u)

example 6

In trying to fulfill the first condition of Ev16 all 'dercfs' arc peeled off. Ev [w] = win any value envi­
ronment (Ev15). In the value environment of example 6 the value of w is v, so ev [de ref w] =

v.Thevalueofvisu,soev[deref deref w] = u.
Note that a dereferenced identifier x with k derefs can be evaluated only if a chain exists from x to some y

with n(y) = n(x) - k.
Equations Ev17-23 describe the evaluation of expressions with operators. Since all identifiers occurring in

expressions have already been dereferenced (Section 4.5.2) Ev13-16 are used to check R2 and to obtain the
primitive value of an expression. Consider the program in example 7 and its translation.

program
begin

bool k, 1, m;
ref bool p;
k := false;
1 := true;
p := l;
m := k + p

end

annotated program
begin

bool k, 1, m;
ref bool p;
k := false;
1 := true;
p := l;
m := deref k I deref deref p

end
example 7

We explain the evaluation of the last statement of this program.
Using Evl4-16 deref k evaluates to false and deref deref p evaluates to true. Ev18 then

results in ev [deref k I deref deref p] = false I true, which is true.
Ev15 and Ev16 are also used to evaluate dereferenced identifiers in assignment, input and output state­

ments (Ev3-6). This forms a check of R4b, RSb and R6 .
The mode annotation of an identifier in an input statement is used to check that the mode of the input

value matches the one of the identifier in the input statement (Ev4,5). This forms a check of R5a.
The evaluation of if statements and while loops is straightforward (Ev7-12).

module ASPLE-ds
begin

exports
bag in

context-free syntax
ev 11

[
11 PROGRAM 11

]
11 with INPUT

ev "[" {STMS ";"}+ 11
]

11 in STATE
ev 11

[
11 EXP"]" in STATE

end

-> OUTPUT
-> STATE
->VAL

{partial}
{partial}
{partial}

18

imports
ASPLE-stat, ASPLE-states, Naturals

variables
Id -> ID Id-list
Var -> VAR Mode
Decls -> {DECL "; .. } * Stm
Stms,Stms',Stmsl,Stms2 -> {STM II; fl }+ Exp,Expl,Exp2
S, Sl, 82 -> STATE E, E'
I, I' -> INPUT 0, 0'
Nat, Natl, Nat2 -> NAT Bool, Booll, Bool2
Val, Vall, Val2 -> VAL Vals

equations

-- evaluation of programs

[Evl] tr[begin Decls ; Stms end] =begin Decls; Stms' end,
ev[Stms'] in <valenv (), I, output ()> <E, I', O>

ev[begin Decls ; Stms end] with I = 0

-- evaluation of annotated statements

[Ev2] ev[Stm; Stms] in S = ev[Stms] in ev[Stm] in S

ev[Exp] in <E, I, O> = Val

-> {ID II f 11}+

-> MODE
-> STM
-> EXP
-> VALE NV
-> OUTPUT
-> BOOL
-> {VAL II,"}*

[Ev3]
ev[Id := Exp] in <E, I, O> = <modify (Id:Val) in E, I, O>

[Ev4]

[Ev5]

[Ev6]

[Ev7]

[Ev8]

[Ev9]

[EvlO]

[Evll]

[Evl2]

ev[Var] in <E, input (Nat, Vals), O> =Id
ev[tinput Var: int] in <E, input (Nat, Vals), O>

<modify (Id:Nat) in E,input (Vals), O>

ev[Var] in <E, input (Bool, Vals), O> =Id
ev[tinput Var: bool] in <E, input (Bool, Vals), O>

<modify (Id:Bool) in E, input (Vals), O>

ev[ExE] in <E, I, output (Vals) > = Val
ev[output Exp] in <E, I, output (Vals)> = <E, I, output

ev[EXJ2] in S =true
ev[if Exp then Stmsl else Stms2 fi] in s ev[Stmsl]

ev[Ex12J in S = false
ev[if Exp then Stmsl else Stms2 fi] in S ev[Stms2]

ev[Exp] in S = true
ev[if Exp then Stmsl fi] in S = ev[Stmsl] in S

ev[Exp] in S = false
ev[if Exp then Stmsl fi] in S = S

ev[Exp] .in S = true, ev[Stms] in S = Sl,
ev[while EXE do Stms end] in Sl = 82
ev[while Exp do Stms end] in S = 82

