
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

P.J.W. ten Hagen, I. Herman, J.R.G. de Vries

A dataflow graphics workstation

Computer Science/Department of Interactive Systems Report CS-R8910 April

The Cer1tre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 .
1946, as a nonprofit institution aiming at the prnmotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Dataflow Graphics Workstation

P.J.W. ten Hagen., I. Herman
Centre for Mathematics and Computer Science

P. 0. Box 4079, 1009 AB Amsterdam, The Netherlands

J.R.G. de Vries
Dataflow Technology Nederland bv.

Maanweg 156, Gebouw BN 086, 2516 AB Den Haag, The Netherlands

A new, revolutionary architecture for a superworkstation f·or graphical purposes is presented. The architec­
ture is based on the use of advanced graphics components and, mainly, on the heavy use of dataflow pro­
cessing technology. a still unexplored field of parallel computing as far as graphics is concerned. The
resulting initial configuration is able to produce 200.000 to 250.000 Gouraudl shaded and Z-buffered 3D tri­
angles in a second with a colour palette of 24 bits per pixels.

1983 CR Categories; B.1.5, C.O, 1.3.1, 1.3.2.
Keywords & Phrases: computer graphics hardware, parallellism in computer graphics, dataflow computing.
Note: This research has been made within the frame of the common development contract between CWI and
Dataflow Technology bv. The present text has also been offered for publication for the journal Computers &
Graphics.

I. Introduction

1

The architecture for a graphics workstation presented in this paper is a revolutionary one because it is
the first in a new and promising line of architectures. The revolution stems from the fact that with the
dataftow processors used, arbitrary combinations of highly dedicated processing can be dynamically
created. For the case we will describe here all processing is dedicated to graphics but the application
is by no means restricted to this field. In fact, such processors have been, until now, primarily used in
image processing applications. Once the case is made for the graphics area, it is obvious that the next
step will be to provide a system which combines graphics and image processing. There are many
applications in the field waiting for a system which integrates both possibilities. The purpose of this
paper is however, to illustrate how well dataftow architectures can support three dimensional interac­
tive graphics.

The system described here is not an experimental system. It is much more. It uses existing
hardware components only, albeit they are all the most advanced hardware components currently
available. In addition, the entire architecture has been designed and is being implemented. Testing of
the integrated system will start in June 1989. Production for the market might start before the end of
1989. The performance figures mentioned in the paper are based on testing the working individual
components and/ or simulation outputs.

The discussion about the results and possible improvements is based on a particular initial
configuration chosen around 32 dataftow processors in a hypercube arrangement. The flexibility of the
dataftow hardware and the overall design guarantee that simple extensions to larger configurations
containing 64 or more processors are possible. However, in this paper all figures and possible
improvements are only concerned with this initial configuration. In this way the reader can make a
proper judgement about the possibilities opened up by this line of systems without getting confused
by the great variety of extensions and further performance boosts possible.

Report CS-R8910
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

2. The Hardware

2.1. General Overview
The hardware of DFC (Data Flow Computer) is centered around three basic building blocks: the
Host, the Graphics Engine and the Dataftow Engine (see Figure 1). The Host may be any UNIX BSD
machine provided that a VME access is available (we use currently a SUN 3 Workstation). Both the
Graphics Engine and the Dataflow Engine are used as co-processors of this Host t.

The building blocks are connected via two busses: a standard VME bus and a so called Distributed
Memory Bus. The former is primarily used to connect the Host with the two other blocks. The Host
may control the processing parts of the two other blocks via register I/O and DMA; all these possi­
bilities are quite standard on such configurations.

-

,.. ---
'

C iF==t=:+l Graphics

Boards

: / '

r--------------- - ---~
' ' '
' Host .

VM~ ~~----0~·-----_-_-_· --·----------

~- -- ----------------- - ---- - - ~
' ' _.,: Dataflow &igine .

7 :: 'v>'_,

:: ~--­
~-"~J- : : .----...,Token ,, ~

Z-buffer :: Dataftow '--..1
,, ..------v

Board ii Boards Networli

" ~---,""",~ ::
" "

Datafiow

Boards

------- - --------- - - ~I

' ' --------

Distributed Memory Bus

Figure I: Overall view of the DFC

The Distributed Memory Bus is used to provide data transfer between the Graphics Engine and the
Datafiow Engine as well as among the different internal components of these. This bus is much faster
than the VME bus: the current transfer speed is 36Mbytes/sec (16 million data transfers per
seconds). All memories on all boards are connected via this bus, including the video memories and
the 3D Z-buffer used by the graphics processors.

