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1. Introduction 

1 

Standard algebraic specifications only support the use of fixed arity functions, but using functions with 
iterated sorts in their input type often gives more elegant specifications. An iterated sort s * or s+ indicates 
an argument of a function in which, respectively, zero or more terms, or one or more tenns of the same sort 
s are allowed. Some examples of such functions are: 
• natural numbers as lists of one or more digits: 

nat : DI GIT+ - > NAT, 

• tables which are a list of zero or more pairs of keys and their corresponding entries: 
p a i r : KEY t ENTRY-> PAIR table: PAIR* - > TABLE,and 

• programs (in some simple programming language) which are defined as a list of one or more declara
tions followed by a list of zero or more statements: 

p rog : DECLARATI ON+ # STATEMENT* -> PROGRAM. 

Such lists of terms of the same sort are, of course, definable in standard algebraic specification formalisms. 
Consequently, these list operations will not add expressive power to the formalism. On the other hand, use 
of these lists improves readability of specifications in many cases (see Section 4.1 for an example). 

It is possible to generate code from an algebraic specification automatically if it is viewed as a tenn 
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rewriting system: each equation is read as a rewrite rule from left to right. In this setting one has to choose 
a bias in the representation of lists to create a confluent and terminating term rewriting system. As a conse
quence, auxiliary functions are needed if, for example, the first element as well as the last element of the 
list have to be inspected. Suppose we want to specify natural numbers as lists of one or more digits and the 
following head-tail-like representation of lists of digits is chosen: 

inj DIGIT -> DIGIT-LIST 
add : DIGIT t DIGIT - LIST -> DIGI T-LIST 
nat : DIGIT-LIST -> NAT 

Using this representation it is easy to specify how to remove leading zeros from a natural nwnber, but an 
auxiliary function is needed to access the last digit of the list in order to express that the successor (succ : 
NAT -> NAT) of a natural nwnber ending in 1 is identical to the same list of digits ending in 2. Due to the 
fact, that lists as presented in this paper are flat structures, it is easier to write specifications from which 
executable code can be generated. They provide an elegant tool to combine term rewriting with string 
rewriting [Jan86]. 

Concatenation of lists is an associative binary operation. As a consequence, the semantics of alge
braic specifications with lists can be expressed in tenns of algebraic specifications with associativity. For 
this reason, we will first discuss algebraic specifications with associative binary operators and their imple
mentation in terms of rewritting modulo associativity. Associativity of a binary function is denoted by 
adding the assoc-attribute to it. This predicate is also available in the specification languages AXIS 
[RC88], CEC [BGS88] and OBJ [FGJM85, GKKMMW88]. 

Research in lists and associative functions in algebraic specifications is not only inspired by the wish 
to improve the elegance of specifications and the possibilities to generate code for such specifications. In 
our case, it is also inspired by the wish to combine the Algebraic Specification Formalism ASF [BHK.89] 
and the Syntax Definition Formalism SDF [Chapter 6 of BHK.89, HHKR]. Both formalisms were 
developed as intermediate steps in the development of a language definition formalism. It is the goal of 
ESPRIT-project 348 (GIPE - Generation of Interactive Programming Environments) to make a system 
which can generate an interactive programming environment for a programming language from a formal 
definition of that language. Lists and associativity of binary functions are both features which occur natur
ally in SDF. Their semantical consequences have to be handled in the algebraic specification formalism 
and its implementation, however. As an example of an application of algebraic specifications with lists and 
associativity we present a specification in the combination of ASF and SDF in Section 5. 

A general discussion of algebraic specifications, their semantics and a general scheme to generate 
implementations for them is given in Section 2. In Section 3 we describe the assoc-attribute, and the list 
operations are added to the formalism in Section 4. Finally, Section 6 contains conclusions and some 
remarks. 

2. Algebraic specifications 

2.1. Example 

All examples in this paper are given in the Algebraic Specification Formalism ASF [BHK89] or extensions 
of it. However, the ideas and techniques in this paper are independent of ASF. We now explain aspects of 
ASF that will be used in the examples. Each specification in ASF is, ultimately, equivalent to a first order 
signature and a set of (conditional) equations (see next section). ASF has several features to support modu
larization of a specification: 

• Exports: 
Each module may have an exports section consisting of a (possibly incomplete) signature. The 
sorts and functions declared in this section are visible outside the module. 

• Hidden sorts and functions: 
Sorts and functions that are local to a module are declared in the sorts and functions sections. 

• Imports: 
The imports section contains the names of modules that have to be incorporated in a module. While 
importing a module it is possible to bind its parameters, to rename its signature (see below) or to 
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perfonn a combination of these. 

• Parameters: 
Parameters are declarations of (possibly incomplete) signatures which are fonnal parameters of the 

module. They are declared in the paramet e r s section (see for example Section 4.3). They can be 

bound to actual sorts and functions of a module when the parameterized module is imported. 

• Renamings: 
Upon import of a module parts of the signature of the module can be renamed if changes in names of 

sorts or functions are desirable to avoid, for instance, name clashes. 

Throughout this paper we will use several algebraic specifications of natural numbers (NAT) and (finite) 

sets of natural numbers (SET) as examples. In the following algebraic specification 0 is represented as the 

constant zero and all natural numbers n greater than 0 are represented as succ < succ < . . . succ <zero ) ) l 
with n repetitions of succ . In this specification addition (plus) and multiplication (mult) on natural 

numbers are defined. The constant empt y stands for the empty set and all other sets are constructed by 

adding an element to a set using the function add. Finally, the union operator on sets (union) is specified. 

module Natura l -Numbers 
begin 

exports 
begin 

sorts NAT, SET 
functions 

zero - > NAT 
succ NAT -> NAT 
p l us NAT # NAT -> NAT 
mult NAT # NAT -> NAT 
empty - > SET 
a dd NAT # SET - > SET 
union SET # SET - > SET 

end 

variables 
n , n l , n2 -> NAT 
s , sl , s 2 -> SET 

equations 

[l] plus(zero , n ) - n 
[2] p l us(succ (nl) , n2) succ (plus( n l , n2)) 

[3] mult (n , z e ro) ze r o 
[4 ] mul t (nl , s ucc(n 2)) pl u s(mul t (n l , n2) , n l) 

(5 ] add(n , add (n , s)) - add( n, s) 
[6] add(nl , add (n 2 , s)) = a dd (n2 , add (nl , s )) 

[7] union(empty, s) - s 
[BJ union(add(n , sl) , s 2) - a dd (n , un ion(sl , s2)) 

end Natu ral-Numbers 

Equation [ 5 J says that adjacent identical elements in a set may be replaced by a single occurrence of the 
element. This has to be combined with equation [ 6 J (which states the irrelevance of the order in which the 

elements are added to the set) to allow arbitrary occurrences of identical elements in a set. 

2.2. Definitions 

An algebraic specification <I., E> consists of a signature I and a set of (possibly conditional) equations E. 

A signature I. = <Sr. . Fr.> consists of a set of sort symbols Sr. and a set of function symbols Fr, . An impli

cit typing function of Fr. to Si: x Sr. exists which assigns to each element f of Fr. an input type Sl # s 2 # 

• • . # Sn where n ~ 0 and an output type s . Such a function will be denoted by f : Sl # s 2 # • . • # 

Sn - > s. In most fonnalisms, overloading of function symbols is allowed, i.e., more than one typing of a 

function symbol f E Fr. is possible. To assure unique typing of each tenn it is necessary that no functions 

with identical name and input type exists. To simplify the theoretical description we here forbid overload

ing because this can be remedied by encoding the type information in the function names. 
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Let a set of typed variables X be given, i.e., to each variable x a unique type s e Sr. is attached and 
this will be denoted by x : -> s. Given a signature I:= <Sr.. Fr.> we can define the set Ti(X) of terms of 
type s over I: as the smallest set such that: 

• x is an element of Ti(X) for each variable x: -> s . 
• c is an element of Ti(X) for each (constant) function c: -> s. 
• For each function f: s 1 t S2 t . . . Jt Sn -> s with n ~ 1 and for all terms t 1 e 711 (X), 

t2 e 712 (X), · · ·, tn e 71n(X) we define f (tl, t2, ... , tn) to be an element ofTi(X). 

