
Centrum
voor

Wiskunde
en

lnformatica.
Centre for Mathematics and Computer Science

P.R.H. Hendriks

Lists and associative functions in algebraic specifications
- semantics and implementation -

Computer Science/Department of Software Technology Report CS-R8908 March

1989

Centrum voor Wiskunde en lnformatica
Centr~ for Mathematics and Computer Science

P.R.H. Hendriks

Lists and associative functions in algebraic specifications
- semantics and implementation -

Computer Science / Department of Software Technology Report CS-R8908 March

. •-: .< --_:

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N .W.O.) .

Copyright © Stichting Mathematisch Centrum, Amsterdam

Lists and Associative Functions in Algebraic Specifications
- Semantics and Implementation -

P.R.H. Hendriks
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Adding lists and associative functions to an algebraic specification formalism will not add expressive
power because both features are definable in such a formalism. In contrast, it is possible to generate
more powerful implementations for speclflc:ations If these features are present.

Key Words & Phrases: Software Engineering, Algebraic Specification, Associativity, List, Specification
Language, Term Rewriting, String Rewriting, Executable Specification, Prolog.

1985 Mathematics Subject Classification: 68N20 [Softw1re]: Compilers and generators; 68050 [Theory
of computing]: Grammars, rewriting systems; 68065 [Theory of computing]: Abstract data types.

1987 CR Categories: D.2.1 [Software Engineering]: Requirements/Specifications; D.3.1 [Program
ming Languages): Formal Definitions and Theory; D.3.3 [Programming Languages]: Language Con·
structs • Abstract data types; D.3.4 [Programming Languages]: Processors; F.3.1 [Logics and Mean
ings of Programs]: Specifying and Verifying and Reasoning about Programs • Specification tech·
niques; F.3.2 [Logics and Meanings of Programa]: Semantics of Programming Languages· Algebraic
approaches to semantics.

Note: Partial support received from the European Communities under ESPRIT project 348
(Generation of Interactive Programming Environments - GIPE).

Note: This paper will be submitted for publication elsewhere.

1. Introduction

1

Standard algebraic specifications only support the use of fixed arity functions, but using functions with
iterated sorts in their input type often gives more elegant specifications. An iterated sort s * or s+ indicates
an argument of a function in which, respectively, zero or more terms, or one or more tenns of the same sort
s are allowed. Some examples of such functions are:
• natural numbers as lists of one or more digits:

nat : DI GIT+ - > NAT,

• tables which are a list of zero or more pairs of keys and their corresponding entries:
p a i r : KEY t ENTRY-> PAIR table: PAIR* - > TABLE,and

• programs (in some simple programming language) which are defined as a list of one or more declara
tions followed by a list of zero or more statements:

p rog : DECLARATI ON+ # STATEMENT* -> PROGRAM.

Such lists of terms of the same sort are, of course, definable in standard algebraic specification formalisms.
Consequently, these list operations will not add expressive power to the formalism. On the other hand, use
of these lists improves readability of specifications in many cases (see Section 4.1 for an example).

It is possible to generate code from an algebraic specification automatically if it is viewed as a tenn

Report CS-R8908
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

rewriting system: each equation is read as a rewrite rule from left to right. In this setting one has to choose
a bias in the representation of lists to create a confluent and terminating term rewriting system. As a conse
quence, auxiliary functions are needed if, for example, the first element as well as the last element of the
list have to be inspected. Suppose we want to specify natural numbers as lists of one or more digits and the
following head-tail-like representation of lists of digits is chosen:

inj DIGIT -> DIGIT-LIST
add : DIGIT t DIGIT - LIST -> DIGI T-LIST
nat : DIGIT-LIST -> NAT

Using this representation it is easy to specify how to remove leading zeros from a natural nwnber, but an
auxiliary function is needed to access the last digit of the list in order to express that the successor (succ :
NAT -> NAT) of a natural nwnber ending in 1 is identical to the same list of digits ending in 2. Due to the
fact, that lists as presented in this paper are flat structures, it is easier to write specifications from which
executable code can be generated. They provide an elegant tool to combine term rewriting with string
rewriting [Jan86].

Concatenation of lists is an associative binary operation. As a consequence, the semantics of alge
braic specifications with lists can be expressed in tenns of algebraic specifications with associativity. For
this reason, we will first discuss algebraic specifications with associative binary operators and their imple
mentation in terms of rewritting modulo associativity. Associativity of a binary function is denoted by
adding the assoc-attribute to it. This predicate is also available in the specification languages AXIS
[RC88], CEC [BGS88] and OBJ [FGJM85, GKKMMW88].

Research in lists and associative functions in algebraic specifications is not only inspired by the wish
to improve the elegance of specifications and the possibilities to generate code for such specifications. In
our case, it is also inspired by the wish to combine the Algebraic Specification Formalism ASF [BHK.89]
and the Syntax Definition Formalism SDF [Chapter 6 of BHK.89, HHKR]. Both formalisms were
developed as intermediate steps in the development of a language definition formalism. It is the goal of
ESPRIT-project 348 (GIPE - Generation of Interactive Programming Environments) to make a system
which can generate an interactive programming environment for a programming language from a formal
definition of that language. Lists and associativity of binary functions are both features which occur natur
ally in SDF. Their semantical consequences have to be handled in the algebraic specification formalism
and its implementation, however. As an example of an application of algebraic specifications with lists and
associativity we present a specification in the combination of ASF and SDF in Section 5.

A general discussion of algebraic specifications, their semantics and a general scheme to generate
implementations for them is given in Section 2. In Section 3 we describe the assoc-attribute, and the list
operations are added to the formalism in Section 4. Finally, Section 6 contains conclusions and some
remarks.

2. Algebraic specifications

2.1. Example

All examples in this paper are given in the Algebraic Specification Formalism ASF [BHK89] or extensions
of it. However, the ideas and techniques in this paper are independent of ASF. We now explain aspects of
ASF that will be used in the examples. Each specification in ASF is, ultimately, equivalent to a first order
signature and a set of (conditional) equations (see next section). ASF has several features to support modu
larization of a specification:

• Exports:
Each module may have an exports section consisting of a (possibly incomplete) signature. The
sorts and functions declared in this section are visible outside the module.

• Hidden sorts and functions:
Sorts and functions that are local to a module are declared in the sorts and functions sections.

• Imports:
The imports section contains the names of modules that have to be incorporated in a module. While
importing a module it is possible to bind its parameters, to rename its signature (see below) or to

3

perfonn a combination of these.

• Parameters:
Parameters are declarations of (possibly incomplete) signatures which are fonnal parameters of the

module. They are declared in the paramet e r s section (see for example Section 4.3). They can be

bound to actual sorts and functions of a module when the parameterized module is imported.

• Renamings:
Upon import of a module parts of the signature of the module can be renamed if changes in names of

sorts or functions are desirable to avoid, for instance, name clashes.

Throughout this paper we will use several algebraic specifications of natural numbers (NAT) and (finite)

sets of natural numbers (SET) as examples. In the following algebraic specification 0 is represented as the

constant zero and all natural numbers n greater than 0 are represented as succ < succ < . . . succ <zero)) l
with n repetitions of succ . In this specification addition (plus) and multiplication (mult) on natural

numbers are defined. The constant empt y stands for the empty set and all other sets are constructed by

adding an element to a set using the function add. Finally, the union operator on sets (union) is specified.

module Natura l -Numbers
begin

exports
begin

sorts NAT, SET
functions

zero - > NAT
succ NAT -> NAT
p l us NAT # NAT -> NAT
mult NAT # NAT -> NAT
empty - > SET
a dd NAT # SET - > SET
union SET # SET - > SET

end

variables
n , n l , n2 -> NAT
s , sl , s 2 -> SET

equations

[l] plus(zero , n) - n
[2] p l us(succ (nl) , n2) succ (plus(n l , n2))

[3] mult (n , z e ro) ze r o
[4] mul t (nl , s ucc(n 2)) pl u s(mul t (n l , n2) , n l)

(5] add(n , add (n , s)) - add(n, s)
[6] add(nl , add (n 2 , s)) = a dd (n2 , add (nl , s))

[7] union(empty, s) - s
[BJ union(add(n , sl) , s 2) - a dd (n , un ion(sl , s2))

end Natu ral-Numbers

Equation [5 J says that adjacent identical elements in a set may be replaced by a single occurrence of the
element. This has to be combined with equation [6 J (which states the irrelevance of the order in which the

elements are added to the set) to allow arbitrary occurrences of identical elements in a set.

