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This paper is mainly devoted to the following statistical problem: in case of random variables of any finite 
dimension and both simple or parametric hypotheses how to construct convenient "empirical" processes 
which could provide the basis for goodness of fit tests-more or less in the same way as the uniform 
empirical process does in the case of simple hypothesis and scalar random variables? 
The solution of this problem is connected here with the theory of multiparameter martingales and the theory 
of function-parametric processes. Namely. for the limiting Gaussian processes some kind of filtration is 
introduced and so-called scanning innovation processes are constructed-the adapted standard Wiener 
processes in on-tP"one correspondence with initial Gaussian processes. This is done for the function­
parametric versions of the processes. 
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I. INTRODUCTION 

Consider i.i.d. random vectors Xi. · · · ,Xn taking values in m-dimensional Euclidean space Rm and 
denote by F = { F(" , 0), 0 E 0} a parametric family of distributions in Rm. If 0 contains only one point 
00 let us write F 0 instead of IF. Denote by F the unknown distribution of each X;. The fundamental 
role of the uniform empirical process Un in the theory of goodness of fit tests for testing the simple 
hypothesis F=F0 for scalar random variables (m = 1) is well known. The first and main aim of the 
present paper is to introduce an empirical process of some kind, which can play a role similar to that 
of the uniform empirical process but for both simple (F=F0) and parametric (FEf) hypotheses and 
for any finite dimensional random vectors (1,.;;;;m < oo ). 

This empirical process is derived on the bl;lsis of some 'innovation' reasoning for the 'usual' empiri­
cal process Pn, 

Pn(x) = Vn[Fn(x)- Fo(x)] 

and for the parametric empirical process 

Pn(x,8} = Vn[Fn(x)-F(x, 8)] 
In connection with this the second but more modest aim of the paper is to discuss what could be 
understood as innovation martingale processes with multidimensional time parameter. We will see 
that these innovation martingales-we call them scanning innovations-can be introduced even in the 
case of an infinite dimensional time parameter, that is, for function-parametric processes. 
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The formal setting of the problem will be given in § 3. Here in the introduction we will continue 
with an informal discussion of both aims. 

GOODNESS OF FIT THEORY. Somewhere in the beginning of the thirties in the seminar hold in 
Moskow State University listening to the lecture of V. Glivenko, A. Kolmogorov realized that if the 
(scalar) random variable X has continuous distribution function F then the random variable F(X) has 
the uniform distribution on (0, I]. He used this observation in the lemma of his well known 1933 
paper: let <f>n01.) denote the probability of the inequality 

sup!Fn(x)-F(x)l<A/ Vn. 
LEMMA (KOLMOGOROV 1933 or 1986). The distribution function c/Jn(A) does not depend on F if Fis con­
tinuous. 

The idea of this lemma was quickly grasped by N. Smirnov, who sugested replacing the original form 
of Cramer-von Mises statistic 

n j [Fn(x)- F 0(x)]2dx 

by its present form 

n j[F,,(x)- Fy-(x)]2 F 0(dx) 

(SMIRNOV 1937), and by A. Wald and J. Wolfowitz who sugested considering confidence bounds for F 
based on statistics 

sup!Fn(x)- F(x)la[F(x)] 
x 

with a weight function a bt;ing essentially a function of F (WALD, WOLFOWITZ 1939). The eventual 
logical mastering of the transformation U=F(X) is connected with (DooB 1949), where the uniform 
empirical process Un appeared to everyone's sight: 

Un(t) = Pn(x), t = Fo(x). (1) 

Since the process un can be viewed as an empirical process based on independent uniformly distri­
buted random variables Ui = F(X), i = 1, · · · ,n, the distribution of un does not depend on F 0 . There­
fore if one chooses as the test statistic a functional i/;[vn, F 0 ] of v,, and F 0 , which could be represented 
as a functional «P[unl of Un only, 

¥'[vm F o] = «/>[Un], 

the distribution of such a statistic is free from F 0• In the whole subsequent development of the theory 
of goodness of fit tests such a choice of test statistics became the universal principle. 

Why is it so important to use distribution free, hence-asymptotically distribution free, statistics? 
To clarify this let us remark that there are two different kinds of tests. The tests of the first kind are 
based on one or "few" linear functionals of Pn. Examples are the Neymann-Pearson statistic 

1 " dA dA ' dA Vn :t[ln dFo (X;)-Ein dFo (X;)] = jln dFo (x)vn(dx) 

(where A denotes the alternative distribution of X;), Student's statistic 

Vn(X - EXi) I j 
S ~ - XPn(dx), 

n CJ 

statistics of C "-tests etc. The asymptotic distribution of a linear statistic is "usually" the normal dis­
tribution and the calculation of asymptotic levels of such tests is simple. Therefore it is completely 
unimportant whether we represent these statistics as functionals Un or not. 
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Tests based on one or "few" linear functionals are particularly sensitive to deviations from F 0 in 
one or "few" directions, but they are very insensitive to deviations in all other directions (see a precise 
statement for contiguous alternatives in § 2). Tests of the second kind-the goodness of fit tests-are 
of different behaviour. These tests are usually not most sensitive to any particular deviation from F 0 

but they have at least "some" sensitivity to "all" deviations from F 0 • 

Statistics of these tests are essentially nonlinear functionals of vn- The calculation of the limit distri­
bution of these functionals is a serious and complicated mathematical problem. Examples like the 
Kolmogorov-Smirnov statistic 

supl11n(x)I, 

the Anderson-Darling statistic 

v~(x) 
j Fo(x)[I-Fo(x)] Fo(dx), 

w2-; or Cramer-von Mises statistic 

j 11~(x)F0 (dx) 
are well known. Recall that it was quite difficult to derive and to calculate the limit distribution of 
each of these statistics. It is hard to calculate the limit distributions of weighted Kolmogorov-Smirnov 
or weighted w2 statistics/except for a few special weight functions. 

Because of this it is of prime practical importance that we have to calculate the limit distribution of 
each functional 1/i[vn, F 0 ]=!/>[un] only once for all continuous distribution functions F 0 • 

However, since (SIMPSON 1951) and (ROSENBLAIT 1952) it became clear that the transformation (1) 
does not lead to distri.bution-free processes if the X/s are m-dimensional random vectors with m ;;;;.2. 
Since (GIHMAN 1953, 1954) and (KAc, KIEFER, WoLFOVITZ 1955) it became clear that in the case of a 
parametric hypothesis FE IF -if we consider the natural analogue of ( l) 

Un(t) = Pn(X, 'ii), t = F(x, 8) 
A A A 

where ()=()(Xi. · · · ,Xn) is an estimator of the unknown value of the parameter() and vn(-,0) stands 
for the parametric empirical process, 

Pn(X, 8) = Vn[Fn(x)- F(x, O)], 

it does not lead to distribution free or asymptotically distribution free process as well (see § 2). As a 
consequence, the classical statistics like 

supjvn(x, 0)1 or j P~(x, O)F(dx, iJ} 
x 

have limit distributions depending on IF (and even on the true parameter value 8, in general). 
Because of these difficulties there were few, if any, attempts to develop systematically asymptoti­

cally distribution free goodness of fit tests for testing a parametric hypothesis in !Rm, m ;;;;.2. 
The main purpose of this paper is 

a) to formulate the mathematical problem· of finding "proper" asymptotically distribution free 
processes which can play a role similar to that of the uniform empirical process un (see§ 3), and 
then 

b) to propose one solution of this problem for all four cases: m =I, F = F 0 (simple hypothesis), 
m = 1, FE IF (parametric hypothesis), m ;;;;. 2, F = F 0 and m;;;;. 2, FE IF. 

Innovation for function parametric p~ocesses. Under the hypothesis F EIF the limit distribution of the 
parametric empirical process Pn( ·, fJ) is some 0-mean Gaussian process v (see § 2). Put m = l and 
transform the process v to its innovation martingale w (see definitions, e.g., in (LIPTSER, SHIRYA YEV 

1977), which is a Gaussian process with independent increments and covariance unction F(x/\y, fJ) 
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where () denotes the 'true value' of parameter. Now transform w to the standa~d Wiener process w, 
which is an easy step. In the resulting transformation of v to w substitute vn( ·, U) instead of v. What 
we get will be a process wn which converges in distribution under the hypothesis to a standard Wiener 
process w. Hence wn is an asymptotically distribution free process (and possesses other desired pro­
perties). Just thi.s was the solution described in {KHMALADZE 1981) for the case 'm = 1, FEIF'. 

But attempts to develop a similar approach in the case m;;;;.2 even for the simple hypothesis F=F0 
did not bring a success for quite a long time (until as late as (KHMALADZE, 1986) and {NIKABADZE, 
KliMALADZE 1987)). The problem is that it is not clear how to construct and even what to call an 
innovation processes for processes with multidimensional time parameter x. Let us explain this 
difficulty by example. 

Let v be Brownian bridge on [O, 1r with respect to (w.r.t.) F( · ), that is, the Gaussian process with 
mean 0 and covariance function F(x Ay)- F(x)F(y), and let m =I. Consider the partition of [0,1] by 
N points {i!N}, i~N. The Gaussian vector of increments {L\v(i!N)}, i~N, where 
6.v(il N)= v((i +I)/ N)-v(il N), has dependent coordinates, Ellv(i I N)llv(j IN)= -6.F(il N)M(j IN) 
for i=i=J. Consider now the transformation of { 6.v(i IN)} into the Gaussian vector { Aw(i IN)} defined 
as follows: 

i 
. . . v(N) . 

