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In this paper block methods for solving ODESs on parallel computers are constructed. Most block methods
found in the literature produce approximations to the exact solution at equidistant points. Here, we allow
that the approximations correspond to nonequidistant points like the intermediate approximations
computed in Runge-Kutta methods. This approach enables us to improve the order of accuracy. We
concentrate on explicit methods such that they are suitable for use on parallel computers.
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1. Introduction

Block methods turned out to be efficient methods for solving the initial-value problem for the system of ordinary
differential equations (ODEs)

0 _ )

on parallel computers (cf. e.g. Worland [1976] and Chu & Hamilton [1987]). Most block methods occurring in the
literature can be interpreted as block linear multistep methods (BLM methods), that is, they are derived from the LM
method

PE)yn =ho(E)f(yn),

in which yy is replaced by an m-dimensional vector Yo' =(Ynm,¥nm+1+ - ,ynm+m-1)T and where the (scalar) coefficients
of the polynomials p and ¢ are replaced by matrices. Thus, in BLM methods the components of the block vector Yy
represent approximations to the exact solution at equidistant points.

In this paper, we consider block methods where the components of the block vector represent approximations to
the exact solution at not necessarily equidistant points. In this way, we obtain additional parameters for increasing the
order of accuracy of the method. In the derivation of these methods it turns out to be convenient to start with a Runge-
Kutta (RK) method, and, in analogy with BLM methods, to replace the y-values generated by the method by vectors the
components of which represent approximations to the exact solution. If these vectors are k-dimensional, then the RK
parameters are replaced by k-by-k matrices. We shall call these methods block Runge-Kutta methods (BRK methods).

In Section 2, we give a precise definition of BRK methods and we give examples of methods from the literature
which can be written as BRK methods. The representation in BRK form provides a unifying way of describing all sorts
of methods (including BLM methods) and is particularly convenient for describing block methods for use on parallel
computers. In Section 3 the order conditions for explicit one-stage methods and implicit two-stage methods are given,
and Section 4 is devoted to the construction of these BRK methods with k=2, 3, 4. We shall particularly be interested in
explicit methods. For explicit methods with given k we tried to maximize the order and to minimize the number of
processors without increasing the number of sequential righthand side evaluations per step (we shall call this minimal
number of processors the optimal number of processors). It is possible to derive explicit one-stage methods of order 2k-
1, using not more than 2 processors. However, if the requirement of zero-stability is imposed (which is crucial if the
method is to be used as a method on its own), then the order reduces to k+1. We also derive zero-stable, explicit two-
stage methods of order 2k for two-processor computers. In Section 5, the various methods are compared for a few test
problems from the literature.

It turned out that, like for all block methods, stability is a critical aspect of BRK methods. In this paper, we did
not concentrate on stability aspects. Only when free parameters were available which could not be used for increasing
the order, we have employed them to increase the stability of the method. A more systematic construction of BRK
methods with large stability regions is the subject of a forthcoming paper.
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2.  Block Runge-Kutta Methods
Let us start with the conventional s-stage RK method

S
i j . (s+1)
@D Y myan Y b 39, i= L st s =ypay s n=0 L
=

The general structure of the block Runge-Kutta methods considered in this paper is a d_irect generg.lizat_ion of this
conventional method. We introduce block vectors Y, the components of which are numerical approximations to the
exact solution values at k points. To be more precise, let Y11 be defined by

Yn+1 = (Yntcys Yntcgs o Yn+ck)T, k=1,

where y;,4. denotes a numerical approximation to the exact solution value y(tn+c). For scalar ODEs, we now define the
s-stage block RK (BRK) method

S
i j . 1
@1 Y = ax+n Y B (xY), i= 1 sl Yo = YOS n=0,1,

j=1
where A and Bj; are k-by-k matrices and where we use the convention that for any given vector v=(v;), f(v) denotes the
vector with entries f(v;). This method can be considered as the block analogue of (2.1). It is straightforwardly extended
to systems of ODEs and therefore also to nonautonomous equations. In order to start the method, one needs the initial
vector Y, which requires as many starting values as there are distinct values ¢; (7=1....k).
In analogy with the Butcher array for describing the RK methods (2.1), i.e., the (s+1)-by-(s+1) array

bi1 . . . bis
bsl . . . bSS
bs+1,1 - - . bstis

we may describe the BRK methods (2.17) by the k(s+1)-by-k(s+1) array

At B . .. By
Asg Bsy . . . Bgs
Agy1 Bs+1,1 . . . Bs+1,s

This notation is particularly convenient when more than two stages are involved. It frequently happens that the two last
rows of this array are identical. In such cases, we shall omit the last row in order to save space.

We call the method explicit if the matrices Byj vanish for j>i, and implicit otherwise. In églis paper, we are mainly
interested in explicit methods. For explicit methods, the k components of the blocks f(Y n+1) can be computed in
parallel, so that per integration step the required computational time equals the time needed for computing s righthand
side evaluations. If k processors are available, then (explicit) BRK methods require not more than s (sequential)
righthand side evaluations per step. However, the number of processors is often less than k, without causing the number
of (sequential) righthand side evaluations per step to exceed s. For instance, it may happen that in the formula for a
particular component of Yy+1 no righthand side evaluations occur, that is, all rows in the matrices B;; corresponding to
this component vanish. In such cases, the processor assigned to this component is not needed. Similarly, if the rth
column of all matrices Bj; vanishes, then the computation of the corresponding component of Yy, does not require
any righthand side evaluation not already occurring in the formulas for the other components, so that there is no need to
assign a processor to this component. We define the optimal number of processors as the number of processors for
which the number of (sequential) righthand side evaluations per step is minimal. In the explicit case, the representation
(2.1") is very convenient for implementing the method on a computer, because the actual code is a direct translation of
the formula (2.1°) and the instructions for the computer in order to exploit the built-in parallelism of the method are
obvious.