A third means of data transfer is provided by the datafiow Token Network with a capacity of
320Mbytes/sec, which connects the components of the Datafiow Engine. The role of this network will
become clear in the following paragraphs.

t It is theoretically possible to put for example two independent Dataflow Engines on the same VME bus, getting therefore two
independent co-processors of this type. However, we will not deal with this configuration in the present paper.

3

2.2. The Graphics Engine
The Graphics Engine contains three identical components, namely the so called Advanced Graphics
Boards, and, additionally to them a Z-Bulfer Board. The conception of the Advanced Graphics
Boards is such, that they are also usable as stand-alone graphics boards in a VME environment; how­
ever, details of this version are not covered in the present paper.

Each Advanced Graphics Board contains a 4Mbytcs VRAM for pixel memory with RGB input and
output. Using the three boards together we get therefore a frame buffer of 24 bit/pixel assuming a
resolution of max. 2048 X 2048. Each board controls 8 bits out of the 24; the first board is responsible
for the generation of the red pixels, the second one for the green pixels and, finally, the third one for
the blue ones. Additional cursor hardware is available to mix a cursor on video output without
overwriting the frame buffer. The board has also extensive facilities to generate, synchronise and input
video signals in virtually all video formats; this feature might be very important for future image pro­
cessing applications .

. ·················· ·········· ············· ················•··

Video
Timing

Cursor
Hardwar

4Mb

VRAM

Systolic Array
Code EPROM-s

Micrococh: Sequencer

B
u
s

I

N l VME Bus
T .,___ _ _....

E .,____.._-./
R
F
A
c
E

B
u
s

I

N DM Bus
T .,____..__
E .,____.._-./
R
F
A
c
E

: :

Figure 2 : The Advanced Graphics Board

Each board contains a Hitachi HD63484 graphics processor, which may be used for high-speed
two-dimensional graphics. However, as we will see in the following, the main use of the whole DFC is
to provide three dimensional graphics; in other words, the HD63484 processor is used first of all for
video timing generation and to help video input.

The main "processing unit" on the Graphics Board is a Systolic Array which contains four 16
MIPS bit slice processors (16 bits wide). Each one is accompanied by a small multiplier and a func­
tion table. This Systolic Array is microprogrammable, and with an adequate set of microcoded

4

instructions it turns the Advanced Graphics Board into a powerful graphics co-processor. Because of
the uniform nature of the three Graph.ics Boards, the very same microcode runs in parallel on the
boards controlling, as we have already mentioned, the red, green and blue pixels respectively. The
available instruction set contains the usual BitBlt operations (Block Copy, Block Fill, etc.), vector
drawing and some image processing instructions. The speed of pixel generation is considerable: in
case of Block Copy, for example, 20 million pixels/sec. may be copied; the peak vector generation
speed (for horizontal lines) is of 30 million pixels/sec.

For the purpose of a 3D Workstation, however, the most important instruction is the possibility of
generating 3D Gouraud shaded triangles. The Systolic Array gets the colour values (red, green and
blue values respectively) for each vertex; during scan-conversion these values are linearly interpolated
to set the right colour value for each pixel. This instruction, however, has to cooperate with the fourth
component of the Graphics Engine: the Z-buffer Board.

The Z-Buffer Board contains a similar Systolic Array to the Graphics Boards but with a different
microcode. Additionally, the board contains a I6Mbytes Z-buffer memory. This memory is able to
store the Z value of the incoming primitives, with a depth of 16 bits.

The microcode of the Z-Buffer Board determines which portion of a 3D triangle is effectively visible
by performing a scan conversion in the third dimension and comparing the value of the generated
depths with the content of the Z-bu:ffer. As a result, the Z-Buffer Board dispatches commands to the
Graphics Boards so that these latter ones will generate the visible x and y pixels by interpolating the
colour values. In other words, via four cooperating boards and microcodes the Graphics Engine has
the possibility to generate 3D Gouraud shaded triangles with Hidden Surface effects automatically
calculated via the Z-buffer. This instruction will serve as a basis for the 3D graphics capabilities of the
DFC; in a way, the whole software realised in the machine aims at the fast creation of appropriate
triangles. At present, the generation speed is on average 180.000 to 200.000 triangles/sec (the :real
speed depends on the size of the triangles, of c.ourse).

Al!though the possibility of triangle generation is by far the most important feature of the Graphics
Engine, it has also some additional instructions. An interesting example is the possibility of shielding.