6.wN(i/N) = tiv(_!._)-E[tiv(N1 )l'JfJ=6.v(2-)+ . M(N1 ) 
/ N n 1 - F( __!._) 

N 

(1) 

where the a-algebra §f is generated by v(j IN), j ~i. It is clear that { L\wN(i IN)} is a Gaussian vector 
with independent coordinates. Now let 

wN(x) = ~ AwN( ~). 
i<Nx ~ 

The limit of the process wN as N -HXJ is a Gaussian process with independent increments 

w(x) = v(x)+ l l ~i&) F(dy) 

(with covariance function F(x Ay)). The relation between v and w is one-to-one. The process w is 
called the innovation process for the process v. 

But if we let m =2 consider a similar partition of [O, 1]2 by points {ii N}, i =(i" i 2), i" i 2 ~N, and 
the a-algebras IJ"~ generated by v (jl N), j~i, the increments 

i 
• • • • v( N) . 

MIN(_!_)= L\v(_!_)-E[Av(_!_)j'Bf] = Av(_!_)+ . M(_!_) 
N N N N l-F(_!_) N 

N 

are not any more independent random variables (obviously, L\v (ii N) denotes an increment on the rec­
tangle [ii N, (i+ l)/ N], 1=(1,1), that is 

. i+l i,+1 i2 i1 i2+1 i1 i2 
Av(i/N) = v(N)-v(~, N)-v(N, ~)+v(N, N). 

The reason for this phenomenon lies in the fact that if m ;;;;.2 the family of a-algebras {§f} is not 
linearly ordered any more w.r.t. inclusion: it is not true that for any i, j either 'Bf c§]" or §j' CIJ"f. As 
a result, the process 

and its limit 
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f v(y) 
M(x) = v(x)+ l-F(Y) F(dy) 

y,..x 

does not have sufficiently 'simple' covariance function and to transform M to a process with a stan­
dard distribution does not seem easier then to transform v itself. 

If we replace the a-algebras "Ji' by a-algebras 

qrN - i;;:N Vi;;:N • -(. . ) 
JVj - :'.f(l,i2) :'.1(; 1,l)o I- It. 12, 

which frequently appear in the theory of biparametric martingales (see, in particular, (CAIROLI, 
WALSH 1975)), what we get will be the process 

M'(x) = v(x)+ j v(l, T)+v(a, 1)-v(T, a) F(dT, da) 
(T,a)o;;x 1-F(l, T)- F(a, 1)+ F(T, a) 

with dependent increments-again not what we seek for. 
The reader interested in the theory of biparametric martingales (see e.g. the fundamental papers of 

(CAIROLI, WALSH 1975) and WONG, ZAKAI (1974) and the review paper (GIRMAN 1982)) may wish to 
remark, that the process {M(x), qfx}, qfx=a{v(Y),y.s;;;x}, is a weak martingale but not a strong mar­
tingale. The process {M'(x), qfx} is also not a strong martingale since M'(x) is not qfx-measurable. 

In§ 3 the 'scanning innovation' processes are introduced (see (KHMALADZE 1986)), which are one­
to-one transformations o/ v (and V) and which are Gaussian processes with independent increments. 
These scanning innovations can be introduced for x of any finite dimension m ;;;;.1 but it was interest­
ing to find out whether or not they can be introduced for an infinite-dimensional time parameter. In§ 
3 we consider the function parametric version of v, 

v(j) = f f (x)v(dx) 
xe[0,1r 

and introduce scanning innovations for v(j). 

2. CONVERGENCE IN DISTRIBUTION OF THE PARAMETRIC EMPIRICAL PROCESSES vn( ·, 0). THE DESCRIP­
TION OF LIMITING PROCESS VAS A PROJECTION. CONSEQUENCES AND REMARKS. 
Let X 1, • • • ,Xn be i.i.d. random vectors taking values in m-dimensional Euclidean space Rm, and F 
denote the unknown distribution of each X;. Let f' = { F(- , 0), 0 Ee} be some family of distributions 
depending on a k-dimensional parameter 0. We are interested in the problem of testing the parametric 
hypothesis F ef'. 

The parametric family f'. Suppose the range e ~f 0 to be an open subset of Rk. Let us assume from 
now on that all F( ·, 0) have support in [O, 1 r .< > Assume also the following regularity conditions on 
f-each F( ·, 0) is absolutely continuous w.r.t. Lebesque measure and the corresponding densities 
j(-,0) have the following regularity properties: 

1) the k-dimensional vector-function 

g'(x, 0) = :o lnf(x, 0) 

is square integrable: 

J g'T(x, O)g'(x, O)F(dx, 0) < oo. 

*) During the final preparation of the manuscript the author realizes that this condition is only a reminicence of some earlier 
versions. Though it brings some notational convenience it is not necessary in § 2 or in § 3. But at this stage it is too late to 
work a careful elimination of this condition throughout the whole text. 
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As a consequence the Fisher information matrix 

B (8) = j g'(x, 8)g'T (x, fJ)F(dx, 8) 

is finite. Here and everywhere below aT means the transpose of the column-vector a; 

2) if 

~(x, 8, t:) = sup jg'(x, '9)-g'(x, 0)/ 
e: 11e-'IJ1f<• 

then 

J gT (x, 0, c)g(x, 0,£.)F(dx, 0) ~ 0 

ast:~O. 

A family IF with these properties 1) and 2) we will call regular. 
The condition 2) is more or less traditionally used in asymptotic statistics-cf. condition c) of § 7 

Ch. I of (IBRAGIMOV, HAs'MINSKII 1981) or 2 Definition in Ch. VII of (POLLARD 1984). We will need 
it in estimation of the remainder in Lemma 2. 

As the test statistics for testing the parametric hypothesis F EIF let us consider functionals of the 
so-called parametric e91pirical process. 

~ .I A 1 n 
11n(x, fJ) = vn[Fn(x)-F(x, O)], Fn(x) = -2;I{X;~x} 

n I 

where 0=O(X1' · · : , Xn) is an estimate of the unknown parameter value. Let us clarify the asymptotic 
gehaviour of vn( ·, 0) as n~oo. To do this we need some assumption on the asymptotic behaviour of 
0. 

The estimator 0. Suppose 

3) there exists a k-dimensional vector-function/(·,()) such that for each 0E0 

j IT(x, B)l(x, 8)F(dx, 0) < oo 

and 

j g'(x, fJ)/T(x, 8)F(dx, 8) = Ik, (l) 

where h is the k Xk-identity matrix, and 

Vn(0-0) = j l(x, B)vn(dx, fJ)+op(l), n~oo. 
An estimator 0, which satisfies condition 3) we call projective (cf. (KHMALADZE 1979)). The reason 
for this definition is explained by Lemma I below. ~ A 

Suppose, for example, that 0 is one-dimensional and (}is an M-estimator, that is 0 is the root of the 
equation 

n 

2;if;(X;, 0) = 0 
I 

for some function if;(x, 0) such that 

j if;(x, fJ)F(dx, fJ) = 0, j i//(x, fJ)F(dx, 0) < oo. 

If IF is regular and if; possesses some regularity as well, that is, if J if;(x, fJ)F (dx, fJ) can be differentiated 
w.r.t. 0 under the integral sign, 
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j aao if;(x, B)F(dx, 8)+ jif;(x, O)g'(x, 8)F(dx, 8) = 0, 

and if 

I I n Vn ~if;(X;, 8)+op(1) f (}(}8 if;(x, O)F(dx, 8) n I 

Vn(0-8) = 

then the condition (I) is satisfied with 

a 
l(x, 8) = -if;(x, 8)1 j aB lf;(x, O)F(dx, 8). 

We will formulate limit theorems for vn both under the hypothesis and under contiguous alterna­
tives. Let us describe the alternative sequences of distributions precisely. 

The alternatives An- Under the alternative assume that for each n = 1,2, · · · the random vectors 
X I> • • • ,Xn are again i.i.d. with distribution An, which has the following properties: 

4) there exists F(·,O)EIF such that if An=A~+A~ is the Lebesque decomposition of A,, into abso­
lutely continuous and singular parts w.r.t. F( ·, 8), then 

and 

j[h,,(x)-h(x)]2F(dx, 8) -> 0 

for some function h ( · ), such that 

jh 2(x)F(dx, 8) < oo 

j h(x)F(dx, 8) = 0 

jh (x)g'(x, 8)F(dx, 8) = 0. 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Hence, under the hypothesis, the distribution of the sample X I> • • • , X,, is the n-fold direct product 
Pno=F(·,O)X · · · XF(-,8) with soll.!e F(·,O)EIF, while under each particular sequence of alterna­
tives the distribution of this sample is IP',,o(h)=A,, X · · · _XAn. According to (OosTERHOFF, VAN ZWET 
1979) c9ndition 4) guarantees that the sequence {IP'no(h)} is contiguous w.r.t. the sequence 
{IP'no}: IP',,11<JIP',J1t1· In fact, according to (OosTERHOOF, VAN ZWET 1979) the necessary and sufficient 
conditions for P,, 0(h)<]JP>,, 0 are conditions (2), (3) and 

lim sup j h~(x)F(dx, 8) < oo. 
71->00 

(8) 

Conditions (4) and (5) slightly streng then condition (8). The function h which participates in these 
conditions can be viewed as a function which determines from what 'direction' the alternative distri­
bution A 11 approach some hypothetical distribution F( ·, 8). 