2.2. Definitions

An algebraic specification <I., E> consists of a signature I and a set of (possibly conditional) equations E.

A signature I. = <Sr. . Fr.> consists of a set of sort symbols Sr. and a set of function symbols Fr, . An impli

cit typing function of Fr. to Si: x Sr. exists which assigns to each element f of Fr. an input type Sl # s 2 #

• • . # Sn where n ~ 0 and an output type s . Such a function will be denoted by f : Sl # s 2 # • . • #

Sn - > s. In most fonnalisms, overloading of function symbols is allowed, i.e., more than one typing of a

function symbol f E Fr. is possible. To assure unique typing of each tenn it is necessary that no functions

with identical name and input type exists. To simplify the theoretical description we here forbid overload

ing because this can be remedied by encoding the type information in the function names.

4

Let a set of typed variables X be given, i.e., to each variable x a unique type s e Sr. is attached and
this will be denoted by x : -> s. Given a signature I:= <Sr.. Fr.> we can define the set Ti(X) of terms of
type s over I: as the smallest set such that:

• x is an element of Ti(X) for each variable x: -> s .
• c is an element of Ti(X) for each (constant) function c: -> s.
• For each function f: s 1 t S2 t . . . Jt Sn -> s with n ~ 1 and for all terms t 1 e 711 (X),

t2 e 712 (X), · · ·, tn e 71n(X) we define f (tl, t2, ... , tn) to be an element ofTi(X).

The set of closed terms (terms without variables) of type s is denoted by Ti;. The set of terms Tr,(X) over I:
is the union of Tf.(X) for all s e Sr..

An unconditional equation of type s e Sr. over a given signature I:= <Sr., Fr.> is an element of
Eq5 = Ti(X) x Ti(X). It is denoted by s - t where s, t e Ti(X). The set of all (possibly conditional)
equations E in an algebraic specification <I:, E> is a subset of Eq x Eq •, where Eq denotes the set of
unconditional equations Eq = U Eq5

• Conditional equations with at least one condition are denoted by
s e St

s = t when sl = tl , s2 a t2, ... , sn - tn

An assignment p is a function which assigns to each variable of type s a term of the same type. ln
short: it is a function X--+ Tr,(X) such that p(x) e J1(X) holds for all x: - > s . Each assignment p can be
extended in a natural way to a function defined on the complete set of terms Tr.(X) such that it does not
change the type of a term:
• For each (constant) function c: -> s we define p(c) e c.
• For all functions f : Sl # 52 # •.• Jt Sn -> s with n <!: 1 p is defined by p(f (tl, t2, ... ,

tn)) = f <P(tl), p(t 2), ... , p(tn)l.

Now, we can give the axioms and rules of (conditional) equational logic, which may be used to construct
proof trees:

E}t = t

Et tl = t2
E.j- t2 tl

Ettl t2 Et t2
Et tl = t3

t3

E ± sl = tl E + s2 t2 E + sn ~ tn
E.j- f(sl, s2, ... , sn) - f(tl, t2, ... , tn)

Et s - t

E .j- p(s) p(t)

(s = t) e E
E.j-s = t

E .J- p(sl) = p(tl) E .J- p(s2) - p(t2)

(s = t when sl ~ tl, s2 - t2,

Et p(s) "" p(t)

... ,
Et p(sn) = p(tn)

sn - tn) e E

(Eql)

(Eq2)

(Eq3)

(Eq4)

(Eq5)

(Eq6)

(C-Eq)

which holds for all terms s , t, sl , s2, · · ·, sn, tl, t2, · · ·, tn e Tr,(X); for all functions f e Fr. and for
all assignments p :X--+ Tr,(X). Axioms and rules (Eql) through (Eq6) together constitute equational logic.
Rule (C-Eq) handles conditional equations.

5

2.3. Semantics

The most natural semantics for algebraic specifications is the initial algebra semantics. For an extensive
treatment of initial algebras we refer to [MG85]. In this section we only describe the main concepts.

Models of algebraic specifications are (many-sorted) algebras. A many-sorted algebra A is a struc
ture <SA, FA> which consists of a set of mutually disjoint non-empty sets SA (the carriers of A) and a set
of functions FA. (For a discussion of empty carriers in algebras we refer to [GM87].) Each element of FA
is a total function from a tuple of carriers of A to a carrier of A. Given a signature I:, a many-sorted :!:
algebra is an algebra of which SA and FA, respectively, consist of interpretations for the sorts and func
tions of the signature. A many-sorted :!:-algebra A is a model of a given algebraic specification <I:, E> if
the interpretation which assigns to each sort symbol s e SI an element of Sand to each function symbol
f e F :i:: an element of Fis such that the interpretation of all equations E holds in the algebra. Some exam
ples of algebras that are models of the algebraic specification given in Section 2.1 are:
• A1 = < (N, FS), (0, S, +, *, 0, Ee, u} > where N is the set of natural numbers and FS is the set of all

finite sets of natural numbers and the set of functions corresponds to the obvious interpretations of the
specified functions.

• A2 is the algebra similar to A1 where FS is replaced by the set of all sets of natural numbers S.
• A3 = <((N}, (S}), (z, s, p, m, e, a, u}> where the natural numbers as well as the sets are interpreted

as one element N and S respectively and all functions are trivial ones.

The algebra A1 is one of the intended models of the given specification. It contains no junk in contrast to
the algebra A2 in which, for example, the set of all odd numbers exists which has no denotation in the
specification. Also, A1 contains no confusion in contrast to A3 where the interpretation of two terms can be
equal while their equality cannot be proved from the equations in the specification.

A model of a specification without junk and confusion is the initial algebra of the specification. In
case of an algebraic specification in which each sort contains at least one closed term the initial algebra
exists. The term model <(Ti/=)5 , (f I f e F:i::)> is an example of the initial algebra of the specification
<I:, E>. Its carriers are the sets of closed terms Ti over l: in which terms are identified which belong to
the same congruence class defined by:

t l =t2 <=> Ef- tl=t2.

where +- represents (conditional) equational provability as defined in the previous section. The functions
in the term model are defined by

f([t l], [t 2], · · ·, [tn]) = [f(t 1, t2, · · ·, tn)I

where [t] is the congruence class to which a term t belongs.

2.4. Implementation in Prolog

This section describes one of the possibilities to implement an algebraic specification. The implementation
methods described here are used in the ASF system [Hen88]. It is a simple environment for compiling and
testing ASF specifications. An algebraic specification is viewed us a term rewriting system by interpreting
the conclusion of each equation as a rewrite rule from left to right which, in turn, is implemented in C
Prolog [PWBBP85]. For a more general overview of implementation strategies of algebraic specifications
we refer to [Chapter 5 of BHK89].

In the next section we discuss specifications with unconditional equations and in Section 2.4.2 the
implementation of equations with conditions is handled.

2.4.1. Implementation of equations without conditions

Before discussing the implementation we need some definitions. A term rewriting system <I:, R> consists
of a signature I: and a set of rewriting rules R, where R c u Ti;(X) x Ti(X). Rewriting rules are written

as s ~ t . A context (denoted by C[x]) is a term which contains a single occurrence of the variable x. The
result of substituting the term t e Ti(X) for the variable x: -> sin the context C[x] is denoted by C[t].
The rewriting rules of a term rewriting system <I:, R> give rise to reduction steps, as follows: s ~R t if

6

and only if a context C[x] exists such that s equals C[p(s l)] and t equals C[p(t l)] for some assignment p
and reduction rule sl ~ tl of R. The subterm p(sl) of s is called a redex. A term s is a normal form if
there is no term t such that s ~R t.

For a given term rewriting system <l:, R> several reduction strategies exist. They define for each
term t e Ti(X) a set of subterms of t which are redexes for R, and which rule of R has to be applied to
each of these redexes. An outermost reduction strategy only reduces redexes that are not subterms of
another redex of the term. An innermost reduction strategy reduces redexes that do not contain any other
redex. In both cases the order in which reductions ure performed can be varied. The most common vari
ants are leftmost strategies (which always choose the leftmost redex), and parallel strategies (in which all
outermost or innermost rcdexes are reduced simultaneously).

