
II

II

II

II

II

II II

II II

II II

Centrum
• voor
Wiskunde

en
lnformatica . ·

Centre for Mathematics and Computer Science

M. Bezem

Characterizing termination of logic programs
with level mappings

Computer Science/Department of Software Technology Report CS-R8912 April

1989

/

Centrum voor Wiskunde en lnformatica
Centr~ for Mathematics and Computer Science

M. Bezem

Characterizing termination of logic programs
with level mappings

Computer Science I Department of Software Technology Report CS-R8912 April

_ "._,; _--;:- ;;._;..,-

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Characterizing Termination of Logic Programs

with Level Mappings

Marc Bezem
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

We study a large class of logic programs which terminate with respect to a natural class of goals. Both

classes are characterized in terms of level mappings. The class of logic programs is strong enough to com

pute every total recursive function. The class of goals considerably extends the variable-free ones. Based

on the ideas developed in this paper we present a technique which improves the termination behaviour of

Prolog programs.

1980 Mathematics Subject Classification (1985): 68040, 68T15.

1987 CR Categories: F.1.1, F.4.1, 1.2.3.

Key Words & Phrases: logic programming, termination, multiset ordering, recursive functions.

I. INTRODUCTION

1

Termination of a logic program with respect to a given goal is of course a problem of the utmost

importance. Here termination is meant in the strong sense, i.e. irrespective of the selection of atoms

in the goal and of the ordering of the program clauses. In general the least Herbrand model M p of a

logic program P, consisting of all variable-free atoms which logically follow from P, is recursively enu

merable. Consequently, the above halting problem is in general unsolvable. Restriction to logic pro

grams P with recursive least Herbrand model Mp does not help very much, not even for variable-free

goals, for in general the mechanism of SLD-resolution does not provide a membership test for Mp.

Certainly, if a variable-free atom A occurs in Mp, then a breadth-first search procedure in an SLD

tree of ~A always yields a successful refutation, but for A not in Mp it can happen that this tree is

infinite, so that the search procedure does not terminate.
Let us consider the restriction to the class of determinate programs introduced by Blair in [BJ.

Determinate programs are logic programs with complementary success and finite failure set. Conse

quently, if P is a determinate program, then a breadth-first search procedure in any fair SLD-tree of a

variable-free goal will always terminate. Although this constitutes an improvement, it still leaves a lot

to be desired. First, breadth-first search is generally considered inefficient and it is not possible to

sharpen the above property of determinate programs to depth-first search procedures. Second, it is

desirable to be able to ensure termination for a larger class of goals than just the variable-free ones.

Then the program can not only test, but also compute. Third, and less important than the previous

two desiderata, we would like to do away with the fairness condition and obtain termination for arbi

trary · selection rules. Note that these three desiderata ensure the termination of a Prolog-like evalua

tion of goals from the larger class of goals mentioned above.
The technical tool we shall use is called level mapping by Cavedon (CJ, who studied various classes

of logic programs with negation. A level mapping is a function assigning natural numbers to

variable-free atoms. Level mappings are a natural refinement of Clark's finite partition of the set of

predicate symbols in [Cl]. We show that if a logic program is recu"ent, i.e. satisfies the condition

that heads of variable-free instances of program clauses have higher levels than the atoms occurring in

Report CS-R8912
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

the body of the same instance, then it is terminating with respect to bounded goals, i.e. goals whose
instances are below some fixed level. This result improves on [C], where only termination with respect
to variable-free goals is obtained. We also prove the converse, namely that a logic program is
recurrent if it terminates with respect to variable-free goals. Furthermore we show that every total
recursive function can be computed by a recurrent program. As the class of recurrent programs can
easily be shown to be a strict subclass of the determinate programs, this result improves on Blair [B],
who proved that every total recursive function can be computed by a determinate program. Finally
we give a technique which can improve the termination behaviour of certain Prolog programs.

