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1. INTRODUCTION 

The core of the concept of B-convergence is the derivation of stiffness-independent bounds for the 
global discretization errors of Runge-Kutta methods applied to nonlinear initial value problems [12]. 
The theory is based on a well known class of testproblems <ffµ, introduced by DAHLQUIST [7], where 
µ.ER is a measure of dissipation. The main object of this paper is to determine necessary and 
sufficient conditions for having B-convergence on ~" in terms of algebraic relations on the coefficients 
of the Runge-Kutta methods. 

Sufficient conditions were presented already by FRANK, ScHNEID and UEBERHUBER [13], [14]; they 
showed that if the method is algebraically stable and also satisfies a slightly different algebraic 
condition-known as "diagonal stability" in matrix theory [I], [2] - then it is B-convergent on <ffµ for 
arbitrary µEIR. In this paper it will be proved that for µ.~O these two conditions are necessary as 
well, under some mild apriori assumptions on the method. This result shows that there can be a 
different behaviour of methods when applied to dissipative problems (µ.=O) or to strictly dissipative 
problems (µ.<0), as it is known from the work of SPUK.ER, DEKKER, K.RAA.uEVANGER and SCHNEID 
[21], [10], [20] that for µ<0 algebraic stability on its own is already sufficient, and also necessary, for 
B-convergence on <ffµ. 

After some preliminaries in Section 2, the results on the algebraic characterization of B-convergence 
will be presented in Section 3. In order to prove these results, an algebraic criterion for the internal 
stability concept ES-stability is needed; this will be given in Section 4. 
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2. PRELIMINARIES 

2.1. The class ~ 
In this paper stiff nonlinear initial value problems 

y'(t) = f(t,y(t)) (for O~t ~ 1 ), 

y(O) =Yo 

(2.la) 

(2.lb) 

are considered, where f :[O,l]Xcm~cm and y 0 ECm are given. We shall be concerned with error 
bounds for numerical approximations measured in the Euclidian norm lul=(u,u)112 where (u,v)=u*v 
denotes the standard inner product on cm for arbitrary m EN. 

It will be assumed that the function f satisfies a one-sided Lipschitz condition 

Re (f(t,u)-f(t, v),u-v) ~ µ.lu -vl2 (for all t E[O, 1] and u, v ECm), (2.2) 

with a constant µ.ER, the one-sided Lipschitz constant. The class of all functions f :[O, l]xcm~cm 
with m EN which satisfy (2.2) will be denoted by~· For continuous functions fthe condition (2.2) is 
equivalent with stability of the differential equation (2.la), in the sense that for any two solutions ji 
andy, 

[ji(t+h)-,J?(t +h)I :i;;;; eµh[ji(t)-y(t)I (for O~t~t+h~l), (2.3) 

as can be seen from [ll;Sect.1.2], for example. If µ.=O (or µ.<0) the initial value problem (2.1) is said 
to be (strictly) dissipative. The conventional Lipschitz constant L of fE~ may be arbitrarily large, 
which makes the class ~ useful as a test class for the analysis of numerical schemes for stiff nonlinear 
problems. 

The results of this paper would remain valid if only real initial value problems, with 
f:[O,l]XRm~Rm,y0 ER"'", were considered. Although a restriction to real problems is more natural, 
working in the complex space cm has the advantage that some proofs are easier to formulate. Any 
problem in cm can always be written as a real one with dimension 2m, by identifying C with R2 in 
the usual way. We also note that arbitrary inner products <·,.> on cm might be considered as well; 
the restriction to the Euclidian inner product has only been made for notational convenience. 

2.2. The implicit Runge-Kutta methods 
For the numerical solution of initial value problems (2.1) we consider implicit Runge-Kutta methods. 
Let h>O be the stepsize and tn=nh for n=0,1,2, ... and nh~l. Approximationsyn toy(tn) are com­
puted from the scheme 

s 
Yn = Yn-1 + h""£Af{tn-I +c;h,Yf), (2.4a) 

i =I 

s 
Y7 = Yn-1 + h~a;jf(tn-1 +cjh, Yj) (l~i~s). (2.4b) 

j=I 

Here, s EN is the number of stages, and aij,b;,c; are real parameters defining the method. For con­
venience it will be assumed that all c; E[O, l]; otherwise, some of the definitions would need 
modification (for example, the function f (t,y) then had to be defined for values t outside the integra­
tion interval [O, I]). Almost all well known Runge-Kutta methods are such that the abscissas c; are 
different; such methods are called nonconfluent. 