The points ty and th+cjh (j#k) will respectively be called step points and block points. Block points coincide with
step points if the corresponding value of ¢j is an integer. Upon completion of the integration process, the order of
accuracy of the numerical solution obtained is not necessarily the same at all points tntcih. Points where the



corresponding components of Yp4 do have the same order as the components corresponding to the step points t; will
be called output points.

The general explicit one- and two-stage methods are respectively given by

Ay O
----------------- R i.e., Yn+1 = A'ZYn + hBZlf(AlYn),
Az | B2y
and
Ay o O
Ay | Bogy O
, Le., Ynp1 = A3Y, + hB31f(A1Y ) + hB3af(A2Y, + hBoi1f(A1YD).
A3z | B31 B3z

Here, O denotes the k-by-k matrix with zero entries.

As a numerical example of an (explicit) 3-stage method, we present the modified multistep method of Butcher
(1965) of order 5 as a BRK method: the block point vector is given by ¢=(0, 1T and the Butcher array assumes the form:

1 0
0 1
1 0 3/8  9/8
0 1 0 0
-23/5 28/5 |-26/15 O 32/15 -4
0 1 0 0 0 0
. ¢=(0, DT.
0 1 0 0 0 0 0 0
-1/31 327311 -1/93 12/93 64/93 0 15/93 0

The construction of higher-order BRK methods is rather difficult in the general case. In this paper, we shall
construct high-order methods of a special form which are obtained by using the predictor-corrector (PC) technique. Qur
starting point is the special implicit two-stage method

1|0 o 1] o o
Al B C Al B C

2.2) - | e Youg = AY, + hBR(Y,) + hCE(Yne1).
A|B C

If C does not vanish, then we can use this method as corrector and if C=0, then it can be used as (a one-stage) predictor
formula, e.g.,

O
_______ , Le., Ynr1 =AY + hBf(Yy).
B

From this pair we can generate higher-stage BRK methods by PC iteration provided that the block point vectors
¢:=(c1,....ci) | are identical. For example, in PECE mode we obtain the special two-stage BRK method

I 0O O
D E O

(2.3) ‘ , i.e., Yp+1 = AYq + hBf(Yy) + hCHDYy + hEf(Yp).
A B C

Finally, it should be remarked that (2.2) is also the representation of the so-called general linear methods
introduced by Butcher in 1966 (see Butcher [1987]). Most methods from the literature (including the general BRK
method (2.1%) can be cast into the form (2.2). However, although the original method is explicit, the general linear
method version is often implicit. For example, the explicit two-stage BRK method (2.3) can be rewritten in the form
{2.2) by redefining the matrices A, B and C in (2.2), but C will not be a zero matrix. Thus, for implementation of
higher-stage BRK methods on parallel computers, the representation (2.2) is less suitable.

In the following subsections, we present in BRK form a number of methods which have been proposed for use on
parallel computers. In particular, we give examples of the predictor-corrector methods of Miranker and Liniger [1967]
and Shampine and Watts (cf. Worland [1976]), and the multi-block methods of Chu and Hamilton [1987]. A discussion
of block methods for parallel computation may be found in Gear [1987].



2.2. Methods of Miranker and Liniger . i
The methods of Miranker and Liniger [ 1967} can be presented as explicit, one-stage BRK methods. For example,
their second-order method can be represented by the armay

Q24) o ez 2, 10T,

1 0 00

01 060

00 10

60 06 01

(2.5)  emeememeemmeees e , e=(-1,0,2, L.

01 00 0 6 0 0

00 01 0 0 0 0

0 0 0 1 |-1/3 4/3 8/3 -5/3

0 0 0 1 §1/24 -5/24 9/24 19724

Both methods require only two processors and respectively two and four starting values when implemented in BRK
form.

2.3. Predictor-Corrector Method of Shampine and Watts )
The PC method of Shampine and Watts {1969} is based on the block method of Clippinger and Dimsdale {1958},
which can be presented in the form (2.2) by defining

0 5/24  1/3 -1/24
0 1/6 2/3  1/6

(2.6) , e=n2 DT,

O
1
1
1

OO O

and on the predictor method defined by

O OO
_—_—00 O

Q) e - . e=(1/20 12 1T,
00 1 0}l0 0o 0 0
00 0 1]0 0 0o 0
0131313} 0 14 13 1312
0 1/3 1/3 13| 0 29/24 3 7924

Method (2.6) is one of the oldest block methods proposed in the literature. Shampine and Watts proved that this
corrector method is fourth-order accurate at the step points. They also proved that the predictor method is third-order
accurate and possesses favourable stability properties. This predictor can also be applied as a method on its own and
requires four starting values and one processor.