Several ways of implementing a term rewriting system in Prolog are known. In
[DE84, EY87, Wie87] several methods are described in which Prolog predicates model a certain reduction
strategy: in [DE84] Drosten and Ehrich give predicates for leftmost innermost reduction; the interpreta
tional approach of van Emden and Yukawa [EY87] yields a parallel outermost strategy and Wiedijk in
[Chapter 5 of BHK89, Wie87] gives a schematic overview of the different possibilities to implement a term
rewriting system in Prolog in this manner.

In contrast to the above-mentioned interpretational approaches, we generate faster code by using a
variant of the compilational approach described in [EY87], see also [Chapter 9 of BHK89]. This method
corresponds naturally to the way in which one would implement functions in Prolog. It regards each func
tion of the specification as a relation of its input and output. One of the major deficits of the compilational
approach is its leftmost innermost reduction strategy. This may cause non-termination even in case of
weakly terminating term rewriting systems (i.e., systems in which each term has at least one normal form).

The compilational approach of [EY87] has been modified because the original method can only han
dle specifications in which each equation is of the form f (t 1, t 2 , ... , tm > = t where
tl , t 2, · · ·, tm may not contain defined functions. Defined functions are functions which occur as main
symbol in the left-hand side of an equation. In [EY87] Prolog predicates are generated only for defined
functions. The implementation described here circumvents this constraint by generating predicates for all
functions and adding a "catch all"-rule for each function.

As an example, we first show the code generated from the specification given in Section 2.1.

/* >>> Equations

plus(N, ze r o, N) .
plus (Res , succ (Nll. , N2)

plus(Templ , Nl, N2) ,
succ (Res, Templ).

mult(Res , N, ze r o)
: - zero (Res) .

mult(Res , Nl, succ (N2))
mult (Templ , Nl , N2) ,
plus(Res , Temp l , Nl).

add (Res , N, add (N, S))
: - add(Res , N, S) .

add(Res , Nl , add (N2, S))
add(Temp l , Nl, S) ,
add(Res , N2, Templ).

union(S , empty, S) .
union(Res , add(N, Sl) , S2)

union(Templ , Sl , S2),
add(Res , N, Templ) .

/* >>> Cat ch-all

zero (zero) .

<<< * /

/ * (l] * /

/ * [2] */

/ * [3] * /

/* [4] * /

/* [5] * /

/ * [6] * /

/ * [7] * /
/ * [8] * /

<<< *I

s ucc (s ucc (Xl), Xl) .
plus(plus(Xl , X2) , Xl , X2).
mu l t(mu l t(Xl , X2) , Xl , X2).
empty (empty) .
add(add(Xl , X2) , Xl , X2) .
union(union(X l , X2) , Xl, X2).

7

For each n-ary function an (n + 1)-ary Prolog predicate is generated whose first argument is the output after
application of the function to the other n arguments. Each equation of the specification is translated to one
Hom-clause in Prolog. A catch-all rule is added for each function returning the normal form if no equation

is applicable.

A term that has to be reduced to normal form is translated into Prolog questions. For example, the
term mult (s ucc (zero) , plus (succ (zero), ze ro)) is translated into:

? - zero (Tl) , succ(T2 , Tl) ,
ze ro (T 3) , succ(T4 , T3) , ze ro (TS), plus(T6 , T4, TS),
mult (Res , T2, T6) .

The normal form succ (zero) of the term to be reduced is the value of the variable Res. It is also possible
to reduce open terms (i.e., terms with variables) as long as no values are given to the variables occurring in
such terms. A term like pl us (succ (succ (n l) , n2) l is translated into:

? - s ucc (Tl , n l) , succ(T2, Tl), p l us(Res, T2, n2).

The program will now return succ (succ (plus (n l , n2l)).

From the above example it is already evident that the generated code as well as the translation of
input terms can be optimized. The fact that some functions do not occur as head symbol in the left-hand
side of any equation may be exploited for optimizations. Other optimizations can be achieved by recogniz
ing identical subterms in right-hand sides of equations, or by remembering the normal forms of terms. We
will not discuss these optimizations here.

How can the above-mentioned code for an algebraic specification be generated? Each equation is
typechecked before a Hom-clause is generated for it. During typechecking the use of variables in the
equation is checked. It is impossible to generate code if the left-hand side of an equation is a variable or if
the right-hand side contains variables which do not occur in the left-hand side. (See the next section for
conditional equations in which case the latter might not be necessary). At the same time, we construct a
list of variables and their corresponding Prolog variables which are to be used in the code.

The code generation process itself consists of two disjoint parts:

1. The right-hand side of an equation is changed into a list of predicates (which will become the condi
tions of the resulting Hom-clause) and a translated term (which will contain the result of the computa
tion).

2. The conclusion of the Hom-clause is constructed from the left-hand side of the equation and the
translated term generated in step 1.

We will now describe these steps in somewhat more detail.

The conditions of the clause in step 1 are constructed using induction on the complexity of the term t
in the right-hand side of the equation:

• t :=x:
The list of predicates to be generated is empty and the translated term is the Prolog variable that
corresponds to the variable x •

• t = c:
The translated term of a constant c is a "fresh" Prolog variable Var (i.e., a Prolog variable which
has not been assigned to any of the variables in the equation and which has not yet been used in the
code generation process). The list of predicates contains just one element: the predicate c (Var).

• t:f(t l , t 2 , . .. , t n) withn:<!:l :
The translated term of t is, once again, a "fresh" Prolog variable Var. Let L 1, L 2 , • • ·, Ln be the
lists of predicates, respectively, generated for the subterms t 1, t2 , · · ·, tn, and, let Tl, T2 , · · ·, Tn
be the translated terms corresponding to these subterms. The list of predicates for t is a

8

""'! ·?".: ...-.._=---=~ -

concatenationofthelistsli.l 2, ... ,ln, andthepredicate f (Var, Tl , T2 , ... , Tn) addedat
the end of it.

In step 2 the conclusion of the Hom-clause is generated: if the left-hand side of the equation is of the form
f(tl , t 2 , . .. , tnl with n~ l the conclusion is f<Res , Tl , T2, .. . , Tnl , where Res is the
translated term from the right-hand side of the equation and the Ti are constructed from ti by changing
each variable into the corresponding Prolog variable. lf the left-hand side of the equation is a constant c
the conclusion is the predicate c (Res) .

Finally, for each function from the specification the catch-all rule is added. It consists for each n-ary
function symbol f of the Hom-clause f (f (X l , X2, ... , Xn) , Xl , X2, ... , Xnl .

The translation of an input term to a Prolog question is done similarly to the above-mentioned
method for decomposing the right-hand side of an equation. The only difference is the translation of a
variable x which is now translated into the variable itself (as a Prolog atom). If the program terminates, the
value of the translated term is one of the normal forms of the input term.

2.4.2. Implementation of conditions

In the ASF system [Hen88] the evaluation of conditions is determined by the way variables are used in the
corresponding equation. Let V be the set of variables used in the left-hand side of the conclusion of the
equation. The conditions are checked in the order in which they are specified. There are two kinds of con
ditions:

1. The condition contains only variables which are elements of V. Now, both sides of the condition will
be reduced to normal form and the condition succeeds if these normal forms are identical.

2. One of the sides of the condition contains only variables which occur in V. Upon execution of the gen
erated code this term is reduced to normal form and the other side of the condition has to match this
normal form. The new variables in the other side are added to V.

Finally, it is checked that all variables in the right-hand side of the conclusion of the equation are members
of the resulting set V. Hence, an error-message is given and no code is generated if in both sides of a con
dition or in the right-hand side of an equation variables are used which have not been introduced before.

How to generate the appropriate code for a conditional equation? For each condition a list of Prolog
predicates is generated and these lists are concatenated in order in which the conditions are given in the
equation. The list of predicates constructed in this way is added before the list constructed from the right
hand side of the conclusion of the equation as described in the previous section.

How to generate code for each of the conditions? This depends, of course, on the cases mentioned
above:

1. Both sides of the condition t 1 = t r will be decomposed in a list of predicates and a translated term as
described in Section 2.4.1. Let l 1 with Tl and l r with Tr , respectively, be the lists of predicates and
the translated terms for t 1 and t r. The code for this condition is a concatenation of L : and l r (in an
arbitrary order) followed by testing the literal equality ofTl and Tr: Tl == Tr.