ev[Exp] in S = false
ev[while Exp do Stms end] in S s

in

in

-- evaluation of annotated expressions

[Evl3] ev[Nat] in S =Nat

[Evl4] ev[Bool] in S = Bool

(Vals, Val)>

s

s

19

[Evl5] ev [Id] in S = Id

[Evl6]
ev [Var] in <E,I,O> = Id, looku12 Id in E Val

ev[deref Var] in <E,I,O> =Val

[Evl7] ev[Expl + Exp2] in s ev[Expl] in s + ev[Exp2] in s

[Evl8] ev[Expl Exp2] in s ev[Expl] in s ev[Exp2] in s

[Evl9] ev[Expl * Exp2] in s ev[Expl] in s * ev[Exp2] in s

[Ev20] ev[Expl & Exp2] in s ev[Expl] in s & ev[Exp2] in s

[Ev21]
ev[EXJ21] in S =Vall, ev[EXJ22] in S = Val2, Vall = Val2

ev[(Expl = Exp2)] in S =true

[Ev22]
ev[EXJ21] in S = Vall, ev[EXJ22] in S = Val2, Vall * Val2

ev[(Expl = Exp2)] in S =false

[Ev23] ev [(Expl * Exp2)] in S = -ev [(Expl = ;Exp2)] in S

and ASPLE-ds

5.SML
SML is a simple stack machine language with commands for

• loading constants and identifiers on the stack,

•looking up values (of identifiers) in a value environment and put them on the stack,

• taking values from the stack to update a value environment,

• replacing two values on top of the stack by another one,

• input and output.
Operators + and * act on integers, & and I on Booleans; operators = and "#- act on both types.
SML programs may also contain jumps. Commands exist for conditional and unconditional jumps and

for defining labels. In case of a conditional jump, the value true or false on top of the stack determines
whether or not a jump is executed. Jumps and labels only have a meaning inside a block of commands. The
scope of a label ranges from the command following the label till the end of the block. Labels are denoted
by natural numbers.

In accordance with the specification in TYPOL [CDDHK85] identifiers are used as addresses. So the map­
ping from ASPLE identifiers to SML addresses in ASPLE-SML will be the identity.

5.1. The syntax of SML

module SML-syntax
bag in

exports
begin

sorts PROGRAM,
context-free

{COM ";"}*
ldci CONSTANT
lao ID
ldo ID

ind

COM, CONSTANT, OPER
syntax

->PROGRAM
-> COM
-> COM
-> COM

-> COM

load constant on stack
load identifier on stack
load value of identifier on

-- ~tack

replace identifier on stack
-- by its value

sro ID

sto

s-read

s-write
nop
block " (" {COM "; " } * ") "
ujp NAT
fjp NAT
tjp NAT
lbl NAT

20

-> COM

-> COM

-> COM

-> COM
-> COM
-> COM
-> COM
-> COM
-> COM
-> COM

modify value env with id and
-- top value from stack

modify value env with id and
-- value both from stack

modify value env with id and
-- input value

write top value from stack
dummy operator

unconditional jump
false jump
true jump
label

OPER -> COM operators
NAT
BOOL

end

"+"
"*"
"&"
"I"
"="
";if:"

imports
Bool-con, Nat-con, Identifiers

end SML-syntax

5.2. The dynamic semantics of SML

-> CONSTANT
-> CONSTANT
-> OPER
-> OPER
-> OPER
-> OPER
-> OPER
-> OPER

Three auxiliary notions are needed in the specification of the dynamic semantics of SML: label environ­
ments, stacks and states.

5.2.1. Label environments
Label-environments associate labels with commands in an SML block. Note that the function is-label
has not been defined as partial. So the term is-labe 1 (Com) in the condition of L3 is defined for every
SML command, and hence can be compared to true (see Section 3.1).

module Label-environments
bag in

exports
begin

context-free syntax
cons-env " (" {COM "; "} * ") "
is-label"(" COM")"

and

imports
Booleans,
Tables

Keys bound by
sorts

KEY -> NAT to Nat-con
Entries bound by

sorts

-> LENV
-> BOOL

ENTRY -> PROGRAM to SML-syntax
:renamed by

sorts
TABLE => LENV
PAIR => LPAIR

functions
table => lenv

end renaming

variables
Com
Nat

equations

-> COM
-> NAT

[Ll] cons-env () = lenv ()