In order to apply the PC pair (2.7)-(2.6) using the BRK format, we rewrite the corrector in the form

1 6 0 0
01 00
6 0 1 0
0 0 0 1
00 1 ¢ 0 0 0 ¢ 0 0 0 0
0 0 0 1 g 0 0 0 00 0 0
0 0 0 1 0 ¢ 0 5/24 0 01/3-1/24
0 0 0 1 g 0 0 1/6 0 0 2/3 1/6
26" . e=(12,0, 12, DT,

The PC method of Shampine and Watts was implemented by Worland [1976] on two processors.

L.



2.3. Multi-block Methods of Chu and Hamilton

.Chu and.Hamihon {1987] general_izcd the cyclic linear multisiep methods of Donelson and Hansen [1971].
Families of third- and fourth-order multi-block methods were derived. We give two examples of their k=2 methods
which can be represented in the form (2.2) or (2.2'). The {irst example is the explicit third-order method

1 0
0 1
(2.8) e , e=(2, T,
5 411 2
28 271 6 9

and the second example is the fourth-order implicit method

-1/48 13/48 13/48 -1/48
0 1/6 2/3 1/6

29 ! . e=2 0.

0
1
1
1

2.4, Parallel MRK Methods

An example of methods which can be written in the form (2.3), and which do not originate from PECE methods,
is the family of first-order, explicit paraliel MRK methods (cf. van der Houwen ct al. {1989])

1 0 0 0o o0 0
0 0 1 6 0 o
0 1-31 & 0 0 1]
(2.10) . e=(0,c DT,
0 0 1 0 o 0
0 0 1 Le
(1-a;)
0 0 1 Jicb b ¢

where aj, by, bz and c are free parameters. Third-order is obtained by setting

10 7 5
3C7 b1~3 ‘Cal, b3_'&:y

with ¢ as free parameter. These methods require three starting values and only one sequential righthand side evaluation
on two processors. Notice that (2.10) is of the general explicit one-stage form in which the matrix Aj has not been
replaced by the identity matrix as was the case in (2.27.

3. Order Conditions

In this section, we restrict our considerations to parameter arrays of the form (2.2) either with C=0 or CzO. Let
the exact solution be substituted into (2.2). Then, in general, the order conditions are derived by requiring that the
residual vector is of order hP*! for all components (that is, we require that all components of Yy 4 are pth-order

approximations to the corresponding exact solution values). In this way, we obtain the following condition for pth-order
consistency:

(1 - 2C)exp(zc) - (A + zB)exp(ze - ze) = O(zP*1), e:= (1,1, ..., nr.
By defining the error vectors

Co:=Ae-e; C;=A(c-¢)+Be+Ce-c;
G2 | o

Cj:=A(c-e) +jBc-e)l+Cdl]-o, j=2,3 ..,

the conditions for pth-order consistency take the form



@3.1b)  Cj=0, j=0,1,..p.

Here, powers of vectors are meant to be componentwise powers.

In the construction of high-order formulasg it is convenient to specify the matrix A in (2.2) in advance, because the
eigenvalues of A should lie in a zero-stable configuration, that is, they should be on the unit disk, those on the unit
circle being simple (such a zero-stability condition is difficult to satisfy simultaneously with the order conditions unless
k is sufficiently small). A natural choice for the matrix A is suggested by observing that

th+e; th+e

Yoot -yee =( [ f000) = [ o
ty ty

Replacing the integral term by a quadrature formula, we obtain a method where A is of the form

0...01
3.2 A=l . ... )

0..01
This matrix has one eigenvalue 1 and m-1 zero eigenvalues, so that a reasonable stability region may be expected (cf.
the analogous situation for linear multistep methods of Adams type). BRK methods possessing a matrix A of the form
(3.2) will be called Adams-type methods.

Assuming that A is given and is such that Ae=e, the most simple way to derive high-order formulas is to specify
the vector ¢. This leaves us with a linear system of p equations for each component formula of the corrector formula.
However, in this approach, the free parameters in the vector ¢ are not exploited. These free parameters may be used for
minimizing the error vector Cp+1. For instance, we may add to the order conditions (3.1) the condition that ¢ is such
that Il Cp41 !l is minimal for some norm ILIl. Alternatively, one may sacrifice the linearity of the order conditions and
choose ¢ such that certain components of the error vector vanish, that is, it is not necessary that all components of
Y1 are pth-order approximations. As an example, in the Adams-type BRK methods with matrix A of the form (3.2),
the first k-1 components of Yy, only occur in the righthand side as argument of the function f, so that these components
are allowed to be of one order less than the order of yy, without decreasing the order of the approximations at the points

tn. To be more general, we denote the order of consistency of the formula for yn4c; by p; and we assume that the
method has the following property:

Property 3.1. If ie J, then pi=p, if i€ Jp.1 then pj=p-1, and if i€ Jp and je Jp.1, then a;;=0, where Jp+Jp.1={1,2,...k}. 0

If this property is satisfied, then the method (2.2) produces pth-order accurate values at the points tn4; for n=1,2,... and
ie]p. One may interpret this as a form of superconvergence.

We recall that from an explicit and implicit BRK method with identical block point vector ¢:=(c{,...,cx) ¥, We can
derive higher-stage BRK methods by PC iteration. By requiring that the explicit method (predictor) and the implicit
method (corrector) provide approximations to y(ta+cjh), respectively of orders q and p, for all j, we obtain after r
iterations a method which provides approximations of order p*=min{p,q+r}. Since the predictor need not to be stable,
one can employ the full freedom of the generating matrices, so that q is usually sufficiently large to get the maximal

attainable order p of the corrector in just one correction (PECE mode). If not, then one may decide to continue the
iteration.