2. Suppose the condition is tc - tn, where t c is the side of the condition which contains only variables
which where known and tn contains some new variables. Now tc is decomposed into a list of predi
cates l c and a translated term Tc as described in Section 2.4.1. All variables occurring in tn are
changed into their corresponding Prolog variable resulting in a Prolog term Tn. The code is the list l e
followed by a unification of Tc with Tn: Tc = Tn.

2.4.3. Soundness and completeness

The generated code is sound, i.e. for all (possibly open) terms t l and t2 the following holds: if the imple
mentation I returns t 2 as the result of evaluating t 1 (notation: eva/ 1(t 1) = t 2), then the equality of tl and
t 2 can be proved using the equations E of the specification. In short notation:

eva/1(t l) =t2 ~Et t l=t2

The proof of this is similar to the proof of the correctness of the compilational approach in [EY87].

More interesting is the question whether the converse (the completeness of the implementation)

9

holds. Or, more precisely, if two terms t 1 and t2 are given such that they can be proved equal using E,
can we use the implementation to show them to be equal? In short:

Et tl = t 2 => 3t eva/1(t l) = t "eval1(t 2) = t ?

In general, this is too much to hope for, because it is undecidable whether an equation is derivable from a
given set of equations. Incompleteness might be caused by non-termination of the implementation, non
conftuence, and the inability to decide conditions completely. For an extensive treatment we refer to
[Kap87].

3. Algebraic specifications with associativity

3.1. Example

To illustrate associativity in an algebraic specification we change the example given in Section 2.1 by using
the assoc-attribute to declare the associativity of the addition and multiplication on natural nwnbers and
the union operator on sets:

exports
begin

sorts NAT, SET
functions

ze ro - > NAT
succ NAT -> NAT
plus NAT t NAT -> NAT
mult NAT t NAT -> NAT
empty - > SET
add NAT t SET -> SET
un i on SET t SET -> SET

end

The equations of the specification are not changed.

3.2. Definitions

{assoc}
{aaaoa}

{aasoa}

An algebraic specification with associativity <l:, E, assoc> consists of an algebraic specification <l:, E>
and a predicate assoc defined on the set of function symbols FI. Here we will only describe associativity
for functions of the form:

f : s t s -> s

For functions with other typings it is either impossible to give a semantics for associativity or it is unclear
what its meaning should be. Given a function f : Sl t S2 i+ Sl - > Sl (with Sl '# S2) associativity
could standfortheequation f(xl , y l , f (x 2 , y2 , x3)) - f(f(x l, y l, x2) , y 2 , x3) where
xl , x 2 , x 3 : -> Sl and y 1 , y2: -> S2 . However, for a function g : s t S t s -> s it is ques
tionable whether it implies the equations: g (zl , z 2 , g (z 3 , z 4, z S)) = g (z l , g(z2 , z 3 , z 4) ,

z 5) = g (g (zl , z2 , z 3) , z4 , z5) where z l , z2, z3, z4, zS : -> S.

3.3. Semantics

The semantics of an algebraic specification with associativity <I:, E, assoc> is defined as the semantics of
the algebraic specification <I:, E'>, where E' is constructed by adding the corresponding associative law to
the set of equations E for each associative function . Hence, for each function f : s t s -> s for which
assoc(f) holds, the equation

f(x , f(y , z)) = f(f(x , y) , z)

is added (where x , y , z: - > s).

...0:::-.,,,,..,.... __ _

10

3.4. Implementation in Prolog

What is the advantage for code generation of the use of the aaaoc-attribute instead of the corresponding
associative law? When implementing the associative law in the same way as other equations one has to
choose a direction for it. In general a non-terminating term rewriting system results if the law is added as
the two rewrite rules

f (x , f(y, z))~f(f(x, y) , z)

and

f (f (x , y) , z) ~ f (x, f (y, z)) .

As a consequence, the associative law can only be used in just one direction when terms are rewritten. In
general both directions of the law are needed, however. By the way, in the example given above it does
not make any difference as long as one only reduces closed terms. All three associative operators are
defined here in such a way that all closed terms reduce to normal forms that do not contain them.

When generating code for a term rewriting system modulo associativity it is easier to handle an asso
ciative operator f: s # s -> s as a function f ' which has two or more arguments of sort s and output
s. Allterms are.fiattenedwhichmeansthattermslike f(a , f (b, e ll and f(f(a , b) , cl arechanged
into f ' (a , b , cl. Each occurrence of f is replaced by f' and all arguments of f whose head symbol is
also f is replaced by its arguments. A term with head symbol f ' has no arguments with f ' as head sym
bol.

When rewriting modulo associativity we have to consider the following three complications:

1. Matching of terms is different from standard matching. The left-hand side of a rewrite rule of the form
f ' (x , a) must match terms like f' (a, a l and f ' (b , b , a l . After matching, the value of x should
be a in the first example and f ' (b, b) in the second one.

2. We have to check whether a rewrite rule is applicable to the sublist of the arguments of an associative
operator f ' . Given a term f ' (a, b, cl it may be that a rewrite rule for f ' (b , cl exists but that
there are no rewrite rules for f ' (a, b l and f ' (a, b , cl itself.

3. When constructing a term whose head symbol is an associative operator f ' its arguments may not have
f ' as head symbol. Terms like f' (a, f' (b, cl) are forbidden and must be replaced by their
flattened variant f ' (a , b , c) .

In the implementation only flattened terms are used, and we will no longer add an accent ' to the function
name. Instead of the standard (n+l)-ary Prolog predicate which is generated for an n-ary function a binary
predicate is generated for associative operators. The arguments of f are put into a Prolog list which is used
as the second argument of the predicate. The first argument is still the output of the function after applica
tion of the function to its arguments. The normal form of a term in which an associative operator f occurs
is represented by a unary function f whose argument is also the Prolog list containing the arguments of the
associative operator.

For each of the above-mentioned three aspects of rewriting modulo associativity Prolog predicates
are needed. These predicates are identical for all associative operators and for this reason the correspond
ing code does not have to be generated. The first argument Name of each of the predicates is the name of
the associative operator. The code for these predicates is the following:

/* >>> General Predicates

as soc decomp(Name , Resul t, Te r m, Re st)
-append([Headl Tail] , Re s t, Result),

assoc_a r g (Name , Term, [Headl Tail J) •

assoc_arg (Name , Resul t, [Argl, Arg21 Args])
:- Result = .. [Name , [Argl , Arg21 Args]] ,

! .
assoc_arg (_, Term, [Te rm]) .

assoc_a l l (, [Term] , Term)

<<< */

: - ! .
assoc_ all(Name , Input, Result)

spli t (Ll , [L2 Argl, 12 Arg21 12 Tail] , L3, Input),
Pred = •. [Name, Res, [L2_Argl, - L2_Arg2l L2_Tail] J ,
Pred ,
I . ,
assoc arg(Name , Res, 12 New),
s plit(11 , L2 New, 13 , Input New),
assoc_all(Name , Input_New, Re s ult).

as soc all (Name, I nput, Res ult)
: - - Result= .. (Name, Input].

split([] , L2 , L3, List)
: - append(L2 , L3, List).

split ([Headl Tail], L2, L3 , (Headl Taill])
: - split(Tail, L2, L3, Taill) .

append([] , List , List).
append ([Headl Tail], List, [Headl Taill])

: - append(Tail, List, Taill).

assoc f l a t (, [) , [J) •
assoc-flat(Name, [Headl Tail], Result)

- Head = •• (Name , Ar gs],
I . ,
assoc_flat(Name, Tail , Taill),
append(Args , Taill, Resul t) .

a s s oc flat (Name, (Headl Tail], (Headl Taill J)
: - - assoc_flat(Name , Tail , Taill).

11

For term matching (case 1) the predicates assoc_arg and assoc_decomp are used. The predicate
assoc_decomp divides a list of arguments Re sult of an associative operator in a term Term and the rest
of the list Rest . It uses assoc_arg to change an associative operator and its arguments into the
corresponding term. If the list of arguments contains two or more elements the term returned is the associ
ative operator applied to its arguments. If the list contains only one term this term is returned.

To compute a normal form of an associative operator Name applied to its arguments Input, the
predicate ass oc _all is defined. It successively tries to apply an equation to each sublist of the list of
arguments (case 2). The first clause returns the argwnent itself if the input list contains just one argwnent
Next, Prolog backtracking is used to split the list of arguments in three sublists such that an equation can be
applied to the middle one (which contains at least two elements). If this succeeds the result is converted to
a list which is inserted between the two other lists after which application of the associative operator is
retried. Finally, the last clause defines the catch-all rule for associative operators. Note that in case of a
non-confluent specification of an associative operation the definition of split and append determine
which of the normal forms of a term is returned by the generated code.

