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I. INTRODUCTION 

In this report an investigation is described on how to determine an optimal control law for the Dutch 
Motorway Control and Signalling System. The objective of control is to make the freeway traffic ft.ow 
more homogeneous and to delay the start of congestion. The system consist of a consecutive series of 
detection stations and portals. The detection stations consist of measuring loops embedded in the 
road surface. From each detection station one may obtain the passage times of cars and their passage 
speeds. On the portals are electronic boards which can display an advisory speed to drivers. A 
description of this system is given in Appendix A. 

Congestion often sets in when about 85% to 90% of the traffic capacity is reached. A reason for 
this is the inhomogeneity of the traffic flow. The Traffic Engineering Division of Rijk.swaterstaat has 
made experiments with the objective to make the traffic flow more homogeneous. This is done by a 
homogenising control: displaying an advisory speed on the signal boards of the control and signalling 
system to drivers. The same speed is shown on all boards, independent of lane or position. An 
analysis of these experiments leads to the conclusion that this homogenising control is useful, apply­
ing this kind of control makes the traffic flow more homogeneous and delays the start of congestion. 

At the Centre for Mathematics and Computer Science a research project is carried out by S.A. 
Smulders in which the possibility of using homogenising control for freeway traffic. The control law 
should switch the advisory speed signs on or off depending on the information gained from the meas­
urements. In [9] a model for freeway traffic flow is described that consists of a series of consecutive 
sections. A section is regarded as a piece of freeway with at each end a detection station. Based on 
this model a filter was developed in [10]. In [11] two models for one section were derived from the 
former model: a one-dimensional model and a two-dimensional model. The first is a simplification of 
the second. The effect of the homogenising control on the traffic flow has been determined, and 
incorporated in the models. Investigations into useful control laws were made. 

In [l l] a suggestion is made for a method to compute the optimal control law for the one-section 
model. This method will be used in this report to determine the optimal control for the one­
dimensional and the two-dimensional model. Also a comparison of the performance between optimal 
and suboptimal controls of different classes is made. 

The models are described by stochastic differential equations. The one-dimensional model is for 
the density only, the two-dimensional model is for both density and mean speed of a section. The 
proposed method is described in [6] and [3]. According to this method one approximates a stochastic 
differential equation by a finite-state continuous-time Markov process. For this process an optimal 
control policy can be determined by several methods. The policy iteration method is described in [5], 
the successive approximation method in [2] and a modified policy iteration method in [7). In this 
report another version of the modified policy iteration method is proposed which is very useful for 
Markov processes coming from approximated stochastic differential equations. 

After the determination of the optimal control it will be demonstrated that the class of one switch­
controls based on the density only has a suboptimal control law which is both useful and simple. 

The problem of determining the optimal control for the one-dimensional and the two-dimensional 
model will be formulated in section 2.1. In section 2.2. the discretization procedure is formulated. 
The methods for finding the optimal solution of the finite-state continuous-time Markov process are 
described in section 2.3. Results of these methods and an investigation into classes of suboptimal 
controls are presented in section 3 for the one-dimensional model, and in section 4 for the two­
dimensional model. Section 5 contains general conclusions and suggestions for research. 

2. PROBLEM FORMULATION 
Jn this chapter two models will be presented, both describing the flow of freeway traffic in a section of 
a freeway. Both models are based on a freeway traffic flow model for a series of consecutive sections 
presented in [9). The one-dimensional model consists of a stochastic differential equation for the den­
sity only, the two-dimensional model contains also a stochastic differential equation for the mean 
speed. 
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By discretization of the state spac.e the stochastic differential equation can be approximated by a 
finite-state continuous-time Markov process. Both in [3] and in [6] techniques are proposed for doing 
this. For the Markov process the optimal control can be found using dynamic programming. 

The two basic computational methods for dynamic programming which will be considered are pol­
icy iteration and successive approximation. Combining those two methods gives a range of methods 
each of which will be called a modified policy iteration method. 

2.1. M ode/s for freeway traffic flow 
The two models to be considered are based on the model proposed in [9). The simplification to a 
model for one section was done in [l l]. The models are based on two state variables: 
p,: the density (number of veh/km/lane) in the section at time t. 
v,: the mean speed (km/h) of the vehicles in the section at time t. 

The one-dimensional model is given by: 

1 
dp1 = JL (~-lp1v1)dt + odw1 

v1 = v'(p,) 

The two-dimensional model is given by: 

I 
dp1 = IL (~-/p1v1)d1 + odw1 

1 
dv1 = - T(v, -v'(p,))dt + µdz1 

Here v'(p1) denotes the equilibrium speed: 

{ 

Vjrte - ap for 
v'(p) = 

1 1 d(- - -) for 
P PJam 

where 

d= 

Peril Pjam 

to assure continuity at Pcrii. The definitions of the parameters are: 

/: the number of lanes in the section; 
L: the length of the section (km); 
~: the intensity at the entrance (veh/h); 
a: the standard deviation of the noise in the density equation; 

w,: a standard Brownian motion; 
T: the relaxation time (h); 
µ.: the standard deviation of the noise in the speed equation; 
z,: a standard Brownian motion; 

( l.l) 

(1.2) 

(1.3) 

(1.4) 
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Pc:rit 
-+ p (vch/km/lanc) 

Figure l. Equilibrium relation between density and average speed. 

vfree: the free speed (km/h); 
Pcrit: the critical density (veh/krn/lane); 
Pjam: the jam density, at which ve is zero (veh/km/lane); 

A description of the stability properties of both models is presented in [11). Some conclusions from 
this study are presented below. 

