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In this paper, we study the issue of process creation from an algebraic perspective. The key to our 
approach, which is inspired by the work of AMERICA & DE BAKKER [AB], consists of giving a new 
interpretation to the operator symbol · (sequential composition) in the axiom system BPA of 
BERGSTRA & KLOP (BK1,2,3]. We present a number of other models for BPA and show how the 
new interpretation of · naturally generalises the usual interpretation in ACP. We give an opera
tional semantics based on Plotkin style inductive rules for a simple language with process creation 
and communication, and give a complete finite axiomatisation of the associated bisimulation 
model. 
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1 . INTRODUCTION. 

1 

In process algebra theories like CCS, CSP, MEIIB and ACP, not much auention has been paid so far, to the 
concept of process creation. Instead, parallel composition is used as a primitive constructor of concurrent 
systems. In SMOLKA & STROM [SS] and VAANDRAGER [VA], process algebra semantics is given for lan
guages with process creation (NIL resp. POOL), but there the process creation construct is translated to an 
architectural expression with parallel composition. 

A first attempt to deal more directly with process creation in an algebraic setting is described in 
BERGSTRA [B], where the axiomatic system ACP is extended with a mechanism for process creation. The 
key axiom here is 

Ecf!(cr(d)·x) = cr(d)·Ecf!(<l>(d) II x). 
The operator Ecf! denotes an environment in which process creation can take place. If an action cr(d) is per
fonned in this environment, a process cj>(d) is created and placed in parallel with the remaining process. 

Since process creation is an important concept, present for instance in ADA, NIL, POOL and UNIX, it 
seems worthwhile to look for a more direct and compositional treatment of process creation which does not 
need a global environment like an Ecf!·Operator. Here, we profit to a large extent of the work of AMERICA & 
DE BAKKER [AB]. The simple but crucial observation which they make, is that in order to give a composi-
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tional semantics lo process creation, one has lo interpret the sequential composition differently. As an exam
ple consider the expression 

a ·new(b·c) ·d. 
The intuitive semantics of this expression is a process which first performs a, after which a new process is 
created doing b followed by c. The newly created process executes in parallel with the continuation d. Thus, 
the traces of this process are abcd, abdc and adbc. Consequently, we cannot interpret x·y as 'first do x 
and then y' (as is usual), because in a setting with process creation process x may continue after process y 
has started. 

For this reason, in AMERICA & DE BAKKER [AB], a new semantical operator : is introduced, which 
serves as the interpretation of · in a setting with process creation. In the algebra for process creation that we 
present in this paper, we will interpret the · as a continuation operator in essentially the same way as in [AB]. 
But before we come to this operator, we first give an extensive overview of a number of other interpretations 
of " What all these interpretations have in common with the continuation operator, is that in a setting with 
alternative composition(+), they all satisfy the axioms of BPA (Basic Process Algebra) of BERGSTRA & 
KLOP [BK 1,2,3): 

x+y=y + x 
(x + y)·z = x·z + y·z 

(x + y) + z = x + (y + z) 
(x·y)·z = x·(y·z). 

X+X = X 

Most of the discussion of this paper takes place in the setting of interleaving semantics. However, we show 
that a particular interpretation of · as sequential composition (like in ACP) and also our interpretation of · as 
continuation, can both be lifted in a natural way to the world of event structures of WINSKEL [W]. In both 
these interpretations, we have an instance of action refinement in the sense of [COP] and [GG]. In fact, and 
this is surprising, sequential composition and continuation have the same definition on event structures, only 
sequential composition is defined on a more restricted domain of processes. Hence the rather substantial dif
ferences between the two operators on the level of interleaving semantics almost disappear on the level of 
'True' concurrency. 

Whereas in AMERICA & DE BAKKER [AB] operational as well as denotational models are presented (and 
proven lo be equivalent), we concentrate on operational models in this paper. As is done in [AB], we use 
Plotkin-style rules for the operational semantics. There are a number of differences, however. 

First, we want all rules to be as simple as possible, and each rule should embody a clear intuition about a 
certain operator. Therefore, we reject a rule like 

( .. . , (s1 ;s2);r, ... ,w)-+ ( ... , s1 ;(s2;r), ... , w), 
which occurs in [AB]: we think it is not part of a natural operational intuition about the ;-operator that brack
ets can move to the right. 

A second design criterion that we used in the construction of our operational semantics is that all rules 
should be in the tyft!tyxt formal of GROOTE & V AANDRAGER [GV]. This format poses certain restrictions 
on the inductive rules which guarantee that bisimulation equivalence is a congruence. Thus, any set of rules 
in tyftltyxt format immediately induces an abstract compositional semantics. In [GV] it is shown that this 
format cannot be generalised in any obvious way, unless one is willing lo work in a setting of terms over a 
many sorted signature, or use rules with negative hypotheses. 

Our third design criterion was that the transition systems generated by the inductive rules should contain 
no silent or internal steps. If such transitions are present, one is more or less forced to say something about 
the nature oft and to choose whether one adopts all of Milner's t-laws or only a few of them. We prefer to 
separate the issue of abstraction from other concerns. 
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A final design criterion is upward compatibility with a non-interleaved event structure semantics. By 
now, many algebraic concurrency languages have been provided with a non-interleaved semantics (see e.g. 
[DDM], [0] , [BC] , [W]). We think that a general requirement for an interleaved semantics of a concurrent 
language is that there exists a natural non-interleaved semantics which is compatible with it. More specifi
cally, we require that there is an event structure semantics with this property. The idea is that event structures 
(see WINSKEL [W]) constitute one of the most important domains for 'True' concurrency, and one must have 
a good reason to present a semantics which is incompatible with them. We show how some proposals for an 
operational semantics can be discarded because it is unclear how they could meet this last requirement. 

In section 3, we present operational rules for a simple language APC for concurrent communicating pro
cesses with process creation. We claim that these rules meet all the requirements above. An interesting fea
ture of these rules is that one of them has a look-ahead of more than one action: in order to compute the initial 
transitions of process x·y, one needs information about the first two transitions of x. This implies in particu
lar, that our· operator is not definable in terms of CCS, CSP, MEIJE or ACP. 

In section 4, we present a sound and complete axiomatisation of the bisimulation semantics induced by 
the rules for APC. This axiomatisation uses a number of auxiliary operators. 

With a number of examples, we illustrate in section 5 how APC can be used to specify concurrent sys
tems, and how identities between processes can be proved algebraically. 

ACKNOWLEDGEMENT. The idea for an event structure semantics for the new operator arose following an 

inspiring discussion with Henk Goeman. 

2. BASIC PROCESS ALGEBRA. 

2.1 The aim of this paper is to give an algebraic treatment of the feature of process creation. It will turn out 
that the key to our solution consists of giving a new interpretation to the operator symbol · in the axiom sys
tem BPA (Basic Process Algebra) of BERGSTRA & KLOP [BK2,3]. Therefore, we start with a review of 
BP A. We will see that there exist at least five very different interpretations of the operator symbol ·. One 
thing that all these interpretations have in common is that the laws of BPA are satisfied, and this similarity 
may be considered as a surprising fact. 