The assoc_flat predicate flattens the arguments of an associative operator (case 3).

The code generated for the specification of natural nwnbers and finite sets of natural nwnbers given
in Section 3.1 is the following:

/ * >>> Equations

plus (N , [zero , N_ List))
:- assoc_arg(plus , N, N_1is t) .

plus (Res , [succ(Nl) , N2 List])
a ssoc arg(plus, N2, N2 List) ,
assoc-fl at(plus, (Nl , N2], Listl),
assoc=all(plus , Listl, Templ),
s ucc(Res , Templ).

mult(Re s , Input)
assoc_decomp(mult , Input , N, (zero]) ,
ze r o (Re s) .

<<< */

/ * [1] */

/* [2] */

/* [3) * /

12

mult(Res , Input)
assoc_decomp(mult , I nput , Nl , [s ucc (N2))) ,
assoc_flat(mult , [Nl , N2) , Listl) ,
as soc_all (mult , Listl , Templ) ,
assoc flat(plus , [Templ, Nl) , List2) ,
assoc=all(plus , List2 , Res) .

add(Res , N, add(N , S))
: - add (Res , N, S) .

add(Re s , Nl , add(N2 , S))
: - add (Templ , Nl , S) ,

add(Res , N2 , Templ) .

union (S , [empty , S_List))
: - assoc_arg(union , S, S_Li st) .

union (Res , [add (N , Sl) , S2 List))
assoc arg(union , S2 , - S2 Li st) ,
assoc=flat(un i on, [Sl, S2] , Li stl) ,
assoc all(union , Lis t l , Temp l) ,
add(Res , N, Templ) .

/ * >>> Catch-al l

zero (ze r o) .
succ (succ (Xl) , Xl) .
empty (empty) .
add(add(Xl , X2) , Xl , X2) .

/ * [4) */

/* [5) */

/* [6J */

/ * [7] */

/* [8] */

<<< */

The generation of code for an algebraic specification with associativity is an extension of the method
described in Section 2.4 for standard algebraic specifications. The only difference as far as typechecking
the specification is concerned is the flattening of terms which is done in this phase. Extensions of the two
steps defined in Section 2.4. l give the code generation of one Hom-clause for each equation:

1. The right-hand side of each equation is again decomposed in a list of predicates and a translated term.
The predicates assoc_ flat and as s oc_all are used to reduce terms with associative operators to a
normal form.

2. To obtain matching modulo associativity the left-hand side not only contributes to the conclusion of the
Hom-clause, but it also gives predicates with assoc_decomp and assoc_a r g in the conditions of the
Hom-clause.

The changes in both steps are now described in more detail.

In the analysis of the right-hand side of the equation (step 1) the only change is the case of a term
having an associative operator as head symbol:
• t:f(tl , t2 , ... , tn) with n ~2andassoc(f):

Let L " L 2, • • ·, Ln be the lists of predicates generated for the subterms tl , t2 , · · ·, tn, and let
Tl , T2, · · · , Tn be the corresponding translated terms. The list of predicates for t is a concatenation
of the lists L 1, L 2, • · ·, Ln, and the predicates as soc_fl at (f, [Tl , T2 , ... , Tn] , List)
and ass oc_all (f , List , Va r) added at the end ofit. The variables List and Var are both fresh
Prolog variables, and Var is the translated term for t .

The treatment of the left-hand side of the equation is not as easy as in Section 2.4.1. We have to distin
guish clearly between the handling of the head symbol of the left-hand side and the handling of its argu
ments:

2a. A corresponding Prolog term has to be generated for each argument. We call this Prolog term the
matching term of the argument. The variables in the arguments will be represented by their
corresponding Prolog variables. We have to take care that their value after using Prolog unification and
resolution of generated assoc_decomp and assoc_arg predicates is the term which the original vari
able would have had after matching modulo associativity.

2b. The conclusion of the Hom-clause is constructed from the head symbol of the left-hand side and the
matching terms of its arguments. If the head symbol is an associative operator the matching terms of

13

the arguments have to be put in a Prolog list as the second argument of the predicate.

In case 2a the matching term in the standard code generation process was simply created by changing all

variables into their corresponding Prolog variable. Now, we define for each term the matching term and a

list of assoc_ decomp and assoc_a r g predicates using induction on the complexity of the term t:

• t =x:
The list of predicates is empty and the matching term is the Prolog variable that corresponds to the

variable x .

• t = c:
The matching term of a constant c is c and the list of predicates is empty.

• t = f (tl , t 2 , ... , tn) with n <:: 1 and not assoc(f):

The matching term of t is f (Tl , T2 , ... , Tnl, where Tl, T2, · · · , Tn are the matching terms of

tl , t 2, · · · , tn. The list of predicates for t is simply a concatenation of the lists for

tl , t 2, · · ·, tn.
• t=:f(tl , t2 , ... , tn) with n <::2andassoc(f):

Now we create the matching term and the list of predicates for the arguments a = [t 1 , t 2, ... ,

t n J and the associative operator f as follows:
• a= [tl , t2 , ... , t n] withn~2:

Let the matching term of [t 2 , . . . , t n J be T r , and let the list of predicates be L r.

- If t 1 is a variable x and the Prolog variable which corresponds to x is x, then the list of
predicatesfor a isL r withassoc_decomp(f , Va r , x, Tr) addedattheend. Hereva r

is a fresh Prolog variable which is also the matching term of a.

- If t 1 is not a variable and the matching term for t 1 is T 1 and the list of predicates is L 1,

then the list of predicates for a is a concatenation of L r and L 1• The matching term for a is

[Tl l Tr).
• a:: [tl] :

- If tl is a variable x, the list of predicates for a is assoc_arg (f, x, Var J where x is the

Prolog variable which corresponds to x. The matching term of a is a fresh Prolog variable
Var.

- If t 1 is not a variable and the matching term for t 1 is T 1 and the list of predicates is L 1,

then the list of predicates for a is L 1 and the matching term for a is [T l J .

If Res is the translated term from the right-hand side of the equation the conclusion of the Hom-clause

(step 2b) is generated from the left-hand side t as follows:

• t =:c:
If the left-hand side is a constant c the conclusion is c (Res) .

• t=:f(tl , t2 , ... , tnl withn<::landnotassoc(f):
The conclusion is f (Res , Tl , T2 , . . . , Tn l, where the Ti are the terms which correspond to

the arguments t i as defined in step 2a.
• t =: f (t l , t2 , ... , tn) with n ~ 2 and assoc(f):

The conclusion is f (Res , Tr l , where the Tr is the term which corresponds to the list of arguments

[tl , t2 , ... , tnJ asdefinedinstep2a.

As the catch-all rule for associative operators is already incorporated in the definition of assoc_all these

rules only need to be generated for non-associative functions.

Finally, the decomposition of input terms to Prolog questions and the handling of conditional equa

tions is similar to the way it was done in Section 2.4.

14

4. Algebraic specifications with lists

4.1. Example

As an example of a specification with lists, we present a specification in which natural numbers are
modeled as non-empty lists of digits, and (finite) sets of natural numbers as lists of natural numbers. The
number 3524 is, for instance, represented as na t ([3, 5, 2, 4 J) . The set (12, 336} is represented as
set([nat([l, 2]) , nat([3, 3, 6J)J) andtheemptysetasset ([J) . Equation [l J serves to
remove leading zeros of numbers. Identical elements in sets are removed in [13 J. and the irrelevance of
the order of elements is expressed in [14 J .

module Natural-Numbers
begin

exports
begin

sorts DIGIT, NAT, SET
functions

0 -> DIGIT

9 -> DIGIT
nat DIGIT+ -> NAT
succ NAT -> NAT
set NAT* -> SET
union SET # SET -> SET

end

variables
k , kl, k2 -> DIGIT+
m -> DIGIT*
n - > NAT
xl, x2 -> NAT+
yl , y2, y3 - > NAT*

equations

[1] nat([O, kJ) - nat([k])

[2J succ (nat ([m, OJ)) - nat ([m, lJ)

[10] succ(nat([m, 8])) - nat([m, 9J)
[11] succ(nat([9J)) - nat([l, OJ)
[12J succ(nat([kl, 9J)) - nat([k2, OJ)

when succ(nat(kl)) ~ nat(k2)

[13] set([yl, n, y2, n, y3]) - set([yl, n, y2, y3])
[14] set ([xl, x2]) - set ([x2, xl])

[15] union(set(yl), set(y2)) - set([yl, y2])

end Natural-Numbers

4.2. Definitions

An algebraic specification with lists <l:, E> consists of an extended signature l: and a set of (possibly con
ditional) equations E over l:. An extended signature l: i= <St• Ft> contains a set of sort symbols Sr. and a
set of function symbols Fr.· Unlike the typing function in standard signatures, the typing function in
extended signatures may also use "starred" and "plussed" sorts in its input type. Hence, the implicit typ
ing function is now defined from FI to {s , S* , s+ Is e Stl• x SI. The sorts of the fonn S* and s+ are
called iterated sorts.