PROPOSITION l. Suppose u = O and Ao<Acap =2Pcritve(Pcr;1 ) then the one-dimensional model has two 
equilibrium points. 

Pb= Vte - Ve vf;r Ao 
la 

PS = (I - ~ )Pj<m• 

where Pb is stable and PS is unstable. The domain of attraction of pfi is [-oo,pg). For p>pH p con-
verges to oo. 
PRooF. See [11, Theorems 3.1and3.2). 

PROPOSITION 2. Suppose u=µ.=O and Ao<'Acap = 2pcri1ve(Pcrii)· Then the two-dimensional model has two 
equilibrium points (pfi,ve(pb)) and (pH,ve(pS)). where (pfi,ve(pb)) is stable and (pS,v'(pS)) is unstable. 
The state space is divided into two components by a curve through (pS, ve(pS)), the separator. The part 
with (pfi, ve(Pb)) in it is the domain of attraction of (pb, ve(pfi)). The separator consists of two trajectories 
ending in (pS,ve(pH)). Trajectories starting in the other component of the state space are attracted by 
"( oo,0)". 
PROOF. See (11, page 15). 

Realistic values for the parameters are: 

Vfret! = 
Peril = 

a= 
(1 = 

Pjam = 

105 km/h 
27 veh/km/lane 
0.58 I fRkm2 / h 
14,000 
110 veh/krn/lane 
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A section was chosen as follows: 

I= 2 lanes 
L = 0.5 km 

Control can be exerted by showing advisory speed signs to drivers. This control can either be on 
( I) or off (0). The effect of the homogenising control put on was modeled as a reduction of the vari­
ance a1- , a change in the equilibrium speed v•(p) and a small increase in the intensity~· The control 
dependent parameters take the values presented in table 1. 

no control control 
v~« = 105 km/ h vl - 102 km/ h fru -
P~rit = 27 veh/ km/lane P~rit = 29 veh/km/lane 

X~ = X8 + 0.01A8 veh/h 
a6 = 14,000 ai == 11,000 

Table l . Values of control dependent parameters. 

The objective of control is to maximize the throughput. The conditional cost to go is therefore 
defined as 

V(xo) = E [Je -c'lp,v,dt I x o] (1.5) 

where x = p, respectively x = (p,v) for the one- and two-dimensional model. A discounted cost cri­
terion was chosen to favour immediate throughput above future throughput. In this way ex~ted 
congestion in the distant future does not have a major influence. This congestion is sure to occur, 
and delaying it from 9 to 10 years for example is not useful. 

With this value function the problem can be mathematically formulated. For the one dimensional 
model find u (p) u :[O,Pj11m]-{ 0 , 1 } that maximizes 

where 

1 
dp, = /L (>..~<P> -Jp,v,)dt + Ou(p)dwt 

v1 = V~(p)(p1) 

(1.6) 

(1.7) 

The optimal control u • (p) and the value function v· (p) satisfy the Hamilton-Jacobi-Bellman equation. 

{ 
al d2 V(p) 

max 2 d 2 
u(p)=;k.; {0.1} p 

(1.8) 

with boundary conditions 

dr~ .{QL = 0 v·(p ) 0 " dp • jam = . 
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For the two-dimensional model find u(p,v) u :[0,PJam]X[O,vmaxl~ {o, l} that maximizes 

where 

1 
dp, = IL (XHCP-"> - /p,v,)dt + au(p,v)dw, 

l 
dv, = - T(v -v~(p,v)(P1))dt + µ.dz1 (1.9) 

Again the optimal control u°(p) and the value function v·(p,v) satisfy the Hamilton-Jacobi-Bellman 
equation. 

max { ol a2 v· (p, v) + _l (A.~ - I v) a v· (p, v) + L a2 v· (p, v) 

{ } 
2 3p2 LI p 3p 2 av 2 

u(p,v)=ke 0,1 

1 a v· (p v) } • c - T(v - vZ(p)) a;' + lpv -cV p,v) = O 

with boundary conditions 

av­
a;-Cp.O)=O, 

av-a;-<P. Ymax) = O, 
av· 
ap-(0,v)=O, 

av· A.a 
-

3
p (Pjam,v)=O for -

1
- <v.s;;vmax. 

PJam 

2.2. An approximating finite-state conJinuous-time Markov process 

(L 10) 

The partial differential equations with a maximization (l.8) and (l.10) are not solvable by ordinary 
techniques for partial differential equations. Discretization of the state spaces p, or (p,, v,) leads to an 
approximation of these processes. This approximation gives a continuous-time finite-state Markov 
process. The Hamilton-Jacobi-Bellman equation of this Markov process can be solved by various 
techniques. 

The processes { p, I t ;oi.O } and { (p,, v,) It ;;;.o } can be defined by their infinitesimal generator e. 

