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Dynamic MRI Reconstruction as a Moment Problem 

Part I. The Beating Heart: a Problem Formulation 

M. Zwaan 
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This paper deals with some mathematical aspects of magnetic resonance imaging 
(MRI) concerning the beating heart.MRI is used in diagnostic medicine to measure 
and display the cross section of e.g. a human organ. The field of MRI was 
disclosed by, among others, lauterbur and Ernst around 1975, when developing 
imaging techniques to depict the magnetic behaviour of protons. Since then the 
image quality has grown steadily, bringing MRI within the reach of clinical practice 
as a promising method. The development of MRI has not come to an end yet -
people are still looking for new methods of measuring the data and reconstructing 
the images. In this paper some of the basic theory behind magnetic resonance 
is given. Our special interest is the mathematical theory concerning MRI and 
we will formulate the ideas and problems in mathematical terms. If one uses 
MRI to measure and display a so called "dynamic" organ, like the beating heart, 
the situation is more complex than the case of a static organ. We describe a 
strategy how a cross section of a beating human heart is measured in practice 
and how the measurements are arranged before an image can be made. This 
technique is called retrospective synchronization. If the beating heart is measured 
and displayed with help of this method, artefacts often deteriorate the image 
quality. Some of these artefacts have a physical cause, while others are caused 
by the reconstruction algorithm. Perhaps mathematical techniques may be used 
to improve these algorithms which are currently used in practice. The aim of this 
paper is not to solve problems, but to give an adequate mathematical formulation 
of the inversion problem concerning retrospective synchronization. 
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0. Introduction. 
Magnetic resonance imaging (MRI) is a technique to measure and 

display the proton density of a cross section of e.g. a human organ, which 
is used in diagnostic medicin (see [1]). In section 1, it is explained how 
cross sections of "static" organs are measured by magnetic resonance 
imaging and how the Fourier transform comes into play. We describe 
in sections 2 and 3 how the proton density of a beating human heart 
is measured and depicted in practice, using MRI. This technique, called 
retrospective synchronization, is described here in detail. In the last 
section a mathematical problem formulation is given in terms of the 
Fourier transform. 

1. The physics of magnetic resonance imaging. 

Magnetic resonance imaging is a technique to measure the proton 
density of a cross section of an organ and to display a picture of this 
cross section on a computer screen. The measurements are performed 
by means of magnetic fields and a radio frequency pulse (rf-pulse), by 
which the spins of hydrogen atoms in the human body are forced to emit 
radiation with a unique frequency at each point. 

This radiation is measured by the MR-machine, in which ( approxi
mately) a signal given by 

S(t) '.::: { f(x) e-i'Y t(G.x)dx (1) 
Jn.2 

is induced. Here f : R 2 -+ R is the proton density of the measured 
cross section, t is time, 7 is the gyromagnetic ratio and G = (Gx, Gy) 
is the xy-component of the gradient vector, as explained in [2]. The 
notational convention used in this paper is to denote vectors and matrices 
in bold face. Formula (1) is the Fourier tr~nsfom of the protondensity 
f : R 2 -+ "JR. In the following we explain how (1) is obtained. 

We distinguish the following four types of magnetic fields. The fields 
described in 1,3 and 4 are parallel to the z-axis and the radio frequency 
pulse, which is described in 2 lies in the xy-plane. 
1. A strong homogeneous field to align the spins in one direction, called 

the z-direction; this direction is the equilibrium direction of the 
spms. 

2. A radio frequency pulse (rf-pulse), that is, a rotating electromag
netic field in the xy-plane, which is applied for a very short time to 
push the spins out of equilibrium. 

3. The z-component of the gradient vector Gz, by which the cross 
section is selected, see for example [2]. We will not take this com
ponent into consideration, but we always assume to measure the 
proton density of a particular two dimensional object. 



4. The gradient field, (0, 0, G.x)1 , which forces the proton at position 
x = (x,y) to resonate with a unique frequency. Here G = (Gx,Gy) 
is the xy-component of the gradient vector (Gx, Gy, G::)· 

In order to study the effect of magnetic fields on the protons in the 
selected cross section of a human organ, we consider the magnetization 
M(x, t), which is the sum of the spins of all the particles in the area 
around x at time t. 

The three magnetic fields described in (1), (2) and (4), are here 
denoted, for computational convenience, as one magnetic field which is 
position and time dependent, 

B(x, t) =Bo+ ~B(x) + Bi(t). 

Here Bo is the homogeneous field parallel to the z-axis, B 1 (t) is the 
rf-pulse which depends on the Larmor frequency w r, = 'Y Bo and ~B is 
the gradient field, 

Bo=UJ 
( 

0 ) ( B1 coswrt ) 
~B(x) = G~x , Bi(t) = -B1 s~nwr,t . 