To prevent the user of the specification fonnalism from changing the semantics of iterated sorts we
forbid their use as the output sort of functions. It is also forbidden to use them as the sort of any equation
in the specification. This is done because the names S* and s+ suggest that these sorts contain only itera
tions of elements of son s and none of these lists can be identified. To illustrate this, we could remove the
sort NAT from the above specification and replace it by DIGIT+. The declaration of the function nat would

15

then disappear and equation [1 J would become

[1' l [0 , k) - [k)

meaning that a list of digits starting with a zero is identical to the same list without the zero at the begin
ning. The semantics of DIGIT+ would have changed and if one wants to use this plussed sort elsewhere
one has to be aware of these changes. We believe that this is not desirable.

Given an extended signature ::E =<Sr,, Fr.> and a set of typed variables X we can define the set of
terms over such a signature. As can be seen from the above example variables are allowed to be of an
iterated sort. In the sequel we will use s, Sl, 52, · · · to denote the usual sorts of the specification (the
elements of Sr.) and T, Tl , T2, · · · to denote possibly iterated sorts. We define the sets Tt(X), Ti* (X),
Tf: (X) of terms of respectively sorts, starred son S*, and plussed sorts+. Tt{X) is the smallest set such
that:
o x is an element of Ti(X) for each variable x: -> s .
• c is an element of Ti(X) for each (constant) function c: -> s.
• For each function f: T 1 # T2 # • • . 4t Tn -> s with n ~ 1 and for all terms t 1 e TP (X),

t 2 eTf2 (X), ···, tne Tf"(X)wedefine f(tl, t2, ••• , tnl tobeanelementofrf,(X).

Tf (X) is the set such that:
o x is an element of Tf (X) for each variable x: -> s * or x: -> s+.
•The list [t l , t 2 , ... , tn J where n~O is an element of Tf(X) if t ie Ti(X) holds for all

1 ::;; i ::;; n, or ti is a variable of type S* or s+.

Ti· (X) is the set such that:
o x is an element of Tf'{X) for each variable x: -> S+.
• [t l , t 2 , ... , tn J with n ~ 1 is an element of Tf'(X) if tie Ti(X) holds for all 1 Si Sn, or ti is

a variable of type S* or s+. At least one of the ti should not be a variable of type S*.

The set of all terms over regular sorts (i.e., excluding terms of iterated sorts) is denoted by
Tr,(X) = u Ti(X) and the set of all terms (including lists) is denoted by Ti:• (X).

s e s,

Note that it is no longer possible to assign a unique type to each term. For each sort s
n,· (X) c Ti:: (X) and the empty list [J is an element of Tf' (X) for any s *. On the other hand, all lists can
only occur within a context which can be used to disambiguate the type of a term. In algebraic
specifications with lists we could also allow overloading of function symbols and still assure unique typing
of terms which are not lists. Now, functions with identical names and overlapping input types should be
forbidden. Input types are overlapping if they consist of the same number of (regular or iterated) sorts and
for each pair of corresponding positions the following holds:
• identical sorts s appear at both positions, or
• a type s + in one position corresponds to S* ors+ at the other position, or
• a type s * corresponds to s+ or s * or another starred sort s 1 *.

The set of all (possibly conditional) equations E consists, once again, of equations of which the types of
left-hand side and right-hand side are identical. As stated before, it is forbidden to construct equations over
iterated sorts. In short, the set of unconditional equations of type s e S'E. is Eq5 = Ti(X) x Ti(X) and the set
of all (possibly conditional) equations Eis a subset of Eq x Eq•, where Eq = u Eq5

•

s e S,

An assignment p : X ~ Ti• (X) is a function which assigns to each variable a term over the given
extended signature :E. The type of p(x) has to be equal to the type of x if x is of type s or s+. For x : ->
S* the type of p(x) should be S* or s+. The extension of p :X--+ Ti;.(X) to the complete set of terms
(p: Ti,.(X) ~ Ti;'(X)) is defined by:
• For each (constant) function c: - > s we define p(c) =c.

• Forallfunctionsf: Tl # T2 # ••• # Tn - > s withn~l pisdefinedbyp(f (tl , t2, ... ,
tn)) = f <p(tl), p(t2), ... , p(tn)).

• For the empty list we define: p([J) = [J .
• Finally, fornon-empty lists [tl , t2, ... , tn J with n ~ 1 which are an element ofTf (X) or Tf.(X}

supposep([t 2 , ... , tnJ)= [sl, s 2 , . .. , sm] withm~n-1. Therearetwopossibilities:

16

• If p(t l) is an element of Ti(X), or a variable of type S* or s + then p([tl, t2, ... ,
tn l) = [p(tl), sl , s2, ... , sm)

• Ifp(t l)isanelementofTf(X)orTt+(X)oftheform [ul, u2, ... , uk J withk~Owedefine
p([tl , t2 , ... , t n l)= [ul, u2, ... , uk, sl, s2, ... , sm]

4.3. Semantics

The semantics of an algebraic specification with lists <I:, E> is defined by giving a translation of the
specification to an algebraic specification with associativity <I', E', assoc>. For each sorts of which an
iterated variant occurs in the original specification, new sorts s-star and S-plus are added. Further
more, for all such sorts s we add standard functions for the empty list (empty-S), injections from sort s
into S- plus and from S-pl us into S-star, and concatenation functions for lists. To define the semantics
of these functions some extra equations are necessary. The following (parameterized) specification shows
how this is done:

module Lists
begin

parameters
Sort begin

sorts S
end Sort

exports
begin

sorts S-pl us , S-star
functions

in j s
c -pp S-plus # S-pl us
empty-S
i n j S-plus

c-ps S-plus # S-star
c - sp S-star # S-plus
c-ss S-star # S-star

end

variables
sp, spl, sp2 -> S-plus
SS -> S-star

equations

-> S-plus
-> S-plus
-> S-star
-> S-star

-> S-plus
- > S-plus
-> S-star

[1] c-ps(sp, empty-S) - sp

{aaaoc}

{aaaoc}

[2] c-ps(spl, inj(sp2)) - c-pp(spl, sp2)

(3] c-sp(empty-S, sp) = sp
[4] c-sp(inj(spl), sp2) = c-pp(spl, sp2)

[5] c-ss(ss, empty- S) - ss
[6] c-ss(empty-S, ss) ~ ss
[7] c-ss(inj(spl), inj(sp2)) - i n j (c-pp(spl, sp2))

end Li sts

The typing of function symbols and variables has to be changed such that all occurrences of s * and s + are,
respectively, replaced by s-star and S- plus. Finally, all terms which occur in the equations E of the ori
ginal specification have to be translated to terms over the new specification with associativity. The transla
tion t: Ti'(X) ~ Tt'(X). is given by defining the projections t'T for all sorts T. The translation t 5 is defined
such that for all terms t e Ti(X): t 5 (t) e Jt•(X):
• t 5 (x) = x for each variable x: - > s .
• t 5 (c) = c for each (constant) function c: -> s.
• t 5 (f (tl , t2 , ... , t n))s f (tT1 (tl), t T2 (t 2), ... , t 70 (tn) l for each function f: Tl # T2 #

• . . # Tn - > S with n ~ 1.

For all terms t e Ti" (X) the translation t 5 • is defined such that 'ts. (t) e Tt••t ar (X):

• t 5 .(x) =x foreachvariablex: - > S* .

17

• 'ts. (x)= inj(x) foreachvariablex: -> s+.