For the one-dimensional process: 

e(u)V(p) = a~2CP> d2Vf p) 
dp 

For the two-dimensional process: 

~( )V( ) = O~(p.v) a
2

V(p,v) + (A.V(p,v)_/pv)aV(p,v) 
'-\u p,v 2 ap2 u 3p 

+ ..i_ a2 V(p,v) _ ..!...c _ ~ < ))av(p,v) 
2 ov2 T v Vu(p,•) p av 

The Hamilton-Jacobi-Bellman equation for both processes can now be written as 

(2.1) 

(2.2) 
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max {e(u)V(x) + lpv} = cV(x) 
u(x)e {o. I} 

(2.3) 

where x =p or x =(p,v) and e(u) tile appropriate infinitesimal generator. 
Approximation of 

a2 v a v a1 v and a v 
'iJp2 ' op ' av2 av 

will lead to a discrete operator L on a finite state space G. L is the infinitesimal generator of a 
finite-state continuous-time Markov process. In (6] and [3] this is proved. 

The one-dimensional process can be approximated in a similar way as the two-dimensional process. 
Below the discretization of the two-dimensional operator e(u) will be shown. The discretization of the 
one-dimensional model is just a simplification of the following derivation. 

Approximations: 

Taking 

'iJV V(p+h1,v) - V(p,v) 'iJV V(p,v) - V(p-h 1,v) ap (p,v) ~ h1 or ap (p,v) ~ h1 

'iJV V(p,v + h2) - V(p,v) oV V(p,v)-V(p,v-h2) 
a; (p,v) ~ h2 or Tv"" (p,v) ~ hi 

a2 V V(p+hi.v)-2V(p,v)+ V(p -h i. v) 
ap2 (p,v) ~ h12 

a2 V V(p,v+h2)-2V(p,v)+ V(p, v - h 2) 
av2 (p,v) ~ h12 

V(p+h1>v)-V(p,v) 
('l\o-lpv) h1 

('l\o-lpv) V(p,v)-V(p-h 1>v) 
hi 

if 'l\o-lpv~O 

if 'l\o - lpv<O 

_J_(v-ve(p)) V(p,v+h2) -V(p,v) 
T h1 

1 ( e( )) V(p,v)-V(p,v-h2) -- v - v p 
T h1 

it follows that 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 
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(2.11) 

(2.12) 

(2.13) 

and so 

(2.14) 

For points on the boundary the following holds. At the reflecting boundary the points outside the 
boundary are replaced by their reflections. So in particular 

V(p-h1tv)-+ V(p+h.,v) if p-h1<0 

V(p+hi,v)-+ V(p-h 1,v) if p+h1 >PJam and Ao v>--
lpjam 

V(p,v - h 2)-+ V(p,v+h2) if v-hi<O 

V(p, v+ h2)-+ V(p,v-h2) if v+h2>Vmax 

At the absorbing boundary all values of V are replaced by 0. This means 

[LVJv..v> = O 

Taking a grid of n points, where 

a finite state space G is defined. The infinitesimal generator L is an approximation of the 
infinitesimal generator e on G. Counting from (0,vmax) to (PJam ,O) the index number i represents the 
point (p,v), where p = h 1(i-l) modulo n 1 and v=h 2[i - l/ni). On this grid the functional V(p,v) 
can be approximated. by a n-dimensional vector V. Then 
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n 

e.v (p, v) ~ 2, L IJ V (j) 
j=I 

(2.15) 

The choices in (2.8) and (2.9) are made to assure that the approximated process is Markov. If for­
ward differences were always used, then [Ao-/pv]- , !Ao - lpv\ and [Ao - /pv]+ in (2.14) would be 
replaced by 0, Ao - lpv and Ao - lpv. Then 

a2 Ao - lpv 
L;,;+1 = 2h12 + h1 

which is in general not positive. A similar problem occurs in L 1.i+n,. If backward differences were 
always used, a similar problem comes up in L;,;-1 and L;,;-n,. So (2.8) and (2.9) guarantee that the 
non-diagonal elements in L are non-negative. This is a necessary condition for the existence of a 
continuous-time Markov process. Together with the fact that 

n 

2,L;j = 0 
j=I 

by construction, the infinitesimal generator L properly defines a continuous-time Markov process. 
Defining f; = I pv \; then the Hamilton-Jacobi-Bellman equation for the approximated finite-state 

continuous-time Markov process becomes 

max { j;<O + .± L}j<i> V(j) } = c V(i) i = 1 .. n (2.16) 
u(i)E{O,l} ;•I 

2. 3. Optimal control of a finite-state Markov process 
There are two basic approaches to find the optimal control u • and the value function v·. The first 
method, policy iteration, is described in [5). This method gives the solution to the problem (2.16) in a 
finite number of steps. Every step however talces a "large'' amount of computation. Successive 
approximation is <iescribed in [2] and needs an infinite number of steps. In every step however a 
small amount of computation is done. Also bounds for V° can be computed which can be used in a 
stopping rule of the algorithm. 

