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Standard 7-point finite difference discretization of 2nd order pde's over a rectangular grid over a 3-
dimensional block leads, with the usual lexicographical ordering of the gridpoints, to block tridiagonal linear 
systems. In many popular iterative methods for the solution of these systems triangular systems have to be 
solved which have a block bidiagonal structure. This is often recognized to be the major bottleneck on vec­
tor computers, with respect to the computational speed, when carried out in a straight-forward manner. 

In this paper we will discuss different techniques for the vectorization of the solution of 30-block bidiagonal 
systems. We will report on actually observed performances for the ICCG algorithm, for which these bidiago­
nal systems have the reputation to spoil the overall performance. The potentially most powerful of the vec­
torization techniques leads to long vector operations, at the cost, however, of strides and indirect address­
ing. Since the CYBEA 205 is generally believed to stay behind in performance under such circumstances, 
we have chosen this machine to show in detail how these vectorization techniques can be implemented 
with almost equal performance as in the contiguous vector case. Our methods are directly applicable to the 
ETA-10 family of supercomputers, and may be adapted to other vector computers as well. 
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1. A SKETCH OF THE PROBLEM. 

If we discretize second order partial differential equations over a rectangular grid imposed over a 
block in R 3 by standard 7-point finite difference discretization then a block tridiagonal system Ax= b 
results: 

A1 G1 

D1 A1 G1 

A= (1.1) 

Gn,-1 

Dn, An, 

Dk and Gk are diagonal matrices, nz denotes the number of gridpoints (unknowns) in the z-direction. 
The dimension of the matrix blocks is nxny, in which nx,ny denote the number of gridpoints in x,y-
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direction, respectively. The elements of these blocks correspond to (x,y)-planes of the grid The 
matrices Ak themselves have a block tridiagonal structure: 

A1k F1k 

C2k A1k F2k 

Ak= (1.2) 

Fn -lk 
' 

c,,,k An,k 

Cjk and Fjk are diagonal matrices. All the blocks in Ak are of dimension ny and they correspond to 
x-lines in a gridplane. 
Finally, Ajk itself is a (point-) tridiagonal matrix: 

aljk eljk 

b2jk a2jk eijk 

en,-ljk 

bnJk anJk 

(1.3) 

In many practical situations the linear system Ax = b is solved by an iterative method. In most of 
these methods we have to solve, as part of the algorithm, triangular linear systems in which the tri­
angular matrices have the same non-zero structure as the lower or upper diagonal part of A. As exam­
ples of these methods we mention SOR, SSOR, Stone's SIP-method, ICCG, preconditioned methods 
like GMRES, ORTHODIR, ORTHORES, ORTHOMIN and Chebychev-iteration and Multigrid with 
Gauss-Seidel or ILU Smoothing. In many cases a lower bidiagonal as well as an upper bidiagonal 
block system has to be solved in each iteration. Since the vecforization problems for each case are 
identical we will concentrate on the lower triangular case. If we denote the lower triangular block 
matrix by L, then typically we have to solve Lz = r for z. 

The elements of z and r will be denoted by zijk and r;jk according to their corresponding gridpoints. 
The solution of Lz = r leads to a recurrency of the following type: 

(1.4) 

Since recurrence relations in general lead to reduced performances on vector computers it might seem 
that we are in trouble because of recurrencies in all three grid directions. In the next section we will 
discuss techniques to vectorize relations like (1.4). 

2. VF.CTORIZATION TECHNIQUES. 

2.1. Partial vectorization 

A popular approach for improving the performance of (1.4) on vector computers is known as partial 
vectorization. Note that the recurrency in the k-index refers to z-values corresponding to the previous 
(i,j)-plane. Before starting the actual computation of the z-values for a given fixed index k, we can 
first compute the contribution d;jkzijk - I for all i and j. This is a vector operation of length nxlly· Simi­
larly, the contribution cijkzij - lk can be computed, for fixed j, for all i as a single vector operation. 
Schematically, we obtain the following algorithm 



fork= 1,2, ... ,nz do 

(a) {z;jk = r;jkzijk-l - I, for i = 1, ... ,nx,j = 1, ... ,ny} 

for j= 1,2, ... ,ny do 

(b) 

(c) for i = 2,3, ... ,nx do z;jk = zijk-bijkZi-ljk 

end i 

endj 

endk 
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(2.1) 

(we assume that variables with an index 0 are equal to 0). For vector register machines it is often 
advantageous to split (2.l(a)) over the lines and combine it with (2.l(b)), because this saves the store 
operation for z in (2.l(a)) and the load in (2.l((b)). 
Many compilers automatically replace the recursion (2.l(c)) by optimized code. Nevertheless, the com­
putational speed for (2.l(c)) is often rather low as compared with the other operations and, in agree­
ment with Amdahl's law, the overall performance will be low. We will take this partially vectorized 
algorithm (2.1) as the yardstick with which we compare the other approaches. 

