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Estimating the Weight Undersize Distribution for 

the Wicksell Problem 

Adriaan W. Hoogendoorn 

Centrum voor Wiskunde en lnformatica, 
Kruistaan 413, 1098 SJ Amsterdam 

Suppose that spherical particles are contained in some opaque body (so they cannot be 
observed), and one is interested in the distribution of their diameters. Examples of such 
situations come from geology and biology, if one is interested in oil-drops that are contained 
in a piece of rock, or carcinomas in mouse-livers. In these situations often the on I y 
information one can get is by making a cross-section of that body and measuring the circle 
profiles. The problem to estimate the distribution of the sphere-diameters from the observed 
circle-diameters is known as Wicksell's corpuscle problem. 
In this paper a review will be given of methods that have been applied to solve this problem. 
Also a study is made of an estimator for the Weight Undersize Distribution that was proposed 
by ENGELS (1986) by whom we came to this subject. 

Key words and Phrases: particle size distribution, smoothing, stereology, weight undersize 
. distribution. 
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1. REVIEW OF THE WICKSELL PROBLEM 

1.1 Introduction 

1 

WICKSELL (1925) derived a relationship between the distribution-functions F (of sphere-diameters) and G 

(of circle-diameters) under the assumption that the centres of the spheres are points of a Poisson process 

with intensity so low, that the spheres rarely intersect. Under this assumption two considerations lead to 

the relationship. First: the probability that a sphere is cut by a random section is proportional to its 

diameter, and second: conditional on the fact that a sphere is intersected, the distribution of the distance 

between the plane and the centre of the sphere is uniform. These considerations lead to the formula: 

(1) 

where 

(2) 

Report MS-R8811 

00 

G(y) = 1 _ l J .../ x2-y2 dF{x) , y>O, 
µy 

00 

µ := J x dF(x) 
0 
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is the expected sphere-diameter. Since this is an Abel-type integral equation it can easily be inverted, giving 

an expression of F in terms of G: 

(3) 

co 

1 - F(x) = 2µ f ...2Qlli.. , 
1t x --/ y2-x2 

where µ can be found by substitution of x=O. The same equations hold if we spoke about radii instead of 

diameters. Later is was proved that these equations still hold if a more general model is assumed in which 

the sphere-centres and -diameters form a marked point process in lR 3 which is stationary under translations 

(see BADDELEY, 1982). The sample (from one section) is no longer independent; hopefully this will only 

have a small effect on the results. 

That the problem is not solved by having obtained formula (3) is because this relationship holds for the 

true distribution functions (we have nothing more but a sample from G) and because the inversion is 

numerically ill-behaved. In this sense the Wicksell problem is called an ill-posed inverse problem, meaning 

that small changes in G may lead to substantial changes in the corresponding F. Another important notion 

is that not all G's can occur. Because equation (1) always can be differentiated, it follows that G will have a 

density 

(4) g(y)=.r. f ~ 
µ y -.J x2-y2 

no matter the character of F. Since g can be written as 

00 

f~ -g(y) = -f22 l[O,x)(Y) dF(x), 
X=O'I XL-y• 

where F is the distribution function of the sphere-diameters conditional on the sphere being intersected 

defined by F(x) = xdF(x)/µ, it follows that g is a mixture over X=x of density-functions k, where 

~ k(y;x) = _ r;;--; l[O,x)(y), 
'I x2-y2 

and where X follows distribution F (in fact there is a convolution structure behind this relationship, which 

will be made explicit in section 1.4). These observations may explain why estimating F by substitution of 

the empirical distribution-function of G into (3) gives a very unsatisfactory estimator, which is non­

monotone, takes arbitrarily large negative values, and is unstable under small changes in the data. 

Regularization, finding a solution that is consistent both with the data and with prior assumptions, should 

help in this situation (see TIITERINGTON, 1985 and O'SULLIVAN, 1986). A prior assumption that is 
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mainly made is that the solution must be smooth. Smoothing will therefore be a key-word in solving this 

problem. 

So many different approaches have been used to solve the problem that categories can be made. Following 

COLEMAN (1987) we come to half a dozen categories mentioned and explained in sections 1.2 through 1.7. 

1.2 Histogram, Finite difference estimators. 

The oldest technique for finding a solution is discretizing F (binning the sphere-diameters) so that equation 

(1) becomes a finite sum leading to a system of linear equations which can easily be solved (WICKSELL, 

1925; SALTYKOV, 1967; GOLDSMITH, 1967). The smoothing operation is based on grouping the data. 

The difference between the papers referred to lies in choosing the position of the histogram classes; 

choosing either the midpoints or upper limits of the upper limit of each class in the calculations (see 

TAYLOR, 1983). 