Combination of these methods leads to a variety of modified policy iteration methods. The sim­
plest of them is described in [7]. The aim of these methods is to get faster converging bounds for v· 
then successive approximation does. When this is possible with a "moderate" amount of computa­
tions per step, the method can be faster then policy iteration. Moreover modified policy iteration 
algorithms need less storage then policy iteration does. The combined method is rather general. Spe­
cial cases of this algorithm are again policy iterati-0n and successive approximation. 

With policy iteration it is possible to solve (2.16) directly. Successive approximation and modified 
policy iteration methods exist only for discrete-time Markov processes or Markov chains. So it is 
necessary to transform (2.16) in to 

max { r:t<1> + a~ Pl)°> V(j)} = V(i) l .. n (3.1) 
u(i)e {o.t} j - l 

where 

(3.2) 

(3.3) 

(3.4) 
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(3.5) 

The transformed equation (3.l) is the same as would be obtained for a discrete-time Markov 
processes. This discre~e-time Markov problem has time-step 6.t = I/ I L J, a transition matrix P't/>, 
immediate rewards gf<1> and discount factor a. Equation (3.1) is the Hamilton-Jacobi-Bellman equa­
tion for the discrete-time Markov problem. The equivalence of (2.16) and (3 .I) can easily be verified. 

2.3.1. Policy iteration 
Policy iteration is described in [5]. For a continuous-time Markov process and a discounted value 
function policy iteration yields the following. 

ALGORITHM l: POLICY IMPROVEMENT 

INITIAL STEP: Choose an initial policy u 1 (i). 

ITERATION STEP I: Solve for V 
,. n 

cV'"(i) =ft+ LLijV"'(i)$> L(Lij-c8;;)Vm(j) = -ft 
j=I j =I 

where u = um(i). 

i = l .. n 

ITERATION STEP II: For every state i, find the altemjltive um+ 1 (i) that satisfies 

ft + f LiV"'(j) = max {t + f LtV'"(j)} j=I ks{o.1} ) = I 

where u =um +1(i). 
STOPPING RULE: End the iterative algorithm when the new found policy is the same as the former 
policy. 

The policy iteration algorithm is such that at every iteration the value of the former policy is deter­
mined by solving a linear system of n equations and n unknowns, and finding the best possible policy 
for this value by n maximizations over the control space. The next propositions will lead to the 
correctness of this algorithm. The correctness is proved in (5). The proof is included here for reason 
of exposition. 

PROPOSITION 2. Let V"' for m =I, 2, .. be a sequence of vectors produced by the policy iteration algorithm. 
Then 

vm+ 1(i);;;;.. V"'(i) i = I .. n 

PROOF. By construction in iteration step II 
,. ,. 

fr·· + ~ L'fr· vmu> ;a.: fr + L L't' vmv) 
j=I j=I 

= 1 .. n 

So 
,. n 

Y; = fr•• + ~ L'/F' V"'(i) - fr ~ L':j V"'(j) ~ 0 
j = I j=l . 

Y; is the improvement in iteration step II of state i. 
By construction in iteration step I 

i = 1 .. n (*) 
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n 
cV"'(i} =fr + ~ Lij vm(j) i = 1 .. n 

j = I 

and 
n 

cV"'+ 1(i) =fr•• + ~ L~·· ym + 1(j) i = l .. n 
j =I 

Together we get 
n 

c(V"'+1(i) - vm(i)) = -Y; + ~L~j+' (V"'+ 1 (i) - V"'U)) 

Or, equivalently, 

So 

And while 

n 
cl1V; = -Y; + _LL'/F'l1V1 

j = I 

y = (cl -L)l1V 

1 ()() 1 
(c/-L)- 1 = - ~(-LY' 

C n = I C 

j=I 

i = 1 .. n 

i = 1 .. n 

{**) 

every element of (c/ - L)- 1 is positive. From this, (*) and (**) follows that every element of /1 Vis 
non-negative. This is the same as 

i = l .. n 0 

PROP-OSJTION 3 . Let V"' m = 1,2, .. be a sequence of vectors produced by the policy improvement algo­
rithm. Let v· be the solution of (2.16). Then 

V"'(i) .;;; V"(i) i = I .. n m = 0, l , ... 

PROOF. By definition of v· and u ·: 

i = l .. n 

and 
n • 

cV"(i) = f{ + ~Llj V°(j) 
j = I 

i = l .. n 

The rest of the proof is similar to the proof of proposition 1. 0 

THEOREM 4. Let vm m = 1,2, .. be a sequence of vectors produced by the policy improvement algorithm. 
Let V" be the solution of (2.16). Then 

VM(i) = V°(i) i = l .. n for some M>O 

PROOF. From proposition 1 and 2 it follows that vm-v-. Because of the finiteness of the collection 
of controls, and the fact that at every step a control is chosen with a higher pay-off, in a finite 
number of steps the algorithm will converge. 