22 Plane-wise diagonal ordering 

As in the 2D situation, the recursion over the i and j directions can be vectorized, for fixed values of 
k, by computing the unknowns successively over "diagonals": ! + j= constant. For more details on 
this see e.g., [l,4,5]. The recurrency in the k-direction can be vectorized as is shown in section 2.1. 
Though in some situations this approach leads to fairly high performances, the performance is often 
limited because of the relatively small vector lengths involved. 

2.3 Hyperplane ordering 

From the expression (4.1) we conclude that, as soon as all elements zijk> with i + j +k = 1- I for 
given l, are known then all zijk for which i + j + k = l can be computed independently (i.e. in vector 
mode or in parallel). 

The set of indices {(i,j,k)li + j +k = l for fixed/} will be denoted by H1 and will be called a "diago­
nal hyperplane". All elements zijk corresponding to H1 can be computed in vector mode with vector 
lengths of O((nxnynz)31 ), but the problem is that the vector elements are not located with equal strides 
in memory. Vectorization can be achieved using indirect addressing and then the success of the hyper­
plane approach depends on the ability of a given computer to handle indirect addressing efficiently. 

When the index-triples over H1 are ordered appropriately then there are local regularities in the 
storage pattern. This may be exploited for some architectures. The CYBER 205 has the reputation of 
being only optimal for contiguous vectors. Therefore we believe it is a suitable target machine to 
study the effects of a careful implementation of the Hyperplane approach. We will show that this 
approach may lead to surprisingly high performances. 

For experimental results for the approaches in 2.1, 2.2, and 2.3 on CRAY X-MP and the Japanese 
supercomputers, see [6,7]. 
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3. IMPLEMENTATIONS OF THE HYPERPLANE ORDERING FOR THE CYBER 205 

Since the solution algorithm of the block lower bidiagonal system can be vectorized similarly as the 
solution algorithm for the block upper bidiagonal system we will focus only on the lower bidiagonal 
case. With respect to the hyperplane ordering the algorithm (2.1) is replaced by 

for I= 4, 5, ... , nx+ny+nz do 

(a) {z;jk = rijk - dijkzijk-l, for all (i,j,k) EH1} 

(b) {zijk = z;jk - cijkzij-lk, for all (i,j,k) E Hi} (3.1) 

(c) { Z;jk = Zijk - bijkzi -ljk, for all (i,j,k) E H1} 

end I 

It is obvious that the parts (a), (b) and (c) in (3.1) are very similar and therefore we will restrict our­
selves to only one of them, namely part (c).This part may be rewritten as 

for i = max (2,l -ny-nz ), ... , min (nul - 2) do 

for j = max (1,/-i -nz), ... , min (ny,l-i -1) do 

k=l-i-j 

Zijk = Zijk -bijkzi-ljk 

endj 

end i 

(3.2) 

Assuming that the elements zijk and bijk are stored in the standard FORTRAN lexicographical order­
ing, we need a GATHER operation for each of the input element sets {zijk}, {bijd and {z;-vd and 
a SCATTER operation for the results {z;jk} in (3.2). For all hyperplanes H1 together there are 
(nx- l)nynz elements involved in the update step (c).Ignoring for the moment all start-up overhead in 
the various vector operations, the execution times for the operations involved in (c) are approximately 

1.4 clock cycles per result of a SCATTER or GATHER 
0.5 clock cycles per result of a multiply or subtract 

(for the Cyber 205 the length of a clockcycle is 20 nanoseconds). 
Henceforth the total execution time for step ( c) for all I together is given in first order approximation 
by 

(4* 1.4 + 2* 0.5)(nx - l)*ny *nz = 6.6(nx - l)nynz clock cycles. (3.3) 

Note that the GATHER operation for the elements bijk needs to be carried out only once. For the 
next iterationstep, of which the solution of the block lower bidiagonal system is only a part, we can 
reuse the result of the GATHER operation on bijk· This reduces the execution time for step (c), for all 
I together, to 

5.2(nx - l)nynz clock cycles (3.4) 

In order to further reduce the CPU time for step (c) (as well as for the other steps of course), the ele­
ments zijk are rearranged explicitly in memory according to the hyperplanes (the order per hyperplane 
is defined by (3.2)) and we denote the set of Z;po corresponding to one specific hyperplane HI> by Z1, 

likewise the set of bijk corresponding to H1 is denoted by B1• 

For each value of I the number of elements involved in step (c) is only marginally smaller than the 
number of index points in H1• Therefore there is an advantage in modifying (3.2) to: 



i. GATHER the elements of z required from H1_ 1 into an auxiliary array Vi 
(in the same order as the elements of B1 and Z1• This amounts to~ 1.4 nxnynz 
clock cycles for all /. 

n. Vector multiply Vi and B,:~ 0.5 nxnynz clock cycles for all/. (3.5) 
m. Vector subtraction of Z1 and the result of Vi times B1• This requires another 

~ 0.5 nxnynz clock cycles and the results are now in the right order over H1; 

hence the scatter operation is avoided. 