2.2 BPA st¥ts from a given set A of actions. These actions, denoted by a,b,c, ... , are constants in the lan
guage. Further, BPA has two binary operators: sum, denoted+, and product, denoted·. Processes x,y, .. . 
constructed with these operators will always satisfy the axioms in the following equational specification 
BPA. 

x+y=y+x 
(x + y) + z = x + (y + z) 
X+X=X 
(x + y) ·z = x ·z + y·z 

TABLE 1. BP A. 

Al 
A2 
A3 
A4 

A5 

-- . .....:.::::~ 
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Of all operators, · will always bind the strongest, and + the weakest. Thus, x·y + z means (x·y) + z. We of
ten write xy instead of x ·y. We denote the set of closed terms over BPA by T(BP A). 

2.3 In the ACP framework of BERGSTRA & KLOP [BK2,3], the elements of A are often called atomic ac
t ions, the + operator is called alternative composition, and the · operator is called sequential 
composition. The intuition is that occurrences of actions a,b, ... are events without positive duration in 
time; they are atomic and instantaneous. The interpretation of (a+ b)·c is a process that first does either a or 
b and, second, performs the action c after which it is finished. Since time has a direction, product is not 
commutative; but sum is, and in fact it is stipulated that the options possible in each state always form a set 
(axioms A 1, A2, A3). The other distributive law x(y + z) = xy + xz is not included, because the moment of 
choice between y and z in the two processes is different. 

We would like to stress again that this is just one possible interpretation of the elements of the signature 
ofBPA. 

2.4 SEQUENCING. 
We will now present our first model for BPA. Like all models in this paper, it is defined using structural 

rules in the style of PLOTKIN [PL]. We introduce, for each constant a e A, a binary action relation ~ on 

terms in 1'(BPA). The intended meaning of x ~ y is that process x may perform an a-action, and thereby 
evolve into process y. 

In order to define the model, we have to extend the signature of BP A with an auxiliary constant o. Let 
T(BP Aa) denote the set of closed terms over this extended signature. In the ACP framework, o is called 
deadlock. This name suggests a particular intuition about the behaviour of this process which is not in ac
cordance with the interpretation of o in our first model. Rather, o plays the same role as NIL of CCS (see 

MILNER [M]) or STOP of CSP (see HOARE [H]). In all models that we present in this paper, the constant o 
is characterised by being unable to perform any actions, i.e. o ~ x for no a,x. We write x -f to denote that 
x has no outgoing transition (so we have o -f). 

The model we consider here, interprets · as sequencing: x·y starts with the execution of x, and if x can 
do no more actions, then execution of y starts. 

We define the predicates ~ inductively by means of the rules in table 2. 

x ~ x' 
a 

x+y x' 

x ~ x' 

a 
'i. 

__. 
a x+y __. 

x -f 

Y..' 
y' 

'i. 
x· a x'· x· ~ 

a -· Y..' 

TABLE 2. Action relations for BPA with sequencing. 

2.5 A non-trivial aspect of this definition is the appearance of negative premisses. This makes that it is not 
immediately clear that there exists a distinguished transition relation agreeing with the rules. That such a rela
tion exists in this case is due to the fact that the presence of an outgoing transition of a term only depends on 
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the presence or absence of outgoing transitions from terms of a lower complexity. BLOOM, ISTRAIL & 
MEYER [BIM] (who also present the above rules for sequencing) observe that negative premisses are needed 
for the definition of this operator. 

We turn the structure of action relations into a model for BPA by means of the notion of bisimulation. 

2.6 DEFINITION. A binary relation R on process expressions is a (strong) bisimulation if it satisfies the so
called transfer property: 
1. ifx ~ y and R(x,x') then there exists a y' with x' ~ y' and R(y,y') (for all labels a); 

2 . conversely, ifx' ~ y' and R(x,x') then there exists a y with x ~ y and R(y,y'). 
Two processes x,x' are called bisimilar, notation x t::t x', if there exists a bisimulation R with R(x,x'). 

Then, the following theorems are standard: 

2.7 THEOREM. Bisimulation is a congruence relation on T(BPAo). 

2.8 THEOREM. BP A is a complete axiomatisation of T(BPA)/ t::t, i.e. for all terms s, t from T(BP A) we have 
BPA 1- S=t <=> T(BPA)/ t::t t= S=t <=> s t::t t. 

2.9 Notice that theorem 2.8 only talks about terms from T(BPA), so terms not involving o. As was already 
remarked by BERGSTRA & KLOP [BKI], axiom A4 is not valid any more on T(BPA0) (using the valid 

axiom o·x = x, we can derive a·b =(a+ o)·b = a·b + o·b = a·b +b). Therefore, if we want to extend theo
rem 2.8 to the case with o, we have to restrict A4. 

2.10 THEOREM. Let A4*, A6, A8* and A9* be the following axioms (a,b e A): 
(ax +by+ y')z = axz +(by+ y')z A4* 
X+O=X M 
o·x = x A8* 
x·o= x A9*. 

Then Al ,2 ,3,4*,5,6,8*,9* form a complete axiomatisation of T(BPA0)/t::t, i.e. for all terms s,t from 
T(BPA0) we have Al ,2,3,4*,5,6,8*,9* I- S=t <=> T(BPAo)/t::t t= S=t <=> s t::t t. 

If one takes a more denotational viewpoint, then Plotkin style rules are just a way to define functions be
tween labeled transition systems (process graphs). The last two rules of table 2, for instance, determine the 
operation of sequencing: given two process graphs g and h, g·h is the process graph obtained by append
ing a copy of h to each endnode of g. Sequencing is a simple and natural operation on process graphs. 
However, it turns out that in a setting with parallel composition and communication we often want to inter
pret the operator symbol· differently. 

2.11 SEQUENTIAL COMPOSITION. 
Consider a process x·y, where x describes the behaviour of a system consisting of a number of processors 
which jointly perform some parallel computation. Then it may occur that at some point during the execution 
of x a state of deadlock is reached, i.e. all processors are waiting for each other, before the computation is 
finished. Usually, y is not allowed to start in such a situation, even though x has reached a state where no 
transitions are possible. Process y may start only when process x has terminated successfully. When we talk 
about sequential composition, we assume that there are two termination possibilities: successful termination 
and unsuccessful termination. The sequential composition of x and y starts with execution of x, followed by 
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the execution of y upon successful termination of x. Now there are different ways in which we can make this 
intuition more precise. We will present three alternatives, before focusing on the third alternative. Con
secutively, we consider: 
a. successful termination as a hidden signal (2.12); 
b. successful termination as an attribute of actions (2.1 3); 
c. successful termination with '1-refinement (2.14) . 

2.12 SUCCESSFUL TERMINATION AS A HIDDEN SIGNAL. 
Deadlock is considered as an unsuccessful form of termination. If deadlock is characterised by the absence of 
any possibility to proceed, it seems natural to introduce a special label to indicate successful termination. This 
special label is denoted '1 (pronounced 'tick'). Thus, we will have an extra binary relation :!.. . Next, the be
haviour of process a E A is described by the rules 

a --1 
a -+ e e -+ 8. 