1.3 Product Integration. 

ANDERSSEN & JAKEMAN (1975) apply a numerical method using the inverse formula (3) and smoothing 

the empirical distribution-function Gn by a localized Lagrange interpolation before substitution. In its 

simplest form this means the substitution of the frequency polygon (the distribution function with density 

which is constant between the observed circle-diameters). A subclass of the thus obtained estimators is 

MSE-consistent and has finite variance (see COLEMAN, 1987). 

1.4 Kernel Estimators 

TAYLOR (1983) uses a kernel-estimator 

1 n 1 (Y-Yi) 
gnh(Y) := n .2. hK -h-

1=1 

(where K is some density-function) to estimate g and substitutes it into the inverse formula (3) to obtain an 

estimator for f. The smoothing operation here is to smear the probability mass l/n assigned to an 

observation symmetrically over its neigbourhood before transformation. TAYLOR recommends choosing 

the window-width dependent not only on the density of the observations, but also on the size of the 

observations, taking larger window-width in sparse data-regions and near zero. 

HALL & SMITH (1988) use·a kernel estimator to estimate the density function gi of the squared circle­

diameters, defined by g1(v) = (2v112t1 g(v112), and then transform it to obtain an estimator for the density 

function f1 of the squared sphere-diameters, defined by f1(u) = (2u112t1 f(u112). The relationship between 

these densities is given by 
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(5) 
1 00 1 

g1(v) = - f _ ,-f1(u)du, v>O. 
2µ v 'IU-V 

The transformation mentioned above is found by inversion of (5), giving: 

-2µ d 00 1 
f1(u) = -du f _,-g1(v)dv, u>O. 

1t u 'I v-u 

Their motivation to use squared diameters is that the relation between the densities of the squared circle- and 

sphere-diameters has a convolution structure which makes them easier to work with, as can be seen by 

rewriting (5) as 

00 lf-oo;OJ(V-U) 
g1(v) = f _r;--:- dF1(u), v>O. 

-oo 2µ'1 lv-ul 

Note that this is a convolution with a function k(x) = 1[-oo;OJ(x) (2µ lxl112r 1 which is not a probability 

density-function; but then this relationship only holds for v>O. The actual bandwidth of HALL & SMITH's 

estimator for g depends on the size of the observed diameter Yi (compare this remark with the 

recommendation of TAYLOR). To see this suppose a kernel is used with support [-1,1]. A classical kernel­

estimator smears the probability-mass assigned to an observation Yi over an interval lYi-h,Yi+h], while 

HALL & SMITH'S estimator 

1 n 1 (y2_y.2) 
gnh(Y) = 2y; .L h'K T 

l=l 

smears out the probability mass over a neighbourhood lYi-h',Yi+h1, where 

HALL & SMITH also prove a lower bound for the rate of convergence for estimating densities f1 with f1 and 

f1' absolutely continuous on [0,oo) and fi, f1' and f1" have an essential supremum that is bounded by a fixed 

number. It turns out that their, TA YLOR's and the following kernel-estimator achieve this lower bound. 

VAN ES & HOOGENDOORN (1988) use the notion that a kernel-density estimator can be defined as the 

derivative of a kernel-smoothing operation on the distribution function: 

d Joo 1 K(x-t) 
fnh(x) := dx' -oo h ~\ h Fn(t) dt. 
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In the classical situation Fn is the empirical distribution function, but here Fn is obtained by substitution 

of the distribution function of the circle-diameters Gn into equation (3). The smoothing operation can be 

interpreted as smearing out the transformed probability mass that was assigned to an observation. VAN ES 

& HOOGENDOORN also give a comparison study of the three kernel-based methods. It turns out that their 

estimator looks very similar to TAYLOR'S. This may be expected since their method is equivalent to 

TA YLOR's method in the following sense: regarding the right hand side of equation (3) as an operator T 

applied to the distribution-function G (F = TG), and denoting TA YLOR's smoothing operation by S, then 

the same solution will be found if VAN ES & HOOGENDOORN's method is applied using the smoothing 

operation TST -1. 

1.5 Splines 

NYCHKA, et al. (1984) use a cross-validated spline method to estimate the density f. By a partitioning of 

the positive halfline into intervals cPi>Pi+l) let the data {zi} be the fraction of observations from our 

sample in the i'th interval (i = l, .. ,m). The true fraction Si> which is Si = G<Pi+l) - G(Pi) can by (1) be 

written as 

00 00 

Si= Li(f/µ) := f ..J x2-P/ f(x)/µ dx - f ..J x2-Pi+12 f(x)/µ dx, 
Pi Pi+l 

thus defining a linear functional Li applied to f/µ. The model becomes Zi = Lih + £i (i=l, .. ,m), where the 

authors assume that the {ei} are independent zero-mean random variables with common variance. 

