
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

K.R. Apt, R.N. Bol, J.W. Klop

On the safe termination of PROLOG programs

Computer Science/Department of Software Technology Report CS-R8913 April

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

On the Safe Termination of PROLOG Programs

Krzysztof R. Apti ,2

Roland N. Boi1

Jan Willem Klop i ,3

We systematically study loop checking mechanisms for logic programs
by considering their soundness, completeness, relative strength and
related concepts. We introduce a natural concept of a simple loop
check and prove that no sound and complete simple loop check
exists, even for programs without function symbols. Then we
introduce a number of sound simple loop checks and identify a natural
class of PROLOG programs for which they are complete. In this class a
limited form of recursion is allowed. As a by-product we obtain an
implementation of the closed world assumption of Reiter [R] and a
query evaluation algorithm for a class of logic programs without
function symbols.

Key Words and Phrases: deductive databases, logic programming,
termination loop checking, PROLOG interpreter.
1985 Mathematics Subject Classification: 68040, 68T15
1987 CR Categories: F.3.2, F.4.1, H.3.3, 1.2.3.
Note: This paper will appear in the Proceedings of the Sixth
International Conference on Logic Programming.

1. INTRODUCTION
PROLOG has been advocated as a programming language which allows us to
write executable specifications. Unfortunately, when interpreting correct
specifications written in the form of a logic program as a PROLOG program, a
divergence usually arises ... This is due to the fact that the PROLOG interpreter
uses a depth-first search and consequently can enter an infinite branch and miss
a solution.

The problem of detecting such a possibility of divergence is obviously
undecidable as PROLOG has the full power of recursion theory. Consequently
this problem has been taken care of by developing a number of useful heuristics
on how to avoid a possibility of non-termination.

Another possible approach to this problem has been based on modifying the
underlying computation mechanism that searches through the corresponding
SLD-trees by adding a capability of pruning. Pruning an Sill-tree means that at

1 Centre for Mathematics and Computer Science
P. O.Box 4079, 1009 AB Amsterdam, The Netherlands
2 Department of Computer Sciences, University of Texas at Austin,
Austin, Texas 78712-1188, USA
3 Department of Computer Sciences, Free University of Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

Report CS-R8913
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

2
some point the interpreter is forced to stop its search through a certain part of the
tree, typically an infinite branch. Every method of pruning SLD-trees considered
so far has been based on excluding some kind of repetition in the SLD
derivations, because such a repetition makes the interpreter enter an infinite loop.
That is why pruning SLD-trees has been called loop checking. Such
modifications of PROLOG interpreters were considered in the literature (see e.g.
[B], [BW], [Co], [PG], [SGG]), but no results were proved about them, with a
notable exception of [SGG].

In this paper we systematically study loop checking mechanisms by
analyzing their soundness (no computed answer substitution to a goal is
missed), completeness (all resulting derivations are finite), relative strength and
related properties. We introduce a natural subclass of loop checking
mechanisms, called simple loop checks, obtained when their definition does not
depend on the analyzed logic programs. We prove among others that no sound
and complete simple loop check exists even in the absence of function symbols.

Then we introduce a number of intuitive simple loop checks which are all
sound and identify a natural class of restricted programs without function
symbols for which these loop checks are complete. Restricted programs allow a
restricted form of recursion (hence the name).

To better understand the relevance of the problems studied here, consider
the following example. Let P be the following simple-minded PROLOG
program computing in the relation tc the transitive closure of the relation r:
P = { tc(x,y) ~ r(x,y).

tc(x,y) ~ r(x,z),tc(z,y). }
Suppose we add to P the following facts about r: r(a,a)~. r(a,b)~. r(b,c)~.
r(d,a)~. Then if we ask:
- tc(a,b) we get the answer 'yes';
- tc(a,c) the program gets into an infinite loop (whereas we should get the
answer 'yes');
- tc(a,d) the program gets into an infinite loop (whereas we should get the
answer 'no');
- tc(b,d) we get the answer 'no'.

Thus P is not the right program for computing the transitive closure. One
solution is to write a different program, which is not straightforward - see for
example the program in [CM], section 7.2. In fact, Kunen [K] recently proved
that any such program must use either function symbols or negated literals.

In our solution, we change the underlying interpreter by adding to it a
simple loop check, and retain the above program, which turns out to be
restricted. (In contrast, this solution cannot be applied to an alternative version
of P obtained by replacing the second clause by tc(x,y) ~ tc(x,z),tc(z,y), as the
resulting program is not any more restricted.)