Here, e is a new constant symbol denoting the process that terminates immediately and successfully (e first 
appears in KOYMANS & VRANCKEN [KV]). We see that the process a first performs an a -transition, and 
then terminates successfully. The process 8 still has no outgoing transitions and therefore corresponds in this 
setting with the process which terminates immediately but unsuccessfully. Now what rules can we have for 
the sequential composition operator? First, we note that it would not be correct to have rules like 

x a_. x' x "-. x' 
a I x·y -+ x ·y x·y -+ y 

because then we could derive things like 
a v c (a·b)·c -+ (e·b)·c -+ c-+ e. 

which are clearly in contrast with the intended semantics of the sequential composition operator. Hence '1-
events performed by the first argument of the · operator cannot remain visible. 

One possible view on sequential composition, which is taken in CCS (see Mll..NER [M]), is that '1-events 
do occur, but that they are 'hidden from our view'. This can be expressed by the following rules: 

x ~ x' x "-. x' 
a • (for a E Au{t}) -c 

x·y -+ x ·y x·y -+ y 
Here t is the silent move of Mn..NER [M]. Under this interpretation, the transitions of process (a·b)·c are: 

a ( -c b -c c --1 (a·b)·c-+ e·b)·c -+ b·c -+ e·c -+ c -+ e -+ 8. 
The introduction oft leads to a number of difficult questions. For instance, should the process (a ·b )·c be 
considered equal to a P.rocess p with transitions 

a b c v p -+ q -+ r -+ s -+ 8. 
In this paper we want to deal with concrete process algebra only, i.e. we prefer not to consider the silent 
move and different alternatives for its axiomatisation and representation by means of action relations. There
fore, we will not pursue the above view on sequential composition any further in this paper. 

2.13 SUCCESSFUL TERMINATION AS AN ATIRIBlffE OF ACTIONS. 
In BRINKSMA [BR], a sequential composition operator is presented which is based on the idea that success
ful termination is a visible attribute of the last action of a process. Slightly simplified, this looks as follows: 
beside the actions in A, the set of labels also contains the elements of the set A-,J = {a'1 I aE A}. The new ac
tion rules are (a E A): 
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a--1 x ~ x' x ai_. x' 
a --. 8 a a . 

x·y ---. x'·y x·y ---. y 

This approach is comparable to the approach in VAN GLABBEEK [VG] (there, a ~ 8 is written as a ~ ../). 
While this is a viable approach, the problem we have with it is, that there seems to be a mismatch with so
called 'True' concurrency and event structures. Many algebraic concurrency languages can be provided with 
a non-interleaved semantics. A reasonable criterion, put forward by DEGANO, DE NICOLA & MONTANARI 
[DDM] and OLDEROG [0 ], is that the interleaved semantics of a language must be retrievable from the non
interleaved semantics. Now consider the operator II of parallel composition without synchronisation. If we 
add such an operator to the current setting, the action rules will be 

x ~ x' x ai_. x' y ~ y' y ai_. y' 

x II y ~ x' 11 y x II y ~ y x II y ~ x II y' x II y ~. x. 

With these rules, the transition system for a II b becomes as shown in fig. 1. 

7•llb"x 
·~ ~ 

8 
FIGURE 1. 

It seems almost unavoidable that in a non-interleaved event structure semantics from which the above inter
leaving semantics is retrievable, there are 4 events a,b,a{b../. Furthermore we do not see how to avoid that 
events a and b are conflicting, whereas event b../ is causally dependent on event a and event a../ is causally 
dependent on event b. But this would be in clear contradiction with the non-interleaved interpretation of a II b 
that one expects intuitively, with two events a and b that are not causally related. 

Hence, we think that it will be difficult to give a non-interleaved event structure semantics which is com
patible with this interpretation of sequential composition. 

2.14 SUCCESSFUL TERMINATION WITH ../-REFINEMENT. 
A third view on sequential composition, the view we prefer, is that we have to do with an instance of action 
refinement as studied e.g. by CASTELLANO, DEMICHELIS & POMELLO [COP] and VAN GLABBEEK & 
GOLTZ [GG]. We again use ../-labels to denote successful termination, and assume we have a process do
main where ../-events have no causal successors and are moreover not concurrent with any other event. This 
means that a ../-event, if it occurs, will always be the last action performed by a process. On such a domain 
the sequential composition of processes x and y can be implemented by refining every ../-event of x to the 
process y. We refer to [GG] for a formal definition of refinement on the domain of event structures*. Here, 
we only present the action rules which correspond to the refinement view of sequential composition, in table 
3. In this table (and everywhere in the sequel), u stands for either a or ../. This operational semantics can be 

* In fact, in [GG], actions are only refined by finite, conflict-free event structures. However, it can be easily seen that in case the 
actions which are refined have no causal successors, the definition of [GG] can be generalised to general event structures. 
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found in BAETEN & VAN GLABBEEK [BG], only there x i. o was written as xJ.. The present formulation is 

due to GROOTE & VAANDRAGER [GV]. 

a a __. E e - • o 

u 
x' 

u 
Y..' x - ~ -u x+y __. x' u x+y __. y' 

a 
x' 

..J 
x' 

u 
y_' x - x - ~ -

x· ~ x'· x· 
u -TABLE 3. Sequential composition with action refinement. 

Let T(BPA&) be the set of closed terms over the signature of BPA extended with the constants o,e. 
Since all rules in table 3 are in the tyft format of [GV], bisimulation is a congruence relation on T(BPA&:). 

The rules of table 3 induce a model for BP A. In addition, we can also give an axiomatisation for the theory 
including the constants O,E. Let BP A& be the theory consisting of BPA together with the axioms in table 4. 

X+O=X 
o·x = 0 
e·x = x 
x·e = x 
TABLE4. Termination laws. 

A6 
A7 
A8 

A9 

Thus, o is the neutral element for alternative composition, e is the neutral element for sequential composition. 
A7 is explained, since a deadlocked process can never perform a successful termination action (notice the 
difference with A8*!). Note that if we added the distributive law x(y + z) = xy + xz, then we could derive 

ab = a(b + o) = ab + ao, and so a process with no deadlock possibility would be equal to one that may 
deadlock, a clearly undesirable situation. 

Now we have the following theorem, due to BAETEN & VAN GLABBEEK [BG]. 

2.15 THEOREM. BPA& is a complete axiomatisation ofT(BPA&)/t::t, i.e. for all terms s,t from T{BPA&) 
we have BPA&: I- S=t (::> T(BPAaJ/t::t I= S=t (::> S t::t t. 

In the next section, we will extend this last view on sequential composition to a setting with process creation. 