The set of closed terms (terms without variables) of type s is denoted by Ti;. The set of terms Tr,(X) over I: 
is the union of Tf.(X) for all s e Sr.. 

An unconditional equation of type s e Sr. over a given signature I:= <Sr., Fr.> is an element of 
Eq5 = Ti(X) x Ti(X). It is denoted by s - t where s, t e Ti(X). The set of all (possibly conditional) 
equations E in an algebraic specification <I:, E> is a subset of Eq x Eq •, where Eq denotes the set of 
unconditional equations Eq = U Eq5

• Conditional equations with at least one condition are denoted by 
s e St 

s = t when sl = tl , s2 a t2, ... , sn - tn 

An assignment p is a function which assigns to each variable of type s a term of the same type. ln 
short: it is a function X--+ Tr,(X) such that p(x) e J1(X) holds for all x: - > s . Each assignment p can be 
extended in a natural way to a function defined on the complete set of terms Tr.(X) such that it does not 
change the type of a term: 
• For each (constant) function c: -> s we define p(c) e c. 
• For all functions f : Sl # 52 # •.• Jt Sn -> s with n <!: 1 p is defined by p(f (tl, t2, ... , 

tn)) = f <P(tl), p(t 2), ... , p(tn)l. 

Now, we can give the axioms and rules of (conditional) equational logic, which may be used to construct 
proof trees: 

E}t = t 

Et tl = t2 
E.j- t2 tl 

Ettl t2 Et t2 
Et tl = t3 

t3 

E ± sl = tl E + s2 t2 E + sn ~ tn 
E.j- f(sl, s2, ... , sn) - f(tl, t2, ... , tn) 

Et s - t 

E .j- p(s) p(t) 

(s = t) e E 
E.j-s = t 

E .J- p(sl) = p(tl) E .J- p(s2) - p(t2) 

(s = t when sl ~ tl, s2 - t2, 

Et p(s) "" p(t) 

... , 
Et p(sn) = p(tn) 

sn - tn) e E 

(Eql) 

(Eq2) 

(Eq3) 

(Eq4) 

(Eq5) 

(Eq6) 

(C-Eq) 

which holds for all terms s , t, sl , s2, · · ·, sn, tl, t2, · · ·, tn e Tr,(X); for all functions f e Fr. and for 
all assignments p :X--+ Tr,(X). Axioms and rules (Eql) through (Eq6) together constitute equational logic. 
Rule (C-Eq) handles conditional equations. 
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2.3. Semantics 

The most natural semantics for algebraic specifications is the initial algebra semantics. For an extensive 
treatment of initial algebras we refer to [MG85]. In this section we only describe the main concepts. 

Models of algebraic specifications are (many-sorted) algebras. A many-sorted algebra A is a struc
ture <SA, FA> which consists of a set of mutually disjoint non-empty sets SA (the carriers of A) and a set 
of functions FA. (For a discussion of empty carriers in algebras we refer to [GM87].) Each element of FA 
is a total function from a tuple of carriers of A to a carrier of A. Given a signature I:, a many-sorted :!:
algebra is an algebra of which SA and FA, respectively, consist of interpretations for the sorts and func
tions of the signature. A many-sorted :!:-algebra A is a model of a given algebraic specification <I:, E> if 
the interpretation which assigns to each sort symbol s e SI an element of Sand to each function symbol 
f e F :i:: an element of Fis such that the interpretation of all equations E holds in the algebra. Some exam
ples of algebras that are models of the algebraic specification given in Section 2.1 are: 
• A1 = < ( N, FS), ( 0, S, +, *, 0, Ee, u} > where N is the set of natural numbers and FS is the set of all 

finite sets of natural numbers and the set of functions corresponds to the obvious interpretations of the 
specified functions. 

• A2 is the algebra similar to A1 where FS is replaced by the set of all sets of natural numbers S. 
• A3 = <( (N}, (S}), (z, s, p, m, e, a, u}> where the natural numbers as well as the sets are interpreted 

as one element N and S respectively and all functions are trivial ones. 

The algebra A1 is one of the intended models of the given specification. It contains no junk in contrast to 
the algebra A2 in which, for example, the set of all odd numbers exists which has no denotation in the 
specification. Also, A1 contains no confusion in contrast to A3 where the interpretation of two terms can be 
equal while their equality cannot be proved from the equations in the specification. 

A model of a specification without junk and confusion is the initial algebra of the specification. In 
case of an algebraic specification in which each sort contains at least one closed term the initial algebra 
exists. The term model <(Ti/= )5 , (f I f e F:i:: )> is an example of the initial algebra of the specification 
<I:, E>. Its carriers are the sets of closed terms Ti over l: in which terms are identified which belong to 
the same congruence class defined by: 

t l =t2 <=> Ef- tl=t2. 

where +- represents (conditional) equational provability as defined in the previous section. The functions 
in the term model are defined by 

f([ t l], [t 2], · · ·, [tn]) = [f(t 1, t2, · · ·, tn)I 

where [ t ] is the congruence class to which a term t belongs. 

2.4. Implementation in Prolog 

This section describes one of the possibilities to implement an algebraic specification. The implementation 
methods described here are used in the ASF system [Hen88]. It is a simple environment for compiling and 
testing ASF specifications. An algebraic specification is viewed us a term rewriting system by interpreting 
the conclusion of each equation as a rewrite rule from left to right which, in turn, is implemented in C
Prolog [PWBBP85]. For a more general overview of implementation strategies of algebraic specifications 
we refer to [Chapter 5 of BHK89]. 

In the next section we discuss specifications with unconditional equations and in Section 2.4.2 the 
implementation of equations with conditions is handled. 

2.4.1. Implementation of equations without conditions 

Before discussing the implementation we need some definitions. A term rewriting system <I:, R> consists 
of a signature I: and a set of rewriting rules R, where R c u Ti;(X) x Ti(X). Rewriting rules are written 

as s ~ t . A context (denoted by C[x]) is a term which contains a single occurrence of the variable x. The 
result of substituting the term t e Ti(X) for the variable x: -> sin the context C[x] is denoted by C[t]. 
The rewriting rules of a term rewriting system <I:, R> give rise to reduction steps, as follows: s ~R t if 



6 

and only if a context C[x] exists such that s equals C[p(s l )] and t equals C[p(t l )] for some assignment p 
and reduction rule sl ~ tl of R. The subterm p(sl) of s is called a redex. A term s is a normal form if 
there is no term t such that s ~R t. 

For a given term rewriting system <l:, R> several reduction strategies exist. They define for each 
term t e Ti(X) a set of subterms of t which are redexes for R, and which rule of R has to be applied to 
each of these redexes. An outermost reduction strategy only reduces redexes that are not subterms of 
another redex of the term. An innermost reduction strategy reduces redexes that do not contain any other 
redex. In both cases the order in which reductions ure performed can be varied. The most common vari
ants are leftmost strategies (which always choose the leftmost redex), and parallel strategies (in which all 
outermost or innermost rcdexes are reduced simultaneously). 

Several ways of implementing a term rewriting system in Prolog are known. In 
[DE84, EY87, Wie87] several methods are described in which Prolog predicates model a certain reduction 
strategy: in [DE84] Drosten and Ehrich give predicates for leftmost innermost reduction; the interpreta
tional approach of van Emden and Yukawa [EY87] yields a parallel outermost strategy and Wiedijk in 
[Chapter 5 of BHK89, Wie87] gives a schematic overview of the different possibilities to implement a term 
rewriting system in Prolog in this manner. 