4. Construction of BRK Methods

Since the implementational complexity of the BRK method is mainly determined by the number of starting values
and the associated storage needed to implement the method, we shall distinguish the various methods by their number of

starting values. The methods constructed in the following subsections will be compared with methods from the
literature.

4.1. Methods Requiring Two Starting Values
In this subsection we consider methods where the block vector Yy, is defined by
Yn+1 = (Yn+es Yn+1)T-
At first sight, it would be natural to choose c=1/2. However, as we shall see, a more judicious choice is possible.

4.1.1. Explicit one-stage methods. We shall construct the family of second-order BRK methods of Adams type and the
general family of third-order methods.



Second-order methods of Adams type. The conditions (3.1) with C=0 and A defined by (3.2) can be satisfied for p=2 and
yield

1 0
0 1
4.1) o= DT e,
0 1 2 ¢(2<)
200 200
o 1| L 3
2(<) 219

with error vector

2c-3
6 =350 )) :

The following special cases of (4.1) will be tested in the numerical experiments at the end of this section:

c=0 (4.1) reduces to the Adams-Bashforth method ~ C3 = ( 0.0, -2.5)T
c=1/2 ‘natural choice’ C3z = (-03, -1.8)T

=583 Local error at tn4q is O(h%) C3 = (-1.9, +0.0)T
c=2 (4.1) reduces to Miranker-Liniger method (2.4) C3 = (-2.0, +0.5)T
¢ = 1+413 IC3ll., minimized C3 = (-14, +1.4)T
c=3 Local error at tnyc is O(h%) C3 = (0.0, +2.0)T

We observe that the case ¢=5/3 will raise the order to 3 at all step points t;, in spite of the second-order accuracy of
Yn+c, Decause of the special form of the matrix A (cf. Property 3.1).

Third-order methods. Next we construct the family of one-stage BRK methods in which all components are at least of
third order. We find the method

1 0
0 1
4.3) ,e={, DT, c=1,
c%(3c) 1-3¢ 2 _c
(1<} (1< (102 (10)?
53¢ -c3+3c2-4 2< (22
(1 (1< (102 (1<)

with error vector

2
Cy= (—(2-0)2) .

This method is zero-stable for all values of ¢ for which the eigenvalues of A are on the unit disk and are not both equal
to 1. Since A has the eigenvalues 1 and (c2-2¢-5)/(c-1)2, we obtain the condition

2.2¢-5
-1 <A :=c .
<t 4 =S

This leads to the necessary condition

@4  c<1-V3, c21+v3.

The parasitic eigenvalue A vanishes for c=li\/—g. If c=1/2, then the method reduces to the method (2.8) of Chu and
Hamilton.



A number of experiments were carried out in order to illustrate the effect of ¢ on the accuracy of the methods (4.1)
and (4.3). We chose the nonlinear initial-value problem

(4.5) y'(t) = sin(y5) - sin(sin5(t)) +cos(t), y(0)=0, 0<t<g1,

with exact solution y(t)=sin(t).

In the following table the results are given. In this table, the absolute error obtained at the end point of the
integration interval is written in the form 10-¢ (d may be interpreted as the number of correct decimal digits). Each
column contains results which required the same number of sequential righthand sides. In these and subsequent
experiments, the starting values incorporated in the initial vector Yy are taken from the exact solution.

Table 4.1.  Correct decimal digits at t=1 for problem (4.5)
obtained by BRK methods with k=2 and s=1.

Sequential righthand sides 6 12 24 48 96 order
Adams-Bashforth method 18 24 30 36 42 2
Miranker-Liniger method (2.4) 27 32 37 43 49 2
BRK method (4.1): c=1/2 20 25 31 37 44 2
BRK method (4.1): c=1+4173 21 27 33 39 45 2
BRK method (4.1): ¢=3 19 25 31 37 43 2
BRK method (4.1): ¢=5/3 31 40 50 59 68 3
BRK method (4.3): c=1+V6 3.1 40 49 58 67 3
BRK method (4.3): c=1-V6 33 41 49 58 67 3

These results show the theoretical order of accuracy. It is clear that the choice ¢=1/2 is not the best possible.
Furthermore, the value c=1+41/3 {minimal norm value) does not improve the accuracy, so that we refrain from
considering this special case in the subsequent sections. Notice that the method (4.1) with ¢=5/3 produces resuilts which
are comparable with the results of the method (4.3) with ¢c=1 6.

4.1.2, Implicit two-stage methods of Adams-type. The conditions (3.1) with nonvanishing matrix C can be satisfied for
p=4 by

1 0
0 1
0 1 3 (c2-6¢+6) c(c2-6¢+6) <3
12(1<) 12(1-¢) 12(1-¢) 12(1-c)
o 1 (1-2¢)  -6c2+10c-3 3-2¢ 6c2-14c+7
12(1-c)(2-c) 12c(1-¢) 12c(1cy  12(1-c)(2<)
(4.6) , e=@c DT, ¢»0,1,2

The corresponding error vector is given by

C _ 1 c3(cz-5c+5)
3776\ 5¢2-10c+4 )

The following special cases of (4.6) will be considered:

=4 N : _¢ 1 8 vt
c=5 (4.6) is equivalent with the corrector (2.9) Cs=(-755 75 )
2 - 443
c=1-7  Local error at ty4] is O(h%) Cs= (_.1_2?, 0)T

4.1.3. Predictor-corrector methods. In order to 'solve’ the corrector equation defined by (4.6) one may use a PC method
with predictor defined by (4.3). The PC methods determined by the matrices (4.3)-(4.6) require two starting values and,
in PECE mode, they have all at least order 4. For c=1-V5/5, we achieve order S in PE(CE)? mode. We remark that for
the predictor formula, the value of ¢ is not required to satisfy the inequalities (4.4).



