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In this paper we study the monotonicity of performance measures in a processor sharing queue with two types 
of customers. The access control law is such that when a new customer arrives he is admitted only if the 
number of customers of the same type that is already present in the queue does not exceed a predefined criti­
cal level. We show that performance measures such as throughput, mean queue length and mean sojourn 
time are monotonic functions of the critical level for one type if the critical level for the other type is held con­
stant. Monotonicity of throughput and mean queue length is proven by comparing policies for discrete time 
Markov processes. ~notonicity of the mean sojourn time is proven directly with the closed form formula for 
this measure, using the existence of a product-form equilibrium distribution for the queueing system. 
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l. INTRODUCTION. 

During the last few years et number of papers has been published about monotonicity of performance 
measures in queueing systems. These results are used e.g. to provide structural properties of the queue­
ing systems or bounds on performance measures of analytically untractable queueing systems. The 
monotonicity results as reported in this paper stem from a study of an optimal control problem for a 
processor sharing queue. Monotonicity of performance measures here provides necessary and sufficient 
conditions for the existence of optimal control laws. Furthermore it also suggests an efficient algorithm 
for finding the optimal control law (cf. De Waal [23]). The techniques that have been used for establish­
ing monotonicity results can roughly be divided into four classes. 

The first approach is based upon preservation of monotonicity of one-step transition operators ( cf. 
Stoyan [21]). In analogy with Van Dijk and Van der Wal [11, Remark 5.1.] one easily finds a counterex­
ample of this preservation under processor sharing disciplines, so this method does not apply. 

In the second class of papers monotonicity results are proven for queueing systems that have product­
form equilibrium distributions. The closed form formulas of the performance measures that can be 
derived from these distributions, are subsequently used to prove the desired results. In general the proofs 
are very technical and lack any probabilistic interpretation. Examples of papers are Yao [25], Rober­
tazzi and Lazar [15], Suri (22], Shanthikumar and Yao [17, 20] and Van Doremalen and De Waal [12]. 

In the third class of papers monotonicity results are established by stochastic coupling and sample 
path arguments. In these papers inequalities for the throughput of two related queueing systems are pro­
ven by comparing realisations of the arrival or departure processes in these two queueing systems. The 
inequalities are therefore proven for stochastic variables (i.e. the number of departed customers in a time 
interval). The drawback of this method is that it relies on the assumption that if the same realisation of 
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the arrival process is fed into both queueing systems, the order in which customers are served is the same 
for both systems. This means that overtaking of customers is not allowed, thus prohibiting the use of this 
technique in queueing networks with a general routing mechanism or last-come-first-served or processor 
sharing disciplines. The advantage of the method, when compared to the second technique, is that its 
use is not restricted to product-form queueing systems, thus allowing e.g. blocking. Examples of this 
approach can be found in Shanthikumar and Yao [ 18, 19], Adan and Van der Wal [I, 2, 3] and Van Dijk, 
Tsoucas and W alrand [1 O]. 

In the fourth category of papers the performance measures are considered as time average rewards for 
Markov processes. Monotonicity of the measures is then established by proving inequalities for expected 
rewards over a finite horizon in the discrete time version of these processes. The inequalities thus concern 
real numbers, viz. expectations of random variables, as opposed to inequalities for random variables as 
in the second category. Examples are Van Dijk and Lamond [9], Van Dijk [7, 8], Van der Wal [24], Adan 
and Van der Wal [4] and Van Dijk and Van der Wal [11]. 

So far, however, no monotonicity results have been reported for systems with processor sharing discip­
lines. When comparing sample paths for such systems, there are two essential difficulties. Firstly, chang­
ing the admission policy for a processor sharing queue may lead to a change in the order in which custo­
mers are served. Secondly there is an interference between the service capacities that are awarded to the 
different customer types. To this end, the fourth approach will be applied and shown to be successfull 
under natural conditions. The monotonicity results are proven by establishing bounds on the differences 
of the finite horizon expected rewards. The results are new in the sense that the bounds depend explicitly 
on the customer's type (ill. Lemma 4.3), and therefore the method itself is of interest. 