Let us remark that any function h, which satisfies (4) and (5) must satisfy condition (6). But the 
orthogonality condition (7) is an additional requirement on h. This requirement is convenient and 
natural as can be seen later, but not necessary for the further development. 

We are ready no'Y to formulate the statements concerning convergence in distribution of 
v,, =v,,( · ,8) and vn(-, 8). But it seems convenient to describe first their limits in distribution-the 
Gaussian processes v and v. 
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The Gaussian processes v and v. Denote by b( ·, 8) the Gaussian process on [O, I]"' with mean 0 and 
covariance function F(x /\y, B). Let 

v(x, {}) = b(x, 8)-F(x, 8)b(1, 8), 1 =(I, · · ·, I)i:=~"'. (9) 

The covariance function of v(-, 8) is F(x /\y, {})- F(x, {})F(v, {}). Let us call b (-, {}) and v (-, 0) the 
Wiener process w.r.t. F( ·, 8) and Brownian bridge w.r.t. F( ·, 8) respectively, and let us omit 8 in 
b (-, 8), v (-, 8) etc., when it does not lead to misunderstanding. Now, let 

v(x, 8) = v(x, 8)-gT(x, 8) j l(y, 8)v(dy, 8)=[II1v(-, {})](x), 
o,,;;;y,,;;;1 

where g(x, {})= J g'(y, 8)F(dy, 8). It is convenient to introduce extended vector-functions 
y,,;;;x 

(10) 

g'(x) = ~'(;, 8)], g(x) = [;&: ~], l(x)= [ic) {})) (11) 

and to substitute (9) in (10)-if (1) is satisfied then 

v(x, 8) = b(x, 8)-gT(x) j l(y)b(dy, {})=[IIb(-, {})](x). (12) 
Qo;;y.;;1 

LEMMA 1. The transformation (9) of b to v is a projection. If (1) is satisfied, then the transformation of v 
to vis a projection. C&fuequently, if (1) is satisfied, then the transformation (12) of b to v is a projection. 

PROOF. Let us prove the last statement only. What we need is to show for the linear transformation 
II that IIII=II is true. But the definition of g'(-, {}) and condition (1) lead to the biorthogonality 
condition 

j g'(x)IT(x)F(flx, 8) = h+1 (13) 

and equality IIIIb = IIb is the direct consequence of (13). D 

It is easy to notice that the kernel of the projection II does not depend on the choice of I. It is always 
the linear subspace KerII = { aT g, ai:=!Rk + 1 }. 

REMARK. The study of v as a projection of b does not lie in the main stream of the present text. That 
is why we avoid here a more rigorous description of II. More precise text can be found, e.g., in 
(KHMALADZE 19)9). Earlier the description of v as a projection of v in the case of the maximum likeli­
hood estimator 8 was mentioned in (TYuru:N 1970). 

~ -
As we see below, the asymptotic shifts of vn( ·,{})and Pn( ·, 8) under Pno(h) are the functions 

H(x) = j h(y)F(dy, 8) 

and 

H(x) = IIH(x)=H(x)-gT(x) j l(y)h(v)F(dy, {}) (14) 

respectively. ~ 
Now we turn to convergence in distribution of v11 ( ·, 0) and Pn( ·, 0), which we will prove in the 

space D[O, 1]"' introduced by (BICKEL, WrcHuRA 1971) and (NEUHAUS 1971). This space is con­
veniently described, e.g. in Ch. 2 of (SEN 1981). 
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THEOREM. As n-'?OO 

Vn(·,U) ~ V. 

If the sequence {An} satisfies conditions (2)-(6), then 
-

6D(P,,,(h)) 

~ 

If F is regular and() is projective, then 

<il(P ,,) 

vn(·,8} ~ v. 
If F is regular, () is projective and {An} satisfies conditions (2 )-( 6), then 

-
GD(P,,(h)) 

11n(·, 8) ~ v+H. 

According to this theorem, the substitution of a projective estimator instead of the true parameter 
value is asymptotically c;quivalent to projection of 11n parallel to the function g'( ·, {}). 

Define by (t/J, 0 = j ip(_x)~(x)F(dx, {}). 

COROLLARY. Under the conditions of the theorem, for any function t[J, such that (t/J, t[J)<oo, we get as 
n-'700 

1111 ($) = J ip(_x)vn(dx, U) ~ J <P(_x)v(dx)=v(cf>) 
-

GD(P .,) 

11,,(tP) ~v(ip)+(ip,h) 

GD(P ,,) 

v,,(<f>)= f tfJ<.x)11n(dx,8) ~v(tfJ) 

This Corollary is included to give some support to the informal reasoning in the introduction: being 
linear functionals of Gaussian processes, v(ip) and v(tfJ) are Gaussian random vaziables, hence vn(tP) 
and v,,(t/J) are asymptotically Gaussian indeed, and for all sequences of alternatives l?no(h) such that 

(p, h) = 0 (and (ip, g'(-, U))=O) . (15) 

the limit distributions of 1111 (p) (and v11 (p)) are the same as the limit distributions under the hypothesis 
1Jll 11 oz hence tests based on these linear functionals asymptotically cannot distinguish between !?no and 
all P,, 11(h) with the orthogonality property (15). 

PROOF OF THEOREM. The statement concerning the empirical process 11n( ·, U) is well-known and the!e 
is no need to prove it here (see, e.g., GAENSSLER and STUTE (1979)). The statement concerning 1111 ( ·, ()) 

is a consequence of the following 

LEMMA 2. Let 
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-If IF is regular, then under IP n 0 and, hence, under IP n 0(h) 

[ 
arn(x) ] 2 

P 
j oF(x, 9) F(dx, 0) -+ 0, n-+oo. 

PRooF. Let us remark that 

og(x, 9) = g'(x II\ 
oF(x, 9) 'VJ. 

Now using a Taylor expansion for Pn( ·, 0) in 0-0 and condition (3) one can write down 

o~C;~~ = [g'(x, 8}-g'(x, O)f Vn(O-O)+g'r(x, O)[Vn(B-0)- jl(y)11n(dy, 9)]. 

But the first summand in the right-hand side is small because of condition (2) and the second sum­
mand is small because of conditions (1) and (3). D 

Now for the proof of the statement concerning Pn( ·, 0) it is sufficient to prove that II 1vn( ·, 8) has 
prescribed limits in di~bution. But this c_an be done easily by the standard argu~ents-approximate 
j /d11,. by a continuous linear functional j ld11,. of Pn( ·, 0) and then use for 11,. - g j ldPn the continuous 
mapping theorem and Theorem 4.2 of (BILLINGSLEY 1968). D 

We will need alsg some statements to judge how 'sensitive' the processes 11n( ·, ()) ap.d 11,.( ·, 9) are to 
the alternatives IP,.o(h). First let us see 'how far' are the sequences {IP'no} and {IP'no(h) from each 
other. Denote 11(P, Q) the~distance in variation between distributions P and Q: 

v(P, Q) = sur.IP(B)-Q(B)I, 
BE.B 

where 'iB is the a-algebra, on which P and Q are defined. Let <I> be the standard normal distribution 
function and 

A.(h) = 2<I>(llhll/2)-1, llhll = (h,h) 112• 

LEMMA 3. If the sequence {A,.} satisfies conditions (2)-(6), then 

v(IJllno(h), IJll,.11)-+ A.(h), n-+oo. 

PROOF. This will not be given in full details: the first and main point is that under IP no 
n dA,,(X;) 1 n I 

i~lln dF(X;, 8) = Vn i~lh(X;)--z(h, h)+op(I) (16) 

(see (OOSTERHOFF, VAN ZWET 1979) or (GREENWOOD, SHIRYAYEV 1985)). Now, according to the cen­
tral limit theorem 

6D(P,8) 

1 n 
_ / ~h(X;) ~ 01(0,(h, h)) 
vn 1 

where ~. c/) denotes a normal random variable with meanµ and variance o2• Hence 
'D(I\,) 

~ dA,.(X;) I 
4'dln d ( II\ ~ CJL(- z(h, h ), (h, h )). 

1 'F X;,v1 
(17) 
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As a consequence (see, e.g., Theorems I, VII in (KHMALADZE 1975)) 
-

6D(P.,(h)) 
n dAn(X;) l 

2:In dF(X O) --7 CJU.2(h, h), (h, h)). 
I '' 

(18) 

Since 
- -

v(?,,o(h), ? 11 0) = P,,o(h, B,,)- IP',,o(B,,) 

where the event B,, is 

n dA,,(X;) 
B,, = {2:In dF(X 11\ > O}, 

I " v J 

(17) and (18) imply (cf. VII in (KHMALADZE 1975)) 
- 1 I 

v(l?,,o(h), l?,,o) ~ <I>(2ilh ll)-<I>(-2llh II) = A.(h). 

Now turn to the processes v,,( ·, fJ) and v,,( ·, 8). Let P~ denote the distribution of a process t (a ran­
dom variable ~). 

LEMMA 4. v(P", pv+H)7A.(h). If (7) is satisfied then v(Pv, pv+H)=A.(h). 

PROOF. Consider first the linear functionals 

v(cp) = jcp(x)v(dx), v(cp)+(cp,h) = jcp(x)v(dx)+ jcp(x)H(dx) 

generated from v and v +H by the function cp such that llct>ll<co. Without loss of generality one can 
assume that 

Ecp = j cp(x)F(dx, fJ) = 0. 

Indeed, v(l) = 0 implies 

jcp(x)v(dx) = j(cp(x)-Ecp)v(dx) 

and condition (6) implies (cp- E<[>, h)=(cp, h). But then from (9) it follows 

v(cp)=b(<P), v(cp)+(cp, h) = b(tp)+(cp, h). 