3. PROCESS CREATION. 

3.1 MOTIVATION. 
In 2.14, we restricted our attention to a domain of processes where a v-event is always the last event in an 

execution. This was a natural restriction since · was interpreted as sequential composition and v as success

ful termination. Now we would like to consider the operation of --I-refinement on a more general domain 

where --I-events still do not have causal successors but with the possibility that a v-event is concurrent with a 
non-v-event. 
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These more general processes can for instance arise if one has an operation new(x) which removes all 
.../-events in a process and introduces a new .../-event which is concurrent with the remaining events of x. In 
such a setting every process can perform al most one .../-event in its lifetime but this is not necessarily the last 
event. If we interpret a as a process which first does an a -event followed by a .../-event, and the operator 
symbol · as .../-refinement, then we can stepwise construct the interpretation of a·(new(b·c)·d) as in fig. 2. 

b b ·c new(b·c) new (b·c)·d a ·(new (b·c)·d) 

b b b " b d a 

! ! ! ! ! I\ 
b d 

" c c c " ! ! ! c " " FIGURE2. 

One may think of fig. 2 as a graphical representation of a labeled prime event structure (see [W] or [GG] for 
the terminology). The arrows denote the causality relation. The traces of this process are 

abcdv 

a d ..J b c 
ab d cv 

a d b ..J c 
a bd ..Jc 
adbcv 

The reader might notice that what we have achieved now is that we have informally given a denotational se
mantics (essentially an event structure semantics) of a simple language with process creation. Moreover, this 
semantics agrees with the intuitions concerning process creation that we presented in the introduction. In fact 
we claim that the semantics is compatible with the semantics given in AMERICA & DE BAKKER [AB] for a 
uniform and dynamic language (section 4). In the language of [AB], also alternative composition andµ
recursion are present. We have not described an interpretation of these operators on event structures because 
we do not want to become too technical here. Such an interpretation, however, is standard and described for 
instance in [W). 

In [AB], the new interpretation of· is presented as an operator "which is able to decide dynamically 
whether it should act as sequential or parallel composition". We prefer a different intuition because we think 
that the operator · does not introduce a choice or conflict between sequential and parallel composition, but 
rather that it is a natural generalisation of the sequential composition operator · on a domain of processes 
where .../ may occur in a non-final position. On the domain of event structures, we give exactly the same in
terpretation to the operator symbol · as in the case of sequential composition. The only difference is that the 
domain of processes i~ enlarged. When we work with the extended domain of processes, we will call this 
operation continuation and the .../-event the continuation action (sequential composition and successful 
termination is not an appropriate terminology now). 

3.2 CONTINUATION 

We will now give Plotkin-style rules, which correspond to the above event structure semantics. It turns out 
that on this level we do have to change the rules for the · operator: since in a product x·y the process x may 
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continue after y has started, we have to introduce an auxiliary operator II' for describing those states where y 
has started but x is not yet finished. See table 5. 

x <!.. x ' x 'L x' y ~ y' 
a I x·y - • x ·y x·y ':!_• x'l~y· 

TABLE 5. Continuation. 

The second rule here is a generalisation of the corresponding rule in table 3. There, if x i. x', necessarily 
x'=S, and the tenn o IJ'x has the same transitions as x. 

The reader may think there is a possibility missing here, viz. 

x "-. x' <!.. x" 

x·y <!.. x"l~Y · 
However, this rule is not in accordance with our view on sequential composition with refinement of-./
events: when y refines the -./-event, any action in place of the -./-event should involve an initial action of y. 
Moreover, the proposed rule leads to counter-intuitive behaviour: process x should behave the same as pro
cess x·e, but ifx can perfonn-./ and then a, then x·e can also perfonn a before-./ with the rule above. 

3.3 PARALLEL COMPOSITION. 
The operator II' is just parallel composition with the additional restriction that only the process on the right
hand side may perfonn -./-events. This operator is very similar to the parallel composition operator in the the
ory ACP of [BK2,3]. In ACP, the parallel composition ofx and y can perfonn a -./-event only if both x and 
y can perfonn a -./-event at the same time. When we compose processes x and y by means of our new com
binator II' , the composition can do a -./-event when y can do a -./-event. 

With respect to interleaving, I~ behaves as one would expect: if one component can perform a certain ac
tion, the composition can also perfonn this action. In table 6, we present the action relation definition for I~. 

x <!.. x' y '!.. y' 

xlry ~ x'lrY 

TABLE6. Parallel composition. 

We should note that all our operators are defined on the domain of processes that is described above. 
Thus, any composition of processes that have at most one -./-event in every execution path, again gives such 
a process. If one has no objection to operators that lead outside this domain, a symmetric parallel composi
tion can be used, and x lry is represented by something like a{'J}(x) II y (where a{'/} cancels all -./'s). 

In languages with process creation, parallel composition is mostly not included in the language. It is an 
auxiliary operator which is present only on a semantical level. 

3.4 PROCESS CREATION. 
The operator new can be defined by: 

new(x) = xlre. 
Operationally, new is characterised by the action rules in table 7. 
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v new(x) --. x·o 
x ~ x' 

new(x) ~ new(x') 
TABLE 7. Action rules for process creation. 

3.5 EXA.MPLE. The tenn a·new(b·c)·d detennines the transition diagram in fig. 3. 

FIGURE 3. 

3.6 COMMUNICATION. 

11 

Although the rules of tables 5-7 gave a simple and intuitive semantics to process creation, this semantics is 
not very practical. In any practical language with process creation there must be a possibility of communica
tion between a newly created process and the rest of the system. Therefore, we add rules for lr and · which 
express the possibility of communication. 

Like in ACP, we have given a partial binary function yon A, which is commutative and associative, the 
so-called communication function. If ')'(a,b) = c, we say a and b communicate, and the result of the 
communication is c. If')'(a,b) is undefined, we say that a and b do not communicate. In table 8, we present 
the new rules for If' and · (as before, a,b,c range over A) . 

We will not discuss here the consequences of the change in the action rules on the level of non-inter
leaved event structure semantics. It will be clear that · can no longer be interpreted as just refinement of--I
events. The construction will now introduce a large number of new events which describe possible synchro
nisations between the original and the new processes. 

x ~ x' y --. y' 
if')'(a,b) = c 

xlrx ~ x'lry· 

y' 
if')'(a,b) = c 

- · -- - .-~---~--
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3.7 ENCAPSULATION. 
As in ACP, we have encapsulation operators aH (for each set H of atomic actions), that block actions 
from H. These operator are used to block communications with the environment, and remove 'halves' of 
communication (actions that should communicate). The action relation definition is straightforward. 

x ~ x' 
ifu e: H 

TABLE 9. Encapsulation. 

3.8 BISIMULATION. 
Since all the action rules presented so far are in the tyft format of GROOTE & VAANDRAGER [GV], we can 
conclude that bisimulation remains a congruence, also with respect to the new operators It, ·, aH. Thus, if 
'f(PC) is the set of terms built with the signature of BP~£ extended with these operators, then T(PC)/t:::t is a 
well-defined structure. In the next section, we will proceed to find a complete axiomatisation for this struc
ture. 

4. AXIOMATISATION. 

4.1 AUXILIARY OPERATORS. 
In order to give a finite axiomatisation for the structure T(PC}/t:::t defined in 3.8, we will need some auxiliary 
operators, comparable to the operators U.., I in ACP. Since our parallel composition operator is asymmetric, 
we will need not two but three auxiliary operators: It, Jt, ~. These three operators will form the three com
ponents of the merge operator I~: It. the left-merge, will give the possibilities that the left-hand side per
forms an action, Jt, the right-merge, gives the possibilities that the right-hand side performs an action 
(together, these two operators give the interleaving), and finally, ~.the communication merge, gives the 
possibilities that a communication action occurs between the two processes. 