Consider the sXs matrices A =(aij), B=diag(b 1, ••• ,b.), and the vector b=(b 1,. • .,b.fER3 • The 
Runge-Kutta method (2.4) is said to be algebraically stable if 

B and BA + AT B - bb T are positive semi-definite . (2.5) 

This algebraic condition, introduced in [3] and [5], is known to be equivalent for nonconfiuent 
methods to the following unconditional contractivity property, called B-stability, 
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(2.6) 

for any two sequences of approximations computed by the Runge-Kutta scheme (2.4) with different 
starting values y 0 and y 0. Note that (2.6) is the discrete analogue of (2.3) for µ = 0. 

In order to treat also the effect of perturbations of the internal stages (2.4b ), a slightly different 
algebraic condition was considered in [13}, 

there is a diagonal matrix D such that D and DA + AT D are positive definite. (2.7) 

Both conditions (2.5) and (2.7) will tum out to be essential for having error bounds independent of 
the stiffness. For important classes of Runge-Kutta methods it is known whether (2.5) and (2.7) are 
valid, see [9], [11], [13] (cf. also Section 3.3). 

REMARK 2.1. For any given Runge-Kutta method it is straightforward to check whether (2.5) is 
satisfied. Some necessary and sufficient conditions for (2.7) to hold can be found in [l] and [2]. For 
example, it is known that (2.7) implies that all principles minors of A are positive, and this is also 
sufficient in case s =2. If A is triangular, then (2.7) holds iff all aii >0. Furthermore, (2.7) implies 
that for any principal submatrix A' of A and any positive diagonal matrix D', all eigenvalues of D'A' 
have a positive real part . 0 

Let ck=(df, ... ,c~fEl!f' for kEN and c0 =e=(l, ... ,lf. The stage order q of the Runge-Kutta 
method is defined to be the largest integer such that 

kbT ck-I = 1 and kAck-I = ck fork= 1,2, ... ,q. (2.8) 

Values of q for various classes of Runge-Kutta methods can be found in [11], [14]; usually, the stage 
order is at least one. 

Algebraically stable methods having some b; = 0 are known to be reducible (in the sense of 
DAHLQUIST and JELTS'CH [8]), which means that some of the stages in (2.4b) can be omitted without 
changing the numerical results. It is obviously no severe restriction to consider only irreducible 
methods. 

Finally, we note that for implicit Runge-Kutta methods the internal vectors Y7 are defined as the 
solution of the non trivial system of algebraic equations (2.4b ). If (2. 7) is satisfied then this system has 
a unique solution for all f ECfJ,. (under a mild stepsize restriction if µ>0), see [6], [11]. More general 
conditions can be found in [18]. Throughout this paper it will be tacitly assumed that there is a 
unique solution for all appropriate stepsizes h. 

2.3. B-convergence 
We shall be concerned with bounds for the global discretization errors which only depend on the 
smoothness and stability of the exact solution. Let p >0 and µER. The Runge-Kutta method (2.4) is 
called B-convergent of order p on Cff,. if for any initial value problem (2.1) with /Ertf,. there is an error 
bound 

[y(t,,)-y,,I ~ ChP (for O<h~H, O~tn~l), (2.9) 

where the error constant Conly depends onµ and on certain bounds Mj=max{[y(i)(t)l:O~t ~l} for 
derivatives of the exact solution, and the maximal stepsize H only depends on µ. If this holds for 
some p >0 the method will simply be called B-convergent on Cff,.. 

Stiff initial value problems have large Lipschitz constants L -which are, by definition, prohibited to 
enter C - together with relatively smooth, stable solutions. So, for any given initial value problem 
(2.l) with f ECfJ,., the estimate (2.9) legitimates the adaptation of the stepsize to the smoothness of the 
solution only. 