0 
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The linear system that has to be solved in iteration step I requires a large amount of computations. 
Solving goes directly by using a LU-decomposition. The algorithm for this decomposition, and the 
solution of the system is taken from [4]. Note that in the one-dimensional case the system is tridiago­
nal, in the two-dimensional case it is banded with upper and lower band width n 1• 

2.3.2. Successive approximation 
Successive approximation is based on a contraction mapping. lbis contraction mapping has as fixed 
point the value function. Beginning with a vector Vo the contraction produces a better approxima­
tion of v·. The optimal control policy accordin.g to the approximated value function is also com­
puted. Below one finds a summary of the properties of the successive approximation method. The 
correctness of this c:an be found in [2, § 5.2). The contraction mapping is defined as 

T(V)(i) = max {tt + a.± Pt VU)} i = 1 .. n (3.6) 

h{o.1} 1=1 

where u(i)=k is the approximated optimal control policy. After every iteration bounds for the fixed 
point can be computed. 

Tm(V)(i) +Cm~ Tm +l(V)(i) + Cm+I ~ V
0

(i) 

(3.7) 

where 

Cm = _a_ min [rm(V)(i)- rm - 1(V)(i)] 
} - a I= l..11 

(3.8) 

Cm= _ a _ max (rm(V)(i)-rm- 1(V)(i)] 
1 - a I= l..11 

(3.9) 

The successive approximations algorithm is 

ALGORITHM 5: SUCCESSIVE APPROXIMATION 

INITIAL STEP: Yo = 0 

!TERA TION STEP: V"' + 1 (i) = T(V"')(i) i = 1 .. n 

STOPPING RULE: Repeat this iteration step until cm-cm<£. 

Here £ is the maximal allowed error of v·. 
It is also possible to estimate the value of a given control policy. 

Tu(V)(i) = {g't<1> + a.± Pij(i) V(i)} i = 1 .. n 
1 = 1 

(3.10) 

2.3.3. Modified policy iteration methods 
When comparing both methods, policy iteration and successive approximation, the following similar­
ity can be found. Both methods consist of constructing better approximations of the value function. 
Subsequently the control policy for this functional is computed. Where policy iteration solves a linear 
system of equations to find a larger value for the approximation of V° successive approximation takes 
just one step of an iterative procedure for solution of the system. The question arises if several itera­
tive steps would still give a contracting mapping. Another question is whether faster iterative 
scheme's can be found. A general iterative scheme that solves (3.1) has the following form 
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V"' + t (i) = if<i) + a r ± Pjj<i> V"' + t (j) + ± P'tfl vm(j)l 
U=t j = s+I 

Where s is an integer between 0 and n. The modified policy al'goritlun becomes 

ALGORJTHM 6: MODIFIED POLICY ITERATION 

INITIAL STEP: 0l = 0 

ITERATION STEP I: For every state i, find the control um + 1 (i) that satisfies: 

if + a± Pij V"'(j) = max { gf + a.± Pt vm(j) } 
J=I ke{o.1} 1= 1 

where u =um+ 1 (i) 

ITERATION STEP II: vm +1(i) = 5!'cvm)(i) 

where Mis the number of iterations used for "solution" of the linear system of equations and 

'5"u(V)(i) =if +a L~/lf5"{V)(j) + j=~+ /ijV(j)l 
where u=Um + 1(i) 

When s = 0 the iteration can be denoted as 
n 

V"' + 1 (i) = if{i) + a "2, P'f/il V"'(j) 
j = I 

or 

V"'+ 1(i) = Tu(V"'(i)) 

where Tu as defined in (3.10). 

(3.1 1) 

With M = 1 this is the successive approximation algorithm again. In [2] this is called the Jacobi 
form of successive approximation. For M > 1 this method can be regarded as policy iteration where 
the linear system is "solved" iteratively using M steps of Jacobi iteration. For M > 1 this method is 
worked out in [7]. There this method is called modified policy iteration. The correctness of this 
method is given in [7, Theorem 1 ). 

When s = i - 1 we can denote 

vm +1(i) =if<;> + a [;~Pij(ilvm+ 1 (j) + ± _Pij(ilV"'(j)] 
1 = ! 1=1 

or 

vm+ 1(i) = Fu(V"'(i)) 

When M = 1 this is called the Gauss-Seidel form of the successive approximation method in [2]. For 
M > I this method can be seen as policy iteration where the linear system is solved iteratively using M 
steps of Gauss-Seidel iteration. 

When s = i we can denote 

vm+1(i) = if(i) +a [±Pij<i)vm+1(j) + ± P'fjilV"'(j)] 
j = I j=i+I 
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or 

i-1 n 
r:t<I) + a LPlj<i>vm+l(j) + L P't/i) vmu) 

vm +I (i) = _ ___ ,.__j_=_l ______ ~j_=_;_+..:,_I ___ _,/_ 
1- aPfi(i) 

or 

where 

W; = 
1- aPfi(I) 

~en M_ = l this is the ~uccessive ove~elaxation form of the successive approximation method. For 
w = mm w; and replacmg all w; by w correctness of that method is proved in (8, Theorems l and 
2]. The only necessity for choosing w is 

1 - w +"' a Pf;<1> ;;i. 0 

which hold for uJ as well as for w1. For M > I this method can be seen as policy iteration where the 
linear system is solved iteratively using M steps of successive overrelaxation iteration. 