Estimators off/µ are obtained by minimizing 

over functions h, where the first part forces the solution to stay close to the observations and the second 

part forces the solution to be smooth. The trade-off between these two effects is guided by the smoothing 

parameter A.; putting A. zero means that classical interpolation is used, since no smoothness is demanded, 

while letting A. go to infinity leads to the use of classical linear least squares, since the second term is zero 

if and only if h is linear. If A. is somewhere between 0 and oo then it is known that the solution is a 

piecewise cubic polynomial (a cubic spline). NYCHKA, et al. suggest that A. should be chosen by cross­

validation. Some criticism can be made. First: because the { ei} are not i.i.d. random variables why not use 

a generalized least squares method used instead, since the covariance structure can easily be estimated. 

Second: why discretize in advance and then use a Penalized Least Squares method, instead of estimating the 

density f directly by the Maximum Penalized Likelihood (MPL) method on the pure data. The MPL-
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estimator for the classical situation (where the observations come from the density under interest) is found 

by maximizing the functional 

n 
l (t) = L log f(xi) - a R(t), 

i=l 

where R is a functional (sometimes called the "Roughness-penalty") that can be chosen according to prior 

information, and a is the smoothings-parameter. An example of a Roughness-penalty is 

" R(t) = J (f(m)(x))2 dx, (m ~ 2), 

where polynomials of degree m-1 have no penalty (are "infinitely smooth") and where it is known that the 

solution is a spline of degree 2m- l. Another example is 

00 3 2 
R(t) = l (~log f(x)) dx, 

where a Gauss-function is infinitely smooth, and solutions are forced to take a shape which is close to it. 

Because in the Wicksell problem we have observations from g, but are interested in f, we substitute (4) 

into the functional l giving: 

l (t) = £ log {Yi f ~}- a R(f), 
1=1 µYi x -Yi 

to be maximized over all densities f. Future research is needed to find an efficient way of (approximately) 

solving this equation·numerically. 

1.6 EMS-algorithm 

WILSON (1987) uses a smoothed EM-algorithm to find a histogram-estimator for f, behaving as if the 

spheres are distributed according to a spatial Poisson-process with unknown intensity A.. Her method 

combines the EM-algorithm, an iterative procedure to find maximum-likelihood estimators in so-called 

"incomplete" -data problems (which will be explained later), with simple smoothing. 

Given a partition of the range of possible circle-diameters into N intervals, let our data be ny = {ny(i), 

i=l, .. ,N}, the numbers of observed circle-diameters in each interval. From this data we want to find a 

histogram estimator for f; therefore we discretize f by making a partition of its (bounded) support into M 

equal intervals (of length hM) and suppose that f takes a constant value on each interval. Then the sphere 

intensity A.fat a given diameter x in the j'th interval (j = 1, .. M) is 
' 



<p(j) 
Af(x)=­

hM 
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where <p(j) is the expectation of nx(i), the numbers of spheres in the j'th interval, which we cannot observe 

but for which we know from the original Poisson process assumption that they are Poisson distributed 

random variables with expectation <p(j), and 

M 

I. cp(i) =A.. 
j=1 

Let N(i,j) (i=l, .. ,N, j=l, .. ,M) be the number of spheres with diameter in interval j, that are recorded as 
M N 

circles with diameter in interval i. Note that ny(i) = I, N(i,j) (i=l, .. N), but nx(j) * I, N(i,j) (j=l, .. M), 
j=l i=l 

since not all spheres are intersected. Let further p(i,j) (i=l, .. ,N, j=l, .. ,M) be the conditional probability that 

a sphere with diameter in interval j will be recorded as a circle with diameter in interval i. It follows that 

the random variables N(i,j) (i = l, .. ,N, j = 1, .. ,M) are Poisson distributed with mean 

E[N(i,j)] = <p(j) p{i,j), 

where the probabilities p(i,j) are theoretically known. The N(i,j)'s are sufficient for the cp(j)'s, but 

unknown. To estimate the parameter vector cp (and thereby f) from our data ny (which is "incomplete" in 

the sense that the information from what sphere the circle was obtained is lost) the EM-algorithm (fully 

described in DEMPSTER et al. 1977) uses the known likelihood of the complete data Log (NI cp), which is 

a function F ( t(N) , cp ) of cp and of the sufficient statistic t(N) given by 

n 
t(N)j = L N(i,j) (j = l, .. ,M) 

i=l 

in which it is linear(!). Let 'Pp be the estimator for the parameter vector cp after p iterations, then this 

algorithm proceeds as follows: Calculate 

M 

tp := E[ .L N(i,j) I ny, 'Pp], 
t=l 

(Expectation-or E-step), and then maximize 

to obtain 'Pp+l (Maximization- or M-step). The convergence properties of the EM-algorithm are known 

(see WU, 1983, and VARDI et al., 1985). Since it turns out that in this situation the algorithm converges 

very slowly and gives very unsmooth solutions WILSON suggests adding a third step, a Smoothing- or S-

,, 
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step, into the algorithm. The smoothing step consists of taking weighted averages of the cpp(i)'s with its 

neighbours. Though no convergence properties are proved for this EMS-algorithm, Monte Carlo 

simulations suggest that the method works nicely. 