This paper is organised as follows. In Section 2 the queueing system and its performance measures are 
introduced. The service discipline is defined as a generalisation of the standard processor sharing discip­
line. The queueing process, which is a continuous time Markov process, is transformed into an 
equivalent discrete time process in Section 3. For this discrete time process monotonicity of the 
throughput and mean queue length is proven in Sections 4 and 5 respectively. Monotonicity of the mean 
sojourn time is shown in Section 6. 

2. INTRODUCTION OF THE QUEUEING SYSTEM AND ITS PERFORMANCE MEASURES. 
Consider the queueing system in Figure 1, where two types of customers arrive according to two 
independent Poisson processes with arrival rates A1 and A2 respectively. If m customers are present of 
type l and n customers of type 2, then the population vector of the iueue is said to be ( m , n ), 
m, n E ~- Admission of new customers is described by a control law U: ~ ~ [ 0, l ]2 , where U;( m, n) 
denotes the probability that a new customer of type i is admitted if the population vector at the moment 
of arrival is ( m, n ). Non-admitted customers are assumed to be lost. In the sequel of this paper we will 
restrict attention to control laws U that use only partial state information, i.e. U 1 ( m , n ) = U 1 ( m ), 
U 2 ( m , n ) = U 2 ( m ). Furthermore the control law is restricted to be of the critical level type, i.e. 
U 1 ( m , n ) and U 2 ( m , n ) are of the form 

U1(m,n)= I(m<M) 

U2(m,n)=1(n<N), 

(2.1) 

(2.2) 

for some M, N EN U { oo }. The control law u·as defined in (2.l) and (2.2) will be referred to as uM,N. 
The parameters of the control law, M and N, are referred to as the critical levels for type I and type 2 
respectively. These admission policies make the arrival rates for admitted customers state-dependent, 
i.e. if the population vector of the queue is ( m , n) then the arrival rates of type l and 2 are A1 ( m, n) = 
A1 l(m < M) and A1 ( m , n ) = A2 l(n < N) respectively. 

The service requirements for customers of type i are assumed to be exponentially distributed with ser­
vice rate fL; , i = l , 2. The server is working according to the processor sharing discipline in the sense 
that at any time each customer of one type receives the same amount of service as any other customer of 
that type. The speed at which service demands of customers of both types are handled is modelled by 
two capacity allocation functions q,1 , <PL. : N2 ~ [ 0, l ]. For each m , n E ~. $; ( m , n) denotes the speed 
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FIGURE l. The model of the processor sharing queue. 

at which all customers of type i together are served, so µ; $; ( m , n ) is the actual service rate for type i if 
the population vector is ( m, n ). The actual service rate for one customer of type l is then q,1 ( m, n )Im. 

Let X : g X IR + ~ 1\12 denote the queueing process, for some appropriately chosen sample space ~. 
Performance measures for this queueing system are defined as expected time-average rewards for suit­
ably chosen reward functions. Let r : 1\12 ~ IR + be a reward function: when the population vector is 
( m , n ), a reward r ( m , n ) is gained every time unit. A performance measure is defined as the expected 
time-average reward if the reward function is r: 

1~ Eu"·N { t-1 j r(Xs )ds }• 

where the superscript U on the expectation operator denotes its dependancy of the control law that is 
used. Most standard performance measures can be expressed in this manner, e.g. the throughput of type 
i by choosing r ( m , n ) = µ; $; ( m , n ), and the total mean queue length by choosing r ( m , n ) = m + n. 

3. TRANSFORMATION TO DISCRETE TIME. 

In this section the queueing system, as introduced in the previous section, will be transformed into a 
discrete time setting. This formulation will become useful in later sections, since it makes times between 
transitions of the queueing process constant, at the cost of introducing so-called dummy transitions. The 
transformation proceeds as follows (cf. [16, 14]). 