(19) 

The distance in variation between the distributions of these Gaussian random variables, i.e. between 
the distributions <ll( ·I ll<Pll) and <I>((· -(cp, h)I llct>ll) is equal to 

2ci> [ i(<f>, h )I ] - 1 (20) 
2ll<Pll . 

The function cp, which maximizes (20) is cp=const. h: 

max2<I> [ j(cp, h)j ]- I = 2<1> [fil]-1. 
</> 211<Pll 2 

But recall now, that since v and v + H are Gaussian processes 

v(Pv, pv+H) = max v(Pv(<Pl, pv(cp)+(cp,h)) 
</> 

(see, e.g., (Kuo 1975)). Hence, the first statement is proved. Consider now the linear functionals 

v(cp) = jcp(x)v(dx), v(cp)+(cp, h). 

Again without loss of generality one can assume cp-(cp, qT)l=cp, since v(cp)=v(<P-(</>, qT)l) and 
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(cp,h)=(q,-(cp,qT)l,h). But then (12) implies v(cp)=b(cp) and condition (7) implies h=h-(h, qT)l. 
Consequent we can proceed as above and choose cp=h that gives 

v(P', pv+H) = m;x2<I> [ ~;;1 ]-1 = A.(h). D 

Now we have prepared everything we will need in § 3. But before we conclude this present § 2 we 
would like to consider: 

A A 

Asymptotically distribution free transformation of Pn( · , 8) based on 'components' of Pn( ·, 8). Although 
this subsection looks like a deviation from the main line of this paper, it may help to notice better the 
difference between the formal problem al) - a2) of the next § 3 and the less formal problem al) - a2), 
b 1) - b2). Besides the content of this subsection is of some practical value (cf. e.g., with (DURBIN, 
KNOTT, TAYLOR 1975)). 

Consider the Karhunen-Loeve expansion of the Gaussian process v: 
(21) 

where {i\i} is the sequence of eigenvalues and ~ ak( ·)} is the orthonormal sequence of eigenfunctions 
of the covariance function 

R(v,y) = Y(x/\y, 8)-gT(x)e(y)-eT(x)g(y)+gT(x)Dg(y) 

of v (in (22) we use notations 

e(x) = j l(v)F(dy, 8), D = j l(y)IT(y)F(dy, 8). ) 
Q,,;y<;;;x 

(22) 

Expansion (21) establishes a one-to-one linear relation between v and a sequence { Vk} of independent 
'VL(O, I)-random variables ~ 

vk = Ai: If ak(x )v(x )dx. 

Having this sequence of random variables with standard distribution one can choose some finite or 
infinite sequence {ak}f, }";·(at<oo, of coefficients and some orthonormal sequence of functions 
{ 1/Jk( · )}f and 'construct' a process 

~>=I~~~w ~~ 
Clearly~ is a linear transformation of v and its distribution is free from IF and at one's diAsposal, since 
the choice of { ak} f and { 1h( ·)} t is at one's disposal. One could now replace v by vn( ·, 8) which will 
lead to a transformation of vn( ·, 8) to an asymptotically distribution free process. 

But this sugestion is very inconvenient practically, because it involves the spectral decomposition of 
R (x, y )-a too difficult problem to be used in a testing procedure for each parametric hypothesis. 

Luckily one can exploit the fact that v is not just any Gaussian process with some covariance func­
tion, but it is the projection of the Wiener process b (see (12)). 

LEMMA 5. (See (KHMALADZE 1979)). If { <t>d is any orthonormal sequence, i.e. if 
(cpk, <l>n) = okn 

and if 
(cpk>q) = 0, k = 1,2, ... ' 

then 

zk = f <t>k(x)v(dx), k = 1,2, · · · 

(23) 

(24) 
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are independent ~O, I)-random variables. 

Hence, in (22) instead of Vk one can use Zk. If in (24) v is replaced by vn( ·, 8) we get random vari­
ables Zkm and the process 

N 

~n(x) = ~ okZknlf;k(x) (25) 
k=I 

A 

is a linear transformation of vn( ·, 8) with prescribed, independent of IF, asymptotic distribution under 
the hypothesis. 

The orthonormal sequence { «l>k} can be obtained from any orthogonal system by the Gram-Schmidt 
orthogonalization process to satisfy condition (23)-much more easily then the sequence {ak}· 

Hence, the process ~n defined by (25) and functionals of ~n can be ~sed in practice for N not too 
large. As it's another advantage one can remark, that the process vn( ·, 8) with multidimensional time­
parameter can be transformed to ~n with one-dimensional time-parameter, which can simplfy the cal­
culation of test statistics and their lin;rit distributions. But the transformation (25) can satisfy condi­
tions al) - a2) only if N= oo and all ok~O. A transformation that requires infinite series cannot be 
viewed as a 'simple' one, that is, (25) does not satisfy condition bl) of § 3. That was why after 
(KHMALADZE 1979) we were still looking for something else. 

3. FORMULATION OF TIWPROBLEM. SCANNING INNOVATIONS. FUNCTION-PARAMETRIC VERSION. 
Let us consider again the classical transformation of the empirical process "n• based on scalar random 
variables (i.e. m = 1 ), to the uniform empirical process Un: 

un(t) = ~"n• F o](t) = vn(Fo 1 (t)). (1) 

It is common knowledge that % transforms "n to a distribution free, hence, asymptotically distribution 
free process. But this canm~t be the only important property.of the transformation %-for example, 
the transformation of "n to the process which is identically 0, also leads, of course, to an asymptoti­
cally distribution free but useless, process. An alternative property of :JC is that in the process Un 'the 
whole information is preserved' that helps 'to distinguish' between the hypothesis and alternatives. If 
we focus on contiguous alternatives, this property formally can be expressed by Lemma 3 of § 2 and 
the next 

LEMMA l. Let v be the process defined by (9) of§ 2 and let u = v°F- 1 be a standard Brouwnian bridge. 
Then 

and 

6D(P,) 

Un ~u 

•il(P,(h)) 

Un ~ u+HoF- 1 

PROOF. The convergence in distribution of u,, is the old and wellknown fact (see, e.g., (GAENSSLER, 
STUTE 1979) or (SHORACK, WELLNER 1986)). The last equality follows from Lemma 4 of§ 2 and the 
fact that the transformation % is one-to-one. D 

Formulation of the problem. As it was described in the introduction, the transformation :JC cannot be 
extended directly to the case of a parametric hypothesis and of a simple hypothesis for random vec­
tors (m;;;i.2). But why should we copy the transformation :X in all cases? Why cannot we find another 
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transformation, which may differ from % in form, but which will lead to the same goal? 
Let us formalize now this goal for the case of simple hypothesis: To find a transformation w[v,., F 0] 

which may depend also on the hypothetical distribution F 0 =F( ·, 00 ), with the following properties: 
"il(P',) 

al) w[v11 , F 0] ~wand the distribution P"' of w does not depend on F0 for any absolutely continu­
ous F 0 , 

-
<j)(P,(h)) 

a2) for any sequence of alternatives {A 11 } satisfying conditions (2)-(6) of§ 2 w[vni F 0 ] ~ w' such 
that v(P"', P 111')=A.(h). 

As the test statistics one can choose now functionals cp[w[vm F]] of the process w[v,,, F]. 
For practical convenience we find it proper to add two additional heuristic requirements: 

bl) the transformation w[vm F] must be simple enough to make the calculation of test statistics sim­
ple, 

b2) the distribution P 111 must be convenient to make the simple calculation of the null distribution of 
test statistics feasable. 

In the case of parametric hypotheses one can formulate a similar problem. In doing this let us 
preserve the notation~of the conditions and use the shorter notation v,,, v11 (x)=v11(x, 0). Now, we 
want: to find a transformation w[v,., IF] which may depend on hypothetical parametric family IF with 
the following properties: 

•D(P,,) 

al) for each 0, w[v,., IF] ~ wand P"' does not depend on IF if IF is regular, -
"il(l",,(h)) 

a2) for any sequence of alternatives { A 11 } satisfying conditions (2)-(7) of § 2 w[v,., IF] ~ w' such 
that v(P 111 , pw')=A.(h). 

Notice that now condition (7) of§ 2 is required-this seems natural in view of Lemma 4 of§ 2. 
Conditions bl) and b2) are exactly the same as above and we will not write them down anew. 
Our plan in what follows in this: we construct the one-to-one correspondence between the limiting 

Gaussian process v and some Gaussian process w with independent increments-the scanning innova­
tion of v. This is the first and the main step. Then we normalize w and get the standard Wiener pro­
cess on [O, I]"'. In the resulting transformation of v to w we will substitute v,, instead of v and prove 
that this is a transformation with desirable properties. All this will be done for function-parametric 
versions of the processes involved, which versions we now introduce formally. 

Function parametric processes. Denote by L 2(8) the space of functions with the norm 

lljll = II/lie = [jj2(x)F(dx, 0)] 112• 

In accordance with the notation already used.in § 2 denote by (j, cp) the scalar product in L 2(0): 

(j, cp) = (j, c/J)e = j f(x)~x)F(dx, 8). 

Later we will need also another scalar product: 

<f, cp> = j f(x)~x)dx. 
XE[o.1r 

For any f EL 2(8) let 

I h 
v11 (j) = j f(x)v 11 (dx, 0) = _ / ~[f (X;)- j f (x)F(dx, ())] 

vn 1 
(2) 



(cf. (POLLARD 1984)). Clearly 11,,(j) for eachfEL2(0) is a random variable with finite variance, 

Ev~(j) = (j, j)-(j, 1)2• 

Moreover 

Evnlf)Pn(<P) = (j, <P)-(j, l)(</>, 1). 