1.7 Non-parametric maximum likelihood 

Inspired by the Wicksell problem VAN ES (1988) and VAN ES & GROENEBOOM (1988) consider the 

problem of recovering a distribution function from a convolution. In that situation we have observations 
V 1, .. ,V n from a distribution function G which is a convolution of two other distribution functions K and 

F: 

00 

G(v) = J K(v-u) dF(u), 

where we assume that K is known and that Fis uniquely determined by G and K. Results are obtained 
showing lower bounds for a local minimax-risk for estimation of F at a fixed point xo for different choices 

of K. It turns out that the rate of convergence depends on smoothness properties of K (being worse for 

smooth K). As an example a nonparametric maximum likelihood estimator (NPMLE) for F is derived in 

the case that K is a uniform distribution. The presented distribution theory for this estimator suggests that 

the lower-bound is sharp. In the case of the Wicksell problem a convolution structure appears in the 

relationship between the squared diameters (see section 1.4, HALL & SMITH). If we assume that F has 

support [0,1] equation (5) implies that the log-likelihood is given by 

where y = 2µ can be written as 

1 1 

Y= J J (v-ut112 dF1(v) du. 
1 

The situation differs from the problem above since here we have no convolution with a distribution 
function, and we have the extra parameter y. The NPMLE for F1 is a discrete distribution function, with 

masses a.2, .. ,a.n at the (ordered) points V2, .. ,Vn. This means that we maximize: 

where (defining Vo=O and a.1 =0) 



n n 
"(= L L 2<Xj {(Vj-Vi-0112 - (Vj-Vi)112} 

i=lj=i 

n 
=2L a·V· 112 

. 2 J J 
J= 

9 

The maximizing vector a= (a.2, .. ,an) can be found using gradient projection algorithm. Though no theory 

is given for this estimator, a rate of convergence faster than n-113 is expected, because of the peakedness of 

the function K(u) = (u-Vi)-112. Notice that no smoothing-operation has been used here. If one is interested 

in the density f, a kernel estimator can be defined by differentiating the smoothed version of this NPMLE 

(see section 1.4, VAN ES & HOOOENDOORN). 

2. ESTIMATING THE WEIGHf UNDERSIZE DISTRIBUTION. 

2.1 Introduction 

In this section we are interested in estimating the Weight Undersize Distribution (WUD) of the spheres at a 

certain point. By the WUD we mean the fraction of the volume (or weight) that is contained in spheres 

smaller than a certain diameter. Here we were motivated by ENGELS (1986) who needed to estimate 

precisely this quantity for certain practical purposes. 

The formal definition of W(z), the WUD in a point z, is 

(6) 

z 
W(z) := .!.. J x3d.F(x), 

µ3 0 

where µ3 is the third moment of F. By substitution of (3) we find an expression of the WUD in terms of G 

(see WATSON, 1971): 

(7) 

z 00 

f J y2dG(y) + !.J { 3y2sin-I(!.)-~- 3zV y2-z2} dG(y) 
O 7tz Y .../ y2-z2 

W(z) 

In the sequel we will frequently refer to the first, second, third and fourth term of then numerator of (7) and 

its empirical counterpart by considering the second integral here as the sum of three terms. 

The most straightforward estimator for the WUD is to substitute the empirical distribution function Gn 

into equation (7). Unfortunately this estimator may take negative values and turns out to have an infinite 

variance; these and other properties of this estimator are discussed in section 2.2. In section 2.3 we will 

consider an estimator proposed by ENGELS (1986) which has a firlite variance. This estimator is obtained 
" 
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by smoothing the empirical distribution function locally at its singularity-point z before substitution. For 

convenience we will also introduce the following notation: 

(8) 

(9) 

y>z 

y::;;z; 

00 

'tz :=Ea Tz{Y) = J Tz(y)dG(y) 

1t 
=-(1-F(z)), by (3). 

2µ 

2.2. Substitution of the Empirical Distribution function. 

Substitution of the empirical distribution function Gn for G gives us the following estimator for W(z) 

(10) 

in L Yi2 + _1 L 3yi2sin-l(z.) - 2z3 -3z~ 
Yi~Z 1tn Yi>Z Yt '1YR 

Wn(z) = -------....... -------------"-..L ~ y·2 
2n '4 1 

1 

In this paragraph we will consider some properties of this estimator. 

(i). Wn(z) may take negative values. A circle-diameter close to z may make the third term in the numerator 

of Wn(z) and thereby the estimator itself very negative. 

(ii). Wn(z) is a ratio of random variables with finite expectation. Under the assumption that the sphere­

diarneters have a finite third moment (which is made by defining the WUD) the first term of the numerator 

and the denominator will have finite expectation, because the circle-diameters will have a fmite second 

moment. (see Appendix). The expectation of the third part of the numerator has a finite expectation because 

by (3) we know that 
1t 

Ea Tz(Y) =-(1-F(z)). 
2µ 

For the first and third term of the second part of the numerator it is clear that they have a fmite expectation. 