The magnetization M(x, t) satisfies the Bloch equation, 

8M(x t) ( -Mx(x, t)/T2(x) ) 
at' = 1M(x, t) x B(x, t) + -My(x, t)/T2(x) , 

(Mo - M::(x, t))/T1 (x, t) 

where T1 (x) and T2 (x) are relaxation times and the equilibrium magne
tization is 

Mo=UJ 
The relaxation times T1 and T2 represent the effect of the relaxation 
processes. T1 is the longitudinal or spin-lattice relaxation time which 
governs the evolution of M:: towards its equilibrium value M0 ; T2 is 
the transverse or spin-spin relaxation time which governs the evolution 
of the magnitude of the transverse magnetization (Mx, My) towards its 
equilibrium value of zero; in general T1 is much bigger than T2 . 

Dropping the variables x and t, we rewrite the equation (3) as ( cf. 
[1]) 

8M 
Bt = QM + Mo/T1, 

3 

(2) 

(3) 

(4) 



4 

where 

w 

-l/T2 
-1B1 coswr,t 

Here w = 1(Bo + G.x). 
Now consider ( 4) in a coordinate frame that rotates with t~~ Larmor 

frequency wr, around the z-axis. If we introduce the variable M = RM, 
where the rotation matrix R is given by 

( 
cosw r.t 

R = sin;r.t 

the Bloch equation ( 4) reduces to 

aM: -8t = AM+ Mo/T1. 

Here 

(
-l/T2 

A = -l::iw 
0 

0 ) 
W1 ' 

-l/T1 

and w1 ~ I B 1 , l::iw = G.x. The tilde which is written above a variable 
indicates that this variable is transformed to the rotating coordinate 
frame. 

The unique solution of (5) with initial value M(O) is 

M(t) = eAt M(O) +A -l [eAt - Id]Mo/T1, 

where Id is the identity matrix. The inverse of A is 

1 T1T2 1 
(

_1 +w 2 

A_, = det(A) (~~~1 
.th d t(A) - ( 1 ~ (Llw) 2

) 
WI e - - T1 T2 2 + T2 + Ti . 

It is convenient to decompose A as the sum of the two matrices T 
and F, 

T __ (-l/T2 
-l/T2 

-1/T1 ) ' 

l::iw 
0 

-w, 

We consider the effect of the three magnetic fields on the magnetization 
M. 

(5) 

(6) 



1. The homogeneous field Bo is applied, sow = wr. f; 0, w1 = 0 and 
b..w = O; hence A = T and (6) reduces to 

M(t) = eT1M(O) + (1- e-t/7', )Mo. 

If t is large, then M(t) ~ M 0 , parallel to the z-axis, i.e. M is 
approximately in its equilibrium if t is large. 

2. The rf-pulse is a strong field which is applied for a very short time, 
while the gradient field is zero, so 

0 

and 
A -l [eAt - Id]Mo/T1 ~ 0 

and A~ F. Suppose M(O) = M 0 , then (6) becomes 

M(t) ~ e-FtM0 , 

which is a rotation around the x-axis with frequenty w1 = 'Y B1 . 

Applying the rf-pulse for a time period of tw, = t7r/w1, we obtain 
the so called 90" pulse, which results in the following state for the 
magnetization, 

M(t.,)= ( +) 
3. In this case the gradient field (.6.B) is considered, which is applied 

after t)J.e rf-pulse. The matrix element /);.w f; 0, but w1 = 0 (because 
the rf-pulse is off). Then equation (6) becomes 

M(t + tw,) = eFt+TtM(tw,) + (1 - e-t/Ti )Mo. 

After some time the magnetization has returned to equilibrium: 

Note that the magnetization at position x depends on the frequency 
wr. + b..w (b..w = 7G.x). 

The receiver coil of the MR-machine measures the magnetization 
M(t + tw1 ), (that can be obtained by transforming formula (9) to the 
nonrotating coordinate frame) before it has returned to equilibrium and 
an output signal S(t) is generated. In [2] it is explained how in practice 
the magnetization M(t+tw,) induces the signal S(t) in the receiver coils 
of the MR-machine, 

S(t) = const f e-t/r2 M0 (x)e-iilwtdx. 
J R.2 
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Now let f(x) = M 0 (x). With ~w = 1G.x, we have 

S(t) = const { e-t/T2 f(x)e-i-yG.xtdx. 
}R2 

Note that it is not taken into account that the relaxation time T2 depends 
on the position x. 

Because the time period during which the measurements are made 
is much smaller than T2 , we have e-t/T2 :::: l so (10) simplifies to 

S(t):::: const J f(x,y)e-i-yt(G.,x+Gvy)dxdy, 

writing,.,, := 1Gxt, ,\ := /Gyt, we recognize S(t) as the Fourier transform 
of f at the frequency (r.:, ..\), denoted as J(K, ..\). In the following all 
frequency parameters will be denoted ey Greek letters. 