Similarly for any f En oEeL2(0) let 

Vn(j) = ff (X)Pn(dx, 0). 
According to Lemma 2 of § 2, if IF is regular then 

vnif) = II111nif)+op(l), n~oo. 

It is not difficult to observe that 

II1vnif) = Pn(IIjj) 

where 

Ilif = f-(j, g'T( ·, 0))/( ·, 8) 
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(3) 

(4) 

(the functions g'( ·, 0) and /( ·, B) are defined in conditions 1) and 3) of§ 2). Notice that vnif) is a bil­
inear functional - fof each fit is a linear functional of the trajectories of the empirical process 
Pn( ·, 8) and for each trajectory of vn( ·, 0) it is linear functional off Then the equality (3) simply says 
that Ilj is the adjoint projector of the projector II 1 in the bilinear functional (2). 

Notice that n 0E 0 L 2(0) is frequently quite a rich set. If, e.g., IF is the family of normal distributions 
with shift parameter 8, this set contains all functions with finite variance under any normal distribu­
tion with any mean B. 

Now let 

b(j) = ff (x)b(dx, 8) 

where the Wiener process b( ·, 0) is introduced just before (9) of § 2 , and let 

v(j) = ff(x)v(dx, 0), v(j) = ff (x)v(dx, 8). 

According to the representation (12) of § 2 

v(j) = Ilb(j) = b(j)-(j, qT)b(l) = b(IT*j), 

where 

n•f = f -(j, qT)/ 

(5) 

(6) 

is the adjoint projector of II in the bilinear functional (5) (functions q and l are defined by (11) of 
§2). 

Denote by C the extended Fisher information matrix 

C = (q, qT) = [6 B~())]· 
Condition 4) below will guarantee that C has the unique inverse c- 1• Let us consider then the special 
choice of the function /: 

(7) 

and denote 

(8) 

Remark that vis the orthogonal projection of b while v is, in general, a skew projection. The choice of 
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- A 

I corresponds to the case when (} is the maximum likelihood estimator. 
Now, for any two orthogonal projectors 'TT' and 'TT" we call 'TT'' larger then 'TT', and denote this 'TT'-<.'TT'', 

if '11'1'TT"='TT'. Let {'IT;>..}, O,,;;;;>..,,;;;;I, be a family of orthogonal projectors, defined on each L 2 (0). Assume 
that {'IT,\} has the following properties: 
I) >..,,;;;;>..' => 'TT>.. -<'TTx' 
2) ?To= 0, 'IT1 =I, I denotes the identity operator, 
3) for any f, ifJEL 2(cp) the function (j, 'TT>..i/J) is absolutely continuous in>... 

Recall for the reader's convenience some identities, which we will use later without comments: for 
orthoprojectors 'TT, 'TT', 'TT'', 'TT'-< 'TT", we have 

('TTf,'TTl/J) = (j,'TTl/J), ('TT'f,'TT''cp) = ('TT'/,q,). 

One can imagine the family {'TT>..} to be constructed as follows: let {Ax}, O,,;;;;;\,,;;;; 1, be a family of 
measurable subsets of [O, I]"' with the following properties 

l') ;\,,;;;;')...'=>Ax CAx, 

2') µ.(Ao) = 0, µ.(A 1) = I 

3') µ.(A A' \Ax) -,) 0 if N JA 
where µ.(A) denotes Lebesque measure of a set A. Then put 

'TTAf (x) = Ifx EAx}f(x). 

If 'TT>.. are defined in this way then a projector 'TTf =l-'TTx is, obviously, defined as 

'1Tf f(x) = l{x~Ax}f(x). 

Now consider the specific condition on the function q and the family {'IT>..}: 
4) for any A.E[O, I] the matrix 

Cx = ('TTf q, 'll'fqT) 

is nondegenerate, i.e. for any AE[O, I) the inverse matrix Ci: 1 exists. 

Obviously C 0 =C. Condition 4) is convenient rather then necessary (cf. (NIKABADZE 1990)), but 
we will use it for simplicity. 

Now we are going to construct the process w(j) which could be viewed as an innovation process 
for v(j). 

Innovation process for v(j). Associate with each>.. the a-algebra 

'53: = a{v('IT>J), f EL2((}) }. 

Let us understand this a-algebra as the one containing 'the past' of v(j) up to 'the moment' A.. Let us 
understand v(j) as an increment forward at>.. if 'TTAf=O, so that for any fEL 2(0) the random variable 
v(!i'TTAf) with D.?Tx ='TT>..+Li -?Tx is 'a small increment forward' if Mis 'small'. What we want to do is to 
construct the innovation of {v('IT>J), '53:}. Let us replace this, still uncertain problem by another one: 
consider the a-algebras 

~ = a{b('TT>J), fEL2(8)} 

and 

§'x = '53'.(b)Va{b(q)} = ~Va{b('TTfq)} 

and consider what could be called an innovation of {b(rr>J), 'Jx}, O,,;;;;A.,,;;;;L A 'small' increment of an 
innovation process should be defined as 

(10) 



(cf. (1) of§ 1). Since 

Eb(!J:rr>J)b('IT>J) = (IJ,,,,,>f, ,,,>J) = 0, 

the Gaussian random variable b(A:rr>J) is independent of~- Hence 

E[b(A,,,>J)l<?f>.] = E[b(A,,,>J)lb(,,,tq)] 

= (ll'IT>f, '1TtqT)Ci: 1b('1Ttq)=(j, A'IT>,qT)Ci: 1b('1Ttq). 

Expressions (10) and (11) lead to the following expression 

w(j) = b(j)- f if, d'IT>.qT)Ci: 1b('1Ttq), 

which still needs precise definition. 
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(11) 

(12) 

LEMMA 1. If 1)-3) are satisfied then almost all trajectories of the process b('ITt j), l\e[O, Ii are continuous 
in A. 

Let O=~<l\1 < · · · <l\N= I be a partition of [O,l] and let 
N-1 

CN(j) = ~ (j, tl'1T>.,qT)Ci:, 1b('1Tt,q), A'IT>., ='1Th,,, -'IT>.,· 
i=O 

/ 

LEMMA 2. If 1)-4) are satisfied, then for any f such that 'IT1_J= f for some t:>O the sequences of random 
variables cNif) converges with probability 1 as N,. oo and max;(A; + 1 -- l\;) = 6 N,.o. 

Let us denote this limit as 

c(j) = /if, d'l1)..qT)Ci: 1b('1Tfq). 

LEMMA 3. If 1)-4) are satisfied and f='1T 1-Jfor some £>0 then 

E[b(j)-c(j)]2 = (j,f). 

Hence, for any feL 2(0) the random variables c('IT1-J) convergence in mean square as t:,.O. 

(12') 

Let us denote this limit again as the integral (12'). Now the right-hand side of (12) exists for all 
feL2(0). 

PRooF OF LEMMA L The (k +I)-dimensional Gaussian process b(,,,f q) has covariance function 
C,..v,.. Consequently, for any aeRk+ 1 the process aTb(,,,fq) is a Wiener process w.r.t. the time 
t =1-aTC>,a. Therefore, for any aeRk+t almost all trajectories of aTb('1Tfq) are continuous in A, 
which proves the lemma. 0 

REMARK. Another proof of this lemma follows from Theorem 13, Ch. VII.3 of (POLLARD 1984). 
Indeed the set of functions {aT,,,fq}, Oo;;;l\.;;;;l, forms a subset in L 2(0) with £-net containing no more 
then l+(aTCa)112 /t: points and hence the covering integral for this subset is finite. According to the 
theorem mentioned above the process b(aT'ITfq) indexed by functions aT,,,fq is continuous w.r.t. the 
L 2(0)-norm. But according to condition 3) the norm llaT ,,,fqll =(aTC>.a)112 is continuous in l\. 
Therefore b(aT'ITfq) and, hence b(,,,fq) is continuous in l\. 

PROOF OF LEMMA 2. Let {l\;}f=o and {JL; }f~o be two partitions of [O, 1-t:]. Assume for simplicity 
that each A;E{µ1}f=o· Consider points JL; which are contained between A; and A;+!· The correspond­
ing sums in expression of cN(j) and cMif) are respectively 

~ (j, i1'1T,.1qT)Ci:, 1b('1Tt,q) 
h,<,.1<>.,,, 
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and 

}: (j, D.wl'1 qr)c~- 1 b('1Tjf;q). 
A1<;;J';<\' I 

Consider the difference 

D.; = }: (j, D.'ITµ,qT)[C~ 1 b('IT~q)-CX, 1 b(w[,-q)]. 
>-.,.;;µ,<>-.,,, 

For any vector t=(t1, · · · ,tk+il EiRk+ 1 let P1(t)=itil+ · · · +itk+il and Poom=max;!t;J. Then 
clearly 

itT 111 .,,;; P1 (t)Poo(TJ). 