In contrast to the above-mentioned interpretational approaches, we generate faster code by using a 
variant of the compilational approach described in [EY87], see also [Chapter 9 of BHK89]. This method 
corresponds naturally to the way in which one would implement functions in Prolog. It regards each func
tion of the specification as a relation of its input and output. One of the major deficits of the compilational 
approach is its leftmost innermost reduction strategy. This may cause non-termination even in case of 
weakly terminating term rewriting systems (i.e., systems in which each term has at least one normal form). 

The compilational approach of [EY87] has been modified because the original method can only han
dle specifications in which each equation is of the form f ( t 1, t 2 , ... , tm > = t where 
tl , t 2, · · ·, tm may not contain defined functions. Defined functions are functions which occur as main 
symbol in the left-hand side of an equation. In [EY87] Prolog predicates are generated only for defined 
functions. The implementation described here circumvents this constraint by generating predicates for all 
functions and adding a "catch all"-rule for each function. 

As an example, we first show the code generated from the specification given in Section 2.1. 

/* >>> Equations 

plus(N, ze r o, N) . 
plus (Res , succ (Nll. , N2 ) 

plus(Templ , Nl, N2) , 
succ (Res, Templ ). 

mult(Res , N, ze r o) 
: - zero (Res) . 

mult(Res , Nl, succ (N2) ) 
mult (Templ , Nl , N2 ) , 
plus(Res , Temp l , Nl). 

add (Res , N, add (N, S) ) 
: - add( Res , N, S) . 

add(Res , Nl , add (N2, S)) 
add(Temp l , Nl, S) , 
add( Res , N2, Templ). 

union(S , empty, S) . 
union(Res , add(N, Sl ) , S2) 

union(Templ , Sl , S2), 
add(Res , N, Templ ) . 

/* >>> Cat ch-all 

zero (zero) . 

<<< * / 

/ * (l] * / 

/ * [2] */ 

/ * [3] * / 

/* [ 4 ] * / 

/* [5] * / 

/ * [6] * / 

/ * [7] * / 
/ * [8 ] * / 

<<< *I 



s ucc (s ucc (Xl), Xl) . 
plus(plus(Xl , X2) , Xl , X2). 
mu l t(mu l t(Xl , X2 ) , Xl , X2). 
empty (empty) . 
add(add( Xl , X2 ) , Xl , X2) . 
union(union(X l , X2 ) , Xl, X2). 
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For each n-ary function an (n + 1 )-ary Prolog predicate is generated whose first argument is the output after 
application of the function to the other n arguments. Each equation of the specification is translated to one 
Hom-clause in Prolog. A catch-all rule is added for each function returning the normal form if no equation 

is applicable. 

A term that has to be reduced to normal form is translated into Prolog questions. For example, the 
term mult (s ucc (zero) , plus (succ (zero), ze ro )) is translated into: 

? - zero (Tl) , succ(T2 , Tl) , 
ze ro (T 3) , succ(T4 , T3) , ze ro (TS), plus(T6 , T4, TS), 
mult (Res , T2, T6) . 

The normal form succ (zero) of the term to be reduced is the value of the variable Res. It is also possible 
to reduce open terms (i.e., terms with variables) as long as no values are given to the variables occurring in 
such terms. A term like pl us (succ (succ (n l) , n2) l is translated into: 

? - s ucc (Tl , n l ) , succ(T2, Tl), p l us(Res, T2, n2). 

The program will now return succ (succ (plus (n l , n2l)). 

From the above example it is already evident that the generated code as well as the translation of 
input terms can be optimized. The fact that some functions do not occur as head symbol in the left-hand 
side of any equation may be exploited for optimizations. Other optimizations can be achieved by recogniz
ing identical subterms in right-hand sides of equations, or by remembering the normal forms of terms. We 
will not discuss these optimizations here. 

How can the above-mentioned code for an algebraic specification be generated? Each equation is 
typechecked before a Hom-clause is generated for it. During typechecking the use of variables in the 
equation is checked. It is impossible to generate code if the left-hand side of an equation is a variable or if 
the right-hand side contains variables which do not occur in the left-hand side. (See the next section for 
conditional equations in which case the latter might not be necessary). At the same time, we construct a 
list of variables and their corresponding Prolog variables which are to be used in the code. 

The code generation process itself consists of two disjoint parts: 

1. The right-hand side of an equation is changed into a list of predicates (which will become the condi
tions of the resulting Hom-clause) and a translated term (which will contain the result of the computa
tion). 

2. The conclusion of the Hom-clause is constructed from the left-hand side of the equation and the 
translated term generated in step 1. 

We will now describe these steps in somewhat more detail. 

The conditions of the clause in step 1 are constructed using induction on the complexity of the term t 
in the right-hand side of the equation: 

• t :=x: 
The list of predicates to be generated is empty and the translated term is the Prolog variable that 
corresponds to the variable x • 

• t = c: 
The translated term of a constant c is a "fresh" Prolog variable Var (i.e., a Prolog variable which 
has not been assigned to any of the variables in the equation and which has not yet been used in the 
code generation process). The list of predicates contains just one element: the predicate c (Var). 

• t:f(t l , t 2 , . .. , t n) withn:<!:l : 
The translated term of t is, once again, a "fresh" Prolog variable Var. Let L 1, L 2 , • • ·, Ln be the 
lists of predicates, respectively, generated for the subterms t 1, t2 , · · ·, tn, and, let Tl, T2 , · · ·, Tn 
be the translated terms corresponding to these subterms. The list of predicates for t is a 
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""'! ·?".: ...-.._=---=~ -

concatenationofthelistsli.l 2, ... ,ln, andthepredicate f (Var, Tl , T2 , ... , Tn) addedat 
the end of it. 

In step 2 the conclusion of the Hom-clause is generated: if the left-hand side of the equation is of the form 
f(tl , t 2 , . .. , tnl with n~ l the conclusion is f<Res , Tl , T2, .. . , Tnl , where Res is the 
translated term from the right-hand side of the equation and the Ti are constructed from ti by changing 
each variable into the corresponding Prolog variable. lf the left-hand side of the equation is a constant c 
the conclusion is the predicate c (Res) . 

Finally, for each function from the specification the catch-all rule is added. It consists for each n-ary 
function symbol f of the Hom-clause f (f (X l , X2, ... , Xn ) , Xl , X2, ... , Xnl . 

The translation of an input term to a Prolog question is done similarly to the above-mentioned 
method for decomposing the right-hand side of an equation. The only difference is the translation of a 
variable x which is now translated into the variable itself (as a Prolog atom). If the program terminates, the 
value of the translated term is one of the normal forms of the input term. 

2.4.2. Implementation of conditions 

In the ASF system [Hen88] the evaluation of conditions is determined by the way variables are used in the 
corresponding equation. Let V be the set of variables used in the left-hand side of the conclusion of the 
equation. The conditions are checked in the order in which they are specified. There are two kinds of con
ditions: 

1. The condition contains only variables which are elements of V. Now, both sides of the condition will 
be reduced to normal form and the condition succeeds if these normal forms are identical. 

2. One of the sides of the condition contains only variables which occur in V. Upon execution of the gen
erated code this term is reduced to normal form and the other side of the condition has to match this 
normal form. The new variables in the other side are added to V. 

Finally, it is checked that all variables in the right-hand side of the conclusion of the equation are members 
of the resulting set V. Hence, an error-message is given and no code is generated if in both sides of a con
dition or in the right-hand side of an equation variables are used which have not been introduced before. 

How to generate the appropriate code for a conditional equation? For each condition a list of Prolog 
predicates is generated and these lists are concatenated in order in which the conditions are given in the 
equation. The list of predicates constructed in this way is added before the list constructed from the right
hand side of the conclusion of the equation as described in the previous section. 

How to generate code for each of the conditions? This depends, of course, on the cases mentioned 
above: 

1. Both sides of the condition t 1 = t r will be decomposed in a list of predicates and a translated term as 
described in Section 2.4.1. Let l 1 with Tl and l r with Tr , respectively, be the lists of predicates and 
the translated terms for t 1 and t r. The code for this condition is a concatenation of L : and l r (in an 
arbitrary order) followed by testing the literal equality ofTl and Tr: Tl == Tr. 