When s = i + I we can denote 

vm+t(i) = g'f(I) + a~~Plj(l) V"' +l (j) + j=*+/lJ<'>vmu)] 

The structure of P'f/> is such that 

P'tf> = 0 if j=;C:i -n 1.i -1,i,i + l ,i + n 1 

P'(p> = 0 if i = /n 1 +1 andj=i-1 or i=(/ + l)n 1 andj=i + l 

and I = O .. n2 - 1 

Or P" is a n X n block-tridiagonal matrix, with n 2 X n 2 blocks of size n 1 X n 1• The diagonal blocks 
are of tridiagonal form, and the blocks of upper and lower diagonals are diagonal blocks. Then (3.1) 
simplifies to the formula's 

for I= 0 .. n 2 - I 

V"' + 1 (i) = g'f(i) +a PY,filn, V"' + 1 (i - n 1) + }:. P'//l V"' + 1 (j) + PY,f/i n, V"'(i + n 1) ( 
i+l ] 
l=' 

for i = ln 1 +1 

[ 
i+ I l vm+ 1(i) = gf<i)+ a Pr, fi.l.n, vm +1(i-ni) + . }:. P't/> V"' +1(j) + Pr,n,., V"'(i+ni) 

1=1- l 
for i= ln 1 + 2 .. (/ + l)n1 -1 

vm+ 1(i)= g'f<l)+a [PY,fln, vm+ 1(i - n1) + . ~ P't/lV"'+1(j) + Pr,fiin, V"'(i +n1)) 
1=1 - I 

for i = (/ + l)n 1 

For M > 1 this method can be seen as a modified policy iteration method where the linear system is 
solved iteratively using a block iterative scheme described in [12). For every I a tridiagonal system of 
size n 1 has to be solved. 
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Of the four methods presented in this section the convergence rate of the last one is the lowest. 

3. THE ONE-DIMENSlONAL MODEL 
As stated in chapter 2 the one-dimensional model was formulated as: 

1 
dp, = IL (;\M<P>-fp1v1 )dt + Ou(p)dw, 

V1 ::: V~(p) (p1) 

with cost-function: 

V(Po) = E[[e-''fp,v,dt I Po] 
The problem is to find the optimal control u(p) u :[O,Pjam)-+ {0,1} for this criterion. The optimal 
control u 0

(p) and the value-functional V°(p) satisfy the Hamilton-Jacobi-Bellman equation. 

{ 
oi di V°(p) l dV°( ) } mf 
2 

d 2 + 1,,i<X~ - lpvt(p)) d/ + lpvHp) -cV"<p) = O 
u(p)elo. 1} p 

With boundary conditions: 

dy°(O) • 
---;}p = 0, V (Pjam) = 0. 

After discretization the resulting finite-state continuous-time Markov process has the infinitesimal gen­
erator 

[L"V1= [~i + [Xo-~pv)-]v(i-1) 

[a~~> + IAo~/pvl ]v(i) 
+ [ °-;),i_ + [Xo -~pv]+ ] V(i + 1) 

The Hamilton-Jacobi-Bellman equation for this Markov process is: 

mf {tt<i) + .~ L'tp>V(J)} = cV(i) i = 1 .. n 
u(i)e l°• I} J - I 

All methods as described in the former chapter to solve this equation were used for different values 
of Ao and h. The one-dimensional model consists of one block, so the block iterative modified policy 
improvement method is equivalent to policy improvement. All methods led to the same control law. 
As stopping rule for the successive approximation method and for the modified policy iteration 
methods a maximum error of (= 10 was allowed in the value function. The tridiagonality of L" 
makes the LU-decomposition of (L" -cl) very fast. This decomposition did not use more memory 
then the other methods used. The LU-decomposition was done by a method described in (4). 
Because of the diagonal dominance of (L"-cl) pivoting is not necessary. The high value of the con­
traction factor a , which is about 0, 997 makes both successive approximation and modified policy 
iteration methods very slow. The latter methods however have the advantage of giving bounds for 
v•. Policy iteration gives a value function with is numerical not exact because of the rounding errors 
in the solution of the linear system of equations. 



3.1. Optimal control 
First of all the estimation of v• (Pb) will be presented. 

>.o h I 0.5 0.25 
4000 1315 1369 1392 
3000 5910 5949 5965 
2000 4265 4246 4237 

Table 2. The value function for several traffic intensities C>.o) 
and several discretization steps (h). 

The optimal control for h = 0.5 is indicated in figure 2. 

u(p) I 1 
0 t-t-f~~~~~~~~~~-+1~~~~~----i1~~+1~~-1 

02 57.5 83 95 I JO 

- p (veh/km/lane) 

Ao = 3000 

u(p) 

0 

0 8.5 66 110 

- p 
(veh/lun/lane) 

>.o = 2000 

u{p) 

0 
0 15 80.5 110 

- p (vch/lun/ lanc) 

Figure 2. Optimal control for the one-dimensional model. 
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3. 2. Suboptimal con.trot 
Our interest is especially directed to the area between the stable equilibrium point Pb and Pcni· Most 
of the time we find the optimal control there in "on" position. But applying control to often is 
counter productive. The model is based on supposed driver behaviour. Applying control too often 
can change this behaviour. We want the homogenising control switched off as long as possible. We 
therefore look for a class of control policies which hopefully are realistic. The class that is used is the 
class of one-switch policies: turning the control on for densities above or equal to p and off below p. 
In this class the control is determined by demanding that the control should be switched on at as high 
a density p as possible, while the cost function of this control law in the stable equilibrium point 
should be as high as 95% of the value function in this equilibrium point. So these policies have to 
satisfy the following criteria. First Vp(P6) ;a. 0.95 V"(pf>). Second p must be as large as possible. 