(iii). W n(z) is a strongly consistent estimator. This follows now from the strong law of large numbers 

applied to the numerator and denominator separately. 

(iv). Wn(z) has an infinite variance. We consider the second moment of the third term of the numerator, and 

assume that F(z) < 1, so that the distribution of the sphere radii has a positive probability mass on (z,oo). It 
follows that on an interval (z,z+£), for certain £>0, the density g is positive: g(y) ~ Ce > 0 for ye (z,z+£). 

The variance ofWn(z) will then be infmite since 
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00 

1 Z+£1 [ 1 ( z) JY=Z+£ 
E Tz2 = J~G(y) ~ Ci; f~Y = Ci; -2 log ~ = 00• 

y2-z2~ y2-z2~ z y+z 
z z Y=Z 

(v). Asymptotic Normality: WATSON (1971) shows how it is possible to prove asymptotic normality for 

this estimator. Under the condition that J00 

dF(x) and J
00

_ ~ are bounded, it follows that: 
x '/ x2-z2 z 

where 

We remark that this result can also be inferred from theorem la(i) of FELLER (1971), p 313. Notice the 

factor-'>/ n/logn, lower than the usual ...Jn.-rate. It follows by an application of the &-method that: 

where 

( 
logn 4z6cr2T ) 

Wn(z) =AN W(z) ; n 1t2 ~2 , 

Y2 2µ3 
f3:=Eo =-. 

3µ 

2 .3. Srrwothing the Empirical Distribution function. 

By locally smoothing the empirical distribution function before substitution into (7) we hope to find an 

estimator for the Weight Undersize Distribution that is less sensitive to observations that are close to the 

point of interest. To estimate the WUD in a point z, we will smooth on the interval [z,z+h] (for certain 

positive h), thus overcoming the singularity in T z. In a picture: 

z z+h 

In formula: 

(11) Gnh(y) := Gn(Y) l(O,z)u(z+h,oo)(Y) + ( Gn(z) + y~z )Gn(z+h-Gn(z)}) l[z,z+h](Y) 

We define a new estimator Wnh(z) for W(z), by substitution of Gnh into formula (7). 
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(12) 

Later we will choose h as a function of n such that our estimator will be consistent and optimal (in MSE­

sense ). The setup of this paragraph will be as follows: in a first lemma something will be said about 

estimating Tz, the term containing the singularity. Then estimators for the numerator and the denominator 

of (12) will be considered in a second lemma. Some properties of the estimator Wnh(z) will finally be 

summarized in a theorem. 

00 

Define as an estimator for 'tz = J T z(y)dG(y), 

(13) 

co z+h 
h J h Gn(Z+h)-Gn(Z) J 1 

'tz := Tz(y)dGn (y) = h Tz(y)dy + n L Tz(yi) 
0 z ~~ 

LEMMA 2.1. Under the assumption that G has a density g with continuous second derivative in a 

neighbourhood [z,z+e], £>0 of z, we can make the following statements about the bias and variance of 'tzh: 

(a) bias 'tzh = g'(z) (2zt112 h3/2 + O(h2), as h~O; 

(b) var 'tzh = - n-1 g(z) (2zt1logh + n-lO(l), as h~O; 

(c) 

(d) 

(14) 

PROOF 

For a sequence (hn) with hn~O and -n- 1loghn~O 'tzh is a consistent estimator; 

The sequence (hn) that minimizes asymptotically the mean square error (MSE) is 

hn = t ((g~{:})2 )1'3 
n-113 

and in that case MSE = f g(z) (2z)-l n-llogn + O(n-1) , n~oo. 

co 

bias 'tzh = E'tzh - 'tz = E J Tz(y)dGnh(y) - f Tz(y)dG(y). 
0 0 

Substitution of the empirical distribution function will give an unbiased estimator, so: 

z+h z+h 
bias 'tzh = E f Tz(Y) dGnh(y) - f Tz(Y) dG(y) 

z z 

z+h Gn(z+h)-Gn(Z) z+h 
= E f Tz(Y) h dy- f Tz(Y) dG(y) 

z z 
. z+h z+h 

= G(z+~-G(z) f Tz(Y) dy - f Tz(y) dG(y), 
z z 

by Fubini's theorem. Since we supposed a density with second derivative: 
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1 1 
G(z+h) = G(z) + hg(z) +zh2g'(z) +6h3g"(~1), ~1 E {z,z+h); 

dG(y) = g{y) dy, 
1 

g(y) = g(z) + (y-z) g'(z) +z(y-z)2g"(~), ~2 E (z,y). 