We illustrate the performance of the PC method (4.3)-(4.6) by comparing it with the 2-step Adams PC method
(notice that the BRK method (4.3)-(4.6) with ¢=1/2 is equivalent with the Chu-Hamilton pair (2.8)-(2.9)). In the Tables
4.2, the correct decimal digits at t=1 and the total numbers of sequential righthand sides are listed for the various
methods in PECE mode and in PE(CE)? mode.

Table 4.2a. Correct decimal digits at t=1 for problem (4.5)
obtained by BRK methods in PECE mode with k=2,

Sequential righthand sides 6 12 24 48 96 order
Two-step Adams-PC method 21 3.1 41 50 59 3
Chu-Hamilton pair (2.8)-(2.9) 43 54 6.5 1.6 8.7 4
BRK method (4.3)-(4.6): c=1-v¥5/5 4.8 54 6.5 7.6 8.8 4

Table 4.2b. Correct decimal digits at t=1 for problem (4.5)
obtained by BRK methods in PE(CE)Z mode with k=2.

Sequential righthand sides 6 12 24 48 96 ader
Two-step Adams-PC method 1.8 31 42 51 60 3
Chu-Hamilton pair (2.8)-(2.9) 39 57 93 84 9.5 4

BRK method (4.3)-(4.6): c=1-V5/5 39 55 7.0 85 100 5

4.2. Methods Requiring Three Starting Values
The block vector Y, is now defined by

Yn+1 = (Yn+c;» Yn+cys Yn+1)T

providing us with two free parameters. As before, equidistant output points need not to be the best choice. Because of
the rapidly increasing complexity of the derivations if more than 2 starting values are used, we shall not consider the
general case as in the preceding section, but we shall restrict our considerations to a few special cases.

4.2.1. Explicit one-stage methods. We consider Adams-type methods and a more general family of zero-stable methods.

Third-order methods of Adams type. If C=0, then the following array satisfies the order conditions (3.1) for p=3 and for
all (distinct) values of ¢ and ¢ different from 1:

0 0
0 1 0
0 0 1
@ ., c=(c1,c2, DT,

0 0 1 ap - (cp-1)by  (c-1)by  cp - ap + (ca-¢1)by
6 0 1 ag-(cp- )by (c1-1)by  c2 - 25 + (c2-¢1)by
6 0 1 az - (co-1)bs  (c1-I)b3  c3 - a3 + (cp-cq)b3

where
a :=_ci.2__ - ci2(2¢; - 3¢y + 3) f
37 20e1-1) I 6(cr - )(ep - D)(ea - cp)

=1,2,3.

We restrict our considerations to the two-processor case, that is, we set ¢1=0. By virtue of the special form of A

we obtain order p=4 at the step points if the third formula has order 4 while the first and second formula have order 3.
Setting the third error component equal to zero we find cp=17/10.



Fourth-order methods. Let us consider methods of the form

6 0
010

0 0 1
(4.8) , ¢=(0,¢c, .
00100 0

ag) agp a3 | bay by bag

a3 237 a3 | bsy b3 baz

Solving the conditions (3.1) for p=4 with c=1/2 we obtain

1 0 0
0 1 0
0 0 1
, ¢=(0,12, DT,
0 0 1 0 0 0

-9-2 9 1+a (-10-a)/6 (-22-4a)/6 (8-a)/6
-b 64 -63+b | (-9-b)/6 (108-4b)/6 (99-b)/6

where a and b are free parameters. We could have used these parameters for increasing the order of accuracy tp.p=5.
However, then the method turns out to be zero-unstable. Therefore, we shall employ them for improving the stability of

the method. In particular, we choose a and b such that A has zero parasitic roots. The characteristic equation of A is
given by

(- 1)82 + (55-b)8 + 9b - 64a - 576) =0,

so that we are led to the values a=-81/64 and b=>55. The corresponding Butcher array becomes

1 0 0
0 1 0
Q 0 1
4.9) , ¢=(0,122, DT
4] 0 1 0 0 4}
-495/64 9 -17/64 -559/384 -271/96 593/384
-55 64 -8 -32/3 -56/3 22/3

The following tables illustrate the performance of the above explicit, one-stage methods.

Table 43.  Correct decimal digits at t=1 for problem (4.5)
obtained by BRK methods with k=3 and s=1.