Solving the linear system 

cV = f' + L"V ~ (L-cl)V = - J 
gives us the value V according to the control u. The results for h = 0.5 of these computations are 
shown in the next table. 

Ao= 4000 
p V(pf>) 

26 1333 
27 1326 
28 1312 
29 1278 
30 1229 

Table 3. Cost of one-switch controls for traffic intensity Xo = 4000. 

While V" ( ev) = 1369, so 95 % v• ( ev) = 130 I the value of p that is acceptable is 75 = 28. 

Ao = 3000 
p V(p~) 

37 5712 
38 5690 
39 5667 
40 5643 
41 5619 

Table 4. Cost of one-switch controls for traffic intensity Ao =3000. 

While v"(ev) = 5949, so 95% V"(ev) = 5652 the value of p that is acceptable is 75 = 39. 

Ao = 2000 
p V(pf,) 

79 4243.78946 
80 ... 894 
81 ... 878 
82 ... 892 
83 ... 929 

Table 5. Cost of one-switch controls for traffic intensity Xo = 2000. 

While V° (ev) = 4246, so 95% V
0

(ev) = 4039 every value of p is acceptable, while the minimal value 
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is reached for p = 81. This point is the point where the control is turned off again in the optimal 
control policy. The minimal value is still high enough. 

3.3. Conclusions 
For several values of the intensity ~ the optimal control is estimated. The optimal control has two 
properties which in practice could lead to unwanted, and unmodelled effects. The control is turned 
otf when congestion is very likely to occur. The control is turned on even at very low density. To 
avoid these problems we have considered a class of one-switch policy's. Acceptable control strategies 
have been found. At low intensity the control is never applied, at high intensity switch-points are 
determined. 

4. THE TWO-DIMENSIONAL MODEL 

As stated in chapter 2 the two-dimensional model is formulated as 

1 
dp, = /L (>._~(p,v)_fp1ll1'J<ll + <1u(p,v)dwr 

l 
dv, = -T(v1 -v~(p,v) (p1 )'J<lt + µ.dz1 

with cost function 

V(PQ,vo) = E ( [e-c1lp1v1 I PQ,Vo] 

The problem is to find the optimal control u(p,v) u:[O,pjam] X[O,vmaxl~ (0,1} such that this criterion 
is maximized. The optimal control u • (p, v) and the value function V" (p, v) satisfy the Hamilton­
J acobi-Bellman equation 

{ 

"2 az • a *( max __!_ V (p, v) + _l_p,k _ / v) V y, v) 

{ } 
2 ap2 LI 0 P ap 

u(p,v)e 0,1 

+ .t_ a2 V*(p,v) I av·(p v) } • 
2 

av2 - T{v-vHp)) a;' + Iev -cV(p,v)=O 

with boundary conditions 

av· 
a;-{p, 0) = 0, 

av av· 
a;-(p,vllWC)=O, ap-(0,v)=O, 

. ~ av· ~ 
V (Pjam,v)=O for O~v~-1--, -~-(Pjom,v)=O for -1 -:s;;;v~vmax. 

~am QP ~am 

After discretization the resulting finite-state continuous-time Markov process has the infinitesimal gen­
erator 
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The Hamilton-Jacobi-Bellman equation for this approximated finite-state rontinuous-time Markov 
process is 

max {1t<i) + .~Ll}°lV(j)} = cV(i) 
u(i)E{o.1} 1 - l 

i = 1 .. n 

To solve this problem policy iteration and modified policy iteration methods were used. For a very 
small discretization step the policy iteration method could not be used because the LU-decomposition 
required too much storage. For a larger discretization step, however, it is one of the fastest methods. 
Only the block iterative version of modified policy iteration was as fast as policy iteration, the other 
three were slower. Of these three the successive over-relaxation version was satisfactory, the other two 
were too slow. The amount of storage for all four modified policy methods were of the same order, of 
the o(n). They all used far less then the policy iteration algorithm, which used a memory of the order 
o(n 1

2n 2). 

4.1. Optimal control 
The estimation of V°(pb,ve(pb)) is presented in the next tables. 

Ao = 4800 

h h v· 
10 10 743.7 
5 5 775.3 
2 5 785 
2 2 792 
1.25 2 800 

Table 6. Value function for traffic intensity Ao =4800. 

Ao =4000 

h1 h2 v· (pf,, ve(pf,)) 

10 10 2747 
5 5 3677 
5 3 3861 

Table 7. Value function for traffic intensity Ao =4000. 

The optimal control is as indicated in figure 3. 