2. Acquisition method. 

In practice it is only possible to find the Fourier transform f of 
a function f at a finite number of frequencies; to be somewhat more 
specific, K = 0, ... , 255; ,\ = 0, ... , 255. In [2] it ~ explained how to 
choose the gradient fields Gx and Gy to measure f at the values K = 
0, ... , 255, for ,\ fixed. We assume that this sequence can be measured 
instantaneously (in practice this may take from 2 up to 10 msec). One 
such sequence of measurements {J( i>:, >.)} '"=O ,. . .,2 1\ 5 , for fixed ,\ is called a 
profile . 

Previously we described how the measurements are made in the case 
of a static object, i.e. we considered a function f : JR2 -> 1R which only 
depends on the position varable x, and not on the time. 

If we want to use MRI to measure and display cross sections of 
"dynamic" organs, e.g. the heart, then we have to consider a function 
that does not only depend on the variable x, but also on the time T. So 
in the following we want to consider a function F(x, T) which we can 
think of as the proton density of a cross section of the beating heart. 
The reason why the function and the time are denoted by capitals will 
become clear later. 

Before describing the acquisition method which is used in practice 
for measuring the Fourier transform of the proton density of a beating 
heart, we first give some terminology. 

R-pulse is the electric pulse in the heart that marks the beginning 
of a heartbeat. It is recorded by means of an ECG, simultaneously with 
the measuremements. 

RR-interval is the duration (in seconds) between two consecutive 
R-pulses. 

Unit RR-interval is an RR-interval of one unit time length, say one 
second, which will be used as a reference interval, we call this interval J. 

Heart phase is a phase in the periodic movement of the heart. 

(10) 



We explain an acquisition method wich we will call retrospective 
synchronization, as described in [3] under the name retrospective gating. 
We first introduce a function f: R,2 x J -+ R, which we define as the 
standard heartbeat. Here J is the unit RR-interval. We assume that the 
heart, during each heartbeat, is a rescaled copy of the function f in time; 
this rescaling should be based on a biological model of the movement of 
the heart. In order to give an example, we assume the rescaling to 
be linear. Suppose the k-th R-pulse is measured at the time rk, for 
k = 1, 2, .... We assume that the proton density in a cross section of the 
beating heart, F(x, T), is given by 

where TE [rk, rk+1 ). This so called dynamic case is more complex than 
the static case; in the dynamic case we_measure the Fourier transform 
of a function F at a certain time Ti, F(K., >i, T1), and the profile that is 
measured for fixed >i, at the time Ti, is denoted as {F(K., >i, Ti}ic=0 .. 255· In 
order to reconstruct the function Fat time T1 with the Fourier inversion 
formula, we should measure the 256 profiles (i.e. for >i = 0, ... , 255) at 
the time T1. In practice one cannot measure fast enough with MRI to 
obtain all these profiles at one heartphase, but they are obtained during 
several RR-intervals. The aim of MRI in the dynamic case is not to 
give a real time reconstruction of the beating heart during different RR
intervals, but to reconstruct the standard heartbeat. That is, we have 
to translate our measurements in terms of the function f. In the case 
of linear rescaling this can be done as in formula (11), if Ti E [rk, rk+1) 
then we define 

Ti - rk 
ti := ----

rk+l :--- rk 

and f(K., >i, ti) := F(K., >i, Ti)· The variable ti lies in the unit heart inter
val. The rescaling from Ti to ti is called projection on to the unit heart 
interval. 

The profiles are obtained as follows. We fix >i and we measure the 
profile { F( K., >i, T1)} ,.=0 .. 255, briefly denoted as { F( K., A, Tl )}, at time T1 . 

After some time (this may be from 10 up to 200 msec) we again measure 
a profile for >i, at time T2 , etc; the time at which the measurements take 
place is recorded. After we have obtained a fixed number of profiles (in 
practice this may be up to 80) the value of >i is increased. If an R-pulse 
has occurred, it is registered, so that, afterwards, the measured profile 
can be assigned to the corresponding heartphase. For an example how 
the data are obtained, see Figure 1. 

3. Reconstruction method. 
In this section we explain how the reconstruction is done in practice. 

In order to do this we use Figures 1 and 2. In the example in Figure 1 the 
value of >i is increased after seven profiles are measured. It is illustrated 
here that the profiles {F(K., >i, Ti)} for >i = 1, ... , 7, are measured during 
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>. = 1 

R- pulse 

Figure 1. An example of how the measurements are taken. 

different RR-intervals. Since two consecutive intervals are not necessarily 
of equal duration, we have to project the data on to the unit heart interval 
as follows. 