The above definition of B-convergence, with C depending exclusively onµ and some of the Mj, is a 
strong one, and is also called optimal B-convergence. A weaker form is obtained if C is allowed to 
depend as well on some of the quantities Kij=max{lai+jf(t,y(t))!atiayjl:O~t~l}, though not on K01 
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as this bound is proportional to the Lipschitz constant L. Usually, this weaker form has the effect 
that the order pin (2.9) can be raised by one, see [14]. A second alternative would be to allow C to 
depend on the dimension m of the initial value problem. This, however, makes no difference in gen­
eral (see Section 3.3), i.e. from a bound depending on m it can be concluded for most methods that a 
bound valid uniformly in m also exists. 

3. CHARACTERIZATION OF B-CONVERGENCE 

In this section a characterization of B-convergence on 'Ifµ for Runge-Kutta methods will be given in 
terms of the algebraic conditions (2.5) (algebraic stability) and (2.7). The cases µ.<0 and µ.;a.O are 
considered seperately. The results for µ.<0 are based on (10], [20] and [21]; they are included here 
only for completeness. 

3.1. The case µ.<0 

THEOREM 3.1. Let µ<0, and assume that the Runge-Kutta method has stage order q;;;i,I and its 
coefficient matrix A is nonsingular. Then 

(2.5) => B -convergence on 'ifµ. 

THEOREM 3.2. Let µ.e!R be arbitrary, and assume that the abscissas.of the Runge-Kutta method satisfy 
c; -cj fl.Z if i=/=j. Then 

B -convergence on 'Ifµ => (2.5). 

TI1eorem 3.2 can be proved by a counterexample, based on material of [3], [5] (see [10], [20], for exam­
ple). A proof of Theorem 3.1 can be found in [21], where it was shown that the order p of B­
coovergence is at least q-1/2. This was improved in [10], where an order q result was derived under 
the assumption of irreducibility and l-bTA- 1eE(-l,1) (note that (2.5) implies 
1-bT A - I e E[ -1, l]). In [20] it was shown that also in case 1-bT A -I e = -1 the order is at least q. 

By combining the above theorems we obtain the following result. 

COROLLARY 3.3. Let µ.<0, and assume that the Runge-Kutta method has stage order q;;;i,l, A is non­
singular, and c; - cj f1. Z if i =I= j. Then 

B -convergence on 'Ifµ ~ (2.5). 

3.2. The case µ;;;i,O 

THEOREM 3.4. Let µER be arbitrary, and assume that the Runge-Kutta method has stage order q;;;i, 1. 
Then 

(2.5) and (2.7) => B-convergence on 'ifµ. 

THEOREM 3.5. Let µ.;;;i,O, and assume that the Runge-Kutta method is such that b;=/=O for all i and 
c; -cj=l=O if i=/=j. Assume in addition that the j-th row of A is nonzero in case cj =O. Then 

B -convergence on 'Ifµ => (2. 7). 

The proof of Theorem 3.5 will be given in Section 4.3. Theorem 3.4 is due to [14), where it was also 
shown that the order of B-convergence p is at least q. This is not necessarily the maximal order. The 
implict midpoint rule, for example, has stage order q = l and is known to be B-convergent on 'Ifµ with 
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order p =2 for any µER (see [17]). By eonsidering local errors [y(t 1)-y 11 it can be seen that we 
always have p :r;;;;,q + I for irreducible methods. There are, apart from the implicit midpoint rule, some 
special methods where the order q + l is achieved (see [4]), but generally it is only known that 
pE[q,q+l]. 

By a combination of Theorems 3.2, 3.4 and 3.5, we arrive at a characterization of E-convergence on 
<ff,., µ;;;;i:O, for methods which are irreducible in the sense of [8]. The proof will be given in Section 4.3. 

COROLLARY 3.6. Let µ;;;;ioO, and qssume that the Runge-Kutta method is irreducible, it has stage order 
q;;;;i:I, andc;-cjflZ ifi=/=j. Then 

E -convergence on <ff,. ~ (2.5) and (2. 7). 