4.2. Suboptimal control 
Again a search is made to find a simple control, which still has a value in pf, which is at least 95% of 
the value function in the equilibrium point (pf, ,ve(pf,)). We will consider control policies in which the 
state space is partioned into two parts by a straight line: at one side homogenising control is applied, 
at the other side it is not. The following three classes of policies are considered: 
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ft.o = 4800 
120 120 

1 

v (km/h) 
1 

v (km/h) 

0 0 
0 

0 
0 110 0 110 

-+P (vehl km/ lane) --+ p (vehl km/ lane) 

Figure 3. Optimal control for the two-dimensional model. 

u(p,v) = {~ p<p 
(2.1) p';iep 

{~ v<v 
u(p,v) = 

v~v 
(2.2) 

u(p,v) = {~ 
v~yp+b 

(2.3) v<yp+b 

Where y is defined as the tangent of the separator in the unstable equilibrium point PM, see section 2.1 
proposition 2. The determination of y is done in (11), and y~0.7 for intensity A.o =4000. So the third 
class can be seen as a shift of the linear approximation of the separator. For Ao =4000 and 
h 1= h2 = 5 the results are 
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class 2.1 class 2.2 class 2.3 
p V(p~, ve(Pb)) v b 
0 3459.1 40 2596.7 -60 2570.7 
5 3459.6 45 2639.9 -50 2570.7 

10 3462.1 50 2706.4 -40 2570.4 
15 3472.3 55 2797.5 -30 2569.4 
20 3508.0 60 2905.8 -20 2566.6 
25 3592.7 65 3033.0 -10 2563.2 
30 3661.9 70 3160.4 0 2567.2 
35 3198.6 75 3281.3 10 2594.2 
40 2869.3 80 3390.0 20 2659.8 
45 2680.9 85 3463.4 30 2779.2 
50 2596.4 90 3483.7 40 2955.2 
55 2568.1 95 3474.2 50 3193.9 

100 3463.9 60 3425.8 
105 3460.8 70 3550.3 

80 3515.0 

Table 8. Values of cost functions for several classes of suboptimal controls. 

In every class we can detennine an optimal control. Also the control can be determined which post­
pones the use of homogenising control, but still has a cost function which is high enough. Results of 
the considered classes are presented in the next table. 

class 2.1 p VI F(pb,ve(pb)) 
optimal 30 99.6 % 

35 87.0 % 
class 2.2 v 
optimal 90 94,8 % 

85 94.2 % 
80 92.2 % 

class 2.3 b 
optimal 70 96.6 % 

60 93.2 % 
50 86.9 % 

Table 9. Comparison of cost functions for optimal and suboptimal controls. 

4.3. Conclusions 
For different values of the intensity Ao the optimal control is determined. Several classes of controls 
are investigated, and suboptimal controls are determined in these classes. As the optimal control 
already suggests, control based on density only yields a high value. So even in the two-dimensional 
model a useful control may be based on the density only. Seen of the point of view of control the 
second state variable does not give extra information. This to our surprise as we expected that the 
separator would play a role in the control. 



23 

5. CONCLUSIONS 

5.1. Control 
In this report two models for freeway traffic flow have been investigated. For both models optimal 
control strategies have been computed. Different classes of control have been investigated and subop­
timal controls for these classes have been determined. A general conclusion is that one-switch control 
based on density is both a useful and simple type of control. The switching value p still depends on 
the intensity at the entrance of the freeway section considered. 

5.2. The method 
The approach used to compute the optimal control of the stochastic differential equations seems to 
work well. The discretization of the state space, to get a finite-state Markov process was already used 
in [I] with success. A direct method to solve the linear system of equations was used there to minim­
ize the number of iterative steps in policy improvement. For in [l] a continuous control space was 
considered which leads to a higher amount of computations in each iterative step. With a finite con­
trol space this problem is far less important. Iterative methods can be used which use more modified 
policy improvement steps, although each step takes less computation time. These modified policy 
improvement methods need less storage, so larger problems can be solved and a finer discretization 
may be used. The special structure of the two-dimensional Markov process suggests the use of a 
block iterative method for solving the linear system of equations. This method indeed converges fast 
and uses a reasonable amount of memory. 

5.3. Suggestions for research 
The models which have been investigated in this report were simplifications of the model proposed in 
[9]. Further research can be done on the effect of control in one section on the traffic flow in another 
section. A possible approach is to make a two-dimensional; two-se.ction model based on the density 
in both sections only. Such a model can be described by the stochastic differential equation 

l 
dp1,1 = Lili (>-.o-l1P1,1V1 ,1)dt + cuiw1,1 

V l,t = Ve (P1,1) 

1 
d1>2,1 = Li/

2 
(/1P1,1V1,1-l21>2,1V~,)dt + adw2,1 

V2,1 = V11(P2,1) 

The same methods as used in this report can be applied to investigate this problem. Taking more sec­
tions or a extensions of the model with a stochastic differential equation for the mean speed leads to a 
model with higher dimensions. The same methods are applicable in principal to these models, but 
they will lead to linear systems of equations of very high order. 

Another approach to obtain conclusions about the effect of control in a model of many sections, is 
by way of simulation. Several control laws can be investigate based on density in one or more sec­
tions. In every section control can be based on density in that section, or overall control can be 
based on density in one special section. The simulations could give a view into the effects on the 
traffic flow upstream and downstream. 
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