21

Corns
Le, Lel

[L2]
cons-env (Corns) = Lel, Nat is in Lel = false

cons-env (lbl Nat; Corns) = add (Nat: Corns) to Lel

is-label (Com) * true
[L3] cons-env (Com; Corns) cons-env (Corns)

[L4] is-label (lbl Nat) = true

and Label-environments

5.2.2. Evaluation stack
A stack of values will be maintained during the execution of an SML program.

module Stack
begin

parameters
Items
begin

sorts ITEM
end Items

exports
begin

sorts STACK
context-free syntax

stack " (" {ITEM ", " } * ") "
end

and Stack

module Evaluation-stack
begin

imports
Stack

Items bound by
sorts

ITEM -> VAL to Values
renamed by

sorts
STACK => EVSTACK

end renaming

end Evaluation-stack

5.2.3. SML-states

-> STACK

SML-states completely describe the execution state of an SML program.

-> {COM";"}*
-> LENV

module SML-States
begin

exports
begin

aorta STATE, INPUT, OUTPUT
context-free syntax

"<"VALENV "," EVSTACK "," INPUT
input "(" {IO-VAL ","}* ")"
output"(" {IO-VAL ","}* ")"

end
imports

" " ,

22

OUTPUT " .. , LENV">"

Value-environments, Evaluation-stack, Label-environments

end SML-States

S.2.4. SML-ds

-> STATE
-> INPUT
-> OUTPUT

The evaluation of SML commands for stack manipulation, updating the value environment, performing in­
put and output is straightforward (Es2-13).

Evaluating a block of commands (Esl4) amounts to constructing a (new) label environment and evaluat­
ing the commands one by one using this label environment. At the end of the block the new label envi­
ronment is thrown away and the original one is used to evaluate the commands following the block. So in
case of nested blocks, commands are evaluated in the context of the smallest block they are part of.

Equations Es 15-19 describe the evaluation of jumps. If a jump has to be executed the label it refers to is
looked up in the label environment and the statements associated with the label are evaluated.

An operator is applied to the two values on top of the stack. The result replaces those values on the stack
(Es21-29).

module SML-ds
begin

exports
begin

context-free syntax
es
es
es

" ["
" ["
" ["

PROGRAM"]" with INPUT
{COM "; "} * "l" in STATE
OPER VAL "," VAL "]"

end

imports
SML-syntax, SML-States, Naturals

variables
Id -> ID
Com -> COM
Nat, Natl, Nat2 -> NAT
Op -> OPER
S, Sl, S2 -> STATE
I, Il, I2 -> INPUT
Val, Vall, Val2 -> VAL
K, Kl -> EVSTACK

equations

-- evaluation of programs

-> OUTPUT
-> STATE
-> VAL

c
Corns, Comsl
Boal, Booll, Bool2

E, El
0, 01, 02
Vals,Valsl
Le, Lel

{partial}
{partial}
{partial}

-> CONSTANT
-> {COM ";"} *
-> BOOL

-> VALE NV
-> OUTPUT
-> {VAL ", tf} *
-> LENV

[Esl]
es[Coms] in <valenv(),stack(),I,output(),lenv()> <E,K,Il,O,lenv()>

es[Coms] with I = 0

evaluation of commands

[Es2]

[Es3]

[Es4]

[EsS]

[Es6]

[Es7]

[Es8]

[Es9]

[EslO]

[Esll]

[Esl2]

[Esl3]

[Esl4]

[Esl5]

[Esl6]

[Esl7]

[Esl8]

[Esl9]

[Es20]

[Es21]

23

es[] in S and Le = S

es[ldci Nat; Corns] in <E, stack(Vals), I, 0, Le>
es[Coms] in <E, stack(Nat, Vals), I, 0, Le>

es[ldci Bool; Corns] in <E, stack(Vals), I, O, Le>
es[Coms] in <E, stack(Bool, Vals), I, 0, Le>

es[lao Id; Corns] in <E, stack(Vals), I, 0, Le>
es[Coms] in <E, stack(Id, Vals), I, 0, Le>

lookup Id in E = Val
es[ldo Id; Corns] in <E, stack(Vals), I, 0, Le>
es[Coms] in <E, stack(Val, Vals), I, 0, Le>

lookup Id in E = Val
es[ind, Corns] in <E, stack(Id,Vals), I, 0, Le>
es[Coms] in <E, stack(Val,Vals) , I, O, Le>