A shield is a polygon which is set into the Z-buffer to any "location", that is, conceptually, onto a
plane which is parallel to the x -y plane. The effect is that all pixels whose coordinates belong the
x -y area covered by the shield and which are "farther" as the depth position of the shield will be
clipped automatically. Such shields may be ''or"-ed in the Z buffer, combining therefore simple
shields to produce more complicated ones.

This facility offers a natural tool for traditional clipping. Furthermore, if some of the shields in use
are the set-theoretical negation of a rectangle in the frame buffer with respect to the full 2048 X 2048
frame buffer, by the combination of these and "classical" clipping rectangles the clipping operations
required by a window manager environment are authomatically covered. Indeed, ii such a "negated"
shield is set first for a given window and, subsequently, all rectangles belonging to overlapping win­
dows are set, the resulting shield in the Z buffer will correspond exactly to the clipping area required
by the windowing environment. Clearly, this facility has a great practical importance.

2.3. The Datajlow Engine
The Dataflow Engine is without doubt the most original and most interesting part of the whole
Workstation, which gives it a very individual flavour. The Engine is a very fast computing co­
processor of the Host; its primary task is to provide transformation of three dimensional points as
well as offering a higher-level software interface to the Host than the plain 3D triangles. To be able to
use the speed of the Graphics Engine (which is quite high), this co-processor should also be very fast.
To achieve the required speed (that is ~200.000 triangles/sec) the technique of datajlow computing is
used. As this technique is not yet widely known, we have to make a small detour to introduce the
basics of it; for a more detailed introduction the reader is referred to Veen(l] or Herath et al.[2].

5

2.3.1. Datajlow Computing. Dataflow computing is an approach to a hardware and software organisa­
tion which aims at offering a highly parallelised structure as an alternative to the traditional von Neu­
mann computing architecture. Its basic notion is datajlow nets (also called datajfow graphs), which
may be defined as follows.

A datajlow net is a directed graph; the vertices of the graph are called the nodes in the dataftow ter­
minology, while the edges are the links of the net. Each node represents a tiny processing element; the
actual processing performed by the node is defined when defining the graph itself. A node may per­
form very elementary operations only; its possible instruction set may be compared to the assembly
instructions of a traditional computer.

Data are encapsulated in tokens. These tokens are transferred from one node to another by the
links, following the direction of the link. The nodes themselves operate on the data carried by the
input token(s) of the node and the operation itself may either delete the token (if no output link is
defined) or may produce one or more token(s) again, each of them being output on one of the output
links defined in the net.

A node will perform its defined operation when all input links contain a token. This rule may rem­
ind the reader of the theory of Petri nets, although a datafiow net is not exactly a Petri net (in the
latter case, all processing nodes are of analogous type, which is by far not the case in a dataftow net).
No assumption may be used as far as the relative timing of the nodes: if all tokens are present, a
node may process at any time, regardless of the remaining nodes (the exact timing depends on the
hardware realisation of the dataftow net). This means that a dataftow net represents a very high level
of parallelism; that is why it is also referred to as data-driven fine-grain parallelism.

a b c d

Multiply Multiply

a*b c*d

Add

Figure 3: A simple data.flow net

Figure 3 shows a very simple example of a datafiow net; this net performs the calculations for
a•b + c•d. The data for a, b, c and dare sent to the net on the corresponding links (see Figure 3);
they may arrive in a random order. Once a and b are present (respectively c and d), the node which
performs the multiplication may process and will produce a•b (resp. c*d). The multiplier nodes will
operate in parallel; no assumption may be made as far as their relative timing is concerned. On the
other band, once both a•b and c*d are produced on their respective links, the node responsible for the
addition may proceed and will produce the final result. Figure 9 at the end of the paper gives an
example for a much more complicated datafiow net.

6

A dataftow computer is a computer which is programmable using the dataflow model. In other
words, such a computer should be fed somehow with the description of the net, including the topol­
ogy of the net as well as the instruction(s) assigned to each node. Such a network is then executed by
feeding all input links with the necessary tokens so that the nodes of the network could start proceed­
ing following the rule cited above.

2.3.2. The Dataftow Boards. The Datafiow Engine consists of eight identical and interconnected
Dataftow Boards. Each Datafiow Board is based, in tum, on NEC's J,'PD72181 chip, the so called
Image Pipelined Processor[3], which we will call the DFP chip hereafter.