• 't5 • ([]) = empty- S.
• 't5 . ([t l , t2 , . .. , tn]) :inj('t5 . ([tl , t 2,

not a variable of type s *.
... , tn])l if at least one of the ti (l ~ i ~ n) is

o t 5 . ([x l , x2 , ... , xn]):c-ss(xl, 't5 . ([x2, ... , xn])l ifforalll~ i ~ nXi : -> S* .

For all terms t e Tt (.X) the translation t 5 • is defined such that 't~ , (t) e Tt;plus (X):

• 't5 . (x)= x foreachvariablex: -> S+.
• t 5 .([tl , t 2 , ... , tnl) :c-ps(inj('t5 (tl)) , 't5 .([t2 , ... , tnl)) if tlE Ti{X)andn<::l.

• t 5 . ([x , t2 , ... , tn J) =c-ps(x, 't5 . ([t2, ••. , tn])l if x : -> S+ and n <::l.

• t 5 .([x , t 2 , . .. , tn J):c- sp(x, 't5. ([t2, ... , t nJ)l ifx: -> S* andn <::2.

4.4. Implementation in Prolog

It turns to be impossible to use the translation semantics for * Wld + given in the previous section directly
in an implementation. Problems occur in equations in which variables of starred sons occur. The transla
tion of equation

[2J succ(nat ([m, OJ))• nat([m, 1])

of the example of Section 4.1 would give:

[2] succ(nat(c-sp(m, c -ps(inj(O) , empty-D IGIT))))
= nat(c-sp(m, c-ps(inj(l), empty-DIGIT))) .

The translation of the term succ (nat ([OJ) l which is s ucc (nat (c-ps (in j (0) , empty-DIGIT) l l
cannot match the left-hand side of the translated equation. The same holds for the translation of
s ucc (nat([l, 0])) whichis succ(nat(c-ps(inj(l) , inj(c-ps(inj(O), empty-DIGIT))))).
Even reducing both sides of the translated equation [2 J using the equations of module Lists as given in
Section 4.3 gives no solution:

[2J s ucc(nat(c-sp(m, inj(O)))) • nat(c-sp(m, inj(l))) .

A possible solution would be to double each equation in which a variable of a starred son occurs, into an
equation for the empty case and an equation with the variable of the corresponding plussed son. In this
example this would give:

[2a J succ(nat([O J)) - nat([l] l
[2b] s ucc (nat ([m, OJ)) - nat ([m, 1])

where m: - > DI GI T+.

It is much easier to translate lists into Prolog lists. The only problem is the head-tail-like decomposi
tion of lists in Prolog which makes it necessary to use the append predicate in the implementation of the
more general lists as defined here. When rewriting with lists the following changes are relevant:

1. In the construction of legal terms given in Section 4.2 we forbid lists as arguments of a list. As a conse
quence, we have to be careful that no lists as arguments of lists occur during list construction. Hence,
in the decomposition of the right-hand side we have to generate append predicates to join lists.

2. To match a given list with the left-hand side of an equation we must be able to split the given list in
arbitrary parts. We also use the append predicate for this.

As an example we present the code generated for the example of Section 4.1:

/ * >>> Equations

nat (Res , [' 0 ', K Headl K Tail])
: - nat (Re s , [K_Headl K_TailJ) .

succ(Res , nat(Input))
append (M, [' 0'] , Input),
' l ' (Templ) ,
append(M, [Templ] , Temp 2) ,

__ _ --; ,,.-:..:._.~

<<< * /

/ * [1] */

/ * [2J */

18

nat(Res , Temp2) .

succ(Res , nat(Input))
append(M, [' 8'] , I nput) ,
' 9 ' (Templ) ,
append (M, [Templ] , Temp 2) ,
nat(Res , Temp2) .

succ (Res , nat ([' 9 ' J))
' 0 ' (Templ) ,
' l ' (Temp2) ,
nat(Re s , [Temp 2, Templ]).

succ(Res , nat(Input))
append([Kl Headj Kl Tail] , ['9'] , I nput),
nat(Templ , - [Kl Hea dJ Kl Ta il]),
succ(Temp2 , Teiiipl) , -
Temp2 = nat([K2 He a dj K2 Tail]) ,
' 0 ' (Temp3) , - -
append([K2_Headj K2_Ta i l] , [Temp3], Temp4) ,
nat (Res , Temp4) •

set (Res , Input)
app end (Yl , [NI Il] , I nput) ,
append(Y2 , [~ Y3] , Il) ,
append(Y2 , Y3 , Templ) ,
append (Yl , [NI Templ] , Temp2) ,
set (Res , Temp 2) .

/* (10] */

/* (11] */

/* (12] */

/* [13] * /

set (Res , I nput) /* (1 4] * /
apper.d ([Xl He a d l Xl Tail] , [X2 Headl X2 Tail] , Input) ,
append ([X2=Headl X2=Tail] , [Xl=Headl Xl=Ta il] , Te mpl) ,
set(Res , Templ) .

union(Res , set(Yl) , s et (Y2)) /* (15] * /
append(Yl , Y2 , Templ) ,
set(Res , Templ) .

/ * >>> Catch- all <<< *I

, 0 ' (' 0 ') .

, 9 ' (, 9 ') .
nat (nat (Xl) , Xl).
succ (succ (Xl) , Xl) .
set (set (Xl) , Xl) .
union (union (X l , X2) , Xl , X2).

In general, the code generation process is again an extension of the two steps described in Sections
2.4.l and 3.4. So far, we added to each variable occurring in an equation a corresponding Prolog variable
in the typechecking phase. To prohibit variables of a plussed sort from matching an empty list we add an
expression [Headl Tail J to each such variable. Of course, the Prolog variables Head and Tail are dif
ferent for each variable. So, instead of a list of variables with their corresponding Prolog variables we now
generate a list of corresponding Prolog expressions.

In the decomposition of the right-hand side of the equation (step 1) the list of predicates and the
translated term need to be defined only in case the tenn is a list:

• t = (] :
The list of predicates to be generated is empty and the translated term is the empty list [J •

•t= [tl] :

- If t 1 is a variable x of an iterated sort then the translated term of t 1 is the expression which is
associated to it in the typechecking phase. Hence, if x is of a starred sort it is the Prolog variable
associated to x , and if x is of a plussed sort it is an expression of the form [He adl Ta il J • In this
case the generated list of predicates is empty.

19

- If t 1 is not a variable of an iterated sort and the translated term for t 1 is T 1 and the list of predi

cates is L 1 then the list of predicates for [t l l is L 1 and the translated term for [t l J is [Tl J •

• t = [t l , t 2 , .. . , t n] withn ~ l:

Let the translated term of [t 2 , . .. I t n l be T r' and let the list of predicates be L r .

- If t 1 is a variable x of an iterated sort and the Prolog expression which corresponds to x is Tx then

the list of predicates for t is l r with append (Tx, Tr, Var) added at the end. Here Var is a

fresh Prolog variable which is also the translated term oft.

- If t 1 is not a variable of an iterated sort and the translated term for t 1 is T 1 and the list of predi

cates is l 1 then the list of predicates for t is a concatenation of L r and l 1. The translated term for

t is [T l l Tr] .

1n handling the left-hand side of an equation (step 2) we only need to describe what has to be done if lists

occur in the arguments of the left-hand side. Remember, that it is forbidden to construct equations over

iterated sorts and therefore lists can never occur as the left-hand side of any equation. This should, by the

way, be checked while typechecking the specification. The construction of the matching term and the list

of predicates which take care of matching modulo lists is identical to the construction of the translated term

given above and the list of predicates for terms in the right-hand side of equations.

The handling of conditional equations is similar to what is done in Section 2.4.2. The only differ

ence in the treatment of input is that we cannot handle terms in which variables of iterated sorts occur.

These terms are simply forbidden in the input.

5. Applications

As mentioned in the introduction adding lists and associative functions to an algebraic specification formal~

ism is a necessary step in combining the formalisms ASF and SDF. Several specifications have been writ

ten in (preliminary versions of) the combination of these formalisms:

• The typechecker for a sublanguage of ML (Mini-ML) in [Hen89].

• The static and dynamic semantics of the toy language PICO [Chapter 9 ofBHK.89).

• The typechecker and interpreter for a simple programming language ASPLE, the dynamic semantics of

the machine language SML, and a compiler from ASPLE to SML [Meu88].