2. Suppose the condition is tc - tn, where t c is the side of the condition which contains only variables 
which where known and tn contains some new variables. Now tc is decomposed into a list of predi
cates l c and a translated term Tc as described in Section 2.4.1. All variables occurring in tn are 
changed into their corresponding Prolog variable resulting in a Prolog term Tn. The code is the list l e 
followed by a unification of Tc with Tn: Tc = Tn. 

2.4.3. Soundness and completeness 

The generated code is sound, i.e. for all (possibly open) terms t l and t2 the following holds: if the imple
mentation I returns t 2 as the result of evaluating t 1 (notation: eva/ 1(t 1) = t 2), then the equality of tl and 
t 2 can be proved using the equations E of the specification. In short notation: 

eva/1(t l) =t2 ~Et t l=t2 

The proof of this is similar to the proof of the correctness of the compilational approach in [EY87]. 

More interesting is the question whether the converse (the completeness of the implementation) 
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holds. Or, more precisely, if two terms t 1 and t2 are given such that they can be proved equal using E, 
can we use the implementation to show them to be equal? In short: 

Et tl = t 2 => 3t eva/1(t l) = t "eval1(t 2) = t ? 

In general, this is too much to hope for, because it is undecidable whether an equation is derivable from a 
given set of equations. Incompleteness might be caused by non-termination of the implementation, non
conftuence, and the inability to decide conditions completely. For an extensive treatment we refer to 
[Kap87]. 

3. Algebraic specifications with associativity 

3.1. Example 

To illustrate associativity in an algebraic specification we change the example given in Section 2.1 by using 
the assoc-attribute to declare the associativity of the addition and multiplication on natural nwnbers and 
the union operator on sets: 

exports 
begin 

sorts NAT, SET 
functions 

ze ro - > NAT 
succ NAT -> NAT 
plus NAT t NAT -> NAT 
mult NAT t NAT -> NAT 
empty - > SET 
add NAT t SET -> SET 
un i on SET t SET -> SET 

end 

The equations of the specification are not changed. 

3.2. Definitions 

{assoc} 
{aaaoa} 

{aasoa} 

An algebraic specification with associativity <l:, E, assoc> consists of an algebraic specification <l:, E> 
and a predicate assoc defined on the set of function symbols FI. Here we will only describe associativity 
for functions of the form: 

f : s t s -> s 

For functions with other typings it is either impossible to give a semantics for associativity or it is unclear 
what its meaning should be. Given a function f : Sl t S2 i+ Sl - > Sl (with Sl '# S2) associativity 
could standfortheequation f(xl , y l , f (x 2 , y2 , x3)) - f(f(x l, y l, x2) , y 2 , x3) where 
xl , x 2 , x 3 : -> Sl and y 1 , y2: -> S2 . However, for a function g : s t S t s -> s it is ques
tionable whether it implies the equations: g ( zl , z 2 , g (z 3 , z 4, z S)) = g (z l , g(z2 , z 3 , z 4 ) , 

z 5) = g (g (zl , z2 , z 3) , z4 , z5) where z l , z2, z3, z4, zS : -> S. 

3.3. Semantics 

The semantics of an algebraic specification with associativity <I:, E, assoc> is defined as the semantics of 
the algebraic specification <I:, E'>, where E' is constructed by adding the corresponding associative law to 
the set of equations E for each associative function . Hence, for each function f : s t s -> s for which 
assoc( f) holds, the equation 

f(x , f(y , z)) = f(f(x , y) , z ) 

is added (where x , y , z: - > s ). 

...0:::-.,,,,..,.... __ _ 
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3.4. Implementation in Prolog 

What is the advantage for code generation of the use of the aaaoc-attribute instead of the corresponding 
associative law? When implementing the associative law in the same way as other equations one has to 
choose a direction for it. In general a non-terminating term rewriting system results if the law is added as 
the two rewrite rules 

f (x , f( y, z))~f(f(x, y ) , z ) 

and 

f ( f (x , y) , z) ~ f (x, f (y, z ) ) . 

As a consequence, the associative law can only be used in just one direction when terms are rewritten. In 
general both directions of the law are needed, however. By the way, in the example given above it does 
not make any difference as long as one only reduces closed terms. All three associative operators are 
defined here in such a way that all closed terms reduce to normal forms that do not contain them. 

When generating code for a term rewriting system modulo associativity it is easier to handle an asso
ciative operator f: s # s -> s as a function f ' which has two or more arguments of sort s and output 
s. Allterms are.fiattenedwhichmeansthattermslike f(a , f (b, e ll and f(f(a , b) , cl arechanged 
into f ' (a , b , cl. Each occurrence of f is replaced by f' and all arguments of f whose head symbol is 
also f is replaced by its arguments. A term with head symbol f ' has no arguments with f ' as head sym
bol. 

When rewriting modulo associativity we have to consider the following three complications: 

1. Matching of terms is different from standard matching. The left-hand side of a rewrite rule of the form 
f ' ( x , a ) must match terms like f' (a, a l and f ' ( b , b , a l . After matching, the value of x should 
be a in the first example and f ' (b, b ) in the second one. 

2. We have to check whether a rewrite rule is applicable to the sublist of the arguments of an associative 
operator f ' . Given a term f ' (a, b, cl it may be that a rewrite rule for f ' (b , cl exists but that 
there are no rewrite rules for f ' (a, b l and f ' (a, b , cl itself. 

3. When constructing a term whose head symbol is an associative operator f ' its arguments may not have 
f ' as head symbol. Terms like f' (a, f' (b, cl) are forbidden and must be replaced by their 
flattened variant f ' (a , b , c ) . 

In the implementation only flattened terms are used, and we will no longer add an accent ' to the function 
name. Instead of the standard (n+l)-ary Prolog predicate which is generated for an n-ary function a binary 
predicate is generated for associative operators. The arguments of f are put into a Prolog list which is used 
as the second argument of the predicate. The first argument is still the output of the function after applica
tion of the function to its arguments. The normal form of a term in which an associative operator f occurs 
is represented by a unary function f whose argument is also the Prolog list containing the arguments of the 
associative operator. 

For each of the above-mentioned three aspects of rewriting modulo associativity Prolog predicates 
are needed. These predicates are identical for all associative operators and for this reason the correspond
ing code does not have to be generated. The first argument Name of each of the predicates is the name of 
the associative operator. The code for these predicates is the following: 

/* >>> General Predicates 

as soc decomp(Name , Resul t, Te r m, Re st) 
-append([Headl Tail] , Re s t, Result ), 

assoc_a r g (Name , Term, [Headl Tail J) • 

assoc_arg (Name , Resul t, [Argl, Arg21 Args]) 
:- Result = .. [Name , [Argl , Arg21 Args]] , 

! . 
assoc_arg (_, Term, [Te rm]) . 

assoc_a l l ( , [Term] , Term) 

<<< */ 



: - ! . 
assoc_ all(Name , Input, Result) 

spli t (Ll , [L2 Argl, 12 Arg21 12 Tail] , L3, Input), 
Pred = •. [Name, Res, [L2_Argl, - L2_Arg2l L2_Tail] J , 
Pred , 
I . , 
assoc arg(Name , Res, 12 New), 
s plit(11 , L2 New, 13 , Input New), 
assoc_all(Name , Input_New, Re s ult). 

as soc all (Name, I nput, Res ult ) 
: - - Result= .. (Name, Input]. 

split( [ ] , L2 , L3, List) 
: - append(L2 , L3, List). 

split ( [Headl Tail], L2, L3 , (Headl Taill]) 
: - split(Tail, L2, L3, Taill ) . 

append([] , List , List ). 
append ( [Headl Tail], List, [Headl Taill]) 

: - append(Tail, List, Taill). 

assoc f l a t ( , [) , [ J) • 
assoc-flat(Name, [Headl Tail], Result) 

- Head = •• (Name , Ar gs], 
I . , 
assoc_flat(Name, Tail , Taill), 
append(Args , Taill, Resul t) . 

a s s oc flat (Name, (Headl Tail], (Headl Taill J) 
: - - assoc_flat(Name , Tail , Taill). 