Apply this inequality to t=(j, D.'ITµq) and ri=ri(µ, /..)= c;: 1b('1Tf q)-Cx 1b('1Tf-q). The matrix Cx 1 is 
continuous on [O, 1-t:] for any t:>O. Since b ('1Tt q) is also continuous in/.. we can get 

Pll = sup Pao (TJ(µ, f..))-'>0 
1>-.--µf.;;8 

O.;;A,µ.;;1-< 

with probability 1 for any fixed t>O and 8---'>0. Since p00 (ri(f..;, µ,)).,,;;p6 with 8=oN we get 

D.; .,,;; }: P1if, D.'ITµ1 q))P1J, 
A,<;;µj<>yr I 

and consequently 
M-1 

jcN(j)-cM(j)j .,,;; }: P1if, 6.TTµ,q))Pll,· 
j=O 

From (13) the statement of lemma will follow if we can prove that 
M-l 

~ p1(j, ll'ITµ1q)) .,,;; const. 
j=O 

Denote by q, the r-th coordinate of the vector-function q. Then 

j(j, ll'lTµiq,)i .,,;; (ATTµJf, f)'12(D.'1Tµ,q,, q,)112 

and as a consequence 
M-1 k+IM--1 
}: p1((j, 8'11'µ.,q)) .,,;; ~ ~ (A'1Tµ.j,f)112(ll'ITµ.1q,, q,)112 

j=O r=I j=O 

k+I M-1 M-1 
.,,;; }: [ }: (ll'ITµ.j;/)]112[ }: (6.wµ.,q,, q,)]112. 

r=I j=O j=O 

But 
M-1 M-1 

~ (6.rrµj,f) = (j,f), ~ (A7rµ.1q;,q,) = (q,,q,). 
j=O j =O 

Therefore (14) is correct with 
k+I 

const = 11/11 ~ llq,11. D 
r=I 

PROOF OF LEMMA 3. Using the formula 

Eb(j)b(cp) = (j,cp) 

we can get by direct calculation: if f = 7r1 _J then 

(13) 

(14) 



I-< 

E[b(j)-c(/)]2 = if,f)-2 f if,d'TT>.qT)Cx 1('TTtq,f) + 
0 

I-• 1-< 

+ f f if,d.,,>.qT)cx 1C>.vp.c; 1cd.,,"'q,f). 
0 0 
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Under conditions 3) and 4) both integrals exist and are the usual Stieltjes integrals. The function 
under the double integral sign is symmetric in ;\ and µ., therefore the integral is equal to 

I-• 1-< 1-< 

2 f <J,d.,,>.q)cx 1 f (d'IT"'q,f) = 2 f if,d.,,>.q)Cx 1('1Ttq.f). 
0 >. 0 

This equality and the previous one lead to 

E[b(j)-c<J)J2 = if,j). D 

Now we can turn back to the process {v(w.,J).~}. Since the process if,qT)c- 1b(q) is ~>.-measurable 
for all ;\ we can subtract the identity 

0 = (A'TT.,.j,qT)c- 1b(q)-E[(fl'TTJ,qT)c- 1b(q)l'ff>.J 

from (10) and get 

w(fl'IT.,.j) = f{fl'IT.,.j)- E[V(L~'TTJ)I~>.]· 

What we finally get from (12) and (15) is the expression 

wif) = v<J)- f if,d'1TJ..qT)cx 1v('1Ttq). 

(15) 

(16) 

Let us call w the scanning innovation of v and let us call the integral term in (16) the compensator of 
{v(j).~}. The adjective "scanning' is clarified by Example I below. The term 'innovation' is 
motivated by Theorem 1 below. 

REMARK. Since v(q) = 0 we have v('IT>.q) = -v(wtq). Hence v(.,,tq) is ~-measurable. 

Let us call following (POLLARD 1984) the function-parametric process {b(j),je'J} a Wiener process 
w.r.t if,f) 112 if for any finite number r, the random variables b if1), • • • ,b (fr), f; e'J, have a joint nor­
mal distribution with mean 0 and covariance matrix ((f;,fj)), i,j = 1, · · · ,2, and if almost all trajec­
tories of {bif),fe'J} are bounded and uniformly continuous on 'J. Let us call the Wiener process w.r.t. 
<f,f > 112 the standard Wiener process. 

The following very simple lemma shows the transformation of a Wiener process to the standard 
Wiener process. 

LEMMA 4. If the density f ( ·, fJ) of the distribution F( ·, fJ) is positive a.e. on [0, tr and { wif),f e'J} is a 
Wiener process w.z.t. if,j) 112, then { w(<P),cpe'J'} with w(<P) = w(cf>I f 112 (·, fJ)) and !J'= { cf>: cf>/ j112( • O)e'J} 
is a standard Wiener process. 

PROOF OF LEMMA 4 is left to reader. 

From now on we will always assume that conditions 1)-4) are satisfied. The notion of covering integral 
used below can be found in ( POU.ARD 1984), Ch. VII. D 

THEOREM 1. Let 'J be a subset of L 2(0) with a finite covering integral. Then the process {wif),fe§}, 
defined by (16) is a Wiener process w.r.t. if,f) 112• For any subset 'J such that the closed linear span of 'J is 
L 2(8) the relation between the processes {w(j),je'J} and {v(j),je§} is one-to-one. 
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REMARK. 

1) Since {w(f),/Eg} and {v(f),/Eg} can be extended in a one-to-one way to corresponding 
processes with g replaced by its closed linear span, the one-to-one correspondence between 
{w(f),jELi(U)} and {v(f),/EL2(0)} is equivalent to the one-to-one correspondence stated in 
Theorem 1. 

2) This statement of the theorem can be refined as follows: for any subset g the relation between the 
processes {w(f),fd, w(?T{q),AE[O, l]} and {v(f),/Eg,v(?Tl-.q),l\E[O, l]} is one-to-one. 

PROOF. Since w is the linear transformation of the Gaussian process v it is a Gaussian process as well. 
The equality 

Ewif)w(cp) = if, cp) 

can be derived from 
A2 A2 A2 A A 

Ew (f +<t>)- Ew (f)- Ew (cp) = 2Ew(f)w(cp) 

and from the equality 

Ew 2 (/) = (f ,f) 

already proved in Lemma 3. 
The boundedness and uniform continuity of trajectories of w(f) on g is proved in Theorem 13 

Ch.VII of (POLLARD 1984). (For the reader not quite involved in the theory of function parametric 
processes, let us remark that for w (f) the modulus of continuity is derived in exactly the same way as 
it is done for the Wiener process on [0,1]-see, e.g., (ITO, MCKEAN 1965)). 

What remains is to prove the one-to-one correspondence between w and v. We will prove it through 
the following Lemmas. Reformulate first Lemma 3. 

LEMMA 3'. The linear operator Z, 

Zf = f- f if,d1T1'.qT)Ci: 1'1T{q, 

is a unitary, i.e. norm-preserving, operator on L 2({}). 

Let us now rewrite (16) as 

wif) = v(Zf). 

Consider the adjoint (in the scalar product (f, </>)) operator Z' of the operator Z: 

Z'cp = <1>- f d'lrl-.qTCi:'('IT{q,cp). 

Since Z is unitary, Z' is its unique inverse on the subspace 

Im Z = { cp:Z/ = cp for some f EL 2(0) }. 

One can expect now that the inverse of (19) is 

w(Z'f) = vif). 

The next lemma proves that this is true on the whole L 2({}). 

LEMMA 5. Im Z = { <f>EL 2 (0):(</>,q) = 0}. Besides Z' q = 0. 

(17) 

(18) 

(19) 

(20) 

Now, (20) is correct on the subspace {<f>EL 2(U): (cp,q)=O} since Z' is the inverse of Z, and (20) is 
correct for f=aT q as well, since v(q) = 0 = w(Z'q). Theorem I is proved. 
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PROOF OF LEMMA 5. Let us prove first that (19) can be determined for al1 q,eL2(U). Oearly the right 
hand side of (19) exists for all q, such that q, = 'fT1_,q, for some £>0. For all such q, let us prove that 

(Z'q,,Z'ip) = (ip-(ip,qT)C- 1q,ip) (21) 

and then let t:-+0. But 

(Z'q,,Z'q,) = (ip,q,)-2/(</>,d'IT>.qT)Cx 1('1T{q,ip)+ j(</>,'1T{qT)Cx 1dC>.Cx 1('1T{q,ip) = 
= (4>,cti)-(</>,'IT{qr)Cx 1('1T{q,ip)l1=o· 

The last equality is true because of the following ones: 

dCx 1 = -Cx 1dC>.Cx 1 

(consider the identity CxJs-Cx 1 =CxJs(C>.-CA+s)Cx 1) and 

d[(l/1,'IT{qT)Cx I (w{q,</>)] = -2(tp,d'IT>,q T)Cx I ('IT{ q, q,)-(q,,wt qT)dCx I ('1T{q, </>) 

(22) 

(which is correct because of condition (3)). Finally from Lemma 6 below it follows that 
(tp, wt q)Cx 1 (w{ q, cp) = O at 1\ = 1. Hence (22) gives (21). 

Now, it is clear that (q,Zf)=O, which implies Im Z C { cpeL2(U):(q,,q)=O}. Let now </>=FO belong to 
the last subspace. Then (21) implies (Z'cp,Z'q,) = (cp,q,) and, hence, there exists J=FO such that 
Z'q, =/and clearly Z/ _;;;:= cp. This implies Im Z=>{cpeL2(U):(cp,q) = O}. D 

LEMMA 6. The following inequality is true: 

(</>, 'ITt qT)Cx I (wt q, c/>)EO:'.('IT{cp,cp). 