Sequential righthand sides 6 12 24 48 96 order
Adams-Bashforth 32 39 48 56 65 3
BRK method (4.7): (c1.c7) = (0,1/2) 34 42 51 60 69 3
BRK method (4.7): (c1.c2)=(0,17/10) 4.1 53 65 7.7 89 4
BRK method (4.9) 40 51 64 76 88 4

4.2.2. Implicit two-stage methods. We assume the generating array of the form

(=R I
S - O
- O O

0 0 1 g 0 O 00 O
a1 agp 3 | by bag baz 0 copp o3
a3y a3y a3z | b3y b3y bz 0 cyp a3

(4.10)

v e=(0,c, )T



and we derive a fifth-order method of Adams type. Let us choose c=1/2 and define A according to (3.2), then the order
conditions (3.1) can be satisfied for p=5 by

1 0 0
0 1 0
0 0 1
0 0 1 0 0 0 0 0 0
0 0 1 11/1440 -37/720 19/60 0 173/720 -19/1440
0 0 1 -1/180 1/45 2/15 0 31/45 29/180
@1y - , €=(0,1/2, )T,

If the method is not required to be of Adams type, then a corrector of order 6 can be constructed. In the following
subsection, this will be carried out as part of the construction of a PECE method with increased real stability interval.

4.2.3. Predictor-corrector methods. We consider two PC methods which are in PECE mode of orders 5 and 6,
respectively.

Method of order 5. The fourth-order predictor (4.9) and the fifth-order corrector (4.11) determine a PC method of order

p=5. It requires three starting values and, if two processors are available, then only two sequential righthand side
evaluations per step are needed.

Method of order 6. Next we consider PC methods where the predictor and corrector are generated by matrices of the form
(4.8) and (4.10), and where c is still a free parameter. We try to construct a PC method which is of order 6 in PECE
mode by choosing the free parameters such that the corrector formula for yp.1 becomes of order p=6, whereas the other
corrector formula and the two predictor formulas have order p=S5.

In this paper, we have investigated methods where

00 1
A=]001
a0 l-a

(notice that A does not refer to the second component of the block vector so that the corrector formula corresponding to
this component may be of one order less than that of the third component). This leads to a one-parameter family of
sixth-order PECE methods which can be represented in the form (2.3), i.e.,

Y, 11 = AYp + hBE(Yp) + hCE(DY, + hEA(Y ).

The free parameter will be used to improve the (linear) stability of the method. The (linear) stability of this two-stage
BRK method can be investigated by applying the method to the test equation y'=Ay to obtain the recursion

Yoi1 =R@) Yo, R(@2):=A+z(B+CD)+2z2CE, z:=hih,

and by requiring that the matrix R satisfies the simple Von Neumann stability condition, that is, it has its eigenvalues
on the unit disk those on the unit circle being simple. Choosing ¢ as the free parameter, we start with determining a
range of relevant c-values by requiring that R(0) satisfies the stability condition (zero-stability). Since the eigenvalues of
R(0)=A are given by 0, 1 and -a, we require -1<-a<1. It can be shown that imposing the conditions for sixth-order
accuracy on the corrector formula for yp41 leads to

15¢2 - 31c + 13
15¢2+¢-3 °

so that ¢ should be not less that 1/2 in order to ensure zero-stability. As before, we shall not consider the maximization
of the general stability boundary. Instead we consider the simpler case of maximizing the real stability boundary. A
numerical search reveals that the real stability boundary is maximized for ¢~4.16 and is approximately given by 2.247.
In order to obtain rational expressions for the entries of the various matrices, we do not choose this ‘optimal’ value of c,
but we set c=4 yielding the stability boundary 1.766. The predictor is generated by the matrices



1 0 0
0 1 0
0 0 1
(4.12) , e=(0,4, DT
0 0 1 0 0 0
27 25 325 5 25 100
2 54 27 9 9
3 3 s L L 1s
2 54 727 2 13 9
and the corrector by
1 0 0
0 1 0
0 0 1
0 0 1 0 0 0 0 0 0
4 76 2 58 88
o0 ! 75 45 35 225 45
129 L2 1141  -47 2110 o 28 896
241 241 7230 4338 2169 10845 2169
(4.13) , ¢=(0,4, DT,

The following table is the k=3 analogue of the preceding tables:

Table 4.4. Correct decimal digits at t=1 for problem (4.5)
obtained by BRK methods in PECE mode with k=3.

Sequential righthand sides 6 12 24 48 96 odder

Three-step Adams-PC method 36 45 57 69 81 4
BRK method (4.9)-(4.11) 45 60 75 90 105 5
BRK method (4.12)-(4.13) 50 69 89 109 130 6

4.3. Predictor-Corrector Method Requiring Four Starting Values
We have searched for two-processor predictors in the class of methods of the form

SOO -
OO == O
O~ OO
—OOO

, ¢=(-1,0,¢, I)T.
0100100 O0O0
0 0 01 0 6 0 O
a3 8 33 83 | by bsp bys by
a1 2 43 A | bay Daz baz bag

For a given value of ¢ we can achieve order 7 by solving two linear systems of 8 equations each in 8 unknowns.
The corrector was chosen such that

1 600 O
0 10 O
0 01 O
0 00 1
010 O 0 000 0000
0 00 1 0 0 00 0000

az ap 0 l-as;-ay | bay bay baz byg 00 ca3 Cay
ag; 242 0 1-ag-as [ by by baz bay 00 cg3 Cag

» €= (_1) Oa c, l)T'
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By this choice we achieve that the order conditions (3.1) simplify considerably. Given the value of ¢, this method can be
made order 8 accurate in each component equation, again by solving two linear systems of 8 equations in 8 unknowns.
These four systems of 8 equations have been solved numerically in terms of the parameter ¢ and for a range of c-values
we computed the real stability boundary Breq; Of the PECE mode. We found that Br.,; was maximal for ¢=2.58
(Brea=0.358). In order to obtain a method with rational parameter values we chose ¢=5/2 resulting in Bre,1=0.302. The
corresponding predictor is generated by