11 

For term matching (case 1) the predicates assoc_arg and assoc_decomp are used. The predicate 
assoc_decomp divides a list of arguments Re sult of an associative operator in a term Term and the rest 
of the list Rest . It uses assoc_arg to change an associative operator and its arguments into the 
corresponding term. If the list of arguments contains two or more elements the term returned is the associ
ative operator applied to its arguments. If the list contains only one term this term is returned. 

To compute a normal form of an associative operator Name applied to its arguments Input, the 
predicate ass oc _all is defined. It successively tries to apply an equation to each sublist of the list of 
arguments (case 2). The first clause returns the argwnent itself if the input list contains just one argwnent 
Next, Prolog backtracking is used to split the list of arguments in three sublists such that an equation can be 
applied to the middle one (which contains at least two elements). If this succeeds the result is converted to 
a list which is inserted between the two other lists after which application of the associative operator is 
retried. Finally, the last clause defines the catch-all rule for associative operators. Note that in case of a 
non-confluent specification of an associative operation the definition of split and append determine 
which of the normal forms of a term is returned by the generated code. 

The assoc_flat predicate flattens the arguments of an associative operator (case 3). 

The code generated for the specification of natural nwnbers and finite sets of natural nwnbers given 
in Section 3.1 is the following: 

/ * >>> Equations 

plus (N , [zero , N_ List)) 
:- assoc_arg(plus , N, N_1is t) . 

plus (Res , [succ(Nl) , N2 List]) 
a ssoc arg(plus, N2, N2 List) , 
assoc-fl at(plus, (Nl , N2], Listl), 
assoc=all(plus , Listl, Templ), 
s ucc(Res , Templ). 

mult(Re s , Input) 
assoc_decomp(mult , Input , N, (zero]) , 
ze r o (Re s) . 

<<< */ 

/ * [1] */ 

/* [2] */ 

/* [ 3) * / 
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mult(Res , Input) 
assoc_decomp(mult , I nput , Nl , [s ucc (N2)) ) , 
assoc_flat(mult , [Nl , N2) , Listl) , 
as soc_all (mult , Listl , Templ) , 
assoc flat(plus , [Templ, Nl) , List2) , 
assoc=all(plus , List2 , Res) . 

add(Res , N, add(N , S)) 
: - add (Res , N, S) . 

add(Re s , Nl , add(N2 , S)) 
: - add (Templ , Nl , S) , 

add(Res , N2 , Templ) . 

union (S , [empty , S_List)) 
: - assoc_arg(union , S, S_Li st) . 

union (Res , [add (N , Sl) , S2 List)) 
assoc arg(union , S2 , - S2 Li st ) , 
assoc=flat(un i on, [Sl, S2] , Li stl ) , 
assoc all(union , Lis t l , Temp l) , 
add(Res , N, Templ) . 

/ * >>> Catch-al l 

zero (ze r o) . 
succ (succ (Xl) , Xl) . 
empty (empty) . 
add(add(Xl , X2) , Xl , X2) . 

/ * [ 4 ) */ 

/* [5 ) */ 

/* [6J */ 

/ * [7] */ 

/* [8] */ 

<<< */ 

The generation of code for an algebraic specification with associativity is an extension of the method 
described in Section 2.4 for standard algebraic specifications. The only difference as far as typechecking 
the specification is concerned is the flattening of terms which is done in this phase. Extensions of the two 
steps defined in Section 2.4. l give the code generation of one Hom-clause for each equation: 

1. The right-hand side of each equation is again decomposed in a list of predicates and a translated term. 
The predicates assoc_ flat and as s oc_all are used to reduce terms with associative operators to a 
normal form. 

2. To obtain matching modulo associativity the left-hand side not only contributes to the conclusion of the 
Hom-clause, but it also gives predicates with assoc_decomp and assoc_a r g in the conditions of the 
Hom-clause. 

The changes in both steps are now described in more detail. 

In the analysis of the right-hand side of the equation (step 1) the only change is the case of a term 
having an associative operator as head symbol: 
• t:f(tl , t2 , ... , tn) with n ~2andassoc(f): 

Let L " L 2, • • ·, Ln be the lists of predicates generated for the subterms tl , t2 , · · ·, tn, and let 
Tl , T2, · · · , Tn be the corresponding translated terms. The list of predicates for t is a concatenation 
of the lists L 1, L 2, • · ·, Ln, and the predicates as soc_fl at (f, [Tl , T2 , ... , Tn] , List) 
and ass oc_all (f , List , Va r ) added at the end ofit. The variables List and Var are both fresh 
Prolog variables, and Var is the translated term for t . 

The treatment of the left-hand side of the equation is not as easy as in Section 2.4.1. We have to distin
guish clearly between the handling of the head symbol of the left-hand side and the handling of its argu
ments: 

2a. A corresponding Prolog term has to be generated for each argument. We call this Prolog term the 
matching term of the argument. The variables in the arguments will be represented by their 
corresponding Prolog variables. We have to take care that their value after using Prolog unification and 
resolution of generated assoc_decomp and assoc_arg predicates is the term which the original vari
able would have had after matching modulo associativity. 

2b. The conclusion of the Hom-clause is constructed from the head symbol of the left-hand side and the 
matching terms of its arguments. If the head symbol is an associative operator the matching terms of 



13 

the arguments have to be put in a Prolog list as the second argument of the predicate. 

In case 2a the matching term in the standard code generation process was simply created by changing all 

variables into their corresponding Prolog variable. Now, we define for each term the matching term and a 

list of assoc_ decomp and assoc_a r g predicates using induction on the complexity of the term t: 

• t =x: 
The list of predicates is empty and the matching term is the Prolog variable that corresponds to the 

variable x . 

• t = c: 
The matching term of a constant c is c and the list of predicates is empty. 

• t = f (tl , t 2 , ... , tn) with n <:: 1 and not assoc( f ): 

The matching term of t is f (Tl , T2 , ... , Tnl, where Tl, T2, · · · , Tn are the matching terms of 

tl , t 2, · · · , tn. The list of predicates for t is simply a concatenation of the lists for 

tl , t 2, · · ·, tn. 
• t=:f(tl , t2 , ... , tn) with n <::2andassoc( f ): 

Now we create the matching term and the list of predicates for the arguments a = [ t 1 , t 2, ... , 

t n J and the associative operator f as follows: 
• a= [tl , t2 , ... , t n ] withn~2: 

Let the matching term of [ t 2 , . . . , t n J be T r , and let the list of predicates be L r. 

- If t 1 is a variable x and the Prolog variable which corresponds to x is x, then the list of 
predicatesfor a isL r withassoc_decomp(f , Va r , x, Tr) addedattheend. Hereva r 

is a fresh Prolog variable which is also the matching term of a. 

- If t 1 is not a variable and the matching term for t 1 is T 1 and the list of predicates is L 1, 

then the list of predicates for a is a concatenation of L r and L 1• The matching term for a is 

[Tl l Tr ). 
• a:: [tl ] : 

- If tl is a variable x, the list of predicates for a is assoc_arg (f, x, Var J where x is the 

Prolog variable which corresponds to x. The matching term of a is a fresh Prolog variable 
Var. 

- If t 1 is not a variable and the matching term for t 1 is T 1 and the list of predicates is L 1, 

then the list of predicates for a is L 1 and the matching term for a is [ T l J . 

If Res is the translated term from the right-hand side of the equation the conclusion of the Hom-clause 

(step 2b) is generated from the left-hand side t as follows: 

• t =:c: 
If the left-hand side is a constant c the conclusion is c (Res) . 