3. 3. Consequences and remarks 
For most well known classes of algebraically stable Runge-Kutta methods (see [11]) it can be deter­
mined with the above theorems whether they are E-convergent on <ff,.. The Gauss methods, as well as 
the Radau IA and IIA methods and the two-stage Lobatto IIIC method satisfy (2.5) and (2.7), and 
thus they are E-convergent on <ff,. for any µER (see [14]). All algebraically stable, irreducible, diago­
nally implicit Runge-Kutta methods have a;;>O for all i, and hence (2.7) also holds, see Remark 2.1. 
Lobatto IHC methods with more than two stages are also algebraically stable, but violate (2.7) (see 
[9]), and so it follows frmn Theorems 3.1, 3.5 that these methods are E-convergent on <ff,. if and only if 
µ<0. 

There are some methods, such as the Lobatto HIA schemes, which are not algebraically stable and 
do not satisfy (2.7), but which have c 1 =O, Cs= I and ef A =O. Theorems 3.2 and 3.5 cannot be 
applied to show that these methods are not E-convergent; in fact, the trapezoidal rule, which is a 
Lobatto IIIA method, is E-convergent on <ff,. for any µER (see [17]): On the other hand, Theorem 3.2 
does not apply either to the "Lobatto IIIB methods, while it follows from the material presented in [19] 
that these methods are not E-convergent on <ff,. for any µER; note that Theorem 3.5 is applicable but 
only gives this result for µ,;;;;i:O. 

For variable stepsizes the condition in Theorem 3.2 can be relaxed to c; -cj=l=O (nonconfiuency), see 
[10]. Thus, the Lobatto HIA methods are not E-convergent on <ff,. with arbitrary variable stepsizes, 
for any µ.ER. In [10] it was also shown that Theorem 3.1 remains valid for variable stepsizes, and the 
same holds for Theorem 3.4, as can be easily seen by an inspection of its proof as given in [14] or 
[11]. 

Theorem 3.5 would already be valid if only initial value problems with dimension m =s were con­
sidered (see Sections 4.2, 4.3). The proof of Theorem 3.2 is even based on a scalar counterexample. 
It follows that for Runge-Kutta methods satisfying the assumptions of these theorems, E-convergence 
uniformly in m - which we consider - follows already from E-convergence where m is allowed to 
enter the constants C and H in (2.9). 

4. CHARACTERIZATION OF ES-STABILITY 
In this section an algebraic characterization of the internal stability concept ES-stability will be given. 
It will turn out that this provides a tool for a simple proof of Theorem 3.5. 

4.1. ES-stability 
Consider along with one Runge-Kutta step (2.4) a perturbed step 

s -
Yn = Yn-1 + h~bJ(tn-1 +c;h,Y';) + Wo, (4.la) 

i=I 

- s -¥'; = Yn-1 +h~aijf(tn-1 +cjh,YJ) + W; (l:r;;;;.;:r;;;;.s). (4.lb) 
j=I 

The perturbations wj ECm may represent errors caused by inexactly solving the algebraic equations 
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(2.4b), but also local discretization errors may be represented this way. Let w=(wf, ... ,wifECms. 
The Runge-Kutta method is called ES-stable on ~ if there exists a uniform bound for the difference 
between (2.4a) and (4.la) of the type 

lYn -ynl ~ C(lwol + jwJ) (for all h E(O,H] and /E~) (4.2) 

with C,H>O only depending onµ. It is known from [13] that the algebraic condition (2.7) is sufficient 
to have ES-stability on ~ for arbitrary µ;;;.O. We will show that this condition is, in general, also 
necessary. 

In order to prove this result some notations are needed. The i-th row (a;I>···,aisl of A will be 
denoted by aT. For a given mEN, let A=A®I, bT=bT®J and aT=af®l, where I is the mXm 
identity matrix and ® denotes the Kronecker product; further, I will stand for the sm X sm identity 
matrix. Vectors uEcsm will be partitioned as (uf, ... ,uil with ujECm (I~j~s), and for all com­
ponents uj we define the scaled counterparts uj by 

uj = 1uj1- 1uj if Uj'~=O, and Uj = 0 if Uj = 0. 

