
Centrum voor Wiskunde en lnformatica
Centr~ for Mathematics and Computer Science

A. Pense

Process expressions and Hoare's logic

Computer Science/Department of Software Technology Report CS-R8905 March.

The Cer.tre for Mathematics and Computer Science is a research institute of
the St1chtmg Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Process expressions and Hoare's logic

Alban Pense
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract
In this paper processes specifiable over a non-uniform language are considered. The langua.ge contains con­
stants for a set of atomic actions and constructs for alternative composition and sequential composition.
Furthermore it provides a mechanism for specifying processes by a form of guarded rec11rsion (including

nested applications). We consider processes as having side-effects: Atomic actions are to be specified in
terms of observability and state transformations. The execution of a process having some initial state

is formally described as a transition system contain;ng information a.bout observability and state trans­
formations. This leads to an operational semantics in the style of Plotkin. Let S be a set of states, 0c

and f3 denote unary predicates over Sand p be the specification of some process. The pa-rtial coTTectness
<> • ..,ertion { Oc} p {.B} expresses that for any transition system associated with p and having an initial sta.te
satisfying°'• its final states satisfy /3. A logic in the style of Hoa.re and a proof system for deriving partial

correctness assertions are p resented. This proof system is complete (relative to all true assertions about
the states in S), so any partial correctness assertion can be evaluated by investigating its derivability.
Techniques concerning the construction of derivations or proof& of thclr a.bsencc arc not di:scuitsed.

Key Words & Phrases: process expression, process algebra, side-effects, Hoare's logic, partial correct­
ness assertions.

1985 Mathematics Subject Classification: 68Q55, 68Q60.
1980 Mathematics Subject C/..,,sification: 68B10, 68F20.
1982 CR Categories: D.3.1, F.3.1, F.3.2.
Note: The author received full support from the European Communities under ESPRlT project no. 432,
An Integrated Formal Approach to Industrial Software Development (METEOR).

1 Introduction

A process is the behaviour of a system. A computer executing some program or a person using a
drink dispenser are two examples of processes. In order to specify (or analyse) p.rocesses we assume
tha.t we ha.ve available a. set of atomic actions, i.e. processes which are considered! to be not divisible
into smaller parts and not subject to further investigation. More complex processes can be seen as
composed out of ate>mic actions. This paper is based on the notion of processes specifiable in a simple
'process language' for which a set A of atomic actions is a parameter. The language contains constants
for all atomic actions in A and offers constructs for alternative composition, sequential composition and
recursion. Any closed process expression represents a process. An atomic action a E A is considered
to be observable pointwise in time. Its execution though takes a positive (finite) amount of time,
at the beginning of which it can be observed as the process a, and at the end of which we say that
the execution is terminated successfully. This ca.n be formally described as a {labelled) transition
a ~ ...J, where the label a represents what can be observed and ,/is a symbol representing successful
termination (see [9]) . By giving a calculus for deriving transitions (so called action rules), every closed
process expression generates a transition system, representing all possible courses of execution. In [6]
this is worked out for a larger process language, containing also a construct for the specification of
concurrent processes.

Report CS-R8905
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 1

2
1 INTRODUCTION

In this paper we regard the use of a state space on which atomic acti~ns, and ~hus all processes
specifiable in our language, have side-effects involving state t_ransfor~ations. This ~eans that we
consider a non-uniform process language (this notion is eg. d1s~ussed m (4J) .. These s~de-effects are
to be specified in terms of observability and state transformations by fu~ct10n_s action and efJ_ect
respectively: Let S be a set of states and a the representation of some atomic action. The express10n
action(a, s) denotes what can be observed if a is executed in initial state s; with eff_ect(s, a) we denote
the state resulting from this execution. If this execution terminates successfully it can be formally

described by a transition

action(a,1) 1)
(a,s) --+ (y , effect(s,a)

where (a, s) represents the process a in initial states and effect(s, a) is called a final state. We present
a. calculus to derive tra.nsition systems concerning more complex process expressions out of these
atomic transitions (so called effect rules), reflecting the observability and state transformations of any
possible execution. We will use these transition systems to define an operational semantics.

Most of this paper is about partial correctness assertions. Let o: and /3 refer to unary predicates
over Sand p represent some process. The partial correctness assertion {a}p{/3} concerns some features
of a number of transition systems associated with p: If the execution of p started in an initial state
satisfying a terminates successfully, then the resulting final state satisfies /3 . So a partial correctness
assertion abstracts from observability and intermediate states of execution. The adjective partial ex­
presses that successful termination is not implied. The transition (system) displayed above expresses
that the partial correctness assertion "{s} a {effect(s,a)}" is true. A partial correctness assertion
{ o:} a {,£3} over an atomic action a can be evaluated by constructing the transitions (a, s):....+ (-J, .) for
a.JI s such that a(s) holds.

Main result. In order to reason formally about partial correctness assertions we present an ap­
plica.tion of Hoare 's logic, a.n a.xioma.tic method for proving programs correct (for a survey of Hoa.re's
logic see [1]). This logic contains a proof system for deriving partia.ll correctness assertions starting
from atomic partial correctness assertions and the true assertions about the states in S. We show
that the proof system is complete (relative to all true assertions about the states in S), so a partial
correctness assertion is true iff it is derivable. Suppose one wants to investigate a partial correctness
assertion concerning a complex process specification. Finding a right derivation or showing the ab­
sence of these may then replace the construction of a (possibly large) number of (complex) transition
systems. Techniques concerning the construction of derivations or proofs of their absence are not
discussed.

Contents of the paper. Section 2 is dedicated to the way processes can be specified. In sec­
tion 3 we discuss the specification of side-effects and the construction of transition systems. In section
4 an operational semantics and the concept of partial correctness assertions are introduced. We de­
fine a 'partial correctness semantics' and a 'language of assertions', suitable to formulate any partial
correctness assertion. Next, in section 5, we present a proof system for deriving partial correctness
assertions, which will be proved relatively complete. The paper is concluded with a short discussion
on some extensions.

Note. A related_ vers~on of this_ rep~rt appeared as" Process algebra and Hoare's log,ic" (see [10]) .
Note. The speci~cat~on formalism introduced here rders to the sequ.ential fragment of ACP, the Al­
gebra of Co~mu~ica.tmg Proce~ses._ ACP is an algebraic framework suitable both for the specificatio·n
and the v~nficati~n of communicating processes. For the latter it provides a.xiom systems concerning
the equality relation over process specifications. Here we do not consider such axiom systems, but
fr_om the ~tart ~oncentrate_ on a semantical approach. In (10] it is proved that the semantical notions
discussed m this paper satisfy the relevant ACP axioms. ACP is discussed in e.g. [5).

3

Eo Constants: a for any atomic action a E A
6 deadlock (6 ~ A)

Binary functions: + alternative composition (sum)
sequential composition (product)

E;+1 Constants: <x lE> if E is a pure system over E;
and x is a solution of E

E LJEn (n E JN)
n

E+ Unary functions: 7rn projection, n E 1N

Table 1: The signature E+

2 Process expressions

We introduce a language in which processes can be specified. A parameter with respect to this
language is a set A of atomic actions with typical elements a, b, c, Let V ::::: { x,, y, z, ... } be a set of
variables. The language is built inductively from V and the constants and functions of the signature
E+ in table 1, and will be defined in three stages.

2.1 Finite processes

The signature Eo can be used to specify finite processes. For each atomic action a E A there is a
constant a E 2:0. further there is a special constant 6 '/: A representing 'deadlock', i.e. the acknowl­
edgement of a process that it has no possibility to do anything any more. There are two binary
functions in Eo, +(sum) and· (product). Some intuitions: x +y represents the process which first
makes a choice between its summands x and y, and then proceeds with the chosen course of action;
x · y (or xy, for short) represents the process x, followed after possible successful termination of x by
y. The process x de>es not terminate successfully if it ends in deadlock. We take · to be most binding
of all operators and + to be least binding, eg. xy + z means (x · y) + z.

Let Po be the least set such that

• A6 ~Po, where A6 ~!AU {S}.

•If p,q E Po, then p+q E Po and pq E Po.

So P 0 is the set of closed process expressions over Eo . Every element of Po new specifies a finite
process.

2.2 Recursively specified processes

We extend our process language with a mechanism for specifying processes recursively. This gives us
in particular the means to specify possibly infinite processes. We first give an example and then start
with some formal definitions.

4 2 PROCESS EXPRESSIONS

Example. Consider a.n automaton which behaves a.s follows: After the insertion of a coin and a
push on a button a or b it serves a drink encoded by that button; if the button for restitution is
pushed, the inserted coin will be returned. Assume that the automaton is tacitly maintained: All
drinks are always in stock and there is always room for insertions. Our running example concerns t he
(proper) behaviour of a user of this automaton, and can be described a.s a composition of the following
atomic actions:

in
Pa.1Pb
pr
co
st

(insert a coin)
(push one of the buttons a or b respectively)

. (push the button for restitution and collect the returned coin)
(collect the delivery of the automaton)
(stop behaving a.s a user)

The recur'live specification

U = in((p., + P1>)co + pr)U + st

expresses that the left-hand side of this equation is specified recursively by the right-hand side: A
user behaviour U consists of either inserting a coin or stopping the behaviour; in case of the first
atomic act ion then to push a button for one of the drinks or to handle restitution; in case of the first
alternative then to collect the delivery of the automaton; then to restart the preceding process. (to
be continued}

Definition 2.2.1 A recursive specification E = {x = t., Ix E VE} over E; is a set of equations where
VE i.s a set of variables and t,, some process expression over E; only containing variables of VE. For
each x E VE there is exactly one eq1'ation {the set VE need not be finite).

So up till now E 0 is the only signature over which recursive specifications can be defined. A solution
of E is an interpretation of the variables in VE a.s processes in a. certain semantics, such that the
equations of E are satisfied. For instance the recursive specification { x = x} has any process a.s its
solution and { x = ax} ha.s the infinite process "aw" a.s its solution. We introduce the following two
syntactical restrictions on recursive specifications:

Definition 2.2.2 1. A recursive specification E -= {x = t"' Ix E VE} over E; is called guarded if
each occurrence of a variable y in the expressions t:z; occurs in a sub term pM with p E Pi. We
speak of guarded systems instead of guarded recursive specifications 1 .

2. A guarded system E = {x = t:clx EVE} over :Ei is called pure i/ for any subterm M · N of one
of the t"' we have that J.1 contains no variable~ of VE.

The notion 'pure' is typical for this paper. By considering only systems which a.re pure, we can prove
our completeness result. Remark that the specification of U in the example above is pure. Now the
signature 2:, in which we are interested, can be properly defined in an inductive manner. We will
study partial correctness assertions over this signature.

Definition 2.2.3 1. The signature Ei+I is obtained by extending E; in the following way: .For
each pure system E = { x = t:z Ix E VE} over :Ei a set of constants { <x I E>I x E VE}, where
<x I E> denotes the x-component of a solution of E, is added to ~i.

2. The signature E is defined as LJ En (n E lN). We call a recursive specification E pure {or
n

guarded} over E if E is a pure (guarded respectively) system over Ei for some i.

1ln section 5.4 we return to this definition of guardedness.

2 3 Finitr pro;rct1ons 5

For 1nstancl" < x I {x = < JI I {y = ay + b} > .r ..,.. c} > i~ a dosl"d proct-ss expression over I: (evt'n
over ~:2 l. but < x I { .r = axb + c } > is not sinct' it refl"r!I to a spt'rificat 1011 which is not pure. L' nless
11tatf'd o therwist' Wf' consider proc<"ss t'Xpressions and pure systt'm~ ovf'r E . VI.'" introducf' some morl'
nt}tal IO!lS.

[.,.! f ,' =- { .r = t z I .r E \ ·E} h<' a purt:' syst<'m, and t a proct>ss exprt>ssion. T h<'n < t I E > de­
notr5 the procf"ss exprt'ssion in w hich t'ach occurrenC"<' of .r E \ 't : in t is r<'plact'd by < x I E >, e .g.
<aar I { x = a.r} > dl"notes the process expression 11.a<x 1 { .r = a.r } >. If"°" assume that t he va.ria.blts in
a r«"curs1vf' spt·cifkation arr chosen freshly, there is no need to rrp('at E in f'ach occurr<'nce of <.rl E >.
Variablf's rest'rvedt in this way a.re ca.l!l'd formal uanabl~~ and dl'nott'd by capital ll"t ters. V.'e adopt
the convention that <X IE> ca.n be abhrl"viated by X once Eis declared. As an example consider
E:: {X = a .\}: The closed process expression aaX abbrrviates aa<X i{ X = aX }>.

Lt"t P be the least set satisfying

• A~~ P .

• If p, q E P, then p + q E P a.nd pq E P.

• If f.'= {x = tz l x E FE} is a purl' system over E , then {<x j E >I x E l.'E} ~ P .

a.nd P, defined likewise by only considering pure sys tems over E,. Every element of P (P, respectively)
now specifies a rt>cursitrely specifiable process .

2.3 Finite projections

T he signature E + , defined as an extension of'[by adding unary operators 11",. for all n E IN to :E, is
on ly needed for technical matters. T he project ion operator ir,. stops a process a.fter it has performed
n atomic actions. Let p+ denote the set of closed process expressions over this signature.

3 Processes having side-effects

In t his section we discuss t he specification of at omic ac tions having side-effects. Furthermore we
introd uce a calculus for deriving transition systems concerning pro cesses having side-effects.

3.1 The functions action and effect

V."e regard processes as having a state: Let S be a nonempty set of states, with typical elements
s , s',.. .. The 'st ate labelled process expression' (x, s) denotes the process x in state s. The idea is
that the execution of an atomic action a in state s results in an action a' representing the observable
activity of t his execution (an atomic action or 6), .and in a resulting state s' 2 . This idea is formalized
by given (tota!) fu nctions

and effect : S x A6 -+ S

which determ ine t he relat ion between elements a of A6 and elements s of S, the set of states. The
func t ions action and effect were introduced in (2). With action(a, s) we denote the observable activity
which represents t ht' execution of a in state s; with effect(s, a) we denote the resulting state. This
'operational view' on the execution of elements of A in some sta.te will be generalize<! to an operational
sem a ntics based o n transition rules in the style of Plotkin. We first introduce some restrictions and
notations: It is assumed that

2 As a n e xam ple t hink of t h" representation of a progra.m in a high level language as Ptuca.I. in process algebra. Let a
va.riable o: be declared as an integer andl S denote the set of valuations fro m d eclared v"riablcs to their full domains. If
w"' rega rd an assign ment r := r + l as an atomic action a , then o.' = o. if .s(:z:) < MAX.INT and 6 otherwise. Of course
"'(:r) = s(:r) + l and s '(y) = .s(y) if y f, z.

6 3 PROCESSES HAVING SIDE-EFFECTS

1. '<Is E S(action(8, s) = 8)

for, in each state 8 should indeed denote deadlock;

2. 'c/s E S(effect(s,c) = s)

because deadlock should not alter a state. We dema.n<l that for all functions action and effect consid­
ered the properties 1 and 2 hold. Another way to state this is to demand that 8 is inert (with respect
to the functions action and effect).

• We use the following abbreviations: a(s) for action(a,s) and s(a) for effect(s,a).

We conclude this section with a definition concerning the general framework in which we will study
state labelled process expressions.

Definition 3.1.1 A structure (A, S, action, effect) is a quadruple containing the set A of atomic
actions, a nonempty set S of states and functions action : A6 x S -+ A6 and effect : S x A.s -+ S
such that 8 is inert.

We use symbols S, S' as syntactic variables for structures.

3. 2 Transition systems

We introduce for all a E A a binary transition relation ~ over state labelled process expressions. In
general we mean by a transition (:z:, s) ~ (y, s') that by performing an action a the process x in state
s can evolve into y in state s1

• To represent successful termination we introduce a special element ../
not in E+ and for all a E A a relation ~ (.J, .) between state labelled process expressions and states:

The expression (x, s) ~ (../, s') denotes that the process x in state s can terminate successfully in
states' by performing a. Typically an atomic action a will be related to transitions (a., s) ~ (../, s(a)),
provided a(s) f 8. In case a(s) = 6 there simply is no related transition3 . In table 2 we present a proof
system, the effect rules, by which we can derive transitions. Notice that any structure fixes the effect
rules. We define ~ for t:1 E A• as the reflexive and transitive closure of all transition relations:

.A
• (x,s)---+> (x,s) (.>.denoting the empty string over A•)

(x,s) ~ (x',s') (x',s') ~ (x",s")
• (x,s) ~ (x11 ,s11

)

(x, s) ~ (x', s') (x', s')-!.... (../, s")

(x,s)~ (.J,s")
(a EA)

Instances of this relation will be called effect reductions. We here give an example of a property of
effect reductions that will turn out to be useful:

Lemma 3.2. 1 'decomposition' If for some string q E A•, s E S we have (xy, s) ~
there are cr1, cr2 and s" such that cr10-2 = u, (x, s) ~ (../, s") and (y, s") ~ (.J, s').

(.J, s'), th.en
0

This can be proved by induction on the length of derivations. We may call decomposition a derived
effect rule.

The next step towards our operational semantics is to associate a transition system ts((p, s)) to any
state labelled closed process expression (p, s), representing all possible transitions. Consider the graph
Q((p, s)) defined as follows:

NODES

ARCS

def
=

def
=

{(p', s') !there is u E A• such that (p, s) ~ (p', s')} U

{(.J, s') I there is u E A• such that (p, s) ~ (../, s')}

{k ~ k' lk, k' E NODES and k ~ k' a transition}

3 Another possible approach would be to define transitions (a, s) ~ (8, s) in case a(s) = 8.

3.2 Transition systems 7

a EA: (a, s) ~ (y', s(a)) (if a(s) -:f: 6)

+:
(x, s)-.!..+ (x', s') (x, s)-.!..+ (y', s')

(:z: + y,s)-.!..+ (x',s') (x + y,s)-.!..+ (y',s')

(y, s)-.!..+ (y', s') (y,s)-.!..+ (y',s')

(:z: + y,s)-.!..+ (y',s') (x+y,s)-.!..+ (y',s')

(x, s) -.!..+ (x', s') (x, s) -.!..+ (../, s')

(xy,s) -.!..+ (x'y, s') (xy, s) ..!_. (y, s')

recursion:
(<t.,IE>,s)-.!..+ (y,s') (<t., I E>, s) -.!..+ (y', s')

(<xlE>,s)-.!..+ (y,s') (<x I E>, s) -.!..+ (y', s')

(:z:, s) -.!..+ (x', s') (x, s) -.!..+ (y', s')
11'n:

(1t'n+1(x), s) ..!_. (7rn(X1
), s') (7rn+1(x), s)-.!..+ (y',s')

Table 2: Effect rules

8 4 SEMANTICS

Figure 1: A transition system

By defining t he node (p, s) as the root of Q((p, s)), this construction yields ts((p, s)), the transition
system associated to (p,s). Here the states will be called the initial state of ts((p,s)). Any states'
such that (v', s') is a node in Q((p, s)) will be called a final state of ts((p, s)). We return to our running
example:

Example. {continued) Concerning the recursive specification U = in((p4 + P&)co + pr)U + st we
consider a user having initially N + 1 coins and no drinks. Take S = (A, S, action, effect) with
A = { in, p 4 , Pb• co, pr, st} and with each state of S being a pair of count ers which are used to keep
track of the number of coins a user has and the numbex of drinks already collected: Let S = BusyUFinal
where Busy= {(i,j) Ii+ j = N} and Final= {(i,j) Ii+ j = N + l}. We define the functions action
and effect in the following way:

in(s) ~f {
in
6

def { co
co(s) =

0

pr(s) d~f {
pr
6

if (i,j) E Final-(0, N + 1)
otherwise

if (i,j) E Busy
otherwise

if (i,j) E Busy
otherwise

(. ')(')~f { (i-1, j)
i ,J in - c· .)

i, J

(
. ') def { (i,j + 1)
i,J (co) = (i,j)

(i,j)(pr) ~r { (i + l,j)
(i,j)

if (i,j) E Final-(0,N + 1)
otherwise

if (i , j) E Busy
otherwise

if (i,j) E Busy
otherwise

and t he atomic actions Pa.•Pb and st inert. Assume N = 0. In figure 1 the transition system for the
process U in initial st ate (1, 0) is displayed. (to be continued)

4 Semantics

In this section we define an equality relation over transition systems, which will be used to construct
an operational semantics. Furthermore the concept of partial correctness assertions is introduced and
we derive a 'partial correctness semantics' . Finally we define a language of assertions, based on a
structure S, which can be used to refer to any part of the state space.

4.1 An operational semantics 9

4.1 An operational semantics

Let S be some structure. The idea is that two dosed process expressions p and q are operationally
equivalent in S if they satisfy the following property: The representation of any execution of p in
some initial state s (in terms of its p·erformance of atomic actions) also represents an execution of .q in
initial. state s, and vice versa. We now formalize this idea. Consider the set of all t ransition systems.
In order to define an equality relation over this set, we use the notion of a bisimufation (see [8]) :

Definition 4.1.1 A binary relation R ~ (P x S) x (P x S) is a bisimulation if the following conditions
are satisfied (a EA):

1. If (p, s)R(q, s) and (p, s)
..

(p', s'), then there a (q', s') such that (q, s)
..

(q',s') and - is ____,
(p', s')R(q', s').

2. If (p, s)R(q, s) and (q, s)
a.

(q', s1
), then there is a (p', s') such that (p, s)

Q

(p', s') and ____, ____,
(p', s')R(q', s').

s. If (p, s)R(q, s), then (p,s) ~ (y',s') for some s' if and only if(q,s) ~ (y',s').

Two transition systems ts((p, s)) and ts((q, s)) are bisimilar, we write ts((p, s)) !:::!. ts((q, s)), if there
exists a bisimulation R with (p, s)R(q, s). Remark t.hat equality of initial states is demanded here.

It is not difficult to see that .!::!. is a.n equivalence relation. Let [(p, s)] be some unique representation
of the equivalence class of ts((p, s)). We define an operational semantics as follows:

Definition 4.1.2 1. A closed process expression p is interpreted in S = {A, S, action, effect) as
{[(p, s)] I s E S}.

2. Two closed process expressions p and q are operationally equivalent in S, we write S f= p =o·p q,
if for alls E S we have ts((p, s)) ~ ts((q, s)), that is if {[(p, s)J I s ES} = {[(q, s)] ! s E S}.

Remark that if we want to consider a structure S = (A, S, action, effect} in which for two atomic
actions a and b we have for all s E S that a(s) = b(s) and s(a) = s(b), then S f= a =op b. This reflects
the circumstance that in S the constants a and b apparently denote the same atomic action. We finally
prove that for any structure S the relation =op is a congruence, which implies that closed process
expressions occurring in a specification may be replaced by operationally equivalent expressions.

Theorem 4.1.3 For all structures S the relation =op is a congruence with respect to the operators
involved.

Proof. The theorem can be proved by inspection: Fix S and assume S F p =op p', S f= q ;::op q'. We
have to show S F pDq =op p'Dq' for DE { +, · }. As an example we consider sequential composition:
Suppose that ts((p,s)) ~ ts((p',s)) by the relation Re) and ts((q,s)) ~ ts((q', s)) by Re) for all p,A q,$

s ES. Fix so ES and let So= {s ES I 3cr E A•((p,so) ~ (y',s))}. We define a relation Ras
follows:

R ~f {((rq, s), (r'q', s)) I (r, s)R()(r', s)} U LJ R() p,•o q,.t
•ESo

We have (pq,so)R(p'q',s0) and by induction on the length of derivations it follows that Risa
bisimulation. D

10 4 SEMANTICS

4.2 A partial correctness semantics

Let A be a set of atomic actions. We introduce a logical language .C, the language of assertions, in
order to reason formally about any strncture S = (A, S, action, effect}. Let Pred be some set of unary
predicate symbols. We define .C as follows:

one variable:
unary function symbols:
unary predicate symbols:
unary predicate symbols:

connectives:
au:eiliary symbols:

v
effect a.

stop ..
p

...,,V,/I.,_.,
), " (

(for all a E A6)
(for all a E A6)
(for all P E Pred)

Parameters for £ are a set A of atomic actions and some set Pred of unary predicate symbols.
£-formulae are called assertiorni and we use a,/3, . .. as syntactic variables for assertions. Remark
that a term always contains exactly one occurrence of the variable v.

Having defined £ we can give the definition of a partial correctness assertion in syntactical terms:

Definition 4.2.1 1. A partial correctness assertion over£ is an expression of the form {a} p {,8}
where p is a closed process expression over :E.

2. A correctness formula over£ is an expression of the form {a}t{,B} where t is a process expression
ever E.

So a partial correctness assertion can be regarded as a 'closed' correctness formula. We need the
more general concept of 'correctness formulae' to define a proof system in which we can derive partial
correctness assertions concerning recursively specified processes. Correctness formulae are not subject
to Boolean operations. Let q>, 1>', ... be syntactic variables for (possibly empty) sets of correctness
formulae.

We now define the way we interprete assertions and correctness formulae. Let S = (A, S, action, effect)
be some fixed structure and {PI P E Pred} a set of unary predicates over S . We define an interpre­
tation I of £ with domain S as follows:

terms: = >.s.s(a) (s E S)

form:ulae : S PT a if \;/s E S(S PT a[s])
S PT stop .. (s] if a(s) = o
S PT P [s] if P(s) holds
and compound formulae as usual

Before defining the way correctness formulae are interpreted we introduce some more notation:
Let t be some process expression over :E and x a sequence of variables. We write t = t(x) to indicate

that all variables occurring in t are among the elements of the sequence x. If p is a sequence of
elements of p+ (the set of closed process expressions over :I;+), then t(p) denotes the closed process
expression obtained by replacing all variables in t by the corresponding Ji- elements. We write ''r;/p '
if we want to consider all sequences of length x over p+.

This applies to correctness formulae as follows: If q> is a set of correctness formulae and x a sequence
such that {a}t{/3} E it>=> t = t(x), then we write cl>= <P(x) and <I>(p) = { {a}t(p){,B} I {a}t{,B} E <t> }.

Definition 4.2.2 1. A partial correctness assertion {a} p {,B} is true in S under 'I, we write
S PT {a} p {,B}, if for alls, s' E S, <T E A• we have:

S PT a[s] and (p, s) ~ (../, s') =:::::} S f=z ,B(s'].

4.2 A partial correctness semantics 11

2. A correctness formula {et} t {,6} with t = t(x) is true in Sunder I, we write S FI {a} t {,B}, if

'Ip [S FI {et} t(p) {,B}].

So the truth of a partial correctness assertion {a}p{,B} expresses the fact that any successful execution
of p in an initial state satisfying a, results in a final state satisfying ,B. A semantical relation based
on partial correctness assertions can be defined as follows:

Definition 4 .2.3 We call two closed process expressions p and q equivalent under partial correctness
in Sunder I, we write S FI p =pc q, if for all £-formulae a,,B we have:

S FT {a} p {,B} <==> S FI {et} q {,B}.

Obviously =pc is always an equivalence relation, we show that it is also a congruence:

Theorem 4.2.4 The relation =pc is a congruence with respect to the operators involved.

Proof. We prove the theorem by inspection: Let I be an interpretation of C in S and suppose
S FI p =pc p 1

, S FI q =pc q'. We have to show S FI pOq =pc p'Oq' for 0 E { +, · }. As an
example we consider alternative composition: It is sufficient to show that if we have a reduction
(p + q, s) ~ (.j, s'), then there is a reduction (p' + q', s) -..!!.... (.j, s1

). This follows easily: Suppose
the first transition in our reduction, say (p + q, s) ~ (r, s"), is a consequence of (p, s) ~ (r, s").

By the induction hypothesis we have (p', s) _.e.,. (../, s') for some string p E A•, so using the first
transition of this reduction we derive (p' + q', s) --!:.... (./, s'). 0

We extend the relation =pc to open process expressions in the obvious way: S FI t =pc t' if

\:/p [S FI t(p) = pc t'(p)]

for t = t(x) and t' = t'(x) . In the following lemma we present a useful property of this extended
relation.

Lemma 4.2.5 'distributivity' For all t, t', t" over E+ we have t(t' + t") =pc tt' + tt" and (t+ t')t" =pc

tt" + t1t11
• 0

This can be proved by induction on the length of derivations, using decomposition (see lemma 3.'2.1).
The semantica.l relations =op and =pc a.re by definition related in the following way:

Thec:>rem 4 .2.6 If for some S and closed process expressions p and q we have S I= p =op q, then
also S FI p =pc q for any interpretation I of£ in S. 0

Of course the converse does not ho!ld. It is not difficult to define £,S,I such that S ~ a(b + c) =op

ab + ac, whereas S FI a(b + c) =pc ab + ac by distributivity.
We finally introduce for any structure S a special language of assertions, suitable to refer to any

unary predicate over the state space of S.

Definition 4.2. 7 Let S = (A, S, action, effect} be some fixed structure and Pre<! contain exactly one
predicate symbol for each subset of S. We write in this case £s, the language of assertions about
S, and we interpret the symbol8 of Pred as the corresponding predicates over S. We will omit the
subscript I when interpreting assertions of £s

We write Trs for the set of all true assertions in .Cs, so a E Trs if 'Is E S (S I= a[s]).

12 5 DERIVING PARTIAL CORRECTNESS ASSERTIONS

5 Deriving partial correctness assertions

In this section we show how to derive partial correctness assertions. We present a proof system H,
and we show that H is relatively complete. We further discuss a somewhat more restricted definition
of 'guarded systems' and we finally show that in H we cannot handle partial correctness assertions
concerning all guardedly specifiable processes.

5.1 Proof systems, soundness and completeness

A proof system G is a finite set of (schemes of) axioms and rules in a natural deduction format. It
can be used to derive correctness formulae, and in particular partial correctness assertions, over any
language £and in any structure S = (A, S, action, effect).

We write Trs, <I> r- 0 1/; if there is a derivation of 'ljJ in G which uses hypotheses from Trs and <I>. If
G is fixed, we omit the superscript Gin t--G. A partial correctness assertion {ex} p {,6} over ,C is called
derivable in G and S if Trs t--G {ex} p {/:I} (so <I> = 0). A proof system is always associated with a.
signature :Ea ~ :E of the process expressions occurring in all derivable partial correctness assertions.

We call a proof system G sound if for all structures S, interpretations I of a fixed language £and
all correctness formulae {ex} t {,8} over£ we have

Trs, <I> r-0 {ex} t {,B} => 'v'p [S l=z <I>(p) =>- S l=z {a} t(P){,B}]

with <I> = <I>(x) and t = t(x). So in particular any partial correctness assertion over ,C derivable in
G,S is true in Sunder I.

The proof system G is {relatively} complete if for any structure S and its language o{ Msertion~ .Cs
the converse holds as well for all derivable partial correctness assertions over £s:

S F=z {ex} p {.B} <=> Trs t--0 {a} p {.B}

that is, a partial correctness assertion {ex} p {,8} is true in S if and only if {ex} p {,B} is derivable in G
(using Trs). The adjective 'relatively' refers to the fact that Trs may be used in derivations: Relative
all true assertions a.bout S , we have that truth and derivability in S coincide.

5.2 The proof system H

In table 3 we present the proof system H associated with :E. Some comments on the rules of 11:
Let S, C. be fixed. The axioms I and rule IV can only be applied if the assertions occurring in their
premisses are in Trs. Concerning rule V, if E = {:i: = t., I :i: E VE} is a pure system, z E VE and we
have all derivations {ay} ty {,By} (y EVE) from a set of hypotheses Trs U <I>;;;'! {{ex.,} :i: {.Bo:} I :z; E VE},
then {az} <z I E> {.Bz} is derivable from Trs U <I> - {{a.,} :i: {,B.,} I :z; E VE} · In other words, the set of
hypotheses { {a.,} x {.B.,} I :z; E VE} is cancelled after the application of rule V. We show by an example
how to use H (see also figure 2):

Example. {continued) We consider the recursive specification U = in((p
4

+ Pb)co + pr)U + st
a.nd a user having initially N + 1 coins and no drinks. We already introduced the structure S =
(A, S, action, effect} with A = { in,p", Pb, co,pr, st} and S = BusyUFinal where Busy= {(i,j) I i+ j =
N} and Final= {(i, j) Ii+ j = N + l}. We define the following predicates over S:

init (i, j)
busy (i, j)
final (i, j)

i = N + 1 and j = 0
(i, j) E BtLSy
(i,j) E Final

5.2 The proof system H

II alternative composition

III sequential composition

IV consequence

V recursion

-istop
11

(v) /\ a (v) --+ {3(effect
11
(v))

{o:}a{,B}

{a} t {.£3} {a} t' {,B}

{ 0:} t + t' {.B}

{o:}t{,8} {,B}t'{I}

{o:} tt' {'r}

a -+ a' {o:'} t {,B'} {J'--+ f3
{o:} t {.B}

If E = { x = t., Ix E VE} is a pure
system and z E VE, then

Table 3: The proof system H

13

14 5 DERIVING PARTIAL CORRECTNESS ASSERTIONS

{busy} Pa. {busy} {busy} Pb {busy}

{busy} Pa.+ Pb {busy}

btuy
CO final

{busy} co {final} bu•v
pr Jina.I

in~::~ {busy} (p" + Pb)co{final} {busy} pr {final}

{final} in {busy} {busy} (Pa+ Pb)co + pr{final}

{final} in((p,. + Pb)co + pr) {final}

{final} in((Pa. + Pb)co + pr)x {final}

{final} in((Pa + Pb)co + pr)x + st {final}

init -+ final {final} U {final}

{ init} U {final}

Figure 2: A derivation in H

t final
S final

{final} st {final}

So we have for instance S I= init -+ final with init and final denoting the associated predicate symbols.
Let ap be short for the assertion -,stop4 (v)/\cr(v) -+ f3(effect,.(v)). In figure 2 we display a derivation
of

{ bu•y bu•y buay bua11 · finaf t final · "t Ji l} I- { · "t} U {fi l}
Pa. bu•11 ' Pb buay , co Jina.I' pr final, tn bu•11 ' s final' ini -+ na ini na

by which we conclude Trs f- {init} U {final}. {end example)

5.3 The proof system H is complete

We first prove that H is sound, and then split up H in a countable number of subsystems which will
all be proven complete by an inductive argument.

Lemma 5.3.1 The proof system His sound.

Proof. Induction on the length of derivations. We check the soundness of rules III and V (the other
cases are straightforward). Let S, £ be fixed and I an interpretation of C in S.

1. Suppose Trs, <I> f- {er} t {,8} and Trs, <I>' f- {,8} t1 {'Y}. We have to show that

Vp [S FI 4'"(p) => s FI {a:} tt'(p) {/})

for any if!" 2 if! U 4''. Let p be such that S FI 4>11(p), then S FI <l)(p) and S l=z <l>'(p). By
induction we have S FI {a} t(p) {.B} and S FI {{3} t'(p) {I}. Now assume S l=z cr[s] and
(tt(p),s) - (./,s'). By decomposition (see lemma 3.2.1) we have (t(p),s) - (..j,s") and
(t'(p), s11

) - (./, s'), so S l=r .B[s"] and therefore S l=r 1[s'], by which the soundness of rule
III is proved.

2. Suppose E = { x = t., Ix E VE} is a pure system over 2: and Trs U <f? contain:s the hypotheses of

5.3 The proof system H is complete 15

so Trs,<l>,{{a::z:}x {.B.,} Ix E VE}I-- {a.,} t11 {.611} for ally EVE. By the induction hypothesis we
have

for ally E VE. Let <P' 2 <I> and z E VE. We have to show

'v'p [S FI <i>'(p) ::::::} S FI {a:,.} <z I E>(p){fiz}].

Because <z I E> is a closed process expression it is sufficient to show S FI {oz} <z I E> {.Bz}·
Let E' = { x = t~ I x E VE'} be the system obtained by removing all brackets in the expressions
t:r: as suggested by di,,tributivity in lemma 4.2 .5 (so VE =VE'). It follows that

for ally E VE'. For a start we prove that S FI {a.,} 11'n(<x I E'>){.B.,} for all n E IN, x E VE:

n = 0: By lack of an effect rule introducing the 11'0-operator it follows that no expression
(1T'o(p),s) can reduce to(.../,.), so S FI {{0:.:}1T'o(<xJE1>){..B:r:} Ix E VE1 }.

n + 1: Suppose that for some :z:o EVE' we have S FI a[s] and (1T'n+1(<xo JE'>), s) ~ (y', s').
Let t~0 = 2: PiYi + 2: q;, where p;, qi are closed process expressions a.n.d the Yi a.re in VE'.
At least one of the following cases must hold:

• (11'n+i(qj0), s) ~ (.j, s') for a summand q;0 of t~0 because (q;0 , s) ~ (J, s').

• (7rn+1(<PioYio I E'>), s) ~ (.j, s') for a. summa.nd PioYio of t~0 because

(11'n+i(<Pi0 Yi0 IE'>),s) -Lt (7rm(<y;0 IE1>),s0
) ~ (..j,s') for some m :$ n, s" ES

and pv = u .

In both cases we may conclude that (t~0 (11'n(<x jE'>)),s) ~ (J,s1
). By the induction

hypothesis we have S FI {{a.,}11",.(<xJE'>){/3.,} Ix E VE1}, so by supposition we have in
particular that S l=r { a.,0 } t~0 (?r,.(<x I E'>)) {.B:z:o} and thus ..B:z:o (s') liolds. We conclude

S FI {{a.,} 1T,.+i(<X I E'>) {/3:z:} IX E VE'}.

Next we show that if'v'n E lN(S l=I {a}11',.(p){,6}), then S FI {a}p{/3} for a.lip E P+. Suppose
S FI a[s] and (p,s) ~ (y',s'). By inspection of the effect rules for the 11',.-operators it
follows easily that for n sufficiently large (11',.(p), s) ~ (J, s'), so S f=x ,B(s'], which shows t hat
S FI {a} p {,$}. Now we may conclude S FI {{a.,} <x I E'> {.13:z:} I x EVE' J. By inspection of
the effect rules for recursion it follows that S FI {{a.,} <x I E> {.B.,} I x EVE}, so in particular

S FI {a.:z} <zlE> {.Bz}

by which the soundness of rule Vis proved. D

We now turn to the issue of the (rela..tive) completeness of H. We int roduce the following abbreviati·ons:

• Ho denotes the proof system containing rules I - IV; obviously Ho is associated with Eo-

• Hi+1 denotes the proof system H with the applicability of rule V restricted to pure systems over
E;. So H;+1 is associated with the signature Ei+I ·

We will prove that H is complete by showing that Ho is complete, and that the completeness of H,
leads to the completeness of Hi+l ·

Lemma 5.3.2 The proof system Ho is complete.

16 5 DERIVING PARTIAL CORRECTNESS ASSERTIONS

Proof. Let S be a fixed structure. Because His sound {and therefore Ho as well), we only have to
prove

for all p occurring in partial correctness assertions derivable in HO. Recall that Po, the set of closed
process expressions over :E0 , is specified inductively (see section 2.1). Therefore we apply induction
on t.he structure of p.

p =:a E A6 : Now -,,stop4 (v) A o:(v) -+ /3(effect 4 (v)) E Trs for, if S I= -.stop a. A a[sL then SI= /3[s(a)]
by supposition, and therefore.SI= /3(effect.,(v))(s]. By the a.x:iom I we derive Trs 1--Ho {a} a{.B}.

p = q + r : Note that S I= {a:} q {.13} , S f= {a:} r {/3}. By the induction hypothesis and rule II we
derive Trs f- Ho {o:} q + r {/3}.

p = qr : By decomposition (see lemma 3.2.1) and the definition of Ls there must be an assertion I
such that S I= {o:} q {!} and SI={!} r {/3}. By the induction hypothesis and rule III we derive
Trs 1-Ho {o:} qr {,B}. 0

This is the basis for an inductive proof of the completeness of H. Before proving the completeness of
H;+ i, we take a closer look at a statement S f: { o:} <x I E> {,8} with E a pure system over E;. In the
following lemma we show that such a statement implies Trs f-H'+1 {a:} <x I E> {,B}.

Lemma 5 .3.3 Let S = (A,S, action, effect) be some struct'IJ.re, E = {x = t., Ix E VE} a pure system
over '.E; and xo E VE. If H; is complete, then

SI= {a:} <xo I E> {,B} :::::::} Trs 1--H•+1 {o:} <:z:o I E> {,8}.

Proof. Let E' == {x = t~ Ix E VE'} be the system obtained by removing all brackets in the expressions
t., as suggested by distributivity (see lemma 4.2.5), so VE =VE'- It follows that S I= {a:} <xo I E'> {ft}.
We construct weakest preconditions for all constants <x I E'> and ,B. For any x E VE' let the assertion
a., be as follows:

SI= o: .. [s] <=> There are s' E S , u EA• such that (<:co lE'>,s') ~ (<xlE'>,s) and Sf: o:[s'J.

Observe that SI= o:-+ O:o:0 and Sf= {0:.,0 } <xo I E'> {,B}. We first prove that for ally E VE

Trs, {{a.,} x {,B} I x E Vz'} 1-H, {o:11} t~ {,B}.

Define e as Trs u {{a.,} x {,8} I x EVE'} and fix X1 E VE" We distinguish two cases:

1. For any summand pz oft~, (z E VE') we have 6 f-H; { O:z
1
}pz{,6} : We show that S f: { o:.,

1
}p{ O:z}

and because p is a closed process expression over :E; we conclude by the completeness of H; t hat
Trs f- H; {o:.,, } p {az} and thus E> f-H; {0:.,1 } pz {.B}. Assume S I= o:.,, [s] for some s E S
and (p, s) ~ (.,/, s"). We derive (< x1 I E' >, s) ~ (< z I E' >, s"). By construction
of O::z:1 there is an s' E S such that S f= a [s1

] and (< x0 I E 1 >, s1
) ~ (< x 1 I E' >, s). So

(<xo I E'>, s') ~ (<z I E'>, s "), by which we conclude S I= a .. [s"] .

2 . For any summandHq of t~, we have 8 1-H, { a.,1 } q {,6} : We show that S f= {a:.,,} q {,B} and
conclude that 8 I- ; { 0:.,1 } q {,B} by completeness of H;. Assume S f: o: .. , (s) for some s E S and
(q, s) ~ (../, s"). We derive (<x1 I E' >, s) ~ (.,/, s"). By construction of a .. , there is an

s' ES such that Sf: o:[s'J and (<xo IE'>,s') ~ (<x1 IE'>,s). So (<xo IE'>, s 1
) ~ (.,/, .s").

Because Sf: {a:} <xo IE'> {.8} we have that Sf: ,B[s"]. We conclude Sf: {a:.,,} q {,B}.

5.4 Guarded systems and the proof system H 17

By the completeness of H; and distributivity we may conclude e f--H< {a } t {/3} for all y E V which · · h · 11 11 Ei
lB Just t e prem1ss for an application of the recursion rule in H;+i, so Trs f-Hi+, {a.,

0
} <xo I E> {/3}.

Because o: --+ O::i:0 E Trs we derive Trs f--H<+1 {a} <xo I E> {/3}, which completes our proof. Note that
if°' is the empty predicate the lemma still holds. o

Theorem 5.3.4 If the proof system H; is complete, then the proof system H;+l is complete.

Proof. The soundness of H, and thus of H;+1 is proved in lemma 5.3.l. In the proof of lemma
5.3.2 we showed tha.t the proof system Ho was complete by induction on the structure of the process
expression P involved in a partial correctness assertion {a} p {/3}. As the set P;+i is also specified
inductively, we only have to check one more 'basic clause' than in the proof of lemma 5.3.2, namely
P = <x I E> with E = {x = t., j x E VE} a pure system over :E;. This has just been done in lemma
5.3.3. 0

Corollary 5.3.5 The proof system H is complete.

5 .4 Guarded systems and the proof system H

The notion of 'guardedness' is mostly defined more strictly than is done here in section 2.2 (see e.g.
[2] and {3]). In order to discuss this restricted notion we will refer to it as follows: We call a recursive
specification E = { x = tz Ix E VE} strictly guarded if each variable in the expressions t., is prec·eded
by an atomic action a E A. Let E. denote the restriction of :E obtained by considering only strictly
pure systems, and P. denote the corresponding set of closed process expressions. We define H 1 by
restricting the applicability of rule V of H to systems which are strictly pure. Of course H, is still
sound, as it is a subsystem of H. Since H contains no rules which decompose the process expression
involved in a correctness formula, it follows that

Trs 1-H {o:} p {/3} ==> Trs 1-H· {o:} p {/3}

for all p E P., so H • is also a complete proof system.
We further show that if we extend :E with constants for the solutions of all guarded systems, then

the proof system H with rule V applicable to all guarded systems, is not complete any more (and
neither is H,). If H is not sound with respect to this extension this is the case by definition . So
assume that H preserves soundness. We show by an example that H cannot be complete:

Exa.mple. Consider the structure S = ({a, b, c}, {s, s'}, action, effect) with the functions action and
effect defined as follows: All atomic actions are inert with respect to the function action,

s(a) d~f s(b) ~f s'(c) ~f s' and s'(a) d~f s'(b) ~f s(c) d~f s.

Let a and a' be assertions such that a is only satisfied by s a.nd u' only by s'. Consider the guarded
system E = {X = aXb + c}. Now it is not difficult to see that S f= {u} X {u}. Suppose that H is
complete, and thus Trs I- {u}X {er} . We may assume that the last two rules applied are V respectively
IV (rule IV is the only rule not adding complexity to the process expression involved). So there must
be a, /3 such that

Trs, { {o:} x {,8}} 1- {o:} axb + c {/3} (1)

u a,,8--+ u E Trs. (2)

Now (1) implies that Trs I- {o:}c{,6} and by (2) we derive Trs I- {u}c{/3}. By the assumed soundness
of H we conclude that O' -+ /3 E Trs, so by (2) we have

/3 r+ er E Trs. (3)

18 6 SOME EXTENSIONS

Also Trs, {{a} x {,6}} I- {a} axb {,6}, so there must be /1, /2 _sue~ _that {0:} a {/1} , h1} x {/2} a nd
{"y2} b {,6} are deriva.ble from Trs U {{a} x {,B}}. From the denvab1hty of {/1} x {1'2} we conclude

f3--+ /2 E Trs (4)

a.nd from the derivability of {12 } b{f3} and the soundness of H we conclude by (3) that /2 -+ <7
1 E TTs,

so by (4) we have
(3--+ C!

1 E Trs . (5)

Now (3) and (5) are contradictory, so the proof system H is incomplete with respect to all guarded
systems. (This holds as well for H. , since Eis a strictly guarded system.) D

6 Some extensions

6.1 Involving all guardedly specifiable processes

As shown in section 5.4 we cannot add constants for all guardedly specifiable processes to ~ without
losing completeness of H. A solution to this problem is presented in [10]. The idea is to use a number
of algebraic laws concerning the equality relation o·n process expressions. It can be proved that all
structures considered respect these axioms, and any guardedly specified process is the solution of some
pure system. By adding a proof rule substitution, which p ermits interchangeability of (algebraically)
equivalent process expressions in partial correctness assertions, one can prove a completeness result
for all guardedly specifiable process expressions.

6.2 Involving silent actions

The constant T, representing unobservable action, can be added to E without invalidating our com­
pleteness result. This is proved in [10]. The following semantical rules:

T- laws: 4(•)
(a, s) - (-r, s(a.))

(x, s) _:_. (y, s1
) (y, s') ..!... (z, s")

(x, s) ~ (z, s")

(x,s) ..!... (y,s1
) (y,s1

):_. (z,s11
)

(x, s) ~ (z, s")

(if a(s) # 6)

(x,s) _:_.. (y,s') (y,s') ~ (y',s")

(x, s) ~ (y', s")

(x,s) ~ (y,s') (y,s1
):_. (>J,s")

(x, s) ~ (y', s")

take· care that r satisfies the 'T-laws of Milner ': xr = x, TX + x = rx and a(Tx + y) = a(Tx + y) + ax
(see [7]). We demand that -r is inert with respect to all structures considered. It should be mentioned
that the definition of the effect rules for the 71",,-operators in table 2 should be slightly changed, in
this case.

Acknowledgements

I would like to thank Jan Bergstra for suggesting me the subject of this paper, and for his constructive
help in writing it. For critical remarks, discussions and corrections I also thank Jos Baeten, Henk
Goeman, Jan Friso Groote, Frits Vaandrager and in particular Fer-Jan de Vries, who suggested the
format of the recurs.ion rule of H, presented here.

REFERENCES 19

References

[l] K.R. APT, Ten Years of Hoare"s Logic: A Survey - Part 1, in: ACM Transactions on Program­
ming Languages and Systems, Vol. 3, No. 4, 1981, pp. 431-483.

[2] J .C.M. BAETEN, J .A. BERGSTR.A, Global Renaming Operators over Concrete Process Algebra,
in: Inf. & Comp. 78(3), 1988, pp. 205-245.

(3] J .C.M. BAETEN, J .A. BERGSTRA, Recursive Process Definitions with the State Operator, in:
Proceedings Computing Science in the Netherlands (SION), 1'988, pp. 279-294.

(4) J.W DE BAKKER, J .N. KOK, J.-J.CH. MEYER, E.-R. 0LDEROG, J.I. ZUCKER, Contrasting
themes in the semantics of imperative concurn!ncy, in: Current Trends in Concurrency (J.W. de
Bakker, W.P. de Roever, G. Rozenberg, eds.), LNCS 224, Springer-Verlag, 1986, pp. 51-121.

(5] J.A. BERGSTRA, J.W. KLOP, Process Algebra: Specification and Verification in Bisimu.lation
Semantics, in: Mathematics and Computer Science II, CWI monograph 4 (M. Hazewinkel, J.K.
Lenstra, L.G.L.T. Meertens, eds.), North-Holland, Amsterdam, 1986, pp. 61-94.

(6] R.J. VAN GLABBEEK, Bounded Nondeterminism and the Approzimation Induction Principle in
Process Algebra, in: Proceedings STACS 87 (F.J. Brandenburg, G. Vidal-Naquet, M. Wirsing,
eds.), LNCS 247, Springer-Verlag, 1987, pp. 336-347.

[7] A.J .R.G. MILNER, A Calculu.s of Communicating Systems, LNCS 92, Spring·er-Verlag, 1980.

(8) D.M.R. PARK, Concurrency and automata on infinite sequences, in: Proceedings Sth GI Con­
ference (P. Deussen, ed.), LNCS 104, Springer-Verlag, 1981, pp. 167-183.

(9] G.D. PLOTKIN', An Operational Semantics for CSP, in: Formal Description of Programming
Concepts-II (D. Bj!llrner, ed.), North-Holland, Amsterdam, 1983, pp. 199-223.

[10] A. PONSE, Process algebra and Hoare's logic, Note CS-N8802, Centrum voor Wiskunde en Infor­
matica, Amsterdam, 1988.