• t=:f(tl , t2 , ... , tnl withn<::landnotassoc(f ): 
The conclusion is f (Res , Tl , T2 , . . . , Tn l, where the Ti are the terms which correspond to 

the arguments t i as defined in step 2a. 
• t =: f (t l , t2 , ... , tn) with n ~ 2 and assoc( f ): 

The conclusion is f (Res , Tr l , where the Tr is the term which corresponds to the list of arguments 

[tl , t2 , ... , tnJ asdefinedinstep2a. 

As the catch-all rule for associative operators is already incorporated in the definition of assoc_all these 

rules only need to be generated for non-associative functions. 

Finally, the decomposition of input terms to Prolog questions and the handling of conditional equa

tions is similar to the way it was done in Section 2.4. 
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4. Algebraic specifications with lists 

4.1. Example 

As an example of a specification with lists, we present a specification in which natural numbers are 
modeled as non-empty lists of digits, and (finite) sets of natural numbers as lists of natural numbers. The 
number 3524 is, for instance, represented as na t ( [ 3, 5, 2, 4 J ) . The set ( 12, 336} is represented as 
set([nat([l, 2]) , nat([ 3, 3, 6J)J) andtheemptysetasset ([J) . Equation [ l J serves to 
remove leading zeros of numbers. Identical elements in sets are removed in [ 13 J. and the irrelevance of 
the order of elements is expressed in [ 14 J . 

module Natural-Numbers 
begin 

exports 
begin 

sorts DIGIT, NAT, SET 
functions 

0 -> DIGIT 

9 -> DIGIT 
nat DIGIT+ -> NAT 
succ NAT -> NAT 
set NAT* -> SET 
union SET # SET -> SET 

end 

variables 
k , kl, k2 -> DIGIT+ 
m -> DIGIT* 
n - > NAT 
xl, x2 -> NAT+ 
yl , y2, y3 - > NAT* 

equations 

[1] nat([O, kJ) - nat([k]) 

[2J succ (nat ( [m, OJ)) - nat ( [m, lJ) 

[10] succ(nat([m, 8])) - nat([m, 9J) 
[11] succ(nat([9J)) - nat([l, OJ) 
[12J succ(nat([kl, 9J)) - nat([k2, OJ) 

when succ(nat(kl)) ~ nat(k2) 

[13] set([yl, n, y2, n, y3] ) - set([yl, n, y2, y3]) 
[14] set ( [xl, x2]) - set ( [x2, xl]) 

[15] union(set(yl), set(y2)) - set([yl, y2]) 

end Natural-Numbers 

4.2. Definitions 

An algebraic specification with lists <l:, E> consists of an extended signature l: and a set of (possibly con
ditional) equations E over l:. An extended signature l: i= <St• Ft> contains a set of sort symbols Sr. and a 
set of function symbols Fr.· Unlike the typing function in standard signatures, the typing function in 
extended signatures may also use "starred" and "plussed" sorts in its input type. Hence, the implicit typ
ing function is now defined from FI to {s , S* , s+ Is e Stl• x SI. The sorts of the fonn S* and s+ are 
called iterated sorts. 

To prevent the user of the specification fonnalism from changing the semantics of iterated sorts we 
forbid their use as the output sort of functions. It is also forbidden to use them as the sort of any equation 
in the specification. This is done because the names S* and s+ suggest that these sorts contain only itera
tions of elements of son s and none of these lists can be identified. To illustrate this, we could remove the 
sort NAT from the above specification and replace it by DIGIT+. The declaration of the function nat would 
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then disappear and equation [ 1 J would become 

[1' l [ 0 , k) - [k) 

meaning that a list of digits starting with a zero is identical to the same list without the zero at the begin
ning. The semantics of DIGIT+ would have changed and if one wants to use this plussed sort elsewhere 
one has to be aware of these changes. We believe that this is not desirable. 

Given an extended signature ::E =<Sr,, Fr.> and a set of typed variables X we can define the set of 
terms over such a signature. As can be seen from the above example variables are allowed to be of an 
iterated sort. In the sequel we will use s, Sl, 52, · · · to denote the usual sorts of the specification (the 
elements of Sr.) and T, Tl , T2, · · · to denote possibly iterated sorts. We define the sets Tt(X), Ti* (X), 
Tf: (X) of terms of respectively sorts, starred son S*, and plussed sorts+. Tt{X) is the smallest set such 
that: 
o x is an element of Ti(X) for each variable x: -> s . 
• c is an element of Ti(X) for each (constant) function c: -> s. 
• For each function f: T 1 # T2 # • • . 4t Tn -> s with n ~ 1 and for all terms t 1 e TP (X), 

t 2 eTf2 (X), ···, tne Tf"(X)wedefine f( tl, t2, ••• , tnl tobeanelementofrf,(X). 

Tf (X) is the set such that: 
o x is an element of Tf (X) for each variable x: -> s * or x: -> s+. 
•The list [t l , t 2 , ... , tn J where n~O is an element of Tf(X) if t ie Ti(X) holds for all 

1 ::;; i ::;; n, or ti is a variable of type S* or s+. 

Ti· (X) is the set such that: 
o x is an element of Tf'{X) for each variable x: -> S+. 
• [t l , t 2 , ... , tn J with n ~ 1 is an element of Tf'(X) if tie Ti(X) holds for all 1 Si Sn, or ti is 

a variable of type S* or s+. At least one of the ti should not be a variable of type S*. 

The set of all terms over regular sorts (i.e., excluding terms of iterated sorts) is denoted by 
Tr,(X) = u Ti(X) and the set of all terms (including lists) is denoted by Ti:• (X). 

s e s, 

Note that it is no longer possible to assign a unique type to each term. For each sort s 
n,· (X) c Ti:: (X) and the empty list [ J is an element of Tf' (X) for any s *. On the other hand, all lists can 
only occur within a context which can be used to disambiguate the type of a term. In algebraic 
specifications with lists we could also allow overloading of function symbols and still assure unique typing 
of terms which are not lists. Now, functions with identical names and overlapping input types should be 
forbidden. Input types are overlapping if they consist of the same number of (regular or iterated) sorts and 
for each pair of corresponding positions the following holds: 
• identical sorts s appear at both positions, or 
• a type s + in one position corresponds to S* ors+ at the other position, or 
• a type s * corresponds to s+ or s * or another starred sort s 1 *. 

The set of all (possibly conditional) equations E consists, once again, of equations of which the types of 
left-hand side and right-hand side are identical. As stated before, it is forbidden to construct equations over 
iterated sorts. In short, the set of unconditional equations of type s e S'E. is Eq5 = Ti(X) x Ti(X) and the set 
of all (possibly conditional) equations Eis a subset of Eq x Eq•, where Eq = u Eq5

• 

s e S, 

An assignment p : X ~ Ti• (X) is a function which assigns to each variable a term over the given 
extended signature :E. The type of p(x) has to be equal to the type of x if x is of type s or s+. For x : -> 
S* the type of p(x) should be S* or s+. The extension of p :X--+ Ti;.(X) to the complete set of terms 
(p: Ti,.(X) ~ Ti;'(X)) is defined by: 
• For each (constant) function c: - > s we define p(c) =c. 

• Forallfunctionsf: Tl # T2 # ••• # Tn - > s withn~l pisdefinedbyp(f (tl , t2, ... , 
tn)) = f <p(tl), p(t2), ... , p(tn)). 