A DFP is a tiny datafiow computer. The appropriate description of a datafiow net may be loaded
onto the chip and by getting the necessary tokens the chip is able to execute the net. It is tiny,
because the datafiow net which may be loaded is relatively simple: it may contain at most 64 nodes
and 128 links. In contrast to a von Neumann microprocessor, the coded instruction cannot be stored
on an external memory; all instructions should be stored within the chip (which makes it, of course,
much faster!). Some part of the instruction set, which may be used when defining the nodes,
corresponds to an early day microprocessor: 16 bits integer addition, multiplication, comparison (no
division!), bit setting/resetting instructions as well as shift operations. Additionally to these ones there
are a number of operations to "manage" the net (token deletion, token duplication, dispatching over
links etc.) as well as instructions specially dedicated for image processing purposes (e.g. shift and bit
count instructions).

However, the DFP is a revolutionary machine: it is the first commercially .available single-chip
dataflow computer, which makes it extremely interesting to explore its capabilities for example for
graphics. It may operate at 20MHz and, for example, a 16 bits by 16 bits multiplication is performed
at 100 ns. The extensive use of internal parallelism makes it very fast indeed.

The DFP needs additional instructions to communicate with its environment. There are basically
two ways of communications: either a token is sent to another DFP or some external medium is to be
accessed for reading and/or writing. To manage this latter task, NEC offers also an additional chip,
the J.'PD9305. Via the J.'PD9305 chip, a DFP has the possibility to access a 24 bits address range for
external 1/0.

Each DFC Data.flow Board contains 4 DFP-s, one µPD9305, a so called Image Memory, which is a
1 Mwords DRAM (one word equals 18 bits) and, finally, a DMA controller for fast memory 110. As
we have already mentioned, the board's registers may be accessed from the VME as well as from the
Distributed Memory Bus. The DFP-s may access the Image Memory by making use of the facilities
offered by the J.'PD9305 (see Figure 4).

The whole Dataftow Engine consists of 8 Dataflow Boarcis; in other words, it contains 32 DFP-s
and 8 Mwords of Image Memory, which represents altogether quite an impressive processing power.
Each DFP may uniformly access the whole Image Memory (not only the part of it which resides on
the same board). As we have already mentioned, this memory is also accessible directly from the
Host. Token communication among the DFP chips is routed by the Token Network; that is, token
communication of the DFP-s has a private data path for itself.

How is this Engine programmed? Each DFP has to be loaded with its own dataflow net. The whole
program of the Dataflow Engine is not one huge net; instead, it consists of 32 independent data.flow
nets which may communicate with one another via special nodes and links. The Host may also send
tokens to any of the DFP-s and the DFP-s are also able to send data to the Host in the form of
tokens. By using these facilities the synchronisation of the dataflow net as well as the synchronization
of the whole Dataflow Engine with the Host and/ or the Graphics Engine may be achieved. How this
program effectively works will be the topics of the forthcoming sections.

Token '

Netwoik

3. The Software

3.1. Some Generalities

Input Merger

!MWx: J8bit

DRAM

µ

p

D

9

3

0

5

Combiuatorical Logic

OMA

Controller

Image Memory , '------------v

Figure 4: The Datafiow Board

B
u
s

I
N
T
E
R
F
A

c
E

B
u
s

I

VMEBus

N DM Bus
T ,___--"-
E 1-----./
R
F
A
c
E

7

There are different forms of parallelisms which may be used in a graphics system. The choice where
and in which form a parallel architecture is introduced, may lead to very different
hardware/firmware/ software configurations.

The image generation on a raster device may be cut into two distinct steps. On the one hand, high
level geometric structures should be manipulated (clippings, transformations etc.) and, on the other
hand, the objects should be rendered on scan converting level. The different attempts of parallelisa­
tion in graphics systems follow roughly the same division; there are approaches which try to introduce
parallelism on the structure level while others try to exploit the possibilities of scan converting level
parallelism. We do not want to give an exhaustive survey of all different approaches here. As exam­
ples for structure level parallelism we might cite all different pipeline architectures, which are used in
a number of commercially available graphics workstations (e.g. Silicon Graphics), the PHIGS machine
of Abi-Ezzi et al.[4], or the MAGIC II machine of Finch et al(5]. The different "smart" pixel
memories like the Pixel Machine[6], the DisArray machine[?, 8}, Scan Line Access Memories[9], or
others are good examples for scan converting level parallelism. We should also remark that this
classification is, as all such classifications, not really precise; there are "hybrid" approaches as well

8

(see e.g. ten Hagen et al.[10], where the distinction created by the presence of a frame buffer disap­
pears).