The axiomatisation to be presented also uses an additional auxiliary operator-./. The process ../(x) starts 
with a .../-event. Next the process x is performed from which however all .../-events have been removed. When 
no confusion can occur, we will write .../x instead of v(x). 

4.2 SIGNATURE. 
Now we will present the language for our Algebra for Process Creation (APC). As parameters of the 
language, we have a finite action set A, and a partial binary function yon A, which is commutative and 
associative. Then, we have constants a (for each ae A), constants o,e, binary operators +,·,It ,It, Jt, ~, a 
unary operator.../, and unary operators aH (for each H~). 

When we write a specification in APC, we only use a part of the signature, not the auxiliary operators. 
Formally, we can declare part of the signature to be hidden, as explained e.g. in BERGSTRA, HEERING & 
KLINT [BHK] or VAN GLABBEEK & VAANDRAGER (VGV]. The visible signature of APC is L ={a I aeA} 
u {o,e,+,·,new} u {aH I H~A}, whereas the hidden signature contains I~ ,lt,Jt .~,.../.We will write all 
specifications in section 5 in the signature L. 
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4.3 AXIOMS . 

The axioms of APC are presented in table 10. There, a,b e A, H !;;;;; A, and x,y,z are arbitrary processes. 
Notice that the constant e becomes definable, by axiom PCl. 

x + y = y + x Al xlty = xlty + xJty + xty 
x + (y + z) = (x + y) + z A2 
X+X= X A3 oltx = o 
(x + y)z = xz + yz A4 axlty = a(x lty) 
(xy)z = x(yz) A5 vxlty = 0 
X+O= X A6 (x + y)ltz = xltz + yltz 
ox = 0 A7 
ex= x A8 xJto = 0 
XE = X A9 xJtay = a(xlty) 

xJtvy = v(x lty) 
E = VO PCI xJt(y + z) = xJty + xJtz 
new(x) ·y = xlty PC2 
vx = v(xo) PC3 ax tby = y(a,b)·(x lty) 
(vx) ·y = xJty + x ty PC4 ify(a,b) defined 

axtby = o if undefined 
aH(o) = o PCDI vxty = 0 
aH(ax) = a·aH(x) ifaeH PCD2 xtvy = 0 
aH(ax) = o ifaeH PCD3 (x + y)tz = xtz + ytz 
aH(VX) = v(aH(X)) PCD4 xt(y + z) = xty + xtz 
aH(X+Y) = aH(x) + aH(Y) PCDS 

TABLE 10. APC. 

4.4 LEMMA. We list some useful identities that can be derived from APC. 
i. oltx = x vii. new(e) = e 
ii. new(x) = x lte viii. {Vx)·o = o 
iii. new(o) = E ix. V(VX) = E 

iv. eltx=o x. (xlty)·z=xlt(y·z) 
v . e tx=xte=o xi. vx=xJte. 
vi. o t x = xto = o 

PROOF. Mostly straightforward. We give proofs for the difficult identities. 
i. oltx = oltx + oJtx + otx = 0 + oJtx + otx = 

= oJtx + otx = (vo)·x = e·x = x; 
vi. otx = otx + e tx = (o + e)tx = etx = o; 
ix. v(vx) = v((vx)·o) = vo = e; 

x . (xlty) ·z = (new(x)·y)·z = new(x)·(y·z) = xlt(y·z); 
xi. vx = vx·e = xJte + x te = xJte. 

PCM 

PCLI 
PCL2 
PCL3 
PCL4 

PCRI 
PCR2 
PCR3 
PCR4 

PCCI 
PCC2 
PCC3 
PCC4 
PCCS 
PCC6 

Note that from axiom PC2 and lemma 4.4.ii it follows that the operators new and It can be defined in terms 
of each other. Also, by 4.4.xi, the auxiliary operator v is definable in terms of Jt and e. 
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4.5 ACTION RELATIONS. 
We can also give action relation definitions for the auxiliary operators. The full set is presented in table 11. 

..J 
new(x) -+ x·o 

x ~ x ' 

x+y ~ x' 

x ~ x' 
a I x·y -+ x ·y 

-Jx x·o 

x ~ x' 

new(x) ~ new(x') 

y ~. y' 
u 

x+y -+ y' 

x ../__. x' y ~ y' 

x·y ~ x'lty 

X ../__. x' ~ XII y ~ y' 
if'Y(a,b) = c 

x·y ~ x"lty' 

x ~ x' 

xlty '!.. x'lty xlty ~ x'lty 

y ~ y' 

xll'y~ xlty' xJl'y~xlty' 

x ~ x' 

xlty ~ x'U'y' 

y ~ y' 
if'Y(a,b) = c 

xty ~ x'U'y' 

x ~ x' ------ ueH 
aH X ~ aH x' 
TABLE 11. Action relations for APC,. 

Again, all these action rules are in tyft format, so bisimulation remains a congruence. Let us call the set 
of process expressions over this extended set of operators T(APC). We will prove that the axiom system 
APC is a complete axiomatisation of 'f(APC,)/ !:i. First, we will need some other results. 

4.6 DEFINITION. We define some useful sets of terms. 
1. The set of bottom terms is defined inductively by: 

• o is a bottom term; 

• if t,s are bottom terms, then so are a ·t and t + s. 
ii. The set of basic terms is defined inductively by: 

• o is a basic term; 

• ift is a bottom term, then -./t is a basic term; 
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• if t,s are basic tenns, then so are at and t + s. 
We see that a basic tenn is a closed tenn built from the signature o, +, -V, a, such that a -V occurs at most once 
in every execution sequence, and such that we have only prefix multiplication (as defined below). 

4.7 DEFINITION. We say a tenn has only prefix multiplication if for each subterm of the fonn t·s, t is an 
action, and moreover actions only occur as the first argument of·. This means that for these tenns, instead of 
having constants a and general multiplication·, we could also use a signature with only unary operators a·. 
Notice that this is the usual situation in CCS and CSP. 

4.8 LEMMA. Lett be a basic tenn. Then there exists a bottom tenn t' such that APC I- t·o = t'. 

PROOF: Straightforward induction on the structure of basic tenns. 

4.9 THEOREM. (Elimination Theorem) 
Let t be a closed APC-tenn. Then there exists a basic tenn t' such that APC I- t = t'. 

PROOF: By an inductive argument, it is enough to prove the following claim: 
Let q ,q' be basic tcnns and let p be syntactically equal too,£, a, q+q' , q·q', qltq', qltq', qJtq', qtq', -Vq, 
new(q) or aH(q) . Then there exists a basic tenn r such that APC I- p=r. 
To prove this claim, we use induction on the size of tenn p. We define size inductively by: 

size(o) = size(e) = 1 
size (a ) = 2 
size(t+t') = size(M') = size(tltt') = size(tJtt') = size(ttt') = size(t) + size(t') 
size(t ltt') = size(t) + size(t') + 1 
s ize(-Vt) = size(t) + 2 
size(new(t)) = size(t) + 5 
size(aH(t)) = size(t) + 1. 