Substitution gives: 

bias 'Czh = {g(z) + ~ hg'(z) + t h2g"(~1)} J~z(y) dy 

- 7~z(Y) {g(z) + (y-z)g'(z) + ~ (y-z)2g"(~2)}dy 
z 

={i hg'(z) + th2g"(~1)} J~z(Y) dy 

z+h z+h 

- g'(z) f (y-z)Tz(Y) dy + g"(~21) f (y-z)2Tz(y) dy, ~2· E [z,z+h]. 
z z 

The last equation holds, since we supposed that g has a continuous second derivative and we are integrating 
z+h z+h 

over a bounded interval. In order to study the terms JTz{y)dy and f(y-z)Tz(y)dy define functions cp and 'I': 
z z 

z+f 
cp(y) := f T z(y)dy = 2(2zt112y + O(y2), as y~. 

z 

since cp(O) = 0, cp'(O) = 2(2zt112 and cp"(O) < oo. It follows that 

z+h 
(15) JTz(y)dy = cp(hll2) = 2(2z)-112 hl/2 + O(h), as h~O; 

z 

z+f 
'lf('Y) := f Tz(y)(y-z)dy = 4(2zt112 y3+ O(f), as y~, 

z 

since 'lf(O) = 'lf'(O) = v<2>(0) =0, wC3>(0) = 4(2zt112 and wC4>(0) < oo. It follows that 

z+h 
JTz(y)(y-z)dy = 'lf(h112) = 4(2zt112 h3/2 + O(h2), as h~O. 

z 

z+h 
Since f(y-z)2Tz(y)dy is bounded by h'lf(hll2), substitution of the expansions of cp and 'I' proves (a): 

z 
bias = -3 g'(z) (2ztl12 h3/2 + O(h2). 

If h tends to zero, the variance of 'Czh will tend to infinity. We are interested in the rate of convergence. 

(16) h · (Gn(Z+h)-Gn(Z) z+h ) (1 ) 
var 'tz = var h JTz(y}dy + var n 1:,Tz(Yi) 

z Y'j>Z+h 

+ 2 COY (Gn(Z+~-Gn(Z) ZJ~z(y)dy; ~ 1:.Tz{Yi}) 
z Y'j>Z+h 
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We will first study the second term of the right hand side of equation (16) and show later that the other 

terms are of a lower order. 

For the second moment of T z(Y 1) l(z+h,co)(Y 1) we can state: 

E(Tz2(Y1) l(z+h,oo)(Y1)) = ~~) logh + 0(1), ash~ 0. 

To show this, we treat the integration-areas (z+h,z+l) and (z+l,oo) separately: 
z+l co 

E(Tz2(Y1) l(z+h,co)(Y1)) = f Tz2(y) dG(y) + f Tz2(y) dG(y). 
z+h z+l 

The second integral 

f Tz2(y) dG(y) ::=;Tz2(z+l) = 0(1), as h~O, 
z+l 

since T z is monotonous decreasing. For the first integral we get from the assumption that G has a density 

with a continuous second derivative that dG(y) = (g(z) + g'(z)(y-z) + g"(~)(y-z)2)dy , where ~ e (z,z+h), so 

that for certain ~·e (z,z+h): 

z+l z+l z+l z+l 2 f Tz2<Y> dG(y) = g(z) f lzz dy + g'(z) f ~~~2 dy + g"(~'> f <rz~12 dy 
z+h z+h z+h Y z+h Y 

= - gJ~) logh + 0(1), as h~O. 

As the expectation of T z(Y 1) is bounded for all h>O: 

The first term of (16): 

Gn(Z+h) - Gn(Z) 1 

( 
z+h ) c+h J var h J Tz(y)dy = h2" J Tz(y)dy var(Gn(z+h)-Gn(z)) 

= n-1 2z-l g(z) + n-lO(h) = n-lO(l) , as h~O. 



15 

because of (15) and because p = G(z+h) - G(z) can be written as: p = hg(z) + 0(h2). The statement (b) now 

follows from the Cauchy-Schwartz inequality. The consistency (c) follows from (a) and (b).The optimal 

choice of hn follows from minimizing the leading terms of the MSE : 

(-3g'(z))2 (2ztl h3 - n-lg(z)(2ztllogh. 

Putting the derivative (with respect to h) zero gives: 27(g'(z))2 (2z)-1h2 = n-1g(z)(2zt1h-1, with solution: 

- ~ -1/3 1(~)113 hn - 3 (g'(z)) n . 

Substitution gives: 
1 

MSE = 3g(z) (2ztl n-llogn + O(n-1), n~oo. D 

In order to study properties of Wnh(z), we will consider the numerators and the denominators of (7) and 

(12) seperately, writing 

(17) 

and 

(18) 

<X 
W(z) =: fi"' 

Ah 
W h(z)-·-n-n -. h. 