As a by-product of these considerations we obtain an implementation of the
closed world assumption of Reiter [R] and of a query evaluation mechanism for
definite deductive databases which are restricted programs. The closed world
assumption (CWA in short) is a way of inferring negative information in
deductive databases. Reiter [R] showed that in the case of definite deductive
databases (DB in short) it does not introduce inconsistency. However, even
though CW A is correctly defined for DB, there is still the problem of how it can
be implemented, since it calls for the use of the following rule (or rather
metarule):

if DB If cp then DB 1- -,cp,
that is: deduce -,cp if cp cannot be proved from DB using first order logic.

The problem is how to determine for a particular ground atom (or fact in
short) that there is no proof of it. When DB is a restricted program, to infer -,A
for a fact A it suffices to use Clark's [Cl] negation as (finite) failure rule
augmented with an appropriate loop check.

A more general problem is that of query processing in DB: given an atom A,
compute the set [A]DB of all its ground instances AS such that DB I- A0. Indeed,
when A is ground and DB If A, the query processing problem reduces to the
problem of deducing -.A by means of CW A. When DB is a restricted program,
to compute [A]oB for an atom A, it suffices to collect all computed answer
substitutions in the SLD-tree with leftmost selection rule and ~A as root,
pruned by a sound and complete loop check.

In the full version of this paper we shall analyze several other loop checks,
including those based on a subsumption check (see [CL], [SGG]). These loop
checks are complete for different classes of programs.

2. LOOP CHECKING
Throughout this paper we assume familiarity with the basic concepts and
notations of logic programming as described in LL]. For two substitutions O' and
t, we write 0':$;'t when O' is more general than 't and for two expressions E and F,
we write E:SF if F is an instance of E. We then say that F is less general than E.
An SLD-derivation step from a goal G, using a clause C and an mgu e, to a goal
H is denoted as G ==>c,e H.

The purpose of a loop check is to prune every infinite SLD-tree to a finite
subtree of it containing the root. One might define a loop check as a function
from SLD-trees to SLD-trees, directly giving the pruned tree. However, this
would be a very general definition, allowing practically everything. We shall use
therefore a more restricted definition according to which for a program P:
- a node in an SLD-tree of Pu{G} (for some goal G) is pruned if all its

descendants have been removed. (Note the terminology: the pruned node itself
remains in the tree.)

- by pruning some of the nodes we obtain a pruned version of the SLD-tree.
- whether a node is pruned or not only depends upon its ancestors in the SLD-

tree, that is on the SLD-derivation from the root up to this node. (Note:
throughout the paper, by an SLD-derivation we mean an SLD-derivation in the
sense of [L] or an initial fragment of it.)

Therefore, we can define a loop check as a function on the Sill-derivations
instead of on the SLD-trees. However, for convenience we do not define it as a
function from derivations to derivations, but as a set of derivations (depending
on the program): the derivations that are pruned exactly at their last node. Such a
set of SLD-derivations L(P) can be extended in a canonical way to a function
fL(P) from SLD-trees to SLD-trees by removing from an SLD-tree all the
descendants of the nodes in { G I the SLD-deri vation from the root to G is in
L(P)}. In the remainder of this article, we shall usually make this conversion
implicitly.

We shall also study an even more restricted form of loop check, called
simple loop check, in which the set of pruned derivations is independent of the
program P. In other words, a loop check is a function, having a program as
input and a simple loop check as output. This leads us to the following
definitions.

3

4

DEFINffiON 2.1.
Let L be a set of SLD-derivations.
RemSub(L) = {DeL I L does not contain a proper subderivation ofD}
L is subderivation free if L=RemSub(L). D

In order to render the intuitive meaning of a loop check L: 'every derivation
DeL is pruned exactly at its last node', we need that Lis subderivation free.
Note that RemSub(RemSub(L)) = RemSub(L).

In the following definition, by a variant of a derivation D we mean a
derivation D' in which in every derivation step, atoms in the same positions are
selected and the same program clause is used. D' may differ from D in the
renaming that is applied to these program clauses for reasons of standardizing
apart and in the mgu used. It has been shown that in this case every goal in D' is
a variant of the corresponding goal in D (see [LS]).

DEFINITION 2.2.
A simple Loop check is a computable set L of SLD-derivations such that
- for every derivation D: if De L then for every variant D' of D: D' e L;
- L is subderivation free. D

The first condition here ensures that the choice of variables in the input
clauses in an Sill-derivation does not influence its pruning. This is a reasonable
demand since we are not interested in the choice of the names of the variables in
the derivations.

DEFINITION 2.3.
A Loop check is a computable function L from programs to sets of SLD
derivations such that for every program P, L(P) is a simple loop check. D

DEFINITION 2.4.
Let L be a loop check. An SLD-derivation D of Pu{G} is pruned by L if L(P)
contains a subderivation D' of D. o

EXAMPLE 2.5 (based on Example 8 in [B], see also [vGI]).
A first attempt to formulate the Contains a Variant of Atom (CVA) check might
be: 'A derivation is pruned at the first goal that contains a variant A of an atom
A' that occurred in an earlier goal.' Note that we have to allow here that A and
A' are variants: if we required A=A' then we would violate the first condition in
definition 2.2.

The intuition behind this loop check is the following. We wish to prove A'
by resolution. If we find out after some resolution steps that in order to prove A'
we need to prove a variant A of A', then there are two possibilities. One is that
there is a proof for A. Then this proof could also be used as a proof for A', by
applying an appropriate renaming on it. So we do not need the proof of A' that
goes via A. The other possibility is that there is no proof for A. In that case, the
attempt to prove A' via A cannot be successful. So in both cases there is no
reason to continue the attempt to prove A' via A.

The derivation step f-B,A ~B~ f-A shows that the first formulation of the
CV A check is not precise enough: it does not capture the intuition that the proof
of A' goes via A. A should be the result (after one or more derivation steps) of
resolving A', or a further instantiated version of A' (if A' is not immediately
selected).

Therefore we define CV A = RemSub({ D I D = (Go ~Cl e1 G1 ~- .. ~ Gk-1
~Ck,0k Gk) such that for some i and j, O~:::;j<k, Ok contains an atom A that is
- a variant of an atom A' in Gi and
- the result of an attempt to resolve A'0i+l· .. Oj, the further instantiated version

of A' that is selected in G· }).
We shall now give an illustration of the use of this loop check.

Let P = { A(O) +-- (Cl)
B(l) +-- (C2)
A(x) +-- A(y) (C3)
C +-- A(x),B(x) (C4) },

letG =+-C.
That the informal justification of the loop check CV A is incorrect, is shown

by applying it to two SLD-trees of Pu{G}, via leftmost and rightmost selection
rule respectively, which gives us:

+-- c
+(C4)

+-- A(x),B(x)

(Cl) ~C3)'
x'/x ___ ..:;;___.,

+-- B(O) +-- A(y'),B(x)

+-- c
+(C4)

+-- A(x),B(x)

l(C2)
+x/l

+-- A(l)

/fY "'cy:;y'
I (C3)'

CV A prunes here t x'/l

+-- B(x) +-- A(y"),B(x)
+-- A(y')

I ~C2) (C~)/ \ (C3)'" tx/l y"/~ \ x"'/y"

(C~)j \ (C3)"
y'/°,(\c x"/y'

D
D

figure 1

Here and elsewhere a substitution 9 acting on one variable only, say x, is
denoted by x/x8. A failed node, i.e. a node without a successor in the SLD-tree,
is marked by a box around it.

A detailed analysis shows why the goal G3=+-A(y') in the rightmost tree is
pruned by the CV A check. Clearly, a variant of A(y') occurs in an earlier goal:
A(x) in G1. So we take i=l. In G1, A(x) is not yet selected, so j>i. In factj=2,
for in G2 the atom A(l), which is a further instantiated version of A(x), is
selected. Indeed, A(y') is the result of resolving A(l). Therefore the derivation
is pruned at G3 by the CV A check. (In this case, A(y') is the direct result of
resolving A(l), but in general there may be any number of derivation steps
between Gj and Gic.) D

5

6

Indeed, this loop check has not worked properly here: all successful
derivations have been pruned. Clearly, this is an undesirable property for loop
checks. On the other hand, all infinite derivations are pruned, as intended. In the
next section, we shall give formal definitions of these and related properties of
loop checks.

3. SOME GENERAL CONSIDERATIONS
In this section some basic properties of loop checks are introduced and some
natural results concerning them are established.

3 .1. Soundness and completeness
The most important property is definitely that using a loop check does not result
in a loss of success. Since we intend to use pruned trees instead of the original
ones, we need at least that pruning a successful tree yields again a successful
tree.

Even stronger, because we use here a PROLOG-like interpreter augmented
with a loop check as the only inference mechanism, we do not want to lose any
individual solution. That is, if the original tree contains a successful branch
(with some computed answer substitution), then we require that the pruned tree
contains a successful branch with a more general answer substitution.

Finally, we would like to retain only shorter derivations and prune the
longer ones that give the same result. This leads to the following definitions,
where for a derivation D, IDI stands for its length, i.e. the number of goals in it

DEFINITION 3.1.1.
i) A loop check L is weakly sound if for every program P and every goal G, and
for every SLD-tree T of Pu{G}: ifT contains a successful branch, then f°L(P)(T)
contains a successful branch.
ii) A loop check Lis sound if for every program P and every goal G, and for
every SLD-tree T of Pu{G}: if T contains a successful branch with a computed
answer substitution cr, then fL(P)(T) contains a successful branch with a
computed answer substitution cr' such that Gcr' ~ Gcr.
iii) A loop check Lis shortening if for every program P and every goal G, and
for every SLD-tree T of Pu{G}: if T contains a successful branch D with a
computed answer substitution cr, then either fL(P)(T) contains D or fL~P)(T)
contains a successful branch D' with a computed answer substitution cr such
that Gcr' ~ Gcr and ID'l<IDI. D

The following lemma is an immediate consequence of these definitions.

LEMMA 3.1.2. Let L be a loop check.
i) If Lis shortening, then Lis sound.
ii) If L is sound, then L is weakly sound. D

The purpose of a loop check is to reduce the search space for top-down
interpreters. We would like to end up with a finite search space. This is the case
when every infinite derivation is pruned.

DEFINITION 3.1.3.
A loop check L is complete if every infinite Sill-derivation is pruned by L. D

We must point out here that in these definitions we have overloaded the
terms 'soundness' and 'completeness'. These terms do not refer here only to
loop checks, but also to interpreters for logic programs (with or without a loop
check). Such an interpreter is sound if the answer it gives (if it gives one) is
correct w.r.t. the intended model or the intended theory of the program. An
interpreter is complete if it finds every correct answer within a finite time.

3.2. Interpreters and loop checks
When a top-down interpreter is augmented with a loop check, we obtain a new
interpreter. The soundness and completeness of this new interpreter depends on
the soundness and completeness of the old one, as well as on the soundness and
completeness of the loop check. However, these relations are not trivial. In
particular, it is not true that adding a complete loop check to a complete
interpreter yields again a complete interpreter.

These relationships are expressed by the following lemma's. For each of
them, an intuitive meaning is provided in terms of interpreters. We refer here to
two interpreters: one searching the SLD-tree depth-first left-to-right (as the
PROLOG interpreter does), and one searching breadth-first. Without a loop
check, both interpreters are sound w.r.t. CWA. The breadth-first interpreter is
also complete.

The (quite simple) proofs are omitted in this section. They will appear in
[BAK], the full version of this paper.

LEMMA 3.2.1. Let P be a program, A a ground atom and La weakly sound loop
check. Then for every SW-tree T of Pu{~A}, P f-CWA -iA ifffL(PJ(T)
contains no successful branches. D

Thus an interpreter augmented with a weakly sound loop check remains
sound w.r.t. CWA. Since fL(P)(T) may be infinite, nothing can be said about
completeness.

LEMMA 3.2.2. Let P be a program, A an atom and L a sound loop check. Then
for every SW-tree T of Pu{ ~A} and/or every ground substitution 8, P f
A8 iff fL(PJ(T) contains a successful branch with a computed answer
substitution -r such that -rse. D

Thus an interpreter augmented with a sound loop check remains sound.
Moreover, a breadth-first interpreter remains complete .

COROLLARY 3.2.3. Let P be a program, A a ground atom and La weakly sound
and complete loop check. Then for every SW-tree T of Pu{ ~A}, P
J-cwA -iA ifffL(PJ(T) is finite and contains no successful branches. 0

Thus an interpreter augmented with a weakly sound and complete loop
check becomes complete w.r.t. CW A.

COROLLARY 3.2.4. Let P be a program, A an atom and La sound and complete
loop check. Then for every SW-tree T of Pu{ ~A} and for every ground
substitution 8, P J- A8 iff fL(PJ(T) is finite and contains a successful branch
with a computed answer substitution "C such that -rSO. D

Thus a depth-first interpreter augmented with a sound and complete loop
check becomes complete . This also means that a sound and complete loop check

7

8
can be used to implement query processin~ as defined in the introductiol'!.
Indeed, given a program P and an atom A with an SLD-tree T of Pu{ f-A}, it
suffices to traverse the finite tree fL(P)(T) and collect all computed answer
substitutions.

3 .3. Comparing loop checks .
After studying the relationships between loop checks and mterp~eters, we sh~l
now analyze a relationship between loop checks. In general, it can be q~nte
difficult to compare loop checks. However, some of them can be compared m a
natural way: if every loop that is detected by one loop check, is detected at t~e
same derivation step or earlier by another loop check, then the latter one 1s
stronger than the former.

DEFINITION 3.3. l.
Let Lt and L1 be loop checks.
L1 is stronger than L2 if for every program P every SLD-derivation D2E L2(P)
contains a subderivation D1 such that D1eL1(P). D

In other words, L1 is stronger than L1 if every SLD-derivation that is
pruned by L1 is also pruned by Li. Note that the definition implies that L1 is
stronger than itself.

The following theorem will prove to be very useful. It will enable us to
obtain soundness and completeness results for loop checks which are related by
the 'stronger than' relation, by proving soundness and completeness for only
one of them.

THEOREM 3.3.2. Let L1 and L2 be loop checks, and let L1 be stronger than L2.
i) If L1 is weakly sound, then L2 is weakly sound.
ii) If L1 is sound, then L2 is sound.
iii) If L 1 is shortening, then L2 is shortening.
iv) If L2 is complete then L1 is complete.

PROOF. Straightforward. D

Now we have a more clear view of the situation. Very strong loop checks
prune derivations in an 'early stage'. If they prune too early, then they are
unsound. Since this is undesirable, we must look for weaker loop checks. But a
loop check should preferably be not too weak, for then it might fail to prune
some infinite derivations (in other words, it might be incomplete). Of course, the
'stronger than' relation is not linear. Moreover, loop checks exist that are neither
sound nor complete.

3.4. Sound and complete loop checks
The question is now: do there exist sound and complete loop checks?
Obviously, there cannot be such a loop check for logic programs in general, as
logic programming has the full power of recursion theory. (Remember that
according to the definition, a loop check is computable.) So our first step is to
rule out programs that compute over an infinite domain. We shall do so by
restricting our attention to programs without function symbols. This restriction
leads to a finite Herbrand Universe, but other solutions (typed functions,
bounded term-size property [vG2]) are also possible here.

Note that our definitions so far referred to arbitrary programs and SLD
derivations. In the sequel, we shall consider only certain classes of programs
(like the ones with a finite Herbrand Universe) and SLD-derivations (like the

derivations via leftmost selection rule). The definitions we introduced can be
extended in an obvious way so that we can use terminology like 'complete w.r.t.
leftmost selection rule'. ·

In the sequel, we shall write 'complete' inst(!ad of 'complete in the absence
of function symbols'. So our question can be reformulated as: is there a sound
and complete loop check? Before answering this question for loop checks in
general, we shall answer it for simple loop checks.

THEOREM 3.4.1. There is no weakly sound and complete simple loop check.
PROOF. For every n>O, let P0 = { S(i,i+ l)f- I O~i<n } u { A(O)t-,
A(x)-E-A(y),S(y ,x), B(n)t- } and let G=-E-A(xo),B(xo). Let L be a complete
loop check and Tn an SLD-tree of P0 u{G} via leftmost selection rule. (Tn is
fixed modulo the names of the variables.)
T n has an infinite branch with goals of the form t-A(xi),S(xi,Xi-1),
... ,S(xi,xo),B(xo) (i:.:::O). The side-branches that are the result of applying the
clause A(O)-E- instead of A(x)t-A(y),S(y,x) are all finitely failed, except for the
one successful branch that begins at t-A(x0),S(x0 ,x0 _1), ... ,S(x1,xo),B(xo).

Lis complete, so the infinite derivation that is the result of always selecting
the recursive clause A(x)t-A(y),S(y,x) is pruned by L. Since Lis simple, the
goal at which pruning takes place is independent of P0 • In particular it is
independent of n, since n does not occur in this derivation. Suppose that the
pruned goal is f-A(xi), S(xi,Xi-1), ... ,S(x1,x),B(x). (Note that according to the
definition of a loop check, taking other variable names does not influence the
level at which pruning takes place.) Then for n:.:::i: Tn contains a successful
branch and fL(T 0) does not. Hence L is not weakly sound. 0

Taking the whole program into account gives us an opportunity to define a
shortening (so a fortiori sound) loop check which is complete. Moreover, this
loop check is stronger than every other shortening loop check. Strange as it may
seem, this one is also impractical. It is like solving a puzzle by trial and error.
You can save effort if you can avoid the trials that lead to an error. In order to
know exactly which trials to avoid you decide to solve the puzzle first. Then you
know.

DEFINITION 3.4.2.
STRONG(P) = RemSub({D = G=? ... I for no cr, Dis an initial fragment of a
shortest refutation of Pu{G} with a computed answer substitution cr}). D

THEOREM 3.4.3. i) STRONG is a shortening loop check.
ii) STRONG is stronger than any shortening loop check.
iii) STRONG is complete.

PROOF. The proof will appear in [BAK]. D

So far, we have not been very successful in defining useful sound and
complete loop checks. In the next section, we shall restrict our attention to
simple loop checks. They will be shortening, but as shown above, they cannot
be complete (in the absence of function symbols). Nevertheless, we shall
introduce a natural class of programs for which they are complete.

4. SOME SIMPLE LOOP CHECKS
In this section, we introduce some simple loop checks. For each of them, there
exist two versions: the first one is weakly sound, the second one shortening.
The second, shortening version is obtained by adding an extra condition to the

9

10

first one. By this construction, the first one is always stronger than the second
one.

Starting with the Contains a Variant of Atom check (defined for arbitrary
selection rules), we can make three independent modifications of it
1. Adding this extra condition, dealing with the computed answer substitution

'generated so far'. A neat formulation of this condition can be obtained by the
use of resultants instead of goals in SLD-derivations. When considering a
derivation Go ==>c1,01 G1 ::::> ••• ,to every goal Gi = f-Si there corresponds the
resultant Ri = So81 ... 8if-Si. Resultants were introduced in [LS].

2. Replace variant by instance. This yields the Contains an Instance of Atom
(CIA) check. This check is still unsound: it is even stronger than the CVA
check. Besnard [B] has introduced a weakly sound version of this loop
check. This check and related ones (derived from CV A; shortening versions)
are discussed in [BAK].

3. Replace atom by goal. This yields the Equals Variant of Goal (EVG) check.
Informally, this loop check prunes a derivation as soon as a goal occurs that
is a variant of an earlier goal. Replacing 'variant' by 'instance' again yields
the Equals Instance of Goal (EIG) check. The shortening versions are called
Equals Variant of Resultant (EVR) and Equals Instance of Resultant (E/R).
These checks are discussed below.

Taking goals instead of atoms as a basis for a loop check yields two
independent choices again.
3a. Whereas equality between atoms is unambiguous, equality between goals

is much less clear. In SLD-derivations, we regard goals as lists, so both
the number and the order of occurrences of atoms is important However,
we may also regard them as multi.sets, where the order of the occurrences
is unimportant. We might even consider :regarding them as sets, but that
proves to be impractical: the difference between the derivation steps
f-A,A ::::> f-A and f-A ::::> f-A is then no longer visible. Regarding goals
as sets in our loop checks would require regarding goals as sets in SLD
derivations, which would result in too many undesirable effects.

So we shall consider two EVG checks: EVGL (for list) and EVGM
(for multiset). The same holds for EIG, EVR and EIR. We shall refer to
these eight loop checks as the equality checks.

3b. Finally, we may replace "G2 is a variant/instance of G1" by "G2 is
subsumed by a variant/instance of Gt"· We define 'Gt subsumes G2' as
'G1~G2'. Thus we can make a distinction between 'subsumed by a
variant' and 'subsumed by an instance'. Usually in literature, 'subsumed
by a variant' is not considered, 'subsumed by an instance' is simply
called 'subsumed'. See e.g. [CL]. Subsumption can also be defined for
resolvents.

This yields the subsumption check. Since this modification is
again independent of the others, there are in total 2x2x2=8 subsumption
checks. These checks are discussed in [BAK].

We now study the equality checks in more detail. At first we give a formal
definition of the weakly sound versions. Then we introduce an extra condition
that makes these checks shortening. Finally we identify a natural class of
programs for which the equality checks are complete.

In fact, we should give a definition for each equality check. This would
yield eight almost identical definitions. Therefore we compress them into two
definitions, trusting that the reader is willing to understand our notation. The

equality relation between goals regarded as lists is denoted by =L; similarly =M
for multi.sets. We begin with the weakly sound versions.

DEFINITION 4.1.
For Type e {L,M}, the Equals Variant/ Instance of Goal Type check is the set of
SLD-derivations EVG/EIGType = RemSub({D I D = (Go =>c1,e1 G1 => ... =>
Gk-1 =>Ck,ek Ok) such that for some i, O:::;i<k:, there is a renaming/substitution 't
such that Ok =Type Ort}). D

We shall prove later that these loop checks are weakly sound. However,
they are not sound (see Example 4.3). We can make them sound, and even
shortening, by adding the condition that 't and 0i+l· .. 0ic also agree on the
variables of the intermediate goal Go01 ... 9i. So the extra condition is: Go01 ... 0k
= Go01 · .. 0i't. (Note: in this equality it is irrelevant whether goals are lists or
multisets.) It will appear that this condition works not only for EVG and EIG,
but for all other loop checks studied in this section, as well.

Note that adding this condition is equivalent to the replacement of the
condition Ok =Type Ort by the condition Rk =T.J'pe Rrt, where Rk and Ri are
the resultants corresponding to the goals Ok and Ui.

DEFINITION 4.2.
For Type e {L,M}, the Equals V ariantll nstance of ResultantType check is the set
of SLD-derivations EVRIEIRType = RemSub({D I D = (Go =>c1,e1 G1 => ... =>
Gic-1 =>ck,0k ~)such that for some i, O~i<k, there is a renaming/substitution 't
such that Ok =Type Gtc and Go01 ... ek = Go01 ... Sit}). o

The following example shows the difference between the goal-based and
resultant-based equality checks. The example is such that the other variations
(variants or instances, goals regarded as lists or as multi.sets) do not play a role
here.

EXAMPLE 4.3.
Let P = { p(a) r ,

p(y) r p(z)
let G = r p(x).

(Cl)
(C2) },

The 'SLD-tree' of Pu{G} based on resultants:

The SLD-treeof Pu{G} based on goals: p(x)rp(x)

rp(x) 2) j \ (C

(C2)/ \<cl) y~, \~~
y/x ' \ x/a p(x)rp(z) p(a)t-(c.a.s.:x/a)

rp(z) D (C21' ~Cl)
(c.a.s.:x/a)

y'/z z/a

p(x)rp(z') p(x)r()
c.as.:e

figure 2

11

12

Without the condition Go01 ... ek == Go01 ... 0rt we would only obtain x/a as
the computed answer substitution, whereas we also should obtain the empty
substitution. This shows that the EVG and EIG loop checks are not sound.

In the leftmost tree f-p(z) is a variant of rp(x), so the derivation is pruned
by EVG at that goal. However, the corresponding resultant p(x)f-p(z) is clearly
not a variant of p(x)f-p(x), therefore the derivation is not yet pruned by EVR.
However, after another application of (C2), the resultant p(x)f-p(z') occurs,
which is a variant of p(x)f-p(z). At that point the derivation is pruned by EVR.

The rightmost tree in figure 2 shows an 'SLD-tree' in which the goals are
replaced by the corresponding resultants. Note that a successful branch in a
resultant-based SLD-tree does not end by the empty goal D, but by the instance
of the initial goal that was 'proved' by this branch. D

LEMMA 4.4. All equality checks are simple loop checks.
PROOF. Straightforward. D

We now prove that the equality checks based on resultants are shortening
and that the equality checks based on goals are weakly sound. According to
Theorem 3.3.2 it is sufficient to focus on the strongest checks in both classes:
the EIRM and the EIGM checks. We need the following lemma.

LEMMA 4.5. Let P be a program. Let G1 and G2 be goals such that G1 =M G2.
Suppose D1 is an SLD-derivation of Pu{G1} with computed answer
substitution <J. Then there exists an SW-derivation D2 of Pu{G2} with
computed answer substitution <J and /D1/=/D2/ via every selection rule.

PROOF. By the soundness and strong completeness of SLD-resolution, see [L].
D

THEOREM 4.6. i) The loop check EIRM