In the cases p = o, p = q+q', we already have the required form. 
p = e: use PCI ; 
p = a : use A9 and PCI; 
p = q·q': here we use a case distinction for the fonn of q. If q = o, use A7; if q = a·q", use AS and the 

induction hypothesis; if q = -Vq", with q" a bottom tenn, use PC4 and the induction hypothesis; if q = q" + 
q* , use A4 and the induction hypothesis; 

p = qltq': use PCM and the induction hypothesis; 
p = qltq': here we use a case distinction for the fonn of q. If q = o, use PCLI; if q = a·q", use PCL2 

and the induction hypothesis; if q = -Vq", use PCL3; if q = q" + q*, use PCL4 and the induction hypothesis; 
p = qJtq': here we use a case distinction for the fonn of q'. If q' = o, use PCRl; if q' = a·q", use PCR2 

and the induction hypothesis; if q' = -Vq", use PCR3 to write p = -V(q tq"), by induction p = -Vq• for some 
basic q*, by PC3 p = -V(q*·o), and then by lemma 4.8 p = -Vq• for some bottom q•; if q = q" + q*, use 
PCR4 and the induction hypothesis; 

p = qtq': a case distinction involving the fonns of q and q'; left to the reader; 
p = -Vq: use PC3 and lemma 4.8; 
p = new(q): write new(q) = new(q)·e = qlte = qlt-Vo and apply induction; 
p = aH(q) : similar top = qJtq'; left to the reader. 



16 J.C.M.Baeten & F. W. Vaandrager 

4.10 THEOREM. (Soundness Theorem) 
The structure T(APC}/t:::t is a model of APC. 

PROOF: To prove the theorem, we need to check that each axiom of APC holds in T(APC)/t:::t. As an exam
ple, consider axiom A5 (by far the most difficult one!). 

Consider the relation R on T{APC}, that relates all terms with themselves, and moreover relates each 
term of the form (x·y)·z with x·(y·z) {and vice versa), every term (xlry)·z with xlr(y·z} (and v.v.), and 
every term (xlry) lrz with xlrMrz) (and v.v.). We claim that Risa bisimulation on T(APC). To prove this, 
we need to check that the transfer property holds. This proof has a large number of cases. We will give some 
of these cases. 

In principle, this part of the proof could have been done mechanically also. In fact, the tool ECRINS (see 
MADELAINE & DE SIMONE [MDS]) has been designed for doing this type of proofs. Unfortunately, ECRINS 
is not able to deal with Plotkin style rules with a lookahead of more than one, such as the third rule for the · 
operator. 

Suppose from (x·y)·z, we can perform a step. This fact is proved by a proof following the rules for · in 
table 11. Now look at the last step in this proof. 
CASE 1. The last step uses the first rule. Thus, x·y can do an a-step. Now look at the last step in the proof of 
this fact. 

SUBCASE 1.1. This last step uses the first rule. Thus x can do an a-step, to a term x', say. We have x ~ x', 
and so the steps in the proof were x·y ~ x'·y and (x·y)·z ~ (x'·y)·z. From the first rule and x ~ x', we de
rive immediately that x·(y·z} ~ x' ·(y·z), and (x'·y)·z and x'·(y·z) are again related. 
SUBCASE 1.2. This last step uses the second rule. Then, we must have x i. x' and y ~ y', and so x·y ~ 
x'lry· and (x·y) ·z ~ (x'lry')·z. By the first rule, y ~ y' implies y·z ~ y'·z, and by the second rule, using x 
i+ x', we derive x·(y·z) ~ x'lr(y'·z). Now (x'lry') ·z and x'lr(y'·z) are again related. 
SUBCASE 1.3. This last step uses the third rule. Then, we must have x i+ x' ~ x", y ~ y' and 'Y(a,b) = c, 
whence x·y ~ x" lry· and (x·y)·z ~ (x" lry')·z. By the first rule, y ~ y' implies y·z ~ y'·z, and by the third 
rule, using x i. x' ~ x", we derive x·(y·z) ~ x"lr(y'·z). Now (x"lry')·z and x"lr(y'·z} are again related. 
CASE 2. The last step uses the second rule. Thus, x·y can do an ..J-step and z ~ z' for some u,z'. Now the 
only possibility that x·y can do an ..J-step, is as a result of rule 2, with x i. x' and y i. y', and so, we had 
x·y i. x'lry· and (x·y)·z !:!+ (x'lry')lrz·. By rule 2, using y i. y' and z !:!+ z', we obtain y·z ~ y' lr z', and 
by rule 2 again, using x i. x', we obtain x·(y·z) ~ x'l!'(y'll'z'). Now (x'lry')lrz• and x'lr(y'lrz') are again 
related. 

CASE 3. The last step uses the third rule. Thus, x·y can do a ..J-step followed by an a-step, z ~ z' and 
'Y(a,b) = c (for some a,b,c,z'). Now, as in case 2, x·y i. implies x i. x' and y i. y' and x·y ~ x'lry·. This 
means that x'lry• can do an a-step. This must be the result of one of the three rules for II'. 
suecASE 3.1. The first rule for lr was used. Then, x' ~ x" for some x", and so x'lry' ~ x"lry' and (x·y)·z 
~ (x"lry')lrz·. By the second rule for·, using y i+ y' and z ~ z', we obtain y·z ~ y'lrz'. Then apply the 
third rule for·, using x i. x' ~ x", to get x·(y·z) ~ x" lr(y'lrz}. Now (x" lry')lrz and x"lr(y' lrz) are again 
related. 

SUBCASE 3.2. The second rule for II' was used. Then, y' ~ y" for some y", and so x'lry' ~ x'lry" and 
(x·y)·z ~ (x'lry")lrz'. Apply the third rule for·, using y ~ y' ~ y" and z ~ z', to get y·z ~ y"lrz'. Then 

use the second rule for· with x i+ x' to obtain x·(y·z} ~ x' lr(y"lrz'). Now (x' lry") lrz· and x'lr(y"lrz') are 
again related. 
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SUBCASE 3.3. The third rule for It was used. Then a is the result of a communication, say between a' and 
a' a" a c a". We find x' -+ x", y' -+ y", and so x' lty' - • x" lty" and (x·y) ·z (x" lty") ltz'. Now use the third rule for 

It with y i. y' ~ y" and z ~ z', to get y·z y(a"~) y" It z'. Now notice that by associativity of y we have 
that y(a';y(a" ,b)) = c. Applying this in the third rule for It again, with x i. x' ~ x", leads to x·(y·z) ~ 
x"lt (y"ltz'). Now (x" lty") ltz' and x"lt (y"ltz') are again related. 

Thus, we see that the transfer property holds from (x·y)·z to x·(y·z ). All information, needed to prove 
the converse implication is available above. In a similar fashion, we can prove the transfer property between 
(x lty) ·z and xlt(y·z), and between (xlty)ltz and xlt(yltz) . We conclude that the relation Risa bisimula
tion, and thus that law AS holds in T(APC)/ t:t . Also, we have shown that the laws (xlty)·z = xlt(y·z) and 
(x lt y) lt z = x lt(yltz) hold in T(APC)/!::!. 