Bn 

LEMMA 2.2. Under the assumption of lemma 1 together with EpX5<oo, the following statements about 

Anh andBnh as estimatorsforaand~ as defined in (17) and (18) holdforn~ andh--X): 

(a) bias Bnh = O(h2); 

(b) var Bnh = O(n-1 ); 

(c) bias Anh= g'(z) (2z)-112 h3/2 + O(h2); 

(d) var Anh= -n-1 g(z) (2ztllogh + O(n-1). 

PROOF b. B h G(z+h)-G(z) zJ+h2d zJ+h2dG(y) 
1as n = h y y- y , 

z z 

by the same arguments as used in the proof of lemma la Since 

z+h 
J y2dy = 0(h2) as h--X), 

z 

a Taylor-expansion of G(z+h) and G(y) around z will lead now to (a). Under the assumption that Ep:XS < oo, 

(see Appendix) var Bnh exists and is O(n-1), independent of h, implying (b).The first term of the 

numerator of Wnh is unbiased. For the second and the fourth term it follows by the same arguments as 

used in proof (la) that their bias is 0(h2). Together with lemma 1 this implies (c).Under the assumption 
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that EpX5 <=,the variance of the first, second and fourth term is O(n-1). Lemma 1 and the Cauchy-

Schwartz inequality then gives (d). O 

THEOREM 2.1. Under the assumption that G has a density g with continuous second derivative in a 

neighbourhood [z,z+E], E>O of z, and F has finite fifth moment, we can make the following statements 

about the estimator Wnh = Anh/Bnh· 

(a) 

(b) 

(19) 

For a sequence (hn) with hn~O and -n-1loghn~O Wnh is a consistent estimator. 

The sequence (hn) that minimizes asymptotically the mean square error (MSE) of Anh is : 

hn = r(C:.{:})2)1'
3 
n-113 

and in that case 

MSE (Anh)= rg(z) (2ztl n-liogn + O(n-1), n~=. 

while 

which is of a lower order. 

PROOF. The theorem is a direct consequence oflemma 2. 0 

REMARK 2.1. We would have liked to have proved: MSE (Wnh) = 3~2 g(z) (2ztl n-llogn + O(n-1), n~=. 

However this doesn't follow from (b), since Bnh can be arbitrarily close to zero and E[l/Bnhl = oo. 

Nevertheless we can prove that if we choose h = O(n-113) the mean square error of W nh is of an order equal 

or less than n-213. Therefore we use that IWnhl is bounded (with probabilty 1) by a non-random term that is 

O(nl/6) as n~oo. Then it follows that 

MSE (W h) = E [ Anh - ~ ]2 = E [ Anh-a - Anh(Bnh-J3) ]2 
n Bnh J3 J3 BnhJ3 

~ E [ An;-a r + E [z:: Bn;-J3J + 2E [I An;-a 11 z:: Bn;-J31 J 

~ ~ ( E[ Anh-a ]2 + E[ Bnh-J3 ]20(n113) +2E [!Anh-al 1Bnh-J31 ] 0(n116) ) 

= O(n-213), as n~. 

To prove that IWnhl has a nonrandom upperbound which is 0(n116) as n~oo (with probability 1), or 

(because of our choice of h) O(h-112) as h~O (w.p. 1), we will consider three situtations. First: Suppose 

all observations Yi~ z (i-=l, .. ,n). In that case Anh= Bnh and Wnh = 1. Second: Suppose there is exactly 

one observation Yi> z. Then Bnh > z2n-1. Since by definition Anh< Bnh and Bnh > 0, it follows that 

Wnh ~ 1 (w.p. 1), so IWnhl can only take large values if Anh is negative. Therefore we are interested in 
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finding an upperbound for -Anh· If h tends to zero then -Anh will tend to infinity since its behaviour 

depends on the third term t3, 
co 

t3 = J 2z31t'"l (y2-z2)-112dGnh(y). 
z 

To study this term we consider the cases z <Yi< z+h and Yi;;::: z+h separately. If Yi> z+h, then t3 = 

2z31t'"ln-1 (Yi2-z2t112 ~ 2z31t-ln-1 ((z+h)2-z2y112 = n-lO(h-112), as h~O. If z <Yi~ z+h then the density on 

the smoothing-interval is (nh)-1, and by (15): 

z+h 
t3 = 2z31t-l(nhtl f (y2-z2y112dy = n-lO(h-112), as h~O. 

z 

In both cases -Anh is bounded by a term that is n-lO(h-112), ash~ (w.p. 1). But then IAnhl is bounded 

by a term that is n-lO(h-112), ash~ (w.p. 1), and IWnhl is bounded by a term that is O(h-112), as h~O 

(w.p. 1). The third situation: Suppose there are M (stochastic many) Yi's > z. In that case Bnh is bounded 

by Mn-10(1), as h~O, and IAnhl is bounded by Mn-10(h-112), as h~O. But then IWnhl is bounded by a 

nonrandom term that is O(h-112), as h~O (w.p. 1). 