es[sro Id; Corns] in <E, stack(Val,Vals), I, O, Le>
es[Coms in <modify (Id: Val) in E ,stack(Vals), I, 0, Le>

es[sto; Corns] in <E, stack(Val, Id, Vals), I, O, Le>
es[Coms] in <modify (Id: Val) in E, stack(Vals), I, O, Le>

es[s-read; Corns] in <E, stack(Id,Vals), input(Nat,Valsl), O, Le>=
es[Coms] in <modify (Id: Nat) in E, stack(Vals), input(Valsl), O, Le>

es[s-read; Corns] in <E, stack(Id,Vals), input(Bool,Valsl), O, Le>=
es[Coms] in <modify (Id: Bool) in E, stack(Vals), input(Valsl), O, Le>

es[s-write; Corns] in <El, stack(Val, Vals), I, output(Valsl), Le>=
es[Coms] in <El, stack(Vals), I, output(Valsl, Val), Le>

es[nop; Corns] in S = es[Coms] in S

cons-env (Corns) = Lel,
es[Coms] in <E, K, I, 0, Lel> = <El,Kl,Il,01, Lel>

es[block(Coms); Comsl] in <E, K, I, O, Le>
es[Comsl] in <El, Kl, Il, 01, Le>

lookup Nat in Le = Comsl
es[ujp Nat; Corns] in <E, K, I, O, Le>
es[Comsl] in <E, K, I, O, Le>

es[fjp Nat; Corns] in <E,stack(true,Vals), I, 0, Le>
es[Coms] in <E,stack(Vals), I, 0, Le>

lookup Nat in Le = Comsl
es[fjp Nat; Corns] in <E, stack(false,Vals), I, O, Le>
es[Comsl] in <E, stack(Vals), I, O, Le>

lookup Nat in Le = Comsl
es[tjp Nat; Corns] in <E, stack(true,Vals), I, O, Le>
es[Comsl] in <E,stack(Vals), I, O, Le>

es[tjp Nat; Corns] in <E, stack(false,Vals), I, O, Le>
es[Coms] in <E,stack(Vals), I, 0, Le>

es[lbl Nat; Corns] in S = es[Coms] in S

es[Op Vall, Val2] =Val
es[Op; Corns] in <E, stack(Vall,Val2, Vals), I,O, Le>

24

es[Coms] in <E, stack(Val, Vals), I, 0, Le>

evaluation of operators

[Es22] es[+ Natl, Nat2] =Natl + Nat2

[Es23] es[* Natl, Nat2] =Natl * Nat2

[Es24] es[& Booll, Bool2] = Booll & Bool2

[Es25] es{I Booll, Bool2] = Booll Bool2

[Es26]
Vall = Val2

es[= Vall, Val2] =true

[Es27] Vall * Val2
es[= Vall, Val2] = false

[Es28]
Vall = Val2

es[* Vall, Val2] = false

[Es29] Vall * Val2
es[* Vall, Val2] =true

end SML-ds

6. Compilation of ASPLE to SML
The compilation from ASPLE to SML is defined in the module ASPLE-SML.

Besides functions cp for compilation also a function exe on ASPLE programs is specified. Exe first
compiles an ASPLE program to an SML program and a value environment, then the SML program is
evaluated (Cl).

An ASPLE program is translated to an annotated ASPLE program and is thus typechecked before it is
compiled. Only the statements in an ASPLE program are translated to SML commands (C2). We consider
the compilation of expressions first.

C13 and 14 handle the compilation of dereferenced identifiers. It may seem strange not to have the same
translation for all the derefs but this is because the command ldo Id is equivalent to lao Id followed
by ind. For instance the compilation of deref deref w from example 6 is ldo w; ind, which may
be evaluated to:

Put the value of w, v in example 6, on the stack. Replace the identifier v on top of the stack by its value
u.

Note that the SML commands that correspond to a dereferenced identifier x with k 'derefs' can only be
evaluated if a chain exists from x to some y with n(y) = n(x) - k.

CIS-20 are simple. Remember that the operator takes as arguments the two top values from the stack and
returns the result. Since identifiers in expressions are dereferenced to their primitive modes C13 and C14
are used to compile expressions. This implies that R2 is checked when the SML commands are evaluated.

C13 and C14 are used again in the compilation of dereferenced identifiers in assignment, input and output
statements. Upon evaluation of the resulting SML commands R4b, RSb and R6 are checked.