In case of the DFC, both forms of parallelism are present, although to a different extent. As we
have seen when presenting the hardware, the Graphics Engine does include a certain level of parallel­
ism; indeed, the pixel generation for red, green and blue pixels as well as Z-buffer handling are done
in parallel by different pieces of hardware. Once "inside" the boards the fact that there are four pro­
cessors within the systolic arrays is a source of parallelism again. Finally, the microporgramming tech­
nique itself is also a non-negligible source of paralle)!jsm. In other words, the Graphics Engine does
contain elements of scan converting level parallelism; however, to exploit the possibilities of the
Dataflow Engine, we had to concentrate first of all on the possibilities of structure level parallelism.

As far as structure level parallelism is concerned, there are again different possible approaches.
Some of them are as follows.
(l)A scene to be visualised consists of a number of more or less independent objects (as far as

geometry is concerned). In case of a full regeneration of a picture, the individual objects may be
transformed and generated independently, provided that appropriate Z-buffer hardware takes care
of hidden surface r·emoval (such a hardware is available in the DFC). In other words, a set of
independent output pipelines, including transformations and some basic clips may run in parallel.

(2)In case of interactive use, the whole scene is not necessarily to be regenerated starting on the top
level of representation. If e.g. only one object has been moved, it is superfluous to retransform all
objects, except the one whose position or orientation have been changed. On the other hand, to
achieve correct output, more (sometimes all) objects must be re-drawn. This is another source of
parallelism: while transforming one object, the others may be subject to a redrawing process, pro­
vided that the intermediate (i.e. transformed but not yet scan-converted) storage of the object is
also available.

(3)The output pipeline itself may also be highly parallel. The same kind of operations (matrix-vector
multiplication, shad!iog calculations, projective division etc.) have to be performed on a set of points
belonging to one objects.

(4)Finally, the mathematical formulas in use (e.g. vector-vector multiplication) include possible
sources of parallelism.
In a "conventional" architecture it is fairly complicated to take into account all these possibilities of

parallelism (and there may be even more!). Usually, one has to concentrate on one or two such
aspects, to have a managable task at hand. This is why the data flow approach seems to be fruitful:
by its very nature it is fairly straightforward to model all kinds of parallelism, by providing the
appropriate software; in fact, all classical approaches to parallelism (SIMD, pipelines, MIMD etc.)
may be "simulated" easily in a data fiow environment. In the software we have managed to provide
for the DFC, all aspects of parallelisms cited above could be realised in a natural way.

Figure 5 gives an overall view of the software running on the DFC Workstation. All of these
software blocks will not be explained in detail; this would go far beyond the scope of the present
paper_ In the following, we will concentrate first of all on the most original part of this software,
namely on the programs running on the Datafiow Engine.

3.2. The Datafiow Software

3.2.1. Overall Structure. The dataflow programs realise a number of logical functions operating on
well defined data. These functions are resident in the DFP processors and are activated by sending
some specified tokens to them and are invoked by the Host application program(s). One may view
these as being co-routines of some concurrent programming languages, where sending one or more
starting tokens corresponds to the activation of the co-routine. The hardware and the software organ­
isation makes it certain that there is no hidden sequentiality; e.g. logically different functions do not
share DFP-s. Each function sends back a token to the Host once its task has been finished and, there­
fore, the corresponding DFP is ready to process again.

Datafiow
_fui.giA.L _. __
Graphics
Engme

Display

Figure 5 : Overall view of the DFC Software

9

Set Shield

There is, however, one significant difference: there might be more instances of the same function.
This is, as we will see later, the case of e.g. the transformation function: the Host has two transforma­
tion functions at its disposal, which are identical as far as their functional specification is concerned
but may run abS-Olutely in parallel.

The functions operate on two types of entities: point lists and colour values.
Point lists are arrays of four dimensional (homogeneous) points stored in Image Memory in form of

integers The points may be logically located in two coordinate systems. The first one is (to use the
usual terminology) a World Coordinate System whose limits are not specified. The second coordinate
system is the Device Coordinate System where the :x,y coordinates are expected to be in the range of
the display resolution and z within the limits of the Z-buffer. In the latter case the w coordinates have
no real geometrical meaning but they are used for internal purposes.