Assume that the sum of all transitions rates, i.e. i\1 + i\2 + µ1 + µ2, is finite. Furthermore assume 
that this sum is equal to one. This is no restriction, since it can be established by appropriately scaling 
the time axis. Introduce N : g X R + ~ I\! a Poisson process with stochastic intensity one, and the stop­
ping times tn : g ~ IR as 

nEl\J. 

Let Y : ~ X I\! ~ 1\12 be defined as Yn : = X1., then Y is a discrete time Markov process with transition 
probabilities (depending on the control law) given as: 

p u"·N ( (m', n') ; ( m , n ) ) = P { Yk+ 1 = ( m', n') I Yk = ( m , n ) } 

A] l(m <M) 

A2 l(n <N) 

P.1 <P1(m,n) 

/kl <Pi(m,n) 

if(m', n') = (m + 1,n) 

if(m', n') = (m,n + 1) 

if (m', n') = (m -1,n) (3.1) 

if (m', n') = (m,n -1) 

1 - i\1 l(m<M) - i\2 l(n<N) - JL1 <f>1(m,n) - /kl c/li(m,n) if(m', n') = (m,n). 
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From (3.1) we see that by transforming the continuous time process into a discrete time one, we intro­
duce dummy transitions, i.e. transitions that do not change the state. 

If we choose the one step reward for process Y equal to r(m,n ), then the expected time-average 
rewards for both Y and X are equal, i.e. 

- t - k-1 
funEU{t- 1 /r(Xs)ds}= funEU{k- 1 ~r(Yn)}. 

I--> oo k--" oo n =0 

4. MONOTONICITY OF THE THROUGHPUT FUNCTION. 
In this section we show that the throughput of customers is monotonic in the critical levels: the 
throughput of one type increases if the critical level for that type is increased, and it decreases if the criti­
cal level for the other type is increased. 

Let the reward function be r(m,n) = µ1 <[>1 (m,n), hence the performance measure under consideration 
is the throuW,fut of ty,ee 1 customers. Let Tf/·N and Tt1 + l,N denote the throughput of type I if the con­
trol laws U · and U + l,N are used, respectively. Throughout the remaining sections of this paper we 
assume the following. 

ASSUMPTION 4.1. 
cp1 (m,n) is non-decreasing in m and non-increasing inn. 
cJ>i (m,n) is non-incre,asing in m and non-decreasing inn. 

These assumptions are satisfied for example by the normal processor sharing service discipline, i.e. 
c/>1 (m,n)= l(m +n>O)m I (m +n). 

The main result of this section is the following theorem. It states the intuitively obvious monotonicity 
for the throughput function. 

THEOREM 4.2. If Assumption 4.1 holds and if 
c/>1(m + I,n)+c/>i(m + 1,n) ~ cp1(m,n)+</>i.(m,n) 

<f>1(m,n + l)+</>i.(m,n + 1) ~ c/>1(m,n)+c/>i(m,n) 

then Tf/·N.;;;;; Tf/+l,N, M,NEN. 

(4.la) 

(4.lb) 

Before proceeding with the proof of Theorem 4.2. we need the following definitions. Let ~.N(m,n) 
denote the total expected reward over k steps when starting in state (m,n), for the policy UM.N: 

MN[k-1 l ~.N(m,n) = Eu · ;~ r(Yi) I Yo= (m,n) . (4.2) 

Since for finite M and N the state (0,0) is positive recurrent, the Markov chain Y is irreducible. 
According to the theory of Markov reward processes we thus have 

'If·N = fun k- 1 ~.N(m,n) 
k ..... 00 

and the limit is independent of the initial state (m,n). It is therefore sufficient to prove that for some 
m,n EN and for all k EN 

~.N(m,n).;;;;; ~+1,N(m,n) 

For the proof of Theorem 4.2. we first state the following lemma. 
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LEMMA 4.3. If Assumption 4.1 holds and the conditions of (4.1) are satisfied, then for all 
k,m,n,M,N EN, 

0 :e;;; ft.N(m + l,n)- ft.N(m,n) :e;;; I 

0 :e;;; ftN(m,n) - ft N(m,n + 1) :e;;; El_. 
' ' l"2 

(4.3a) 