In SML the read command cannot be typed so the mode of the given input value cannot be compared to
the mode of the identifier. This means R5a cannot be checked for compiled ASPLE programs.

In the compilation of if and while statements jumps, and as a consequence blocks and labels are needed
(C7-9). The result of compiling the if statement in the factorial program (example 1) is shown in example 8.

annotated statements

if
(deref x ::f:. 0)
then

while

end
fi

(deref z ::f:. deref x) do

z := deref z + 1;
y := deref y + deref z

25

compiled to

block(
ldo x; ldci 0 ::f:.;
fjp 1;
block(

lbl 1)

lbl 1;
ldo z; ldo x; ::f:.;
fjp 2;
ldo z; ldci 1; +; sro z;
ldo y; ldo z; *; sro y;
ujp 1;
lbl 2);

example 8

Note the double occurrence of lb 1 1. The first one is in the inner block and the jump u j p 1 refers to it.
The second one is in the outer block and the jump f j p 1 refers to this one.

module ASPLE-SML
begin

exports
begin

context-free syntax
exe ff[" ASPLE-PROGRAM ff]" with INPUT-> OUTPUT
cp ff [" ASPLE-PROGRAM "] ff -> SML-PROGRAM
cp " [" { STM " ; " } * "] ff
cp " [" EXP ff] "

and

imports
ASPLE-stat,
SML-ds

renamed by
sorts

PROGRAM => SML-PROGRAM
and renaming

variables
Decls -> {DECL ";"}*
Stm -> STM
Mode -> MODE
Nat -> NAT
Com -> COM
Op -> OPER
S, Sl, 82 -> STATE
I, Il, I2 -> INPUT

-> SML-PROGRAM
-> SML-PROGRAM

Var
Stms, Stmsl,
Exp,Expl,Exp2
Bool
Corns, Comsl,

K, Kl, K2
0, 01, 02

Stms2

Coms2

E, El, E2 -> VALENV Val, Vall, Val2
Le, Lel, Le2 -> LENV

equations

-- execution of ASPLE programs

[Cl]
... cp[begin Decls ; Stms end] =Corns

exe[begin Decls ; Stms end] with I= es[Coms] with I

compilation of ASPLE programs

->
->
->
->
->

->
->
->

{partial}
{partial}
{partial}
{partial}

VAR
STMS
EXP
BOOL
{COM ";" }+

EVSTACK
OUTPUT
VAL

[C2]
tr[begin Decls ; Stms end] = begin Decls; Stmsl end, cp[Stmsl] Corns

cp[begin Decls ; Stms end] = Corns

26

-- compilation of annotated statements

[C3]

[C4]

cp [Stm; Stms] cp[Stm]; cp[Stms]

cp[Id := Exp] cp[Exp]; sro Id

[CS] cp[tinput Var : Mode] = cp[Var]; s-read

[C6] cp[output Exp] = cp[Exp]; s-write

[C7] cp[if Exp then Stmsl fi] =
block (cp[Exp]; fjp 1; cp[Stmsl]; lbl 1)

[CS] cp[if Exp then Stmsl else Stms2 fi] =
block(cp[Exp]; fjp 1; cp[Stmsl]; ujp2; lbl 1; cp[Stms2]; lbl 2)

[C9] cp[while Exp do Stmsl end] =
block (lbl 1; cp[Exp]; fjp 2; cp[Stmsl]; ujp 1; lbl 2)

-- compilation of expressions

[ClO] cp[Bool] = ldci Bool

[Cll] cp[Nat] = ldci Nat

[C12] cp[Id] = lao Id

[Cl3] cp[deref Id] = ldo Id

[Cl4] cp[deref deref Var] = cp[deref Var]; ind

[Cl5] cp[Expl + Exp2] = cp[Expl]; cp[Exp2]; +

[Cl6] cp[(Expl * Exp2)] = cp[Expl]; cp[Exp2]; *
[Cl7] cp[Expl & Exp2] cp[Expl]; cp[Exp2]; &

[Cl8] cp[Expl Exp2] cp[Expl]; cp[Exp2];

[Cl9] cp[(Expl = Exp2)] = cp[Expl]; cp[Exp2]; =

[C20] cp[(Expl * Exp2)] = cp[Expl]; cp[Exp2]; *
and ASPLE-SML

7. Conclusions
We have given a complete specification of ASPLE in ASF+SDF: the syntax, the typechecker, a translation
to annotated programs, the dynamic semantics and the compilation to SML. This problem has also been
specified in Typol [CDDHK85]. Comparing the two specifications we can observe the following.