Point lists are transformed by a datafiow transformation function which performs a matrix-vector
multiplication and the projective division: in other words, it turns point lists stored in World Coordi­
nates into point lists stored in Device Coordinates. The starting points (that is the ones described in
World Coordinates) are put into the Image Memory by the Host. As we have already mentioned,
there are two instances of this function; in other words, the Host has the possibility to start a
transformation function two times in parallel; this is a significant source of speeding up the overall
speed of the Workstation. The choice of having two such transformation function instances (and not
more) is the outcome of a balance between DFP chip numbers and required overall speed; clearl.y, if
the hardware were different e.g. by having newer versions of the datafiow processors, this number
could change as well

How the point lists are interpreted depends on various drawing functions. In the actual version

10

there are basically two of them: the "draw polyline" and the "draw strip". Both of them read the
points from the point list and read the associated colour (R,G,B) from the colour list. Here again,
there might be several instances of the same function; at present we plan to have two instances of
both the "draw poly line" and "draw strip" functions. .

While the role of the "polyline" function is cfoar, the "draw strip" function needs some explana­
tions. Th.is function uses a list of points and a list of colour values to generate a series of adjacent tri­
angles (see Figure 6). Such strips may be generated by the Host by decomposing polygons and they
are also the natural outcome of a number of surface approximation methods. Using the two available
entities the "draw strip" datafiow function can create a set of 30 triangles to be sent to the Graphics
Engine which, on its turn, will render the Gouraud shaded triangles on the screen. (We have to
remark that this primitive appears directly in the functional specification of PHIGS + [11]).

Figure 6: A strip

Figure 7 gives an overall picture of these basic datafiow functions. Not all functions are shown in
the figure only the ones cited above. There are additional functions as well like "reset DFC", "set
transformation matrix" and there is also a function aimed at speeding up pick input.

Clearly, the main advantage of this kind of software architecture resides in the fact that the
different functions may be activated separately and they may run fully in parallel; in other words the
structure level parallelism of the kind (1) and (2) listed in the previous paragraph are fully covered.
Using this possibility of parallelism is of course the task of the Host; this is the unit which should
have a full control over all objects on the screen, which should know which objects are to be
retransformed, which ones have to be redisplayed only etc. In other words a rather complicated piece
of software had to be realised to drive the whole DFC.

It is not possible to present here all details of all functions implemented in DFC. As an example,
we will just give some details of the implementation of the transformation function; this will be
enough, we hope, to give a flavour of the techniques used in programming the Datafiow Engine of
DFC.

3.2.2. Details of a Data.flow Function: The Transformation Function. The primary task of the function
is to transform four dimensional homogeneous coordinates. Mathematically, this transformation con­
sists of two steps: the multiplication of a four dimensional vector with a 4X4 matrix and secondly,
the projective division, that is the division of the x,y and z coordinates with the fourth w coordinate.

The particular difficulty in programming this function resides in the fact that the DFP processor
has no division instruction. In other words, a separate dataflow program had to be written to imple­
ment this operation. Additionally, all arithmetic instructions are based on 16 bits arithmetic; unfor­
tunately, however, 32 bits should be used for internal calculation, otherwise the resulting errors in the
calculations would become excessively high.

However, all operations to be performed have a common feature, namely the fact that they can be
performed on individual points of the point list absolutely independently from one another. In other
words, there is a possibility of parallelism here which it is worthwile to exploit.

Figure 8 gives the overall view of how the transformation function is implemented. The function is
spread over 7 DFP processors, each processor performing a specific task, All processors work in
parallel and they form, as we will see, a kind of a transformation pipeline.

11

-,w \ I w Po"" Ii" ;,, we

I Transfonn I I Transform I
we

·~·~\] w·o~"io _) ~

Po w \ I WPoio• ""
! Draw Strip I

Colomli·W
Draw Polyline

_) ~ ~ "'- WColom "''

Graphics Engine

Figure 7: Overall structure of the DFC datafiow software

As it can be seen in the figure, some of the DFP processors perform functionally the same task;
they realise several instances of the same function. The repartition of the tasks is as follows.

The "top" function, called the supervisor, actually reads the points from Image Memory. As we
have already remarked, reading from memory is a time consuming task, it is therefore better to have a
separate function for that purpose. The points are then dispatched to the transformation modules via
the token network.

The transformation modules perform the matrix-vector multiplication, operating on 16 bits data but
calculating, as a result, 32 bits data. The time needed by the DFP processor to perform this task is
almost twice as much as reading the data from Image Memory; this is the reason why two instances
of the same function are in use. The two corresponding DFP-s get the next point alternatively from
the supervisor; using this approach the two instances together still keep at the rate of reading pro­
duced by the supervisor.