• For the empty list we define: p( [ J ) = [ J . 
• Finally, fornon-empty lists [tl , t2, ... , tn J with n ~ 1 which are an element ofTf (X) or Tf.(X} 

supposep( [t 2 , ... , tnJ)= [sl, s 2 , . .. , sm] withm~n-1. Therearetwopossibilities: 
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• If p(t l) is an element of Ti(X), or a variable of type S* or s + then p( [tl, t2, ... , 
tn l ) = [p(tl), sl , s2, ... , sm) 

• Ifp(t l )isanelementofTf(X)orTt+(X)oftheform [ul, u2, ... , uk J withk~Owedefine 
p( [tl , t2 , ... , t n l )= [ul, u2, ... , uk, sl, s2, ... , sm] 

4.3. Semantics 

The semantics of an algebraic specification with lists <I:, E> is defined by giving a translation of the 
specification to an algebraic specification with associativity <I', E', assoc>. For each sorts of which an 
iterated variant occurs in the original specification, new sorts s-star and S-plus are added. Further
more, for all such sorts s we add standard functions for the empty list (empty-S), injections from sort s 
into S- plus and from S-pl us into S-star, and concatenation functions for lists. To define the semantics 
of these functions some extra equations are necessary. The following (parameterized) specification shows 
how this is done: 

module Lists 
begin 

parameters 
Sort begin 

sorts S 
end Sort 

exports 
begin 

sorts S-pl us , S-star 
functions 

in j s 
c -pp S-plus # S-pl us 
empty-S 
i n j S-plus 

c-ps S-plus # S-star 
c - sp S-star # S-plus 
c-ss S-star # S-star 

end 

variables 
sp, spl, sp2 -> S-plus 
SS -> S-star 

equations 

-> S-plus 
-> S-plus 
-> S-star 
-> S-star 

-> S-plus 
- > S-plus 
-> S-star 

[1] c-ps(sp, empty-S) - sp 

{aaaoc} 

{aaaoc} 

[2] c-ps(spl, inj(sp2)) - c-pp(spl, sp2) 

(3] c-sp(empty-S, sp) = sp 
[4 ] c-sp(inj(spl), sp2) = c-pp(spl, sp2) 

[5 ] c-ss(ss, empty- S) - ss 
[6] c-ss(empty-S, ss) ~ ss 
[7] c-ss(inj(spl), inj(sp2)) - i n j (c-pp(spl, sp2)) 

end Li sts 

The typing of function symbols and variables has to be changed such that all occurrences of s * and s + are, 
respectively, replaced by s-star and S- plus. Finally, all terms which occur in the equations E of the ori
ginal specification have to be translated to terms over the new specification with associativity. The transla
tion t: Ti'(X) ~ Tt'(X). is given by defining the projections t'T for all sorts T. The translation t 5 is defined 
such that for all terms t e Ti(X): t 5 (t ) e Jt•(X): 
• t 5 (x) = x for each variable x: - > s . 
• t 5 (c) = c for each (constant) function c: -> s. 
• t 5 (f (tl , t2 , ... , t n))s f (tT1 (tl), t T2 (t 2), ... , t 70 (tn) l for each function f: Tl # T2 # 

• . . # Tn - > S with n ~ 1. 

For all terms t e Ti" (X) the translation t 5 • is defined such that 'ts. (t) e Tt••t ar (X): 

• t 5 .(x) =x foreachvariablex: - > S* . 
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• 'ts. (x)= inj(x) foreachvariablex: -> s+. 

• 't5 • ( [] ) = empty- S. 
• 't5 . ([t l , t2 , . .. , tn ]) :inj('t5 . ([ tl , t 2, 

not a variable of type s *. 
... , tn] )l if at least one of the ti (l ~ i ~ n) is 

o t 5 . ([ x l , x2 , ... , xn] ):c-ss(xl, 't5 . ([x2, ... , xn ] )l ifforalll~ i ~ nXi : -> S* . 

For all terms t e Tt (.X) the translation t 5 • is defined such that 't~ , (t ) e Tt;plus (X): 

• 't5 . (x)= x foreachvariablex: -> S+. 
• t 5 .([ tl , t 2 , ... , tnl) :c-ps(inj('t5 (tl ) ) , 't5 .([ t2 , ... , tnl)) if tlE Ti{X)andn<::l. 

• t 5 . ( [x , t2 , ... , tn J) =c-ps(x, 't5 . ([t2, ••. , tn ] )l if x : -> S+ and n <::l. 

• t 5 .([ x , t 2 , . .. , tn J):c- sp(x, 't5. ([t2, ... , t nJ)l ifx: -> S* andn <::2. 

4.4. Implementation in Prolog 

It turns to be impossible to use the translation semantics for * Wld + given in the previous section directly 
in an implementation. Problems occur in equations in which variables of starred sons occur. The transla
tion of equation 

[2J succ(nat ([m, OJ))• nat([m, 1 ] ) 

of the example of Section 4.1 would give: 

[2] succ(nat(c-sp(m, c -ps( inj(O) , empty-D IGIT)))) 
= nat(c-sp(m, c-ps(inj(l), empty-DIGIT))) . 

The translation of the term succ (nat ([OJ) l which is s ucc (nat (c-ps (in j (0) , empty-DIGIT) l l 
cannot match the left-hand side of the translated equation. The same holds for the translation of 
s ucc (nat( [l, 0] )) whichis succ(nat(c-ps(inj(l) , inj(c-ps(inj(O), empty-DIGIT))))). 
Even reducing both sides of the translated equation [ 2 J using the equations of module Lists as given in 
Section 4.3 gives no solution: 

[2J s ucc(nat(c-sp(m, inj(O) ))) • nat(c-sp(m, inj(l))) . 

A possible solution would be to double each equation in which a variable of a starred son occurs, into an 
equation for the empty case and an equation with the variable of the corresponding plussed son. In this 
example this would give: 

[2a J succ(nat([O J )) - nat([l ] l 
[2b ] s ucc (nat ( [m, OJ)) - nat ( [m, 1]) 

where m: - > DI GI T+. 

It is much easier to translate lists into Prolog lists. The only problem is the head-tail-like decomposi
tion of lists in Prolog which makes it necessary to use the append predicate in the implementation of the 
more general lists as defined here. When rewriting with lists the following changes are relevant: 

1. In the construction of legal terms given in Section 4.2 we forbid lists as arguments of a list. As a conse
quence, we have to be careful that no lists as arguments of lists occur during list construction. Hence, 
in the decomposition of the right-hand side we have to generate append predicates to join lists. 

2. To match a given list with the left-hand side of an equation we must be able to split the given list in 
arbitrary parts. We also use the append predicate for this. 

As an example we present the code generated for the example of Section 4.1: 

/ * >>> Equations 

nat (Res , [ ' 0 ', K Headl K Tail]) 
: - nat (Re s , [K_Headl K_TailJ) . 

succ(Res , nat( Input )) 
append (M, [ ' 0' ] , Input), 
' l ' (Templ) , 
append( M, [Templ] , Temp 2) , 

__ _ --; ,,.-:..:._.~ 

<<< * / 

/ * [1] */ 

/ * [2J */ 
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nat( Res , Temp2) . 

succ(Res , nat(Input)) 
append(M, [ ' 8'] , I nput) , 
' 9 ' (Templ) , 
append (M, [ Templ] , Temp 2) , 
nat(Res , Temp2) . 

succ (Res , nat ( [ ' 9 ' J)) 
' 0 ' (Templ) , 
' l ' (Temp2) , 
nat(Re s , [Temp 2, Templ ] ). 

succ(Res , nat(Input)) 
append([Kl Headj Kl Tail ] , [ '9' ] , I nput), 
nat(Templ , - [Kl Hea dJ Kl Ta il] ), 
succ(Temp2 , Teiiipl) , -
Temp2 = nat([ K2 He a dj K2 Tail]) , 
' 0 ' (Temp3) , - -
append([K2_Headj K2_Ta i l ] , [Temp3], Temp4 ) , 
nat (Res , Temp4) • 

set (Res , Input) 
app end (Yl , [ NI Il] , I nput ) , 
append(Y2 , [ ~ Y3] , Il) , 
append(Y2 , Y3 , Templ ) , 
append (Yl , [ NI Templ] , Temp2) , 
set (Res , Temp 2) . 

/* (10] */ 

/* (11] */ 

/* (12] */ 

/* [13] * / 

set (Res , I nput) /* (1 4 ] * / 
apper.d ( [Xl He a d l Xl Tail] , [X2 Headl X2 Tail ] , Input) , 
append ( [X2=Headl X2=Tail ] , [Xl=Headl Xl=Ta il] , Te mpl) , 
set(Res , Templ) . 

union(Res , set(Yl) , s et (Y2 )) /* (15] * / 
append(Yl , Y2 , Templ ) , 
set(Res , Templ) . 