REMARK 2.2. W nh may take negative values. In practice the estimator W nh* will be used, which is W nh 

truncated to [0,1]. Since Bnh > (OvAnh), Wnh* can be defined as 

W h* ·-[Anh] 
n ·-"'iiJl· 

where [Anh]:= OvAnh. The mean square error for this estimator 

MSE (W h*) ~ E [ [Anh]-a ]2 E [[Anh] Bnh-~]2 2E [ I [Anh]-a 11 [Anh] Bnh-~ I J 
n ~ J + Bnh ~ + ~ "'iiJl ~ 

~ ~ ( E[ [Anh]-a ]2 + E[ Bnh-~ 12 +2E [ l[Anhl-al IBnh-~I ] 

~ ~ ( E[ Anh-a 12 + E[ Bnh-~ ]2 +2E [ IAnh-al IBnh-~I ] 
1 = 3~2 g(z) (2zt1 n-1Iogn + O(n-1), n~ 

REMARK 2.3. The optimal order n-113 for the bandwidth hn is the same order as found for the classical 

histogram-estimator. To be more precise: Let g be a density with bounded support and continuous 

derivatives up to order three (except at the endpoints), then for general x (not a midpoint of an interval) the 

optimal bandwidth hn * in MSE-sense is: 

* g(z) -1/3 3 
( )

113 

hn = 4(g'(z))2 n = 4fIT hn ' 
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(see TAPIA & THOMPSON, 1978). Still the situations are very different: the optimal MSE for histogram­

estimators is O(n-213), but for our estimator Wnh it is O(n-1Iogn). 

REMARK 2.4. Since the optimal bandwidth depends on the unknown density g, it is not possible to 

determine it. But because of remark 1 we may use a similar rule to that often suggested for roughly 

optimal bandwidth choice of histogram estimators: choose h twice the interquartile-range of Gn divided by 

the cube root of n (see FREEDMAN & DIACONIS , 1981). Reducing this by the same factor 4113/3 leads to 

the suggestion: 
h _ 6 interquartile-range 

n - (4n)113 

REMARK 2.5. A popular technique for measuring how accurate an estimator is, is the bootstrap method. It 

is a general method that uses numerical analysis (actually computer simulations) instead of theoretical 

analysis. The bootstrap method has been useful in many cases where usual asymptotic distribution theory 

is too complicated to be applied (see EFRON & TIBSHIRANI, 1986). 

It has been proved that the bootstrap method works in many cases where the estimators have a convergence 

rate of-{;;.. The question is how does the method behave if it is applied on the estimators W n (based on 

substitution of the empirical distribution function) and W nh (based on substitution of a locally smoothed 

estimator). ATHREYA (1987a) showed that the bootstrap method fails if the method is applied to the mean 

of observations that have an infinite variance and belong to the domain of attraction of a stable law of order 

a, where 0 <a< 2. However in the case of a normal limit (a= 2) the bootstrap method works (ATHREYA 

1987b), even when the observations have an infinite variance. This latter result implies that the bootstrap 

"works" for estimating the distribution of 

(20) 

(in the weak sense of being asymptotically valid in probability). The bootstrap version of (20) is given by 

where s2 denotes the sample variance of the T z(Y i)'s, and (Yi .. Y~) is a random sample (with replacement) 

from the empirical df Gn of the Yi'S. Since P(Tz(Yi) ~ x) = G(z) + 1 - GcV z2+x-2 ) = 1 + O(x-2), as 

x~oo, it can easily be verified from Theorem 1 of KLASS & TEICHER (1977) that-{;;_ is of order - lfll n 
s -" ~ 

in probability. This, however, seems to imply that the bootstrap will also work (in the weak sense of 

being asymptotically valid in probability) in estimating the distribution of 
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(21) cr;f '1 io~n CWn(z) - W(z)). 

The bootstrap version of (21) is given by 

~ * - CWn(z) - Wn(z)), 
s 

where Wn(z) is obtained from Wn(z) by simply replacing the Yi's by the Yf's in formula (10). The reason 

that the bootstrap works here is that the delta-method argument used in 2.2.(v) is again applicable. 

3.APPENDIX 

PROPOSITION 3.1. EG yzn exists under the assumption that EpX2n+l exists. 

PROOF: Substitution of Wicksell's formula (1) into the definition gives: 

oo oo oo 2n+ 1 ffx\ 
EGy2n = J y2n dG(y) = J f ~~dx dy 

y µ "'x2-y2 
00 x 

1 1 
= -J f(x)J y2n+ 1 --dy dx , 

µ "'x2-y2 

by Fubini's theorem, 

= l s°°x2n+lf(x) { r (y/x)2n+l 1 l/x dy} dx 
µ 0 O "'1-(y/x)2 

=- f x2n+lf(x) f --du dx 1 
00 

( 

1 
u2n+l ) 

µo o "'1-u2 

n ( 2k ) 1 
00 

= IT -- -J x2n+l f(x) dx. 
k=l 2k-1 µ 
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