At the lowest level we find four instances of a divider function; this latter has the task of perform­
ing the projective division on a point and to store the result in Image Memory again. The reason for
using four instances altogether is the same as before: the time required by this function is roughly
twice as much as for the transformer; by getting the point alternatively again, there is no loss of
speed.

As a result, the speed of the whole transformation function is determined by the speed of the super­
visor; actually, this latter one can produce ea. 150.000 points/sec. As we have seen before, the whole
DFC contains, in the present version, two of these functions (that is all functions in Figure 8 are
duplicated); this results in a theoretical possibility of transforming 300.000 points/sec.

Finally, each DFP of Figure 8 contains a dataflow program in a "classical" sense. A simplified por­
tion of the matrix-vector multiplication may be seen in Figure 9; in fact, the matrix-vector multiplica·
tion may be considered as a typical example of a calculation which may be optimally structured for

12

"Divider"
Projective
division
Storage

"Divider"
Projective
divtsion
Storage

"Divider"
Projective
diVJsion
Storage

Figure 8 : The transformation function

"Divider"
Projective
diVJSion
Storage

datafl.ow purposes. The reason why this dataftow net is relatively complicated is that the DFP
instruction set is centered around 16 bits arithmetic whereas 32 bits is needed for our purposes. Here
is a short description of the net.

The x,y,z and w coordinates are duplicated 4 times in the first row to use them for the final x',y',z'
and w' coordinate values. The multiplication instruction has the additional feature (not shown in the
figure) that it may read values from internal memory "cyclically", in other words it will read first the
element belonging to the first row of the matrix, then the second one, the third one and finally the
fourth one. This ensures that after the multiplication the flow of tokens represent the right multiplica-
tive factors. ·

The "multiply" as well as the "add" node may (on request) output two tokens: one for the high 16
bits value and one for the low 16 bits. These values must be successively accumulated to get the final
high and low value of the result. This is what is done in the net of "add" nodes. Note that if only one
output token is requested for an "add" or "multiply" node, this means the output of the low value
only.

13

Multiply

Add Add

Add

Add

Add

high value low value

Figure 9 : Matrix-vector multiplication in dataflow

3.J. The Host software
As we have already mentioned, a rather complicated device driver is necessary on the host side to
drive DFC. This device driver will serve as a basis for more elaborate software systems which are
aimed at running on the Host. For this purpose, we plan to adapt GKS-30[12], PHIGS + (11], and a
three dimensional extension of the so-called radical system[13] on the top of this driver. As a later
step, PEX[l4] should also be ported, as soon as a public domain software becomes available for that
purpose. The shielding facility of the graphics engine gives a particular help for the adaptation of
window-oriented environments like PEX. Details of these adaptations go far beyond the scope o f the
present paper (see also Figure 5).

14

4. Conclusions
It is fairly difficult to give an impartial evaluation on the performance of graphics workstations; there
is a lack of reliable bench-mark software for this purpose. What we expect in our case is that the
overall graphics performance of the DFC will be around 150.000 to 200.000 Gouraud shaded
triangles/sec, with peaks raising up to 230.000 triangles/sec. This speed is comparable to the highest
end of the graphics super-workstati.ons available on the market today.

The fact that the expected speed is not higher than the speed of some commercially available
workstations should not be interpreted as a failure. All these workstations use well established tech­
nology, whereas DFC is the first exemple of a graphics workstation exploring the possibilities of
dataflow technology as adapted for graphics. What we have to realise is that the basic processing ele­
ment, that is the NEC ,uPD72181 itself is also the first commercially available datafl.ow processor on
chip; in other words some improved versions are to be expected soon. Here are some aspects of such
improvements we would welcome:
• The instruction set should be richer. In particular, division as well as floating point operations

should be included.
• All internal memories should be significantly larger.
• A better internal structure should ensure higher on-chip parallelism.
• The overhead of accessing the Image Memory via the ,uPD9305 should be reduced (we should

remark that a new and faster version of this chip is already in production, although still in proto­
type; the present hardware is prepared to use this chip instead of the older one).

• The way of connecting several processors should be improved. It should be possible to create large
dataftow-nets where the fact whether a token is sent from one processor to the other or that it
remains on-chip would be immaterial as far as software is concerned. This would allow a much
easier way of programming the processor.
In addition to the improvements on the chip level itself, there might be improvements on the

software level as well. Our personal experience in datafiow programming was practically non existent
when starting the project and we have gained some experience only "run-time". It might well be that
if we began reprogramming the whole DFC today, we could find new ways to improve the overall
result just by using better programming techniques.