(4.3b) 

PROOF. (of Lemma 4.3). The proof is by induction ink. Since YoM,N(m,n) = 0, (4.3) is immediate for 
k=O. 
Letk >0. We have 

vt;J (m + 1,n)- vt;J (m,n) 

= r(m + l,n)- r(m,n) 

+A1 l(m<M) [ft,N(m+2,n)- ft,N(m+l,n)] 

+ A2 l(n<N) [ ft.N (m + l,n + 1) - ft.N (m,n + 1)] 

+ P.1ct>1(m,n) [ ft.N(m,n)- ft.N(m -1,n)] 

+ J"2cl>z(m + 1,n)[ ft N (m + l,n -1) - ft N (m,n -1)] 

(4.4) 

0 

/ ' ' 
+ [ 1-At l(m<M +l)-A2 l(n<N) -µ.1ct>1 (m + l,n)-1"2ct>z(m,n)][ft,N(m + 1,n)- ft,N(m,n)] 

+ l"2 [ct>z(m,n) - ct>z(m + l,n) Hft.N(m + l,n) - ft.N(m,n)] 

+ J"2 [ct>z(m,n) - ct>z(m + 1,n)][ft,N(m,n) - vt,N(m,n -1)] 0 

Observe that apart from the terms marked o all other terms consist of a difference as in (4.3a) multi­
plied by a constant between 0 and I, with all multiplication constants summing up to a number smaller 
than or equal to one. Note also that by Assumption 4.1 and (4.3b) the second term marked o is negative. 
We will now bring the marked terms in a similar form, distinguishing between two cases. 
Caseq,1(m + l,n) = ct>1(m,n). 

If ct>1(m + l,n) = ct>1(m,n) then by condition (4.la) also ct>z(m + l,n) = ct>z(m,n) and by definition 
r(m + 1,n) = r(m,n). All o marked terms thus vanish, and all the remaining terms are of the form (4.3a) 
multiplied by a non-negative constant. Furthermore all multiplication constants sum up to 
1-A1 l(m =M)> which is smaller than or equal to one, thus completing the proof. 
Casect>1(m + l,n) >ct>1(m,n). 
Assume thatct>1(m + l,n) > q,1(m,n). Theo marked terms in (4.4) equal 

r(m + 1,n) - r(m,n) + J"2[ct>i(m,n)-ct>i(m + l,n)][ft,N(m,n)- ft,N(m,n -1)] 

{ 
1"2[ct>z(m,n)-ct>z(m + l,n)] [ J} = P.1[ct>1(m + l,n)-ct>1(m,n)]X 1 + [ ( + 1 ) ( )] vt,N(m,n)-ft,N(m,n -1) 
P.1 ct>1 m ,n -ct>1 m,n 

With (4.la) and the induction assumption (4.3.b) we have 

so 

J"2[ct>z(m,n)-ct>z(m + l,n)] [ ] 
0 :e;;; 1 + [ ( + 1 ) ( )] ft.N(m,n)- ft,N(m,n -1) :e;;; 1 

P.1 ct>1 m ,n -ct>1 m,n 

vt;J (m + l,n)- vt;J (m,n) 

= A1 l(m<M) [ ft.N(m +2,n)- ft,N(m + l,n)] 

+ Az l(n<N) 

+ P.1ct>1(m,n) 

[ ft.N (m + l,n + 1) - ft.N (m,n + 1)] 

[ft,N(m,n)- ft,N(m-1,n)] 

(4.5) 
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+ JL2cf>i(m + l,n)[ Mi,N (m + 1,n -1) - Mi,N (m,n -1)] 

+ µ1 [c/>1(m + l,n) -cp1(m,n)][TERM (4.5)] 

+ JL2 [cf>i(m,n) - cf>i(m + 1,n) Hf1i.N(m + l,n) - Mi,N(m,n)] 

+ [l -A1 l(m <M + l) -A2 l(n <N) -µ1 c/>1 (m + l,n)-µ2cf>i(m,n)][f1i,N(m + 1,n )- f1i,N(m,n)J, 
where 0 ~ TERM (4.5) ~ l, thus completing the induction step. The proof of (4.3b) proceeds in an 
analogous way. D 
With Lemma 4.3 we can proceed with the proof of Theorem 4.2. 