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
(4.14) , ¢=(-1,0,5/2, DT,
0 1 0 0 0 0 0
0 0 0 1 0 O 0 0
5975 1539 537 2793 | 225567 2205
224 20 " 35 ~ 32 | 328 % 33
82 117 63232 2 3 18 128
343 125 128625 3 9 25 " T225 !
and the corresponding corrector by
1 0 0 0
0 1 0 0
0 ) 1 0
0 0 0 1
0 1 0 0 0 0 0 0 00 0 0
0 0 0 1 0 0 0 0 00 0 0
53.73.13-83 3653263 3673827 | 333473 365271767 355273 3557313 3257809  3%537337
30469210 3046027 © 30469210 | 3046927 30469210 3046025 13046925 0 O 304692 30469210
4549 331039 0 -33.79 23029  3%13-1709 283231 3261337 0 0 29-11 14369
30469 30469 30469 3046937 3046957 3046957 304695 30469357 30469
(4.15) c=(1,0,572,1)HT.

Table 4.5 compares this method in PECE mode with the four-step Adams and four-step Shampine-Watts method.

Table 4.5. Correct decimal digits at t=1 for problem (4.5)
obtained by BRK methods in PECE mode with k=4.

Sequential righthand sides 6 12 24 48 96 order
Four-step Adams-PC method 33 48 64 79 95 S
Shampine-Watts pair (2.7)-(2.6) 36 48 60 72 84 4
BRKX pair (4.14)-(4.15) 7.3 102 128 8
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5.  Summary of Methods and Numerical Examples

The explicit, zero-stable methods and the PC combinations discussed in the preceding sections will be applied toa
number of initial-value problems. In addition, we give the results obtained by the classical Adams formulas. First,
however, we summarize the main characteristics of the various methods.

5.1. Summary of Methods
Below we have listed a few important features such as the block point vector ¢, the order p, and the number of
processors Pope needed to implement the method with only one righthand side evaluation per step.

Table 5.1a. Survey of explicit one-stage BRK methods of the form (2.2).

Reference cl Popt P Remarks
Miranker and Liniger {1967]  (2,1) 2 2 See (2.4)
(-1,0,2,1) 2 4 See (2.5)
Shampine-Watts [1969]  (-1/2,0,1/2,1) 1 3 See (2.7)
Chu-Hamilton [1987] (/2,1 2 3 See (2.8)
This paper (c.1) 2 3 See (4.1) with ¢=5/3
1) 2 3 See (4.3)
(c1.c2l) 2 3 See (4.7)
(c1,2,1) 2 4 See (4.7) with (c1,c2) = (0,17/10)
(0,1/2,1) 2 4 See (4.9)
(0,4,1) 2 5 See (4.12)
(-1,0,5/2,1) 2 7 See (4.14)

Table 5.1b. Survey of implicit BRK methods of the form (2.2).

Reference ! Popt P Remarks
Clippinger-Dimsdale [1958] (1/2,1) 2 4 See (2.6)
Chu-Hamilton [1987] (1/2,1) 2 4 See (2.9)
This paper @) 2 5 See (4.6) with c=1-Y5/5
0,1/2,1) 2 5 See (4.11)
0,4,1) 2 6 See (4.13)
(-1,0,572,1) 2 8 See (4.15)

Table 5.1c. Survey of PC pairs in PE(CE)" mode.

Predictor Corrector el p 1
@D 2.6) 1/2,01/21) 4 1
2.8) 2.9) a/2,1) 4 1
@3):c=1V5/5  (46) withc=1-V5/5 (1) 5 2
4.9) @.11) ©,1/2,1) 5 1
(4.12) 4.13) 0.,4,1) 6 1
(4.14) @.15) (-1,0,5/2,1) 8 1

5.2. Nonlinear Problem with Rapidly Increasing Solution
The first test problem is the nonlinear problem

5.1y YO =-y3+P200+ 2D, y0)=0, 0<t<1,

with exact solution y(_t):tlo. In Table 5.2 the results are listed. Since the number of sequential righthand side
evaluations per step varies from 1 to 3 for the various methods, we adapted the stepsize as to obtain that each column of

this table contains results with an equal number of sequential righthand side evaluations over the whole integration
interval.



Table 5.2. Correct decimal digits at t=1 for problem (5.1).

Sequential righthand sides 6 12 24 48 56 order
Two-step Adams-Bashforth method 03 08 13 19 25 2
Miranker-Liniger method (2.4) 06 12 19 25 31 2
BRK method (4.1): ¢=5/3 26 24 31 39 48 3
BRK method (4.3): c=1 -V6 05 12 20 29 38 3
Two-step Adams pair: PECE 02 09 1.7 25 34 3
Chu-Hamilion pair (4.3)-(4.6): PECE,c=12 1.1 19 30 42 55 4
BRK pair (4.3)-(4.6): PE(CE)2,¢c=1-N5/5 20 29 41 57 174 5
Three-step Adams-Bashforth method 05 11 19 27 36 3
Method (4.7): (c1.¢2) = (0,17/10) 20 26 37 48 60 4
Three-step Adams pair: PECE 03 1.1 21 33 45 4
BRK pair (4.9)-(4.11): PECE 12 22 36 351 67 5
BRK pair (4.12)-(4.13): PECE * * 15 53 74 6
Four-step Adams-Bashforth method 06 14 25 36 48 4
Miranker-Liniger method (2.5) 11 23 35 47 59 4
Four-step Adams pair: PECE 13 26 40 55 170 5
Shampine-Watts pair (2.7)-(2.6"): PECE 1.1 1.8 29 41 53 4
BRKX pair (4.14)-(4.15): PECE * 13 56 90 116 8