The total execution time for step (c), up to scheme (3.5), for all/ is roughly given by 
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2.4 nxnynz clock cycles. (3.6) 

This result can still be further improved by using COMPRESS-EXPAND operations rather than 
GATHER-SCATIER operations. The COMPRESS-EXPAND vector operations on the CYBER 205 
require approximately 0.5 clock cycle per element of the longest of the two vectors involved in the 
operation. The total length of the longest arrays is nxnynz, whereas the total length of the shortest 
arrays is (nx- I)nynz, which is only little less in a relative sense. 
This approach leads to the following implementation of step (c): 

(i) EXPAND the z,_ 1 to the vector Wi corresponding to the required order of Z1 (and B1)} 

(ii) Vector multiply Wi and B1• (3.7) 
(iii) Vector subtract the result in (ii) from Z1• 

The total execution time for step (c) for all/ is now reduced to 

~ 1.5 nxnynz clock cycles (3.8) 

Step (i) and (ii) in (3.7) can be combined on the CYBER 205 in one single "sparse vector" instruction 
which comprises the following operations. 

(i1) Expand the input data vectors under control of their associated bit vectors; the "holes" are 
filled up with a specified broadcast value: 0 for addition/ subtraction and I for multiplica­
tion. 

(ii1) perform the required floating point operation on the expanded input vectors. 
(iii1)carry out a specified logical operation on the input bit vectors which gives an output bit vec­

tor. 
(iv1)COMPRESS the output data vector of step (ii1) under control of the output bit vector of 

step (iii I). 

E.g., for the multiplication of B1 and the expanded Z1 - I we associate a bit vector that has value 1 in 
positions where the i-index of the Z-element is less that nx and we insert a value 0 when an i-index of 
Z corresponding to H1_ 1 is equal to nx (because they do not contribute to Z-values over H1). The 
output bit vector should contain exclusively values 1, which is accomplished by a logical "or" opera­
tion (hence there is no compress in this situation). 

With such a sparse vector instruction the CPU time for step (c), for all/ together, is now reduced to 

(3.9) 

This is very close to the minimum number of clock cycles that is necessary for carrying out the same 
vector operations in step (c) on contiguous vectors. The only price we have paid (except for some 
additional overhead possibly) is that we process in all the operations nxnynz elements instead of 
(nx-I)nynz, as in (2.1), so that we are relatively very close to the minimum indeed. Combining this 
all together we note that the total ~ 6nxnynz floating operations required for the solution of the block 
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lower bidiagonal system Lz = r, as given by (1.4), can be carried out in ~ 3nxnynz clockcycles of 20 
ns. Hence the computational speed should be about 100 MFLOPS. For nx =ny =nz =30 we actually 
observed a speed of about 90 MFLOPS. 

Note that this is essentially the same speed that we may expect for the computation of Ax, where A is 
as in section 1, if the computation is carried out in a diagonal-wise fashion (see, e.g., [4]). 

Note also, however, that once we have rearranged the elements of z hyperplane wise in memory we 
cannot immediately compute, e.g., Az in the nice diagonal-wise way, but that we have to GATHER 
the z-elements first. We may, however, also apply the previously described techniques for the compu­
tation of Az in a hyperplane wise fashion. In the next section we will point out that in many relevant 
situations it is not necessary to compute the matrix vector operations like Az and solutions to 
lower/upper block bidiagonal systems both within the given iterative method. 

4. PRECONDITIONED LINEAR SYSTEMS AND EISENSTAT'S TRICK 
It is at present generally accepted that the speed of convergence of most iterative methods for the 
approximate solution of a linear system Ax = b can be greatly improved by preconditioning. This 
means that the original system is replaced by some other system, like e.g., K- 1 Ax = K- 1 b, where 
K-1 is an approximation to the inverse of A. The inverse of K is in most situations not explicitly 
computed, but K is given in such a form that vectors like w = K- 1v can be efficiently computed by 
solving w from Kw = v, for given v. 

Many popular preconditioners, like e.g., Incomplete Choleski, ILU, MILU and SSOR can be written 
in the general form 

K=LU, (4.1) 

in which L and U have the same sparsity structure as the lower triangular part and upper triangular 
part of A, respectively. 