PROOF (of Theorem 4.2.). 
Recall that we had to prove Mi,N(m,n) ~ Mi+i,N(m,n) for some m,n El\! and for all k EN. In fact we 
will prove that this holds for all m,n El\!. Again the proof is by induction ink. 
k = 0. Trivial. 
k >0. Observe that 

f1i+~1.N(m,n) - Mi;J(m,n) 

= ~ p u"••.N ((m',n');(m,n )) f1i + l,N(m',n') - p u"·N ((m',n');(m,n )) vt-,N(m',n') (4.6) 
(m',n') 

= ~ pu"·N «m',n');(m,n))[ f*M+1,N(m',n') - Mi,N(m',n')] 
(m',n') 

""' uu+1.N ' ' uM.N ' ' Tm ' ' + .£.. [p ((m,n);(m,n))-p ((m,n);(m,n))]Y:M+i,N(m,n). 
(m',n') 

Since the first term on the right hand side of (4.6) is positive due to the induction assumption, the posi­
tivity of the second term remains to be proven. Examination of this term shows that it is equal to 
A1[f1i+i,N(M + 1,n) - f*M-t-J,N(M,n)]. With the result of Lemma 4.3 this completes the proof. D 

Observe that by equation ( 4.6) proving the original inequality for two policies is reduced to proving an 
inequality for one policv. This is due to the fact that the control law for customers of type 2 is the same 
for both UM,N and UM+ i":N. 

By choosing the appropriate bounds as in Lemma 4.3 the method should in principle be extendible to 
more than two customer types. We have, however, not addressed this problem yet. 

The introduction of the capacity allocation functions allows more elaborate service disciplines than 
the usual Processor Sharing mechanism, including those which do not lead to product-form equilibrium 
probabilities. 

EXAMPLE 4.4. (Monotonic Generalized Processor Sharing) 
If we choose the capacity allocation functions as in the Generalized Processor Sharing model ( cf. Cohen 
[6], Kelly [13]), i.e. 

m 
<P1(m,n) = f(m +n)-+ l(m+n>O) m n 

n cf>i(m,n) = f(m +n)-+- I<m+n>O), m n 

for some non-decreasing functionf:l\l~R+, we have cp1(m,n) + cf>i(m,n) equal to f (m +n)I(m +n>Ol> so 
Assumption 4.1 and the conditions ( 4.1) are satisfied. Moreover, observe that for this choice the equili­
brium probability distribution has a product-form (cf. [5, 13, 6]) and the throughput depends on the ser­
vice time distribution only through its mean value. This leads to the following corollary. 

COROLLARY 4.5. If the service discipline is Monotonic Generalized Processor Sharing, then the throughput 
of type 1 customers is non-decreasing in the critical level of type 1 for general service time distributions. 



The following example shows that Theorem 4.2. holds also for non-standard service disciplines. 

EXAMPLE 4.6. (Priority Processor Sharing) 
Take 

</>1(m,n) = l(m>O) 

cf>i.(m,n)= l(m=O)· 
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Here we have <t>1(m,n) + cf>i.(m,n) = 1, so conditions (4.3) are satisfied. In this example all processor 
capacity is awarded to type l customers, when they are present. This queue does not have a product­
form equilibrium distribution. 

We conclude this section with a theorem similar to Theorem 4.2. referring to the monotonicity of the 
throughput of one type of customers if the critical level of the other customer type is increased. 

THEOREM4.7. Ijtheconditionsof(4.J)aresatisfied, then T!{'N;;:;;.: T!f+l,N. 

PROOF. 