A first observation is that most parallel methods behave more efficient than the corresponding one-processor
Adams methods, showing that already on two-processor machines parallelism can be exploited. Furthermore, these
results clearly demonstrate the superiority of the high-order methods, especially the 6th- and the 8th-order BRK methods.
It should be remarked that these two methods produce unstable results (indicated by an “*” in Table 5.2) for large
stepsizes, in spite of their large real stability boundary. The reason is that these methods employ a block point ty+ch,
with ¢ much larger than 1, viz. ¢=4 and c=5/2, respectively. Since the modulus of df/dy, which determines the
maximally allowed stepsize, is a rapidly increasing function of t (viz. 3-t29), it is clear that an evaluation of f beyond the
endpoint t=1 may easily cause instabilities.

5.3. Orbit Equation
The second problem was taken from the test set of Hull et al. [1972]:

y1' =ys, yi0) =1-¢, £€=03
y2' =4, y2(0) =0
(52)
y3' =-y1 (y12 + y22)3/2, y3(0)=0
' 14¢
v4' = -y2 (y12 + y22)3/2, y40) =\ — .

1-¢

15



Table 5.3. Correct decimal digits at t=20 for problem (5.2).

Sequential righthand sides 240 480 960 1920 3840 order
Two-step Adams-Bashforth method 03 07 12 17 23 2
Miranker-Liniger method (24) 05 21 21 25 31 2
BRK method (4.1): c=5/3 03 12 21 30 39 3
BRK method (4.3): c=1 -V6 03 12 21 30 39 3
Two-step Adams pair: PECE 01 06 14 23 32 3
Chu-Hamilton pair (4.3)-(4.6): PECE, ¢c=12 -15 01 37 52 65 4
BRK pair (4.3)-(4.6): PE(CE)2, c=1 - V5/5 14 32 48 64 79 5
Three-step Adams-Bashforth method 01 10 19 28 37 3
Method (4.7): (c1.¢2) = (0,17/10) 19 35 44 55 67 4
Three-step Adams pair: PECE 04 18 34 50 62 4
BRK pair (4.9)-(4.11): PECE 13 28 44 59 74 5
BRK pair (4.12)-(4.13): PECE 33 49 68 86 96 6
Four-step Adams-Bashforth method 14 23 34 46 58 4
Miranker-Liniger method (2.5) 20 44 48 58 69 4
Four-step Adams pair: PECE 08 20 35 50 65 5
Shampine-Watts pair (2.7)-(2.6"): PECE 1.1 29 41 51 62 4
BRK pair (4.14)-(4.15): PECE 39 68 9.0 8

For this example, which describes a system of ODEs, the errors are measured in the maximum norm. Since most
methods nicely show their asymptotic order behaviour, the high-order BRK methods are again superior to the low-order
ones. Hence, the conclusion can be drawn that the introduction of non-equally spaced block points tn+cih favourably
influences the performance of the BRK methods.

5.4. Euler's Equation of Motion
The third problem is Euler's equation of motion (cf. Hull et al. [1972]):

¥y1' =Yy2y3, y1(0)=0
(5.3 ¥2' =-y1¥3, y2(0) =1
y3'=-0.51y1 y2, y3(0) = L

Table 5.4. Correct decimal digits at t=20 for problem (5.3).

Sequential righthand sides 120 240 480 960 1920 order
Two-step Adams-Bashforth method 12 19 25 31 37 2
Miranker-Liniger method (2.4) 16 24 31 38 44 2
BRK method (4.1): c=5/3 1.7 26 35 44 53 3
BRK method (4.3): c=1-6 16 26 35 44 53 3
Two-step Adams pair: PECE 12 20 29 38 47 3
Chu-Hamilton pair (4.3)-(4.6): PECE, ¢c=1/2 * 33 47 60 73 4
BRK pair (4.3)-(4.6): PE(CE)?,c=1-V¥5/5 25 39 55 70 85 5
Three-step Adams-Bashforth method 15 24 33 42 51 3
Method (4.7): (c1,¢2) = (0,17/10) 28 41 54 66 79 4
Three-step Adams pair: PECE 14 27 40 53 65 4
BRK pair (4.9)-(4.11): PECE 27 41 56 71 86 5
BRK pair (4.12)-(4.13): PECE 32 51 69 87 107 6
Four-step Adams-Bashforth method 33 38 48 60 71 4
Miranker-Liniger method (2.5) 31 50 63 72 83 4
Four-step Adams pair: PECE 25 34 48 62 717 S
Shampine-Watts pair (2.7)-(2.6"): PECE 19 33 46 59 72 4
BRK pair (4.14)-(4.15): PECE 29 74 98 8

This table gives rise to the same conclusions as formulated at the previous test problems.



To sum up, these examples clearly show that, even when only 2 processors are used, a substantial gain in

efficiency can be obtained when compared with sequential (uniprocessor) methods. This especially holds for the high-
order BRK methods which owe their high order to the introduction of non-equally spaced block points.
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