PRooF. ~ = '1T{qTCx 1(.,,{q,cp) is the projection of 'IT{c/> on the subspace spanned on w{q. Conse­
quently 

It might seem natural and unavoidable that the possible transformation of v to its scanning innova­
tion for arbitrary choice of the function I (which corresponds to arbitrary choice of the projective esti­
mator fJ) should depend on this I. If so, it will be a bit inconvenient and somewhat tiring. Fortunately, 
the transformation (16) is valid for any process v and the choice of v was simply a convenient way to 
derive (16). 

THEOREM 2. Let g be a subset of Li((/), and let the process v(j) be defined by (6). Then the processes 
w(j) defined by (16) and by 

coincide. 

PROOF. Rewrite (23) as w(/) = v(Zf) = P(Z/). According to definitions (6) and (9) 

v<J)-v<J) = <J,qr)[b(t)-b(l)J. 

But since (Zf,q) = 0 this implies 

v(Zf)-v(Zf) = o. 
Similarly the difference v(j)-v(j) can be written as 

A b(l) 
v(j)-v(j) = (/,qr)[( 0 )-b(/)] 

(23) 
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where b(l) stands for b(j) with the function/identically equal to I and 0 is the k-dimensional vector 
0. Hence, again 

v (Zf) = v(Zf). 

That is, the equality in (23) is correct, and the processes (16) and (23) coincide. D 

Now it is quite clear that Theorem 2 jointly with Lemma 4 gives the transformation of v to the stan­
dard Wiener process: 

(24) 

ExAMPLES. Comparison with previous results. Consider one example which shows the origin of the 
term scanning innovation. 

EXAMPLE 1. Let x,y, (s,t) E[O, 1]2 and 'IT(x)f (y) = I{)• o;;;;x }f (y). Consider a partition of the range oft 
by points 0 = t 0<t 1 < · · · <tN = I and introduce the a-algebras 

'Y(l,i,) = a{v('!T(l, t;)f),f EL2(fl)} 

~s,1,) = a{v('!T(s,6.t;)f),JEL2(fl)} 

where 
/ 

'IT(s,tit;) = 'IT(s,1;+ 1)-'!T(s,t;) 

and 

'V. = qf vP. "'i_s, 11) (I, 11) '-1S, 11)• 

Clearly the family {~s,t,)• s E[O, l ], t; E {t1 }f}-the row-wise scanning family for v-is linearly ordered 
w.r.t. inclusion: for any two (s,t;) and (s', t1) either ~s,r,) ~~s'.i,) or ~s',t) ~~s,t,)· Because of this the 
increments 

w('!T(&, b.t;)f) = v('!T(&, At;)f)-E[V('!T(&, 6.t;)f)!H(s,t,Jl 

where 'TT(&, tit;) = 'TT(s +A,tit;)-'!T(s,6.t;), are independent of previous increments. Hence, if the parti­
tion becomes more fine, i.e. if maxit; + 1 - t;l~O as N ~oo, one can hope to glue these incrementss and 
get as a limit a gaussian process with independent increments. The only delicate question is whether 
one can neglect the a-algebras ~s,t,) and consider only 'Yc1,1,). If yes, then {'1T(l,t),tE[0,1]} is just an 
example of the family {'lfx} with properties I) - 3) and the rectangles {[0,(1,t)],tE[0,1]} are an exam­
ple of the family {Ax} with properties I') -3'). Theorem I proves that in the case of v the a-algebras 
e(_s,t;) really are negligible. 

EXAMPLE 2. Consider particular cases of (16), (23). Suppose/(y) = J{yo;;;;x}. Let x,yE[0,1], i.e. let 
m = l. Then 

Zf(y) = J{yo;;;;x}- jI{zo;;;;x}qT(z)C; 1F(dz,fl)q(y)l{y>z} 

= l{y~x}- j qT(z)cz- 1F(dz,fJ)q(y). 
z,.;;(X/\}') 

Consequently 
I 

w(x) = v(x)- j qT(z)C; 1 j q(y)v(dy)F(dz,0). 
z~x 

(25) 

The Wiener process { w(x),x E[O, 1]} defined by (25) is just what was considered in (KHMALADZE 1981) 
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and (25) is simply the Doob-Meyer decomposition of {v(x),~}. If a simple hypothesis is considered 
then q = I and (25) gives 

w(x) = v(x)+ j v(z) ) F(dz) (26) 
_ l-F0(z 

z ... x 

which is the Doob-Meyer decomposition of the Brownian bridge v. 
If x,yE[0,1]2 and ?TJ(y) = J{y:s;;(l,A)}f(y) then for f(y) = J{y=s;;x} from (23) in the case of a 

simple hypothesis we get 

A J v(l o) 
w(x) = v(x)+ l-FCI o)F(dT,da) 

(-r,a)<;;x ' 

(27) 

-the scanning innovation of the Brownian bridge v (on [O, 1]2) as it was introduced in (KliMALADZE 
1986). In the case of a parametric hypothesis we get 

w(x) = v(x)- j qT(z)C(i.~iF(dz,fJ) j q(y)v(try) (28) 
z<;;x (l,a)..;_y<;;(I, I) 

where a is the second coordinate of z, and 

C(l,o) = f q(y)qT(y)F(4f',fJ). 
y E(O, 1]2 \ (0,(1,o)] 

The Wiener process defllled by (28) was considered in (NIKABADZE, KHMALADZE 1987). 
Remark, that the set g = {I{·:s;;x}, xE[O,lr} of functions f(y) = I{y=s;;x} satisfies the condi­

tions of Theorem 1 for any finite m. 
The processes (27) and (28) suggested in earlier papers left the impression of an essentially nonsym­

metric solution-the choice of rectangles [0,(1,t)] payed by some arbitrary reason too much attention 
to one of coordinates. Unsatisfied with this we looked for a more symmetric construction. Now, first, 
we are practically free in choice of {A,\} and, second, it is now obvious that form= 1 we have (on 
the real line) the same variety of choices. 

Distance in variation. Condition a2). Our further program is clear; in the next subsection we will con­
sider the empirical analogue of {w(4>), lf>Ef}, the process {wn(4>), !f>Ef} with wn(4>)= 
vn(Z(cp!f111(·,fJ))) and will prove that this process gives a solution of the problem, stated at the 
beginning of this §3. In the present subsection we will prove that the provisional limiting processes of 
{wn(c/>),cpEf} under the hypothesis and alternative satisfy condition a2). 

For two Gaussian processes e={e((),/Eg} and 71={71(/),/Eg} let us define the distance in varia­
tion between P~ and P 11 as 

v(P~,PTJ) = max{v(P~ifl,p11<Jl),JEA(~} 

where A(~ denotes the closed linear span of g and pf;<J) and pTJ<J) are Gaussian distributions of ran­
dom variables e(() and 71(() respectively (cf. this definition with proof of Lemma 4 in §2). 

Denote by H=H((),fEg, the function on g defined by H(()=(h,f) and denote by J=J(cp), cpEg, 
the transformation of the function H similar tp (24): 

J(cp) = H(Z 1,/ ). 
f' (·,8) 

LEMMA 7. Let 1 be a subset of L 2(8) with the following properties: A(~ = L 2(fJ), and the set 
g' = { cp:cpl /112( ·, 0) E1} has finite covering integral in the norm <cp, cp> 112. If the function h satisfies 
conditions (5) - (7) of§ 2 then 

11(Pw pw+J) = v(P', pv+H) = A(h). 

The process w has a standard distribution not depending on f, hence it is a good candidate for the 
limiting process of condition al). Lemma 7 says that the process w +J is a good candidate for the 
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limiting process w' of the condition a2). 

PRooF. The second equality in the assertion of the lemma is already proved in Lemma 4 of§ 2. The 
first equality follows from the one-to-one correspondence between wand v and, similarly, between J 

and H. It::.:: :~.::)~2:[i~ f"'t,9))]-1 = 21P [ <f112(·,fl)Z'h,p> ]-1 
' <cf>, ct>>l/2 2<cp,cf>>l/2 

and the maximum of the argument of <P is reached at cf> = /112( ·, O)Z'h and is equal to 

; <J112( ·, O)Z'h, f 112( ·, O)Z'h > 112 = ; (Z'h, Z'h )112 = ; (h,h )112 

where the equality follows from Lemma 3'. Hence 

max v(Pw(ct>), pw(<t>)+J(<t>>) = 21P«h,;)112 )-1 = A.(h ). D 
Convergence in distribution. Let us turn now to the empirical analogues of w and w and consider the 
problem of convergence in distribution. For any fEL 2 introduce the random variable 

wn<J) = v,.Kf)- f if,d'Tl),qT)Ci: 1vn('1Ttq) (29) 

or, in short, 

Wnif) = Vn(Zf). 

It is not difficult to prove that wnif) exists for all n = 1,2, ... and all f EL2 (cf. formula (34) below) 
and we will not dwell on this problem. It is technically convenient to get a little simpler approxima-
tion of Wn· ~ 

LEMMA 8. Let f be a regular parametric family. Let S be any bou_nded subset of L2' that is, for some c 
and for all f ES llfllo <c for all 0. Then both under P nlJ and under P nlJ 

p 

suplwn<J)-vn(Zf)l~O, n~oo. 
fe'S 

Hence without loss of generality we can replace wnif) by vn(Zf) if we are about to study the conver­
gence in distribution of wn. 