1. It is computed how long the heartbeat (i.e. the RR-interval) was lin 
which the measurement under consideration occurred. The time of 
a measurement, relative to the unit RR-interval is computed, e.g. in 
the case oflinear rescaling by (12), and the data are projected on to 
this interval. For example ( cf. Figure 2) for >. = 0 we have measured 
the consecutive profiles {F(11:, >., T1 )}, {F(11:, >.., T2 )}, {F(11:, >.., 1'.1)}, 
{F(.K, >.., T4 )}, {F(11:, >.., n)}, {F(11:, >.., T6 )} and {F(K, >.., T1 )}. After 
projection on the unit RR-interval (Figure 2) these profiles become 
reordered as {f(K, >.., t2)}, {f(K, >.., t4)}, {f(K, >.., t5)}, {f(K, >., t6)}, 
{f(K,>.,t1)}, {f(x:,.>.,t1)}, {f(x:,.>.,t3)}, respectively. We remark 
that the t;'s depend on the value of.>., in the sense that other values 
for >. will give rise to another arrangement on the unit RR-interval. 
To express this dependence we will denote the time as ti(>.); in the 
above case this should be ti(O), for i = 1, ... , 7. 

2. If we want to display the heart at several phases, the unit RR
interval is divided into several parts (see Figure 2, for the case that 
we want to dispay the heart at four phases). All profiles on the unit 
RR-interval between phase 1 and phase 2 are, in practice, consid
ered to be measured at phase l. All measurements between phase 
2 and phase 3 are considered to be measured at phase 2, etc. If 
several measurements belong to phase n, then the average of these 
is assigned to phase n. In the case of the example in Figure 3 we see 
that for phase 1 and phase 4 the profiles are missing. In order to 
reconstruct the image of the heart at e.g. phase 1, the profiles be
longing to >. = 0, .. , 255 are collected, as far as they were measured. 
In the case of Figure 3 we miss profiles for the phases 1 and 4, for 



-"=0 Ji= l 

R- pulse 

R- pulse 
R- pulse 

-"=O 

phase 1 

Figure 2. The measurements are projected on to a unit heart 

interval. 

Ji= 1. 

In practice it may be the case that there are missing profiles for 
several values of ..\. To perform a Fourier inversion, the missing values 
are set to zero in current practice and the Fourier inversion formula is 
applied. 

We want to improve the reconstruction algorithm which is described 
in this section. In order to do this, a problem definition is given in 
mathematical terms, in the next section. 

4. T awards a mathematical problem definition. 

In the previous section (section 3) it is described that missing profiles 
are set to the value zero, before performing a Fourier inversion. In Figure 
4 the artefacts, which are caused by making profiles zero, are illustrated. 
From this figure we see that it probably isn't a good idea to set the 
missing values to zero. 

In section 3 we described how data were projected on to a unit 
RR-interval and how measurements between phase n and phase (n + l) 
were assigned to phase n. We do not want to introduce the error of 
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,\ = 1 

R- pulse 

measmements for ,\ = 1 on a unit heart. interval. . 

R- pulse 

,\ = 1 

phase 1 measurement l measurement 6 

The heart phase is represented by 

the measurements are represented by 

Figure 3. Missing data at phase 0 and phase four. 

assigning measurements to other timepoiIJ.ts than they were measured 
at. Instead, we want to use interpolation of the measurements at the 
given timepoints, to obtain values at the desired phase. This will be the 
approach in Part II. 

Before giving a problem definition, we first introduce some nota
tion. Let D C IR2 be the unit square D = [-7r, 71"]2 and J is the unit 
RR-interval. Suppose the object to be measured has support in this in
terval D. The function f : D x J 3 (x, t) --+ lR can be thought of as a 
two dimensional cross section of a. standard beating heart. The Fourier 
transform off, taken with respect to the variable x = (x, y), is defined 
by 

J(K, >., t) := _!__ 1 1 f(x, y, t)e-i(t<x+>.y)dxdy. 
271" [-.,..,, .. ] [-'ll",'ll"] 

The profile {J(K, >., t;(A))}h·=o .. 255 is measured, for fixed A, at the rescaled 
time ti(>.), for i = 1, ... , I. We now formulate the problem. Suppose we 



Figure 4- The effect ofsetting profiles to zero. 
a The upper left picture is the original (a cross section of a 

knee). 
b The upper right picture is the modulus of its Fourier spec

trum. 
c The lower left is the same as (b), but with a number of 

lines (profiles) set to zero. 
d The lower right is the Fourier inverse of (c). 
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have measured 
g,.,>.,i := J(K, A, ti(,\)), 

for K, ,\ = 0, ... , 255 and i = 1, ... ,I. Find a function f : D x J -> 1R such 
that 

J(K, ,\, ti(,\)) = g,.,>.,i, 

for K, ,\ = 0, ... , 255, and i = 1, ... ,I. A possible Hilbert space setting for 
this problem (14) is discussed in part II. 
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