Finally, 6Do stands for the set of block-diagonal matrices Z=diag(Z l>···•Zs) where all Zj are m Xm 
matrices with mEN, and Re (v,Zjv)~O for all vECm, l:;;;;,,j~s. 

It is known, see [ 16], that for nonconfluent Runge-Kutta methods ES-stability on % is equivalent 
with the existence of a positive constant C such that 

lbTZ(I-AZ)- 1wl ~ Cjwl (for all wEcsm and ZE6Do). (4.3) 

LEMMA 4.1. Suppose the Runge-Kutta method is BS-stable on '!Jb, and c; -cj=f=O if i=f=J. Then, for any 
sequence {un} in csm with mEN and bTun=f=O, there is an index), l~j~s, such that 

(4.4) 

PROOF. Suppose the condition in the lemma does not hold, i.e. there are un ECsm with bT un=f=O such 
that 

limsup lbT un1- 1 Re (uj,aJ un) ~ 0 (l~j~s). 
n->oo 

(4.5) 

We may assume that jbT un I = l; this is only a matter of scaling. 
Define the vectors pn ECsm by 

n _ T n + n JI _ [R (An T n)]+ An (1 · ) pj - aju rj, rj - - e uj,aju uj ~J~S, 

where a+ =max{a,O}. By this construction we have Re (pJ,uJ):;;;;,, 0 (l:;;;;,,j~s), and 
lrJl-7 0 (l:;;;;,,j:;;;;,,s, n-?oo). Hence, there are un,pnEcsm such that 

Re(pJ,uJ) ~ 0 (l~j~s), lbTunl=I and tpn-Aunj-? O(n-700). (4.6) 

Next, we slightly modify the vectors pn; d~fine qn ECsm by 

n - -I An if n - 0 n....J-O d n'1 - n h . qj - -n u1 pj - , urr , an '1j - p1 ot erwise. 

Then qJ=O only if uJ=O, while we still have Re (qJ,uJ)~O (l~j:;;;;,,s). By applying Lemma 2.4.7 of 
[15] it now follows that u" =Z"q" for some zn E6Do. Since IJJ 11 -q"l-?0 (n-700), we see from (4.6) that 
there exist qn ECsm ,zn E6Do such that 

lbTZ"q"i = l, l(I-AZ")q"l-70 (n-700). 

Finally, setting wn =(I-AZ")qn, we obtain 

lbTzn(I-AZn)-lwnl = l while lwnl-70 (n-700), 

(4.7) 

(4.8) 
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which is a contradiction to ( 4.3). D 

LEMMA 4.2. Suppose the Runge Kutta method is ES-stable on~. ci-c/=f=.O if i=/=j, and bj=l=O for all j. 
Then, for a191 real nonzero vector v ERsm there is an index j, I ,;;;;.j:s;;;;.s, such that (vj,aJ v) > 0. 

PROOF. Let vERsm,v=/=0, and let wERsm be such that bTw=j=O, and wj=O whenever vj=O (such a w 
exists since all bj are nonzero). We apply Lemma 4.1 to un =v +iAnw ECsm where i\n ER, An~o. 
Note that vj =O implies uJ =O for all n. It follows that there is an index j for which vj=l=O and 

limsup lbrv+ii\bTwl- 1{(vj,af)+A.2(wj,aJw)} > 0, (4.9) x ..... o 
and this implies (vj,aJv) > 0. D 

THEOREM 4.3. Let µ;;;.O, and suppose the Runge-Kutta method is such that ci -cj=l=O if i=/=j, and bj=l=O 
for all j. Then 

ES-stability on <?f,. ~ (2.7). 