2.RECURRENTPROGRAMS

For definitions, terminology and notation concerning logic programming we refer the reader to [A]
or [L]. More specifically, for a logic program P we use Up, Bp, Tp, Tpja, and TpJ,a as abbreviations
of, respectively, the Herbrand Universe of P, the Herbrand Base of P, the immediate consequence
operator of P, the upward ordinal powers of Tp, and the downward ordinal powers of Tp. Further
more we (ab)use Tpja, TpJ,a as abbreviations of Tpja(0), TpJ,a(Bp), so that Mp = Tpjw denotes the
least Herbrand model of the logic program P.

DEFINITION 2.1. Let P be a logic program. A level mapping for P is a function I I: Bp~N of
variable-free atoms to natural numbers. For A eBp we call IA I the level of A .

DEFINITION 2.2. Let P be a logic program and I I a level mapping for P. We call P recurrent with
respect to l I if for every variable-free instance B~A 1, ••• , An (n ;;;;.Q) of a clause from P the level of
Bis higher than the level of every A; (l~i~n). Moreover P is called recurrent if P is recurrent with
respect to some level mapping for P.

In the sequel we shall show that recurrent programs have a good termination behaviour: for a large
class of goals, including the variable-free ones, every SLD-derivation from a recurrent program ter
minates. This class of goals is characterized by Definition 2.3 below. The underlying idea is to assign
elements of a well-founded ordering to these goals in such a way that SLD-derivations correspond to
strictly decreasing sequences. Then termination will be ensured since the ordering is well-founded.
This idea is quite old and originates from mathematical logic. It has recently been applied to term
rewriting systems, see for example [D]. The well-founded ordering we shall use is called the
multiset ordering. A multiset, sometimes called bag, is an unordered sequence. Multisets are like sets,
but allow multiple occurrences of identical elements. The multiset ordering over N is an ordering of
finite multisets of natural numbers such that X is smaller than Y if X can be obtained from Y by
replacing one or more elements in Y by any (finite) number of natural numbers, each of which is
smaller than one of the replaced elements. See [D] for more information on the multiset ordering and
its use in term rewriting systems.

DEFINITION 2.3. An atom A is called bounded with respect to a level mapping I I if I I is bounded on
the set [A) of variable-free instances of A. If A is bounded, then ICA JI denotes the maximum that I I
takes on [A). A goal G =~A i. ... , An is called bounded if every A; (l~i~n) is bounded. If G is
bounded then llGJI denotes the (finite) multiset consisting of the natural numbers llA di, ... , llAn11·

ExAMPLE 2.4. Consider the following familiar program.

append([], z,z)~

append ((wlx],y, [wlzD~ append (x, y, z)

3

This program is recurrent with respect to the level mapping I I defined by

lappend(t.,t2,t3)1 = min(l(t 1),l(t3)), where l(t) denotes the length of the variable-free term t as a

list. More precisely: I([]) = 0 and l([h It]) = 1 +l(t). In general there will be more terms in the Her

brand Universe than just lists of lists. In that case we extend I I by putting l(j(ti. ... ,tn)) = 0

whenever f is different from the list constructing function symbol (n ;:ai.O). Note that a simpler

definition of I I (= l(ti) or l(t3)) would also make the append program into a recurrent program, but

would result in a smaller class of bounded goals.

LEMMA 2.5. Let P be a logic program which is recurrent with respect to a level mapping I I· Let G be a

bounded goal and G' an SLD-resolvent of G from P. Then we have: (i) The goal G' is bounded; (ii) The

multiset llG'll is smaller than llGJI in the multiset ordering.

PRooF. Let conditions be as above. As to (i), assume A; is the selected literal in G =~A" . .. , An,

and A~B., ... , Bk (k;;;;oO) the program clause used. Then we have G' =~(A" ... , A; - 1>

B1, ••• , Bk, A;+i. ... , An)IJ, with (J the mgu of A and A;. We have [A/I] k [Aj], so AjO is bounded

for every l~j~n. Furthermore, every Ce[B/J] (l~j~k) occurs at the right hand side of a

variable-free instance of (A~B., . . . , Bk)O, so ICl<l[AOJI since P is recurrent. It follows that Bj8 is

bounded (l~j~k), and hence G' is bounded. Moreover we have l[BjOJI <l[AOJl=l[A;O]l~l[A;]I for all

1 ~j~k. It follows that l[G'JI is smaller than l[GJI in the multiset ordering, which proves (ii). 0

COROLLARY 2.6. Every SW-derivation from a recurrent program starting with a bounded goal ter

minates.

PROOF. Immediate, since the multiset ordering over N is well-founded. 0

DEFINITION 2.7. A logic program P is called terminating if all SLD-derivations from P starting with a

variable-free goal are finite.

Terminating programs have the property that SLD-trees of variable-free goals are finite. Conse

quently any depth-first search procedure in such an SLD-tree will always terminate. We now proceed

by showing that a logic program is terminating if and only if it is recurrent.

THEOREM 2.8. Every recurrent program is terminating.

PRooF. By Corollary 2.6, since variable-free goals are bounded. 0

The above theorem was obtained independently by Cavedon in [CJ, in the more general setting of

recurrent programs with negation. Cavedon's proof is different and the details do not suggest the

stronger Corollary 2.6. For the converse of Theorem 2.8 we need a version of the so-called Lifting

Lemma.

LEMMA 2.9. Let G be a goal, C a program clause and 8 a substitution. If GO and C have an SLD

resolvent G', then G and C have an SW-resolvent G" such that G' = G"O' for some substitution O'.

PROOF. The proof is very similar to the induction step in the proof of [A, 3.16]. Instead of using the

Variant Corollary [A, 2.9] we give the necessary renamings explicitly. Let conditions be as stated in

the lemma. Then the situation can be depicted as in Figure 1, where the existence of G" and O' has to

be established.

4

G C

(} , ,' G" ,

GfJ c

G'

FIGURE 1

Let G = +-A 1, ••• , Am and C = A +-B 1, ••• , Bn. Without loss of generality we may assume that G (}
and C have no variables in common. For convenience, let A 18 be the selected atom in GfJ. Then for
the mgu µof A 18 and A we have G' = +-(Bi. ... ,Bn,A 2 fJ, ... ,AmfJ)µ. Let 7' be a renaming for C
(see [L)) such that CT has no variables in common with either G or GO, nor does fJ act on variables in
CT. It follows that A;fJ= A;fJT- 1 for all l~i~m. Moreover, since(} does not act on variables occur
ring in CT, we have AT= ATB and B1-r= B1TB for all l~j..;,n. Hence
A -rfJ-r- 1 µ = A TT- I µ = A µ = A 1fJµ = A 1 fJ-r - 1 µ, i.e. fJT- 1 µis a unifier of A 1 and AT. Let a be the mgu of
A 1 and AT, then fJ-r - 1 µ = afJ' for suitable fJ' . We have G" = +-(B 1-r, ... , BnT,A 2, ••• ,Am)a. Now

G"(J' = +-B 1 TafJ', ... , Bn-rafJ',A 2081
, • •• ,AmafJ'

= +-B1-r8-r- 1µ, ... ,Bn-rfJ-r- 1µ,A28-r- 1µ, ... ,AmfJT- 1µ

= +-B1TT- 1µ, ... ,BnTT- 1µ,A28µ, ... ,Am(}µ

= +-Biµ, . . . ,Bnµ,A28µ, ... ,Am(}µ

= G' D

THEOREM 2.10. A logic program is terminating if and only if it is recurrent.

PROOF. The if-part is Theorem 2.8. For the converse, assume P is terminating. Consider, for an arbi
trary goal G, the set of all SLD-derivations starting from G, allowing arbitrary selection of atoms in
goals. This set can be structured as a tree, which we call the LD-tree of G (the S is dropped since no
selection rule is fixed in advance). LD-trees are finitely branching since logic programs are finite and
since a goal and a program clause can have only finitely many resolvents. Since P is terminating it
follows by Konig's Lemma that for every variable-free atom A the LD-tree of +-A is finite. Hence we
can define a level mapping I I: Bp-+N by taking for IA I the number of nodes in the LD-tree of +-A.
It remains to show that P is recurrent with respect to I I· Let A 8+-B 1 fJ, ... , Bn(J be a variable-free
instance of a program clause in P. We have to show that \A fJl>\B;fJI for all l~i~n. Consider the
LD-tree of +-A fJ. We have that A fJfJ=A fJ, so (} is a unifier of A(} and A. So for some mgu µ of A(}
and A we have fJ = µfJ' and the LD-tree of +-B 1µ, ... ,Bnµ is a subtree of the LD-tree of +-A fJ. Now
consider an SLD-derivation starting with +-B;fJ (l~i~n). Since fJ = µfJ' we can lift this derivation by
applying Lemma 2.9 into a derivation starting with +-B;µ. This latter derivation can be embedded in
a derivation starting with +-B 1 µ, ... , Bnµ. It follows that the LD-tree of +-B;fJ has a smaller number
of nodes than the LD-tree of +-A fJ, i.e. IA l>IBil for all l~i~n. D

We finish this section by characterizing the class of determinate programs in terms of level map
pings. Determinate programs are introduced by Blair in [B] with the following definition.

5

DEFINITION 2.11. A logic program P is called determinate if Tp!w = Tpjw.

Due to the well-known characterization results [A, Theorem 3.13 and Theorem 5.6) we have that a

logic program P is determinate if and only if P has complementary success set and finite failure set.

Consequently a breadth-first search procedure in any fair SLD-tree of a variable-free goal will always

terminate. The intuition behind the relation between a determinate program P and a level mapping

can be explained as follows. If P is determinate and B EBp with B fiMp , then we have Bf£ T!(n +I)

for some n. If B +-A i. ... ,Ak is a variable-free instance of a clause form P, then A; f£ T !n for at

least one of the A; 's. Hence the maximal level on which a failing head occurs is higher than the maxi

mal level on which all the failing atoms of the body occur. This observation motivates the following

definition.

DEFINITION 2.12. Let P be a logic program and I I a level mapping for P. We call P weakly

recurrent with respect to I I if for every variable-free instance B +-A 1, ••• ,A11 of a clause from P the

following holds: if B fiMp, then there exists lo;;;;i~n such that A; fiMp and B has a higher level than

A;. P is called weakly recurrent if P is weakly recurrent with respect to some level mapping for P.

We proceed by showing that a logic program is determinate if and only if it is weakly recurrent.

Since recurrent trivially implies weakly recurrent, it follows that every terminating program is deter

minate (of course this can also be seen directly). The converse does not hold: p+-,p+-p form a logic

program which is determinate but not terminating.

LEMMA 2.13. Let P be weakly recurrent with respect to a level mapping I I: Bp-~1\1. Then, for all

natural numbers n, Tp!n - Tpjw contains only atoms of level ;;:.n.

PRooF. By induction on n, recalling that the immediate consequence operator Tp of P satisfies

Tpja C Tp!/3 for all ordinals a, /3, so in particular for a = w, /3 = n. Let P be weakly recurrent with

respect to I I· We trivially have that Tp!O - Tpjw contains only atoms of level ;;:.o. Assume

Tp!n - Tpjw contains only atoms of level ;;:.n and consider the case n + I. By definition we have

Tp!(n + I)= Tp(Tp!n). Using the induction hypothesis the situation can now be depicted as in Fig

ure 2.

Tp!(n +I)

I I ;;:.n ?

G Tp ~

FIGURE 2

Let B E Tp!(n + 1); then there exists (by the definition of Tp) a variable-free instance B +-A ., ... , Ak

(k;;:.O) of a clause from P such that A;ETp!n for all l~io;;;;k. If BfiTpjw, then there exists Io;;;;i~k

such that A; f£ Tp jw and IB I> !Ad, since P is weakly recurrent. By the induction hypothesis we have

jA;j;;.n, so IBl;;.n + I. This completes the induction step. D

THEOREM 2. 14. If a logic program P is weakly recurrent, then P is determinate.

·-~<-_:_f:. -- - .

6

PROOF. Observe that Tp!w - Tpjw = n (Tp!n - Tpjw). By Lemma 2.13 this latter intersection is
D n< w empty.

THEOREM 2.15. A logic program is determinate if and only if it is weakly recurrent.

PROOF. The if-part is Theorem 2.14. For the converse, assume P is determinate. Define a level map
ping I I : Bp-+N by taking for IA I the greatest k such that A E Tp!k if A f£ Tp jw, and 0 otherwise.
Since Tp!w = Tpjw this level mapping is well-defined. Moreover P is weakly recurrent with respect
to I I· For, let B ~A i. ... ,An be a variable-free instance of a clause from P. If Bf£ Tpjw, then
there exists l :s;;; i :s;;; n such that A;flTpjw and IA;I is minimal. It follows that B E Tp! (IA;l +l), so
IB l>IA;I- D

3. RECURSION THEORETIC CONSIDERATIONS

In this section we study the recursion theoretic properties of the class of recurrent programs. We
assume the reader is familiar with the basic facts of recursion theory. We use the denotations PR,
PR(j), R, RE for, respectively, the classes of primitive recursive functions, functions which are primi
tive recursive in f, recursive functions and recursively enumerable sets. We start with establishing
upper bounds on the recursion theoretic complexity of the least Herbrand model of a (weakly)
recurrent program, preparing by the following lemma.

LEMMA 3.1. Let P be recurrent with respect to a level mapping I I: Bp-~1\1. Then, for all natural
numbers n, Tp!n - Tpjn contains only atoms of level ;ai: n,

PROOF. By induction on n, similarly to the proof of Lemma 2.13 (see also [C]). D

L EMMA 3.2. Let P be a logic program which is recurrent with respect to a level mapping I I· Then Mp is
primitive recursive in I I·

PROOF. Observe that Tpjn !,;;;; Mp!,;;;;Tp!n for all n. Using Lemma 3.1 it follows that Mp - Tpjn con
tains only atoms of level at least n. So we have:

A E Mp iff 3k :s;;; IA l+1 AETpjk .

After appropriate coding the sets Tpjk can easily be seen to be primitive recursive. Moreover I I may
be seen as a function of natural numbers. Since the quantification in the righthand side above is
bounded by IA I+ I it follows from well-known results in recursion theory that Mp is primitive recur-
sive in I I· D

THEOREM 3.3. Let P be a weakly recurrent program. Then Mp is recursive.

PROOF. If P is weakly recurrent, then by Theorem 2.15 P is determinate, i.e. Tp!w = Tpjw. Generally,
Tp j w and Bp - Tp ! w are RE. So both Mp and its complement are RE. Now it follows from a well-
known result in recursion theory that M p is recursive. D

THEOREM 3.4. If P is recurrent, then Mp is in PR(I l) n R.

PROOF. By Lemma 3.2 and Theorem 2.3, since recurrent programs are weakly recurrent. D

This theorem shows that the computational power of a recurrent program largely depends on the
level mapping I I· Clearly the most simple level mappings are the most appealing. For example, the

7

level mapping used in Example 2.4 is, after appropriate coding, primitive recursive. Consequently, by

Lemma 3.2, the least Herbrand model of the append program is primitive recursive (of course this can

also be seen directly). Although programs with primitive recursive semantics are computationally

rather weak, they are not to be depreciated. Among them are many programs met in practice (such as

list processing programs). Moreover we can prove the following version of Kleene's normal form

theorem from recursion theory.

THEOREM 3.5. (Normal form theorem for logic programs.) For every logic program P there exists a

program P' (in which the same predicate symbols occur with incremented arities) which is recurrent with

respect to a primitive recursive level mapping such that for all p(t i. . .. , tn) EBp

p(ti. . .. , tn) E Mp iff 3t' p(t 1> .. . , tn ,t') e Mr.

PROOF. We tacitly assume that no predicate symbol occurs in P with more than one arity. First we

fix the alphabet of P'. Every predicate symbol occurring in P with arity n ~O occurs in P' with arity

n + 1. Furthermore, if the alphabet of P does not contain a unary function symbol s, then we add s to

obtain the alphabet of P'. Now the clauses of P' are obtained by applying a simple transformation to

the clauses of P, of which we shall give two typical examples:

p(ti.t2)

is transformed into

and

p(t1, t1) - q(t 3), p(t4 , ts)

is transformed into

p(t., t i , s(x)) - q(t3, x), p(t4 , t s, x),

where x is a variable not occurring in t 1, • •• , t 5• It is immediately clear that P' thus obtained is

recurrent with respect to the level mapping I I: Br-N defined by

IP (t J, · · • , tn , t ')I = ll t' ll,

where II II is defined by lls(t)ll = l + llt ll and ll f(ti. . . . ,tk)ll = 0 whenever f differs from s (k;;;i.O).
Moreover, we obviously have for all p(ti. ... ,tn)EBp :

p(ti. ... ,tn)E Mp iff 3t' p(t1> ... , tn, t')e Mr. D

COROLLARY 3.6. Let P" be the program P' augmented with clauses p(x1> .. . ,xn) - p(xi. . .. , xn,x')

for all relations p occurring in P. Then we have Mp = MP" nBp. The program P" may be viewed as a

normal form of P. Note that P" satisfies TP"tw = TP"!(w + 1).

From Theorem 3.4 we know that both PR(I I) and R are upper bounds of the recursion theoretic

complexity of the least Herbrand model of a recurrent program. We experienced considerable
difficulty in establishing the exact computational power of the class of recurrent programs. These
difficulties can be traced back to the fact that the class of recurrent programs (as well as the class of

weakly recurrent programs) does not enjoy a natural closure property such as composition. Let us
first define how a logic program computes a function.

DEFINITION 3.7. For every n E N, let n denote the term sn(O). A logic program P with Herbrand

Universe {ii In E N} is said to compute a partial function f: Nk-N if for some predicate symbol p
we have

_ _ ;;.,...:;;._.

8

f(n., . . . ,nk)= n iff p(iiI> ... ,nk>n)EMp

for all n 1, ••• , nk>n EN.

The technical obstacle mentioned above becomes apparent when one tries to prove that the class of
functions which can be computed by recurrent programs is closed under composition. If
f (x) = g(h(x)), then it seems natural to add the clause

PJ(x,y)~ Ph(x,z), Pg(z,y)

to (disjoint) recurrent programs computing g and h in order to obtain a program that computes f.
However, this latter program will in general not be recurrent, due to the presence of the variable z in
the body of the above clause. Consider, for example, Ph(x,s(x))~ and
Pg(O,s(O))~, Pg(s(x),y)~pg(x,y), with PJ as defined above. Then ~P1(0,s(O)) heads an infinite
(right-most) SLD-derivation. The solution turned out to be the choice of the right machine model,
namely the register machine (see [SI]).

DEFINITION 3.8. A register machine program is a finite sequence I 1, ••• , In of instructions which
operate on registers xI> ... , xm, where each instruction is of one of the following two forms (with
} .;;;;; i .;;;;;m, I .;;;;; j.;;;;;n +I).

x;: = x; + I

IF x;=;i!:O THEN x;: = x; - 1 AND GOTO j

The program is completed with a halt instruction In + 1• Execution of a register machine program with
respect to given contents nI> ... ,nm EN of the registers X1> ... ,xm starts from II> executing the
instructions in the obvious sequential way, and terminates when the halt instruction In + 1 is reached.
A register machine program is said to compute a (partial) function f: l\lk-+N (k.;;;;;m) if, for all
n 1, ••• , nk EN, the execution of the register machine program with respect to contents
nI> . .. ,nk,O, ... ,0 of the registers terminates with value f(ni. ... ,nk) in register x 1 (if this func
tion value is not defined, then the execution is not allowed to terminate).

A classical result from [SI] states that every partial recursive function can be computed by a regis
ter machine program. This same result can be obtained for logic programs by transforming register
machine programs into logic programs. This can be done in a very natural way, as shown in [S].
Every instruction corresponds to the definition of a predicate symbol, every register corresponds to an
argument of these predicate symbols. All predicate symbols have one more argument through which
the function value is passed. The predicate symbol Pk corresponding to the instruction h has one of
the following two definitions, corresponding to the possible forms of the instruction as displayed
above (the second definition consists of two clauses).

Pk(xi, ... ,X;, ... ,Xm,y)~Pk+1(xi, ... ,s(x;), ... ,Xm,y)

Pk(X1> . . . ,s(x;), ... ,Xm,y)~p/xi. ... ,X;, ... ,Xm,y)
Pk(X(, . . . ,0, ... , Xm,y)~Pk+I(Xi, ... ,0, ... ,Xm,y)

The halt instruction corresponds to the following program clause, by which the function value is tran
sported from register x 1 to the last argument of the predicate symbols.

Pn + i(Xi. · · · ,Xm,Xi)~

If we finally add the clause

p(xi. ... ,x,,y)~p 1 (x., ... ,x1,0, ... ,O,y)

to the logic program corresponding to a register machine program, then it is easy to see that both
compute the same partial function. It is also easy to see that the SLD-trees corresponding to register

9

machine computations consist of one single path, and that this path is finite if and only if the compu
tation terminates. However, this does not imply that the logic program corresponding to a register
machine program which computes a total recursive function is terminating. For example, it is not
guaranteed that the goal - p 7(0, . . . , 0,0) terminates (the malicious programmer could have taken
GOTO 7 for J 7 , taking care that any normal execution of his program never falls into this trap). Evi
dently we need a stronger result than can be extracted from [SI]. Goals of the form
- pk(ii i. .. . , nm Ji) correspond to starting the execution of the register machine program at the k-th
instruction, with the registers initialized on n i. .. . , nm . Hence the result we actually need is that
every total recursive function can be computed by a register machine program which always halts,
irrespective of the initialization of the registers and of the instruction at which the execution starts.
This result was proved by Shepherdson in [S2]. An analogous result for Turing machines has been
proved by Davis [Da, Theorem V.3]. We are now in a position to state and prove the main result of
this paper.

THEOREM 3.9. Every total recursive function can be computed by a recurrent program.

PROOF. By Theorem 2. JO and [S2, Theorem 4], using the transformation of register machine programs
to logic programs as described above. Note that the level of a closed atom is independent of its last
argument. D

To illustrate the use of recurrent programs in improving the termination behaviour of Prolog pro
grams we show how the familiar Ackermann function can be computed by a recurrent program. The
underlying idea is that of using the arguments of a predicate as a depth-bound. This technique may
be applicable in many practical programs such as list processing programs, where the depth-bounds
are often even easier to find than in the example below.

EXAMPLE 3.12. The Ackermann function A : 1\1 X N-N is a recursive function which is not primitive
recursive, and is defined as follows:

A(O,n) = n + I;

A(i + 1,0) = A(i, I);

A (i + I , n + I) = A (i, A (i + I, n)).

A straightforward translation of this definition suggests the following logic program.

p(O,y, s(y))-

p(s(x), O,z)- p(x, l,z)

p(s(x), s(y), z)-p(s(x),y,z'), p(x,z',z)

However, this program is not recurrent since it is not terminating. For example, we have
- - - -

p(2,2,0)-p(2, l,z),p(l, z, 0), and -p(l,z, 0) heads an infinite left-most SLD-derivation by applying
the third program clause again and again. By using the ad hoe observations that the Ackermann func
tion is monotonic (so A (i + 1,n)< A (i + 1,n + I)) and that the function value constitutes (in some
sense) a logarithmic upper bound on the length of the computation, we devised the following logic
program P.

p(O,y,s(y), w)

p(s(x),O,z, w)-p (x, 1,z, w)

p(s (x) ,s (y),z,s(w))-p(s(x),y,z', w), p(x,z',z,s (w))

This program is recurrent with respect to the level mapping defined by IPUi.t2,t3,t4)i = ll t 111 + ll t411 ,

10

where llnll = n. With some technical effort (notably transfinite induction upto w2) one proves that for
all n,i,m EN

m = A (n,i) if and only if p(Ti,i, m,m)EMp.

Hence the Ackermann function is computed by the recurrent program obtained by augmenting P with
the clause

PA(x,y,z)~ p(x,y,z,z),

where the level mapping is extended by putting IPA(t 1 ,li,13)1 = 1+ lp(t1,li,t3,t3)I. Since P is
recurrent, bounded goals, such as ~PA(l,z, 0), are correctly evaluated by a depth-first search pro
cedure in the SLD-tree, no matter the ordering of the program clauses and the selection of atoms in
goals. Note that the Prolog evaluation of a goal such as ~PA(x,y, 13), which is not bounded, has also
improved. Due to the left-most selection rule of Prolog all five solutions to this goal are successively
found, after which the evaluation correctly terminates. The naive implementation of the Ackermann
function does not evaluate the goal ~p(x,y, 13) correctly: after two solutions the evaluator hits an
infinite branch in the SLD-tree.

It may seem paradoxical that the level mapping above is primitive recursive, so that P has primitive
recursive semantics by Lemma 3.2. However, it so happens that some non primitive recursive func
tions do have primitive recursive graphs. Note that the construction of P bears some similarity to the
proof of Theorem 3.5, the normal form theorem for logic programs.

ACKNOWLEDGEMENTS. I would like to thank Krzysztof Apt, Roland Bol, Jan Heering, Jan Willem
KJop, Hans Mulder, Dirk Roorda and Professor J.C. Shepherdson for helpful advise and stimulating
discussions on this paper.

REFERENCES
[A] K.R. APT, Introduction to Logic Programming, Report CS-R8826, Centre for Mathematics and

Computer Science, Amsterdam, 1988. To appear in: J. VAN LEEUWEN (editor), Handbook of
Theoretical Computer Science, North Holland, Amsterdam.

[B] H. BLAIR, Decidability in the Herbrand Base, manuscript (presented at the Workshop on Founda
tions of Deductive Databases and Logic Programming, Washington D.C., August 1986).

[C] L. CAVEDON, Continuity, Consistency, and Completeness Properties for Logic Programs, to appear
in the Proceedings of the Fifth International conference on Logic Programming, Lisbon, 1989.

[Cl] K.L. CLARK, Negation as failure, in: H. GALLAIRE, J. MINKER (editors), Logic and Data Bases,
Plenum Press, New York, 1978, pp. 293-322.

[D] N. DERSHOWITZ, Termination of Rewriting, Journal of Symbolic Computation 3, pp. 69-116, 1987.
[Da] M. DAVIS, A note on Universal Turing Machines, In: J. McCARTHY, C.J. SHANNON (editors),

Automata studies, Princeton University Press, Princeton, pp. 167-175, 1956.
[L] J.W. LLOYD, Foundations of Logic Programming, Second Edition, Springer-Verlag, Berlin, 1987.
[S] J.C. SHEPHERDSON, Undecidability of Hom Clause Logic and Pure Prolog, unpublished

manuscript, 1985.
[Sb] J.R. SHOENFIELD, Mathematica/ Logic, Addison-Wesley, Reading, Mass., 1967.
[Sl) J.C. SHEPHERDSON, H.E. STURGIS, Computability of Recursive Functions, Journal of the ACM 10,

pp. 217-255, 1963.
[S2] J.C. SHEPHERDSON, Machine configuration and word problems of given degree of unsolvability,

Zeitsch. f. math. Logik und Grundlagen d. Math. 11, pp. 149-175, 1965.