PRooF. Using Lemma 2 of §2 and the property Zq = 0 one can write 

Vn(Zf)-vn(Zf) = (Zf,~n) 

where €n(x) = drn(x)/(:)F(x,fl). Now Lemma 3' leads to 

l(Zf, €n)I E;;llZfllo. ll~n llo = llflloll~n 110 

and, hence, 

p ~ -
under Pno· But 11€n11o~O under Pno as well because of contiguity of {Pno} to {Pn9}. D 

Denote 
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LEMMA 9. Let S < be a bounded subset of L 2 of functions f such that 'IT1-J = f Then for each 71 >0 and 
A>O there exists 8>0 for which 

limsupPnB{ sup lcn(f-g)l>A}<'lJ. 
n~oo f,geS,;llf -gll1<8 

The same statement is true with 1Pn8 replaced by 1Pn8· 

PRooF. Apply to the scalar product 

cn<f) = (f,jd'IT>.,qTCi: 1vn('1Ttq)) 

Schwarz's inequality: 

where 

lcn<f)l2 ~(f,j)(Zn.Zn) 

1-( 

(Zn.Zn) = f Pn('1TtqT)Ci: 1(d'IT>.,q,d'IT>.,qT)Ci: 1Pn('1Ttq). 
0 

But (zn.Zn) is bounded in probability because it has finite expectation. Hence, it is bounded in Pnr 
probability as well. Now Lemma 9 follows from the inclusion 

/ A 
{ sup lcn(f-g)l>A} (,:{(zn.Zn)>-;-}. D 
f,geS.,l[f-gll<B u 

The reader can guess now that the convergence in distribution of cn(f) on a set of functions 
f = 'IT1-J is an easy matter: convergence in distribution at each f is easy to prove and tightness is 
granted by Lemma 9. 

Denote by 'X(§) the space of bounded functions x(f),/eg, with the norm suplx(f)I (cf. Sec. VII.5 
fe'! 

of (POLI.ARD 1984). 

THEOREM 3. Suppose g is the subset of L 2 such that lfl<c for the same constant c for all f and that in 
'X(§) 

6D(P,,) 6D(P,,) 

'P11 ~ v, P11 ~ V + H 

with H(f) = (f,h). Suppose also that the family f' is regular and that the function 

ax = [(1,d'IT>.,qT)Ci: 1(d'1Txq, 1)]112 /dl\ 

(where 1 stands for the function which is identically equal to the number 1) is integrable. Then in 'X{§) 
-

6D(P ,,) 6D(P ,,) 

w11 ~ w, w,. ~ w+H(Z). 

(30) 

REMARK. The condition of integrability of ax is mild but never the less an additional restriction on 
q-it is not satisfied for all q eL2(U). If, in particular, q is a one-dimensional function of the scalar 
variable x e[O, I] then 

I 

ax = lq(h)ll(j q2(x)dx)112 
>.. 

is not integrable for qx -+0 'too fast' as A-+ 1. If, e.g., q (x) = exp( - -1-1-) then ax......, 1/(1 -l\). But if 
-x 

q(x) =exp(- 1 p), with P<l then ax-11(1-l\)P is integrable. Obviously axis integrable for 
(1-x) 
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q(x)......,(1-x).B, f3<oo and for any q(x) bounded away from 0 at a neighbourhood of x=l: if 
lq(x)1>8forx>1-t: then 

I 

ax ~q2(A.)!8(j q2(x)dx) 112 , A.> 1-£ 
A. 

and the right hand side is integrable. The condition of integrability of a, which we did not need in 
previous papers (KHMALADZE 1981, 1986), is the price we pay for the extension to 'very large' §: as it 
will be clear from the proof of Theorem 3 (see (32)): if cx.x is integrable in a neighbourhood of 1, then 
cnO converges in distribution in ~§) for § being the set of all pointwise bounded functions, e.g. - of 
indicator functions of all measurable subsets of [O, lr. 

PROOF. Replace wnlf) by Pn(Zj). One can do this because IF is regular (Lemma 8). It is clear that for 
any squ~re integrable function f the sequence {11n(Z/)} converges in distribution under Pnli to v (Zj) 
(under IP'no to v(Zj)+H(Zj)) simply as a consequence of CLT. Let us verify tightness. Since 
Pn = { vnlf),f E§} converges in distribution the sequence { vn} is tight, and Lemma 9 asserts that the 
sequence { cn('11'1 _,)} is also tight. Since addition is a continuous operation in ~§) the sequence 
{ Pn - cn(?T1 _,) is also tight. What remains is to consider the difference 

vn(Zj)-vnlf)+cnC?T1-J) = cn(?Tf-J). 

Let us show that for an§ 6.>0 and 'f/>0 there exists £>0 such that 

lim sup Pn11{supjcn('11'f-J)l>6.}<'f/. 
n~oo jE"!J 

(31) 

But 
I 

surlcn('ITf-J)I ~c f 1(1,d?Ti\.qT)Cx I Pn('1Tt q)I 
fE I-· 

(32) 

and 
I I 

E j j(l,d?Ti\.qT)Cx 1 Pn(?Ttq)J ..;; j [El(I,d?TxqT)CX- 1 Pn(?Ttq)l2J112 

I-< 1-< 

I I 

= j [(l,d?Txqr)Cx 1(d?Txq, 1)]112 = J axdA. (33) 
I-< 

Since cx.x is integrable the last integral can be made arbitrarily small if £ is small. Hence, the random 
variable in the right-hand side of (32) is small in probability for£ small and (31) is proved. 0 

REMARK. The approximation Pn(Zf) of the 'empirical scanning innovation' w11 (j) can be replaced by 
an even more simple expression since 

vn(Zj) = Vn Fn(Zj) 

namely the wnlf) can be approximated by 

VnFn(Zf) = Vn[Fn(j)- f lf,d?TxqT)Cx 1Fn('1Tfq)]. 

Clearly F 11 (j) denotes the sum 

I n 
Fnlf) = -"2.J(X;) = jJ(x)F11 (dx). 

n I 

(34) 

By the way, for the function-parametric point process F,,(j) expression (34) gives in a good sense its 
Doob-Meyer decomposition w.r.t. the filtration {~}, 
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§'>! = o{Fn(7r-,J'),f EL2,Fn(q)}. 

The increments of Fn(Zf) are not independent, of course, but they are uncorrelated (cf. the definition 
of innovation processes in (ROZANOV 19?)). 

Theorem 3 is adjusted to the possibility of choosing as f the indicator functions f (x) = I { x os;;;z} 
and, hence, to prove convergence in distribution for wn regarded as a process with the 'usual' time­
parameter z E[O, 1 r. A more schematic formulation of the theorem sounds as follows: let g be such 
that conditions (30 and (31) are fu11filled, then the assertion of Theorem 3 is correct. 

One can adopt this formulation and state the following theorem concerning wn: let 
f = { tj>:</>/fh12 (-)Eg} and let for g conditions (30) and (31) be fulfilled, then in ~r) 

6D(P .,) 6D(P ,,) 

Wn ~ W, Wn ~ W +J. (35) 

This formulation can help in a search for sets g different from the one described in Theorem 3. But we 
prefer to formulate our last theorem in the same fashion as Theorem 3. 

THEOREM 4. Suppose r is a subset of L 2[0, ir such that 
1) ltJ>l<cfor the same constant cfor all tj>Ef, 
2) A(g') = L2[0, ir 
3) in the space ~g), wj>ere g = {f :f = q,!fi/20,t/>Eg'} convergence (30) holds. 

Suppose also that f is a regular family and the function 

«A = [ <Jb'2,d7TAqT>Ci:1 <d7TAq,fJ'2 >]112/dX 

is integrable. Then in ~r) (35) holds where w is the standard Wiener process and the shift function J is 
defined just before Lemma 7. The assertion of Lemma 7 is correct. 

REMARK. Since the matrix CA can be defined as CA = <Jh12 7Tf-q,ff27Tf-qT> for one-dimensional q 
the function a' has the form 

fh'2 (X)lq(X)I 
ct.'A = -------

1 
(j fo(x )q2(x )dx )112 

A 

Hence the previous Remark can be applied to the functionfl12 (-)q(·). 
According to Theorem 4 the process Wn is the desirable transformation w[vn,f] with properties al) 

and a2). In our view this transformation possesses properties bl) and b2) as well. 

PROOF OF THEOREM 4 is in fact contained in the proof of Theorem 3 and Lemma 7 but let us repeat 
it for the reader's convenience. Since f is regular one can replace wn(t/>) by "n(Zf) with f = tJ>!fJ12 

(cf. Lemma 8). Since vn(Zf) is a normalized sum of i.i.d. random ~ariables, Ev~(Zf) = <tJ>,tJ>>, its 
convergence in distribution under 1Pne to w(tj>) = v(Zf) and under 1Pne to w(q,)+J(q,) for each given 
t/> is a consequence of CLT. According to condition 3) and Lemma 9 the sequences {11n(-1fJ'2)} and 
{cn{w1-((-lfh'2 ))} are tight in ~g'). Consider the difference 

11n(Z-4n)-11n(-4n)+cn('IT1-,-!fu-) = Cn(w[-_,-fn). 
fe lo fe fe 

But 

(36) 

and 
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I I I 

Efl<fb12,d7TJ-..qT>c;:111n(7Ttq)I.,;;; J (El<Jb12,d7TJ-..qT>c;:111n(7Ttq)i2)112 = j a\dA.. 
I-< 1-e 1-c 

Hence, the upper bound in the left hand side of (36) can be made arbitrarily small in probability for 
sufficiently small t:>O. This means that the sequence {vn(Z(·lfb12 )} is tight in 'X(1'). Convergence (35) 
follows. Since <c/>,c/>> = (j,f) we get: A(1') = L 2[0, lyn iff A(1) = L 2(0). Hence condition 2) allows 
to apply Lemma 7 and to conclude the proof. D 
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