For matrices With the sparsity structure as described in section 1 this implies that we have to solve 
block bidiagonal systems as discussed in that same section. It has been mentioned already that this 
often leads to rather low computational speeds on vector supercomputers, in fact often so low that 
preconditioning did seem to be no longer attractive. As we have shown in section 3 these block bidi­
agonal systems can be solved with high computational speeds if one is willing to take the program­
ming effort. But also then there still is a complication since we have to compute vectors Ap and K- 1 q, 
and choosing an optimal data structure for either of them complicates the efficient computation of the 
other. 

For the nonzero structure as in section 1, however, the preconditioning matrix K for Incomplete 
Choleski, ILU, MILU and SSOR can be written alternatively in the form 

K=(Ls+D)D- 1 (D+U8 ), (4.2) 

where Ls and Us are equal to the strictly lower triangular and strictly upper triangular part of A, 
respectively. Also for other non-zero structures of A it makes sense to select preconditioning matrices 
of the form (4.2), for details see e.g., (3). EISENSTAT [2] has shown how preconditioning in this case 
can be carried out very efficiently. The trick comes down to applying the iterative method to the 
explicitly preconditioned system: 

I I I 

Ay=DT (Ls+D)- 1 A(D +U8 )-
1 D Ty =D T (L3 +Dr1 b (4.3) 

I 

with x = (D+ Us)- 1 D Ty 
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For each matrix vector multiplication with A and some given vector p it follows from the observation 
A = Ls + diag(A) + Us that 

I I 

D1 (ls+D)- 1A(D+Us)-1 D 1 p= 
I I 

D1 (Ls+D)- 1(Ls+ D + diag(A)-2D + D + Us)(D+Us)- 1 D 2 p (4.4) 

=D+ [(D+Us)- 1 +(Ls+D)- 1(diag(A)-2D)+(Ls+D)- 1] D+ p 

= D t [t + (Ls+D)- 1(diag(A)-2D)t + q], 

with 
I 

q=D 2 p and t=(D +Us)- 1 q. 
I 

Hence, except for thr~ diagonal matrix vector products (two with D 2 , one with diag(A)-2D) the 
matrix vector product Ap can be completely reconstructed from the solution of the two block bidiago­
nal systems that had to be solved in the preconditioning process anyhow. We can do even better b_y 
scaling the given !!la~ A approJ?...riately so that the preconditioning matrix for the scaled matrix A 
can be written as K =(Ls + /)(/ + Us). This makes 

1
the computational process much mor efficient since 

we avoid then all the cperations wit!!_ D and D 2 in (4.4). For A the matrices in (4.4) are to be 
replaced: D by I, Ls by Ls and Us by U3 • 

We conclude that the preconditioned algorithm can be carried out with virtually the same amount of 
flops per iteration step as the unpreconditioned algorithm. Hence a reduction in the number of itera­
tion steps immediately translates to about the same reduction in flops. But, what is more, we have 
seen in section 3 that the preconditioning itself can be carried out, at least for the CYBER 205, at the 
same computational speed as the matrix vector product with A itself. The important implication is that 
the preconditioned algorithm can be executed with about the same computational speed (MFLOPS­
rate) per iteration as the unpreconditioned algorithm. Therefore any reduction in the number of itera­
tion steps, due to the preconditioner, immediately translates to about the same reduction in CPU-time 
(which is as much as we could wish). 

5. FxAMPLES 

A given linear system Ax =b, with a symmetric positive definite matrix A, as in section 1, scaled such 
that diag(A)=I, was solved by the unpreconditioned conjugate gradient algorithm and by the 
MICCG algorithm (for details about our special tuning of MICCG, see [6]). Note that forcing 
diag(A)=I is as good as we can do in the unpreconditioned process, since it corresponds to diagonal 
scaling preconditioning for CG for Ax =b which is known to be quite effective (see [3, 7]). 
For two different, but still modest problem sizes, we list for both methods the numbers of iterations, 
the MFLOPs-rates and the CPU-times (the CPU-times include the time required for stopping criteria, 
etcetera) for the CYBER 205. 

1. nx = 20 ny = 20 nz = 20 

number of iterations 
MFLOPs-rate 
CPU-time 

diag. scaled CG 
100 
104 
0.180 sec 

MICCG 
19 
69 
0.057 sec 
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2. nx= 35 ny= 35 nz= 35 

number of iterations 
MFLOPs-rate 
CPU-time 

diag. scaled CG 
175 
100 
1.733 sec 

MICCG 
30 
91 
0.358 sec 

Similar results, scaled of course with respect to different clock cycle lengths, have been obtained on an 
ETA-10-P computer. 

The linear systems themselves will not be described here in more detail, since the only aspect that we 
want to show is the computational speed and this is the same for any linear system of the same 
dimensions. Furthermore, the numbers of iterations are only listed in order to show that a reduction 
in this number corresponds to roughly the same reduction in CPU-time (except for too modestly 
dimensioned systems). Hence the above listed numbers nicely confirm the conclusions made at the 
end of section 4. 
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