It is by itself an enormous advantage of this architecture that such reprogramming may be easily
realized in contrast to an architecture which is based on custom design VLSI chips which is difficult
and expensive to change. Furthermore, an eventual adaptation of the hardware-software environment
for application-specific purposes is also easily realisable by reprogramming the datafiow processors.
Merits of such flexible architectures have already been presented by a number of authors (see eg. Eng­
land(l5]).

By taking all these factors into consideration, an improved version of the DFP as well as a more
experienced programming could raise the speed significantly; a fairly pessimistic estimation would still
indicate a speed factor of 5 to 10, in comparison to the actual data. On the other hand, in addition to
the improved speed of the already existing functions, new functions could also be added to the
Datafl.ow Engine. e.g. some parts of the Host device driver, more elaborate shading calculations etc. It
is almost impossible to measure exactly all impacts of such improvements.

5. Acknowledgements
We are grateful to all participants of the project who have contributed to the development of the
ideas presented in the paper and who have also taken an active part in the actual development. We
should cite the names of Frans van der Markt (DTN), Fons Kuijk, Bert Rouwhorst, Behr de Ruiter,
Robert van Liere, Markus van Dijk (CWI) and Arthur Veen (Parallel Computing). Without their
active role, this project would have no chance of success.

REFERENCES

l. A.R Vt;EN (1986). Dat.afl.ow Ma.chine Architecture, ACM Computing Surveys, 18.

15

2. J. HERATH, Y. YAMAGUCHI, N. SAITO, AND T. YUBA (1988). Dataflow Computing Models,
Languages, and Machines for Intelligence Computations, IEEE Transactions on Software Engineer­
ing, 14.

3. NEC (1986). µ.PD7281 Image Pipelined Processor, Product Description, NEC Electronics.
4. S.S. AB1-Ezz1 AND M.A. MILICIA (1986). , in Data Structures for Raster Graphics, ed. L.R.A.

Kessener, F.J. Peters and M.L.P. van Lierop, EurographicSeminar Series, Springer Verlag.
5. H.R. FINCH, M. AGATE, A.A. GAREL, P.F. LISTER, AND R.L. GRIMSDALE (1988). A Multiple

Application Graphics Integrated Circuit MAGIC II, in Advances in Computer Graphics Hardware
JI, ed. A.AM. Kuijk & W. Strasser, EurographicSeminar Series, Springer Verlag.

6. J. EYLES, J. AUSTIN, H. FUCHS, T. GREER, AND J. POULTON (1988). Pixel-Planes 4: A Summary, in
Advances in Computer Graphics Hardware II, ed. A.A.M. Kuijk & W. Strasser, EurographicSeminar
Series, Springer V erlag.

7 . I. PAGE (1983). DisArray: A 16X 16 RasterOp Processor, in Eurographics'83 Conference Proceed­
ings, ed. P.J.W. ten Hagen, North-Holland.

8. Tu. THEOHARIS AND I. PAGE (1988). Incremental Polygon Rendering on a SIMD Processor Array,
Computer Graphics Forum, 7.

9. S. DEMETRESCU (1985). High Speed Image Rasterization Using Scan Line Access Memories, in
Proceedings of the 1985 Chapel Hill Conference on VLSI, ed. H. Fuchs, Computer Science Press.

10. P.J.W. TEN HAGEN, A.AM. KUlJK, AND C.G. TRIENEKENS (1987). Display Architecture for
VLSI-based Graphics Workstations, in Advances in Computer Graphics Hardware I, ed. W. Strasser,
EurographicSeminar Series, Springer Verlag.

11. (1988). PHIGS+ Functional Description, Revision 3.0, Computer Graphics, 22.
12. ISO (1988). Information processing systems - Computer graphics - Graphical Kernel System for

Three Dimensions (GKS-3D) functional description, ISO 8805.
13. P.J.W. TEN HAGEN AND H.J. SCHOUTEN (1987). Parallel Graphical Output from Dialogue Cells,

in Eurographics'87 Conference Proceedings, ed. G. Marechal, North-Holland.
14. W. CLIFFORD, J.I. McCONNELL, AND J. SALTZ (1988). The Development of PEX, in Eurograph­

ics'88 Conference Proceedings, ed. D.A.. Duce & P. Jancene, North-Holland.
15. N. ENGLAND (1986). A Graphics System Architecture for Interactive Application-Specific

Display Functions, IEEE Computer Graphics and Applications, 6.