/ * >>> Catch- all <<< *I 

, 0 ' ( ' 0 ' ) . 

, 9 ' ( , 9 ' ) . 
nat (nat (Xl) , Xl). 
succ (succ (Xl) , Xl) . 
set (set (Xl) , Xl) . 
union (union (X l , X2) , Xl , X2 ). 

In general, the code generation process is again an extension of the two steps described in Sections 
2.4.l and 3.4. So far, we added to each variable occurring in an equation a corresponding Prolog variable 
in the typechecking phase. To prohibit variables of a plussed sort from matching an empty list we add an 
expression [Headl Tail J to each such variable. Of course, the Prolog variables Head and Tail are dif
ferent for each variable. So, instead of a list of variables with their corresponding Prolog variables we now 
generate a list of corresponding Prolog expressions. 

In the decomposition of the right-hand side of the equation (step 1) the list of predicates and the 
translated term need to be defined only in case the tenn is a list: 

• t = (] : 
The list of predicates to be generated is empty and the translated term is the empty list [ J • 

•t= [tl ] : 

- If t 1 is a variable x of an iterated sort then the translated term of t 1 is the expression which is 
associated to it in the typechecking phase. Hence, if x is of a starred sort it is the Prolog variable 
associated to x , and if x is of a plussed sort it is an expression of the form [He adl Ta il J • In this 
case the generated list of predicates is empty. 
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- If t 1 is not a variable of an iterated sort and the translated term for t 1 is T 1 and the list of predi

cates is L 1 then the list of predicates for [ t l l is L 1 and the translated term for [ t l J is [ Tl J • 

• t = [t l , t 2 , .. . , t n ] withn ~ l: 

Let the translated term of [ t 2 , . .. I t n l be T r' and let the list of predicates be L r . 

- If t 1 is a variable x of an iterated sort and the Prolog expression which corresponds to x is Tx then 

the list of predicates for t is l r with append (Tx, Tr, Var ) added at the end. Here Var is a 

fresh Prolog variable which is also the translated term oft. 

- If t 1 is not a variable of an iterated sort and the translated term for t 1 is T 1 and the list of predi

cates is l 1 then the list of predicates for t is a concatenation of L r and l 1. The translated term for 

t is [T l l Tr ] . 

1n handling the left-hand side of an equation (step 2) we only need to describe what has to be done if lists 

occur in the arguments of the left-hand side. Remember, that it is forbidden to construct equations over 

iterated sorts and therefore lists can never occur as the left-hand side of any equation. This should, by the 

way, be checked while typechecking the specification. The construction of the matching term and the list 

of predicates which take care of matching modulo lists is identical to the construction of the translated term 

given above and the list of predicates for terms in the right-hand side of equations. 

The handling of conditional equations is similar to what is done in Section 2.4.2. The only differ

ence in the treatment of input is that we cannot handle terms in which variables of iterated sorts occur. 

These terms are simply forbidden in the input. 

5. Applications 

As mentioned in the introduction adding lists and associative functions to an algebraic specification formal~ 

ism is a necessary step in combining the formalisms ASF and SDF. Several specifications have been writ

ten in (preliminary versions of) the combination of these formalisms: 

• The typechecker for a sublanguage of ML (Mini-ML) in [Hen89]. 

• The static and dynamic semantics of the toy language PICO [Chapter 9 ofBHK.89). 

• The typechecker and interpreter for a simple programming language ASPLE, the dynamic semantics of 

the machine language SML, and a compiler from ASPLE to SML [Meu88]. 

An SDF-specification is a combination of the abstract syntax (in the form of a signature) and the concrete 

syntax ( in the form of BNF-rules, read in reverse order) of a language. Hence, each SDF-specification 

implicitly defines a lexical analyzer and a parser for the language it defines. A specification in the com

bined ASF/SDF formalism can be reduced to an algebraic specification in ASF as follows: 

• replace each SDF-definition by its underlying signature; 

• parse all equations using the grammar defined by the SDF-definitions and replace each equation by the 

result of this parse (the result is an equation containing terms in prefix form instead of arbitrary strings). 

As an example of the combination of both formalisms we give, once again, a specification of the natural 

numbers and (finite) sets of natural numbers: 

modu1e Natura l - Numbers 
begin 

exports 
begin 

sorts NAT , SET 
lexical syntax 

[ \t \ n\ r ] 
[ 0 - 9] + 

context-free syntax 
succ II ( 11 NAT " ) II 

" {" {NAT ", "} * "}" 
SET " +" SET 
" (" SET " ) " 

end 

variab1es 
k , k l , k2 -> CHAR+ 

-> LAYOUT 
-> NAT 

- > NAT 
- > SET 
-> SET {•••oc) 
- > SET {bracket) 
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m 
n 

-> CHAR* 
-> NAT 

xl, x2 -> NAT+ 
yl , y2, y3 - > NAT* 

equations 

(1) nat(O k) = nat(k) 

[2) succ(nat(m 0)) - nat (m 1) 
[3) succ(nat (m 1)) = nat(m 2) 
[4) succ(nat (m 2)) nat(m 3) 
[5] succ(nat(m 3)) nat(m 4) 
[6] succ(nat(m 4)) nat(m 5) 
[7] succ(nat(m 5)) = nat(m 6) 
[8] succ (nat(m 6)) nat(m 7) 
[9) succ(nat (m 7)) - nat(m 8) 
[10 ] succ(nat(m 8)) nat(m 9) 
[11] succ (9) 10 
[12 ) succ (nat(kl 9)) = nat(k2 0) 

when succ(nat(kl)) - nat (k2) 
[13] {yl , n, y2, n, y3) - {yl, n, y2, y3} 
[14] {xl , x2) - {x2, xl) 

[15 ) {yl) + {y2) - {yl, y2) 

end Natural -Numbers 

An SDF-specification consists of at most five components (four of which can be found in the above exam
ple): 
• The sorts section contains the names of the non-terminals of the grammar which can be derived from 

an SDF-specification. These names are also the names of the sorts in the derived signature. 
• The 1exical. syntax section incorporates the specification of a regular grammar which is used to 

generate a lexical analyzer. It contains one or more function declarations each consisting of a regular 
expression and a result sort. The sort LAYOUT is predefined and functions with output son LAYOUT do 
not contribute to the derived regular grammar or the derived signature. Character classes like [0-9) 
and [a-zA-ZJ are used to abbreviate the lexical definition. A sort or character class followed by a * 
stands for zero or more repetitions of the sort. A + stands for one ore more repetitions. 

• The context-free grammar can be extracted from the context-free syntax section. Each rule in 
this section (except from the functions which are furnished with the bracket-attribute) adds informa
tion to the derived signature. The notations {SORT "t" l * and {SORT "t" } +are used to denote lists 
of elements of SORT separated by the symbol "t ". By extending signatures with * and + as described 
in Section 4 each rule will correspond to exactly one function in the derived signature. 

• In the priorities section the precedence of the rules in the context-fr- syntax section can be 
specified in order to disambiguate ambiguous sentences. In the above examples this section is absent. 

• The variab1es section defines the variables which may be used in the equations section. 

6. Conclusions 

As mentioned in the introduction, lists and associative functions do not add expressive power to an alge
braic specification formalism, but especially the use of lists gives more elegant specifications which are 
easier to read. Both features are implemented in the ASF system IHen88] using the given algorithms. To 
declare a function to be associative evidently causes an increase in execution time as well as in generation 
time. However, rewriting modulo associativity gives a more powerful implementation for specifications 
with associative functions. The implementation of lists is reasonably fast as long as the head-tail-like 
decomposition of lists in Prolog can be used. From the specification point of view other decompositions of 
lists are desirable and it is very useful to have an implementation for them. An elegant combination of 
term rewriting and string rewriting as proposed here is desirable. 
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