PROOF. We only have to demonstrate the necessity of (2.7); sufficiency is well known, see [13], [11]. 
Since~ C'?f,. for µ;;;.O, itjollows from Lemma 4.2 that ES-stability on <?f,. implies 

s 
for any v ERsm, v=j=O, there is a j such that ~ ajk(vj, vk) > 0. 

k=I 
(4.10) 

Let, for arbitrary nonzero vERsm, S(v) be the sXs matrix with entries sjk(v)=(vj,vd. The matrix 
S(v) belongs to the class~ of nonzero, symmetric, positive semi-definite sXs matrices. Moreover, 
any matrix SE~ can be dec;omposed as 

S = wrw = S(w) 

for some s Xs matrix W=[w 1, ••. ,ws] and with w=(wf, ... ,wif ERss (for example, by Cholesky factori­
zation). Thus, if m ;;;.s then 

{S(v): vERsm, v=j=O} = ~- (4.11) 

Since m in (4.10) is arbitrary (it may be chosen equal to s), we see that ES-stability on <?f,. implies 
s 

for any SE~ there is a j such that ~ ajksjk >0. 
k=I 

By observing that 
s s 
~ ajkSjk = ~ ajkSkj = (AS)jj• 

k=I k=I 

it follows from Theorem 1 in [I] that (2. 7) hold~. D 

4.2. Remarks 

(4.12) 

For any vERsm,mEN, there exists a wERss such that S(v)=S(w) (see the proof of Theorem 4.3). 
Hence, the algebraic condition (2. 7) would follow already from ES-stability on ~ if only initial value 
problems with dimension m =s were considered. Note further that lbTv12 =bTS(v)b and 
lvjl2 =eJS(v)ej (l:s;;;;.j:s;;;;.s). 

With these observations it can also be shown that Lemma 4.1 can be extended: for nonconfiuent 
Runge-Kutta methods ES-stability on~ is equivalent to the condition given in Lemma 4.1. This can 
be proved by first showing that if the method is not ES-stable on ~. then there are un ECsm. with 
~El\!, bT un=1=0 such that (4.5) holds (this is fairly straightforward; use (4.3)), and subsequently 
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noting that we can take mn :s;;;s. This result allows a characterization of ES-stability on % also in case 
some of the weights bJ are zero. · 

In a similar way as in Section 4. I an algebraic criterion can be deriv~ for RSI-stability on <ff,., a 
concept which requires that the difference between the internal vectors I¥;' - ¥7 I in (2.4b ), ( 4.1 b) can 
be uniformly bounded by Clwl for O<h:s;;;H, Jeffµ, with C, H>O only depending onµ (cf. [13], [11]). 
This concept is related to the conditioning of the algebraic equations in the Runge-Kutta method, 
rather than to the effect of perturbations on the numerical approximations. In case A is nonsingular­
or, more general, if A has no zero column- it can be shown that RSI-stability on <ff,. is equivalent 
with (2.7). The sufficiency of (2.7) was proved already in [13]; the fact that (2.7) is also necessary for 
nonconfl.uent methods with nonsingular matrix A generalizes a related result of [9]. 

4.3. Proofs of Theorem 3.5 and Corollary 3.6 
In order to '-rove Theorem 3.5 we consider a Runge-Kutta method with c; -cJ:=f=.O if i:=j=.j, b;:=f=.O for 
all i, and aJ :=j=.O if cJ =O. Suppose the method is B-convergent on <ff,. for some µ;;;;a.O. Then it follows 
in particular, by considering (2.9) with n = 1 for arbitrary fe<ff,., that the method is B-consistent on 
~. and this was shown in [16] to be equivalent to ES-stability on <ff,. (for nonconfl.uent methods with 
aJ :=j=.O in case cJ =O). Theorem 4.3 thus shows that the algebraic condition (2.7) is satisfied. 

Next, for proving Corollary 3.6, consider an irreducible Runge-Kutta method with c;-cJ f/.l if 
i :=j=.j. Assume this method to be B-convergent on <ff,. for some µ;;;;a.O. Then Theorem 3.2 implies that 
we have algebraic stability. For an irreducible, algebraically stable method all rows of A and all 
weights b; are nonzero, as can be seen from the material presented in [8]. Theorem 3.5 now shows that 
(2. 7) holds as well. Theorem 3.4 completes the proof of Corollary 3.6. 
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