In Typol relations and inference rules are used where ASF+SDF has functions and conditional equations.
The definition of the syntax of functions in ASF+SDF is given in the context-free syntax section of mod­
ules. Predicates in the Typol specification, for instance-> and:, are predefined. Their syntax is not defined
explicitly but must be deduced from their usage in the inference rules. Other minor differences between the
two specifications concern the modular structure and the declaration of variables.

Specifications in ASF+SDF consist of one type of modules only. A module can import other modules by
using the import section or by binding parameters to sorts from other modules. The Typol specification
consists of two types of modules: "abstract syntax" and "programs". In programs "sets", sets of inference
rules, act as a kind of auxiliary modules. Programs can import abstract syntax modules using "Use", other
programs using "Import", and sets from other programs using "Import from".

27

In ASF+SDF long lists of variables have to be declared in some modules. (Note that [HHKR] presents a

method for abbreviating such lists). In Typol variables need not be declared when their type can be deduced

from the context.
In both fonnalisms one can specify the aspects of ASPLE we wanted to specify.

Acknowledgements
I wish to thank Paul Hendriks for answering all questions concerning ASF and the ASP-system, and for his

useful remarks on the specification. I also wish to thank Paul Klint for commenting on preliminary

versions of this paper.

References

[BHK85]

[BHK87]

[Bl\1L76]

[CDDHK85]

[CU73]

[HHKR]

[HK86]

[HK88]

[Hen87]

[Hen88]

[Hen]

[Kap87]

J.A. Bergstra, J. Heering, and P. Klint, "Algebraic definition of a simple programming

language," Report CS-R8504, Centre for Mathematics and Computer Science,
Amsterdam (1985).

J.A. Bergstra, J. Heering, and P. Klint, "ASF - an algebraic specification formalism,"
Report CS-R8705, Centre for Mathematics and Computer Science, Amsterdam (1987).

G.V. Bochmann, H.F. Ledgard, and M.Marcotty, "A Sampler of Formal Definitions,"
Computing Surveys, vol. 8, no 2, pp. 191-276, (1976).

D. Clement, J. Despeyroux, T. Despeyroux, L. Hascoet, and G. Kahn, "Specification in

Natural Semantics," in Generation of interactive programming environments - GIPE
Intermediate report, Report CS-8620, pp. D4.A2, Centre for Mathematics and Computer
Science, Amsterdam (1986)

J. Cleveland, and R. Uzgalis "What every programmer should know about grammar,"
Department of Computer Science, University of California, Los Angeles (1973).

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers, "The syntax definition formalism
SDF - reference manual," Centre for Mathematics and Computer Science, Amsterdam, to
appear.
J. Heering, and P. Klint, "A syntax definition formalism," pp. 619-630 in ESPRIT '86 -­
Results and Achievements, Directorate General XIII (Editors), North-Holland, Amsterdam

(1987), also as Report CS-R8633, Centre for Mathematics and Computer Science,
Amsterdam (1986).

J. Heering, and P. Klint, "Towards shorter algebraic specifications: a simple language
definition and its compilation to Prolog," pp. 365-379 in ESPRIT '88 - Putting the
Technology to Use 1, Directorate General XIII (Editors), North-Holland, Amsterdam
(1988), also as Report CS-R8814, Centre for Mathematics and Computer Science,
Amsterdam (1988).

P.R.H. Hendriks, "Typechecking mini-l\1L: an algebraic specification with user-defined
syntax," Report CS-R8737, Centre for Mathematics and Computer Science, Amsterdam,

(1987), Extended abstract in: Conference Proceedings of Computing Science in the
Netherlands, pp. 21-38, SION (1987).

P.R.H. Hendriks, "ASF system user's guide," Report CS-R8823, Centre for
Mathematics and Computer Science, Amsterdam, (1988), Extended abstract in:

Conference Proceedings of Computing Science in the Netherlands 1, pp. 83-94, SION
(1988).

P.R.H. Hendriks, "Lists and associative functions in algebraic specifications - semantics
and implementation," Centre for Mathematics and Computer Science, Amsterdam, to ap­

pear.
S. Kaplan, "Positive/negative conditional rewriting,"Technical report 87-10, Leibniz

Center for Research in Computer Science, Hebrew University, Jerusalem (1987).