An SDF-specification is a combination of the abstract syntax (in the form of a signature) and the concrete

syntax (in the form of BNF-rules, read in reverse order) of a language. Hence, each SDF-specification

implicitly defines a lexical analyzer and a parser for the language it defines. A specification in the com

bined ASF/SDF formalism can be reduced to an algebraic specification in ASF as follows:

• replace each SDF-definition by its underlying signature;

• parse all equations using the grammar defined by the SDF-definitions and replace each equation by the

result of this parse (the result is an equation containing terms in prefix form instead of arbitrary strings).

As an example of the combination of both formalisms we give, once again, a specification of the natural

numbers and (finite) sets of natural numbers:

modu1e Natura l - Numbers
begin

exports
begin

sorts NAT , SET
lexical syntax

[\t \ n\ r]
[0 - 9] +

context-free syntax
succ II (11 NAT ") II

" {" {NAT ", "} * "}"
SET " +" SET
" (" SET ") "

end

variab1es
k , k l , k2 -> CHAR+

-> LAYOUT
-> NAT

- > NAT
- > SET
-> SET {•••oc)
- > SET {bracket)

20

m
n

-> CHAR*
-> NAT

xl, x2 -> NAT+
yl , y2, y3 - > NAT*

equations

(1) nat(O k) = nat(k)

[2) succ(nat(m 0)) - nat (m 1)
[3) succ(nat (m 1)) = nat(m 2)
[4) succ(nat (m 2)) nat(m 3)
[5] succ(nat(m 3)) nat(m 4)
[6] succ(nat(m 4)) nat(m 5)
[7] succ(nat(m 5)) = nat(m 6)
[8] succ (nat(m 6)) nat(m 7)
[9) succ(nat (m 7)) - nat(m 8)
[10] succ(nat(m 8)) nat(m 9)
[11] succ (9) 10
[12) succ (nat(kl 9)) = nat(k2 0)

when succ(nat(kl)) - nat (k2)
[13] {yl , n, y2, n, y3) - {yl, n, y2, y3}
[14] {xl , x2) - {x2, xl)

[15) {yl) + {y2) - {yl, y2)

end Natural -Numbers

An SDF-specification consists of at most five components (four of which can be found in the above exam
ple):
• The sorts section contains the names of the non-terminals of the grammar which can be derived from

an SDF-specification. These names are also the names of the sorts in the derived signature.
• The 1exical. syntax section incorporates the specification of a regular grammar which is used to

generate a lexical analyzer. It contains one or more function declarations each consisting of a regular
expression and a result sort. The sort LAYOUT is predefined and functions with output son LAYOUT do
not contribute to the derived regular grammar or the derived signature. Character classes like [0-9)
and [a-zA-ZJ are used to abbreviate the lexical definition. A sort or character class followed by a *
stands for zero or more repetitions of the sort. A + stands for one ore more repetitions.

• The context-free grammar can be extracted from the context-free syntax section. Each rule in
this section (except from the functions which are furnished with the bracket-attribute) adds informa
tion to the derived signature. The notations {SORT "t" l * and {SORT "t" } +are used to denote lists
of elements of SORT separated by the symbol "t ". By extending signatures with * and + as described
in Section 4 each rule will correspond to exactly one function in the derived signature.

• In the priorities section the precedence of the rules in the context-fr- syntax section can be
specified in order to disambiguate ambiguous sentences. In the above examples this section is absent.

• The variab1es section defines the variables which may be used in the equations section.

6. Conclusions

As mentioned in the introduction, lists and associative functions do not add expressive power to an alge
braic specification formalism, but especially the use of lists gives more elegant specifications which are
easier to read. Both features are implemented in the ASF system IHen88] using the given algorithms. To
declare a function to be associative evidently causes an increase in execution time as well as in generation
time. However, rewriting modulo associativity gives a more powerful implementation for specifications
with associative functions. The implementation of lists is reasonably fast as long as the head-tail-like
decomposition of lists in Prolog can be used. From the specification point of view other decompositions of
lists are desirable and it is very useful to have an implementation for them. An elegant combination of
term rewriting and string rewriting as proposed here is desirable.

21

Acknowledgements

Jan Heering, Paul Klint, and Emma van der Meulen commented on earlier versions of this paper. Their

remarks improved the readability considerably. Research in this topic was encouraged by discussions with

the members of the GIPE-project: Hans van Dijk, Jan Heering, Paul Klint, Wilco Koom, Emma van der

Meulen, Jan Rekers, and Pum Walters.

References

[BHK89]

[BGS88]

[DE84]

J.A. Bergstra, J. Heering, and P. Klint (eds.), Algebraic Specification, ACM Press Frontier

Series, The ACM Press in co-operation with Addison-Wesley (1989).

H. Bertling, H. Ganzinger, and R. Sch!ifers, "CEC: a system for the completion of condi

tional equational specifications," pp. 249-250 in Proceedings of the First International

Workshop 011 Conditional Term Rewriting Systems, ed. S. Kaplan, and J.-P. Jouannaud, Lec

ture Notes in Computer Science 308, Springer-Verlag (1988).

K . Drosten and H.-D. Ehrich, "Translating algebraic specifications to Prolog programs,"

Informatik-Bericht Nr. 84-08, Technische Universitlit Braunschweig (1984).

[EY87] M.H. van Emden and K. Yukawa, "Logic programming with equations," Journal of Logic

Programming 4, pp. 265-288 (1987).

[FGJM85] K. Futatsugi, J.A. Goguen, J.-P. Jouannaud, and J. Meseguer, "Principles of OBJ2," pp. 52-

66 in Conference Record of the Twelfth Annual ACM Symposium on Principles of Program
ming Languages, ACM (1985).

[GKKMMW88] J. Goguen, C. Kirchner, H. Kirchner, A. M~grelis, J. Meseguer, and T. Winkler, "An

introduction to OBJ3," pp. 258-263 in Proc:eedings of the First International Workshop on

Conditional Term Rewriting Systems, ed. S. Kaplan, and J.-P. Jouannaud, Lecture Notes in

[GM87]

[HHKR]

[Hen88]

[Hen89]

[Jan86]

[Kap87]

[MG85]

Computer Science 308, Springer-Verlag (1988).

J.A. Goguen and J. Meseguer, "Remarks on remarks on many-soned equational logic," Sig
plan Notices 22(4), pp. 41-48 (1987).

J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers, "The syntax definition formalism SDF -
reference manual,'' Centre for Mathematics and Computer Science, Amsterdam, to appear.

P.R.H. Hendriks, "Automatic implementation of algebraic specifications," pp. 83-94 in

Conference Proceedings of Computing Science in the Netherlands, CSN' 88 1, SION (1988).

P.R.H. Hendriks, Typechecking Mini-ML (1989), Chapter 7 in [BHK89]. Short version:

"Type-checking mini-ML: an experience with user-defined syntax in an algebraic

specification," Conference Proceedings of Computing Science in the Netherlands, CSN' 87,
pp. 21-38, SION (1987).

M. Jantzen, "Confluent string rewriting and congruences," Bulletin of the European Associa
tion for Theoretical Science EATCS(28), pp. 52-72 (1986).

S. Kaplan, "Simplifying conditional term rewriting systems: unification, termination and

confluence," Journal of Symbolic Computation 4, pp. 295-334 (1987).

J. Meseguer and J.A. Goguen, "Initiality, induction, and computability," pp. 459-541 in

Algebraic Methods in Semantics, ed. M. Nivat, and J.C. Reynolds, Cambridge University

Press (1985).

[Meu88] E.A. van der Meulen, "Algebraic specification of a compiler for a language with pointers,"

Report CS-R8848, Centre for Mathematics and Computer Science, Amsterdam (1988).

[PWBBP85] F. Pereira, D . Warren, D. Bowen, L. Byrd, and L. Pereira, C-Prolog User's Manual, Version
1.5, SRI International, Menlo Park, California (1985).

(RC88] T. Rush and D. Coleman, "Architecture for conditional term rewriting," pp. 266-278 in

Proceedings of the First International Workshop on Conditional Term Rewriting Systems, ed.

S. Kaplan, and J.-P. Jouannaud, Lecture Notes in Computer Science 308, Springer-Verlag
(1988).

[Wie87] F. Wiedijk, "Tennherschrijfsystemen in Prolog," Rapport P8704, University of Amsterdam

(1987), [in Dutch].

- -- - -- --~- --