Another interesting case in the soundness proof that we would like to mention is axiom PC4: (vx)·y = 
x.Jty + xty. In the soundness proof of this axiom (similar to, but much simpler than the proof for AS), we 
need the soundness of the law xolty = xlty. 

4. 11 LEMMA. Let p be a basic term and let q be an APC-term. 
i. If, for some a E A p ~ q , then there exists a basic term q' with size(q') < size(p) such that 

APC I- p = a ·q' + p and APC I- q = q'; 
ii. If p i. q , then there exists a bottom term q' with size(q') < size(p) such that 

APC I- p = vq' + p and APC 1- q = q'. 

PROOF: Straightforward induction on the structure of p. 

4.12 THEOREM. (Completeness Theorem) 
The axiom system APC is a complete axiomatisation ofT(APC}/t:t . 

PROOF: Let p ,q e T with p t:t q . We have to prove that APC I- p = q. Since T(APC}/t:t is a model for APC, 
the elimination theorem 4.9 tells us that we only have to prove this for basic terms p,q. A simple argument 
gives that it is even enough to show that for basic terms p,q 

p+q t:t q => APC I- p+q = q . 
Assume p+q t:t q. We prove APC I- p+q = q with induction on size(p) + size(q). 

p = o: use Al and A7. 
• p = a ·p': we have p ~ e·p'. Sincep+q t:t q, there isaq' such thatq~ q' and e·p' t:t q'. By lemma 4.ll 
there is a basic term q" with size(q") < size(q), q = a ·q" + q and q" = q'. Since p' t:t q", p'+q" t:t q" and 
q"+p' t:t p'. Thus, by induction, p'+q" = q" and q"+p' = p', and hence p' = q". But now we derive that p+q 
= a ·p' + q = a ·q" + q = q . 

p = vp': this case is similar to the previous case. 
p = p'+p": since p+q t:t q, we also have p'+q t:t q and p"+q t:t q. By induction p'+q = q and p"+q = 

q. Hence p+q = p'+p"+q = p'+q+p"+q = q+q = q . 

4.13 STANDARD CONCURRENCY. 
As a consequence of the completeness theorem, all equations that hold in the model T(APC}/t:t can be proven 
to hold in APC for all closed terms. We list a few of these equations in table 12. A name often given to such 
sets of equations is Standard Concurrency. 

- - - ;;-.:.,,;,. 
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(xWy)l~z = xl~(yl~z) 
xl~y·o = yl~x·o 
xl~o = x·o 

TABLE 12. Standard concurrency. 

J. C.M.Baeten & F. W. Vaandrager 

As consequences of these axioms, we mention the identities (x l~y)Wz = (yl~x) l~z and x l~y = x·ol~y. 

Using these axioms, we can prove a variant of the well-known Expansion Theorem, that is very useful 
to break down the parallel composition of many processes. Since our parallel operator is not in the visible 
signature, we will not bother to state it here. 

5 . EXAMPLES. 

In order to give some interesting examples of process definitions in APC, we will say a few words about re

cursive definitions (more can be found in [BK2,3, VG]). 

5.1 DEFINITIONS. A recursive specification over APC is a (countable) set of equations {X = tx I X E V}, 
where V is a set of variables, and tx is a term over APC, possibly using variables from V, but no other vari
ables. A solution of the recursive specification E in a certain domain is an interpretation of the variables of 
V as processes such that all equations of E are satisfied. 

The Recursive Definition Principle (RDP) says that every recursive specification has a solution. 
In the action relation model of APC, RDP holds, if we add for each recursive specification E = {X = tx I X E 

V} and for each X E V a constant (X I E) to the language, together with a rule 
u 

(tx I E) --. y 
(XI E)u _. y. 

Here (tx I E) denotes the term obtained from tx by replacing each variable Y E V by (Y I E). These rules still 
fit the tyft format, and so bisimulation remains a congruence. Moreover, one can see that all axioms of APC 
remain valid in the extended setting. 

Recursive specifications are used to define (specify) processes. Note that not every recursive specifica
tion has a unique solution, for {X = X} has every process as a solution. In order to get a class of processes 
with unique solutions, we formulate the condition of guardedness. 

5.2 DEFINITIONS. 
i. Lett be an APC-term, and X a variable in t. We call an occurrence of X in t guarded if X is preceded by 
an atomic action, i.e. t has a subterm of the form a ·s, with a E A, and the X in question occurs ins. Other
wise, we call the occurrence of X unguarded. 

ii. A recursive specification {X = tx I X E V} is guarded if each occurrence of a variable in each tx is 
guarded. 
iii. The Recursive Specification Principle (RSP) is the assumption that every guarded recursive 

specification has at most one solution. One can prove that the extended model of APC satisfies RSP. 

In the remainder of this section, we give a number of examples of recursive specifications in APC. 
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5.3 EXAMPLE 1: SYSTOLIC SORTING. 
Systolic systems arc characterised by a regular configuration of simple components or cells. Systolic systems 
have turned out to be useful in VLSI design (see KUNG [Kl). 

We describe a sorting machine, that is always ready to input numbers (less than some upper bound N), 
and is always ready to output the smallest number it contains. This machine consists of a number of cells that 
each can contain two numbers, and will dynamically create more cells as they become needed. Our de
scription is based on the description in KOSSEN & WEIJLAND [KW], where also a correctness proof can be 
found (in the setting of ACP't). Consider the configuration in fig. 4. 

C1 C2 C3 Cs .6 _ _ , 

FIGURE4. 

The squares in fig. 4 represent the cells, the lines interconnecting them communication ports. Let D = {d I 
d:5:N}u {stop, empty} be the set of data that can be communicated at these ports. We use the following ac
tions: 

Si( d) send de D along port i>O 
n(d) read de D along port i>O 
Ci( d) communicate de D along port i. 

The communication function on these atomic actions is defined by: 'Y( q( d), Si( d)) = Ci( d), and y is undefined 
on all other pairs. 

Cell number i has three types of states, depending on whether it contains 0,1 or 2 numbers. The recur-

sive specification of cell i is given in table 13. If X = {x1 , ... , Xk} is a finite set, we use LxeX p(x) as an no

tation for p(x1) + .. . + p(xk). 
Now, the sorting machine is given by: SORT = aH(C~) , 

where H = {fi(d), Sj(d) I b 1, de D} . Note that SORT has a guarded recursive specification. 

c? = L n(d)·new(C?+1)·Cj
1
(d) + n(stop) + Si(empty)·C? 

dsN 

c~ (d) = L n(e) · C~(min(d,e),max(d ,e)) + s1(d)·Si+1(stop)·C~ (dsN) 
esN 

c F(d,e) = L n(f) ·Si+1(e)·CF(min(d,f),max(d,f)) + 
fsN 

+ Sj(d) ·[ L n+1 (f)·CF(min(e,f),max(e,f)) + n+1(empty)·Ci
1 
(e)] (dsesN) 

fsN 

TABLE 13. Systolic sorting. 