Take r(m,n) = µ2cf>i.(m,n). The proof now proceeds analogously to that of Theorem 4.2. 0 

5. MONOTONICITY OF nIE MEAN QUEUE LENGTH. 

In this section monotonicity of the mean queue length is shown with respect to both critical levels. If 
either of the critical levels is increased, then the mean queue length of both types (and the total mean 
queue length of course) increases. The result can be stated for a rather general class of reward functions. 

THEOREM 5.1. Let V't,N(m,n) be the expected total reward over k steps, when starting in state (m,n) and 
using policy uM,N. If the Teward function r(m,n) is non-decreasing in both its arguments m and n and 
Assumption4.1 holds, then V't,N(m,n):o;;;; V't+1,N(m,n)forallm,nEN. 

PROOF. 

Analogously to the proof of Theorem 4.2. it is sufficient to prove that 

0 .-;;;;; V't,N(m + l,n) - V't,N(m,n), m,n,M,N EN. 

LEMMA 5.2. If r(m,n) is non-decreasing in both arguments, then 

0.-;;;;;V'tN(m+1,n) - V't N(m,n) 
' ' 

0.-;;;;;V't.N(m,n+1) - V't,N(m,n), 

for all m,n EN. 

PROOF. 

Again the proof is by induction in · k. The case k =O is 
vt;.rJ(m + l,n)- v~;.rJ(m,n) as 

vt<M;~(m + 1,n) - vt<M;.rJ(m,n) 

= r(m + l,n) - r(m,n) 

+ A1 I(m<M) [ V't,N(m +2,n)- V't,N(m + l,n)] 

+ Az l(n<N) [ V't,N (m + l,n + 1) - V't,N (m,n + l)] 

+ P.1</>1(m,n) [ V't,N (m,n) - V't,N (m -1,n)] 

trivial. 

(5.la) 

(5.lb) 

For k >0 write 

(5.2) 
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+ µzcf>i(m + 1,n)[ VXt,N (m + 1,n -1) - VXt,N (m,n -1)] 

+ [ 1-/\1 l(m<M+l)-/\2l(n<N)-µ1<P1(m+1,n)-µ2cf>i(m,n)][VXt,N(m + I,n)-VXt,N(m,n)] 

+ µ2[cf>i(m,n)-cJ>i(m + l,n)][VXt,N(m + l,n)- VXt,N(m,n -1)]. 

Since cf>i(m,n) is non-increasing in m due to Assumption 4.1 and VXt,N(m + 1,n)-VXt,N(m,n -1) = 
VXt,N(m + l,n) - VXt,N(m,n) + VXt,N(m,n) - VXt,N(m,n -1) ;;;;;. 0, all terms in (5.2) are non-negative, 
thus completing the induction step. The proof of (5.lb) is analogous. D 

Note that if the reward function r is positive and non-decreasing in both arguments, then also r; has 
these properties for all i EN. The monotonicity of r thus makes the higher moments also monotonic in 
the critical levels. 

ExAMPLE 5.3. 
If we take r(m,n) = m or r(m,n) = m +n, we see that both the mean queue length of type I and the total 
mean queue length are non-decreasing if the critical level of type 1 is increased. Due to the symmetry of 
Theorem 5.1 this also holds if the critical level of type 2 is increased. 

6. MONOTONICITY OF THE MEAN SOJOURN TIME. 
With Little's result we can combine Theorems 4.2. and 5.1. to show that the mean sojourn time of type 2 
customers increases if therritical level for type I customers increases. Unfortunately this technique can 
not be used for the monotonicity of type I customers. In this section we show that this performance 
measure is also non-decreasing if either of the critical levels is increased. We have been able to prove this 
only for standard Processor Sharing, however. The capacity allocation functions q,1 and cJ>i thus are 
chosen as 

n 
c/Ji(m,n) = -+-l(m+n>O) · m n 

The proof of the theorem relies on the product-form of the equilibrium distribution and the closed form 
formula of the mean sojourn time that can be derived from this distribution. It is well known (cf. 
Baskett et al. [5] and Kelly [13]), that the equilibrium probability of the population vector (m,n) under 
the policy UM,N, is equal to 

pM,N(m,n) = C[M,N]p(m,n), 0 ~ m ~M, 0 ~ n ~N, (6.l) 
where 

p(m,n) = (m:n)PT PL O~m ~M, 0 ~n ~N, 

C[M,N]= [.~J,e:•)pf pf 
With Little's formula the mean sojourn time of type I customers is equal to 

sM,N _ A(M) 
I - B(M) 

where 
M N 

A(M)= 2:: 2::mp(m,n) 
m=On=O 

M N m 
B(M) = m~On~O m +n /L1p(m,n). 

(6.2) 

(6.3) 

(6.4) 

(6.5) 

(6.6) 
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The variable N is suppressed in the notation of A and B, since N is held constant throughout this section. 

THEOREM 6.1. If P2 > 0, then 

St1·N < Sf+ I,N 

Again we need a preliminary lemma for the proof of the theorem. 

LEMMA 6.2. If A , B : 1\1 -:> R +, increasing, A (0) = B (0) = 0 and 

M(M+l)>M(M) M~l, 
LU1(M + 1) LU1(M) ' 

where M(M): =A (M)-A (M -1) and M(M) analogously, then 

A(M+l) > A(M) M~ 1. 
B(M + 1) B(M)' 

PROOF (by induction). 
(M = l ). First note that for positive a,b,c,d: 

a+c >!!.. s._>.E_ s._> a+c 
b +d b ~ d b ~ d b +d. 

Equation (6.9) reads fovM = 1 

Afil A.ill 
B(2) > B(l) 

(6.7) 

(6.8) 

(6.9) 

(6.10) 

Note that since A (O)=B(O)=O, by definition A (l)=M (1), B(l)=LU1(1). Since A (2)=A (l)+M (2) 
and B(2)=B(l)+M(2), this holds if and only if 

A (1) + M (2)~> A.ill 
B(l) + M (2) B(l) 

M(2) i!fil 
~ LlB(2) > B(I) . 

The latter inequality is true by A (l)=M (1) and B(l)=M(l). 
(M>O). Assume that we have 

A(m+D >~ m = 1, ···,M-1. 
B(m + 1) B(m) ' 

Form = M - I this yields 

A(M) A(M-1) 
B(M) > B(M-1) 

~ A (M -1) + M (M) > A (M - l) 
B(M-1) + M(M) B(M-1) 

~ M(M) > A(M-I)+M(M). 
M(M) B(M -1)+M(M) 
M(M) A(M) 

~ M(M) > B(M) ' 

where the second equivalence is an application of (6.10). With the condition (6.8) this implies 

M(M+l) > A(M) 
M(M+l) B(M) 

~A(M)+M(M+l) > A(M) 
B(M)+M(M+l) B(M) 
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A (M + 1) > A (M) 
~ B(M + 1) B(M) D 

PROOF (of Theorem 6.1. ). 
According to Lemma 6.2. it is sufficient to prove that 

ilA (M + l) ilA (M) 
fl.B(M +I) > AB(M). 

This is equivalent to 

N N 
n~O (M+nl+n)P~ n~O (M:n)p~ 

---------->-------- (6.11) 
~ 1 (M+I+n) n f _1_ (M+n)p~ 

n=O M+I+n n P2 n=O M+n n 
Ifwe define wn = (M +n)!p~ In!, then (6.11) reads 

[t (M +n +J)w,][,t M~n w} [t w,r (6.12) 

~ M+n+1/ 2 +""""[M+i+I + M+j+l] · ·> ~ 2+ 2"""" .. ~ £.., Wn £..,£.J . . W1 w1 £J Wn £.J£,JW1 W1 n=O M+n i<j M+j M+i n=O i<j 
(6.13) 

The first terms on both sides of (6.13) can be compared immediately and yield the desired inequality. 
The second terms also satisfy this inequality since 

(M +i + l)(M +i)~ + (M + j + l)(M + j);;;.: 2(M +i)(M + j) 
~ (M +i)(i -J +I)+ (M + j)(j-i + 1) > 0 

~ (i - JY + 2M + i + J > o 
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