5.4 EXAMPLE 2: QUEUE. 
The specification of the unbounded {FIFO) queue is one of the recurring issues in process algebra. Examples 
of recursive specifications can be found in BAETEN & BERGSTRA [BB], v AN GLABBEEK & v AANDRAGER 
[YGV]. We will give two recursive specifications in APC involving the new construct: the first has an infi
nite number of equations, the second a finite number. To start with, we give the standard infinite specifica
tion of the queue in table 14. We denote the queue with contents <J (cr is a sequence of data elements, <J e D* 
for some given finite data set D) by Ocr. A. is the empty sequence, d (for de D) also stands for a one element 
sequence, and crp denotes the concatenation of sequences <J and p. 
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aA. = .2. in(d) ·ad 
deO 

Ocrd = L in(e)·Oacrd + out(d)·Ocr (creD*,deD) 
aeD 

TABLE 14. Queue, standard specification. 
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5.5 The second specification in APC will use an unlimited number of cells as in 5.3. This specification is in
spired by a similar specification in DE SIMONE [DS]. Each cell can contain one data element; this element can 
be output when the pennission for doing so is received: the pennission go(i) will communicate with the po
tential output action pout(d,i) with as result the output out(d). Thus, we have a communication function y 
given by: 

y(go(i), pout(d,i)) = out(d) 
(for i~1. de 0), and y is undefined otherwise. The definition of the cells and the queue is given in table 15. 
Note that this is a guarded specification. The encapsulation set is H = {go(i), pout(d,i) I de D, i~1 }. 

Ci= L in(d) ·new(Ci+1)·pout(d,i)·go(i+1) (i~1) 
de O 

Q1 = aH(new(C1 )·go(1 H>) 
TABLE 15. Queue, first APC specification. 

5.6 THEOREM. Q1 = 01.,. 
PROOF: Define, for each n~1 and each cre D*, with cr = d1 ... dk, the process ~by 

R~ = aH(Cn+klipout(d1 ,n+k-1 )·go(n+k)lt .. . ltpout(dk,n) ·go(n+ 1 )ltgo(n)·o). 

(Note that we assume Standard Concurrency of 4.13 in this proof.) We will prove that, for each n~1 . R~ = 
Ocr. We do this by showing that the R~ satisfy the specification in table 14. As a consequence, we derive 

01 =aH(new(C1 )·go(1 )·o) =aH(C1 ltgo(1 )·o) = Rl = a,.,. 

Now the verification: 
R~ = aH(Cnltgo(n)·o) = 

= L in(d) ·aH(new(Cn+ 1)·pout(d,n)·go(n+1) ltgo(n)·o) = 
deO 

= L in(d)·aH(Cn+1 ltpout(d,n)·go(n+1)1tgo(n)·o) = 
deO 

= L in(d) · R~ . 
deO 

Next, if cr = d1 ... dk-1 • 
R~d = aH(Cn+kltpout(d1 ,n+k-1 )·go(n+k) It ... ltpout(dk-1.n+ 1 )·go(n+2) ltpout(d,n)·go(n+ 1) ltgo(n)·o) 

= L in(e)·oH(new(Cn+k+1)·pout(e,n+k)·go(n+k+1) It ... ltpout(d,n)·go(n+ 1) ltgo(n)·o) + 
aeD 

+ out(d)·oH(Cn+kltpout(d1 ,n+k-1 )·go(n+k)lt ... ltgo(n+ 1 )Ito)= 
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= L in(e)·aH(Cn+k+ 1l~pout(e,n+k)·go(n+k+1) I~ ... l~pout(d,n)·go(n+ 1) l~go(n)·o) + 
eeD 
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+ out(d) ·aH(Cn+kl~pout(d1 ,n+k-1 ) ·go(n+k)I~ ... l~go(n+ 1 )·o) = 
~ · n ) M1 ~ m(e) ·R ecrd + out(d ·Ra . 

eeD 

Using RSP (see 5.2), we can show that the R~ satisfy the specification in table 14. 

5. 7 THIRD SPECIFICATION OF QUEUE. 

Next, we will give a finite recursive specification for the queue. In this specification, we will use action re
naming. For each function f: A ~ A, we introduce a unary operator pf, that will rename atoms a into f(a), 
and do nothing else. This operator is axiomatised in table 16. Action rules are quite easy to formulate. 

p1(0) = o 
p1(ax) = f(a)'p1(x) 
p1('1x) = v(p1(x)) 

From BAETEN & BERGSTRA [BB] we know that the queue can be finitely specified in ACP plus renaming. 
In table 17, we give a finite specification in APC plus renaming. 

Cell = L in(d) ·aH(new(p1(Cell) )·pre(d)·go) 
de D 

Q2 = aH(new(pt(Cell)·go·o) 

TABLE 17. Queue, second specification. 

Here, we use the renaming function f that renames each pre(d) into near(d), and leaves all other atoms un
changed. The communication function is specified by 'Y(go,near(d)) = out(d) (undefined otherwise). The 
encapsulation set is H = {go} u {near(d) I de D}. 

In order to see that the specification in table 17 indeed describes a FIFO-queue, it might be illustrative to 
consider fig. 5. 

go 

in ........, 
ooc;;;:;,;;;:: pre. __ __,.>~ go 

in 

~pre. __ _,.>~ go 
- - - - -in 

......... 
~pre,__ __ >~go 

in....._ 

I "' I . 
FIGURE 5. 
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In this diagram, we have abstracted from data din actions in(d), out(d), etc. With arrows the 'causal' links 
between events are denoted. A black line stands for an encapsulation operator aH and a dashed line for a re

naming operator Pf· 
One may imagine that in an execution, events 'bubble' upwards until they have passed through the sur

face of the topmost encapsulation line. An event cannot move before all its causal predecessors have oc
curred. A pre-event can pass through both types of lines. However, when it passes through a dashed line, it 
is renamed into a near-event near-events and go-events are blocked by a black line. The synchronisation 
of a near-event and a go-event, however, gives a out-event. out-events, like in-events, can pass through 
both types of lines. 

Along these same lines, we can give a recursive specification for the stack in APC. 

5.8 THEOREM. Q2 = 01... 
PROOF (sketch): Similar to 5.6. We define processes S 0 , that satisfy the specification in table 14. The Scr are 
defined by using auxiliary processes T 0 , that, in turn, are defined inductively: 

T1..= Cell 
T dcr = aH(Pt(T crl~pre(d)·go)) 
Scr = aH(Pt(T crltgo·5)). 

The proof that the Scr satisfy the specification in table 14 makes use of alphabet information. For more infor
mation on this type of argument, see BAETEN, BERGSTRA & KLOP [BBK]. 

5.9 EXAMPLE 3: BAG. 
Along the same lines as for queue, we can give a simple recursive specification for the bag (an unordered 
channel; a state of the bag can be considered as a multiset of objects). We give the recursive specification in 
table 18, without further comment 

Bag= L, in(d)·new(out(d))·Bag 
deD 

TABLE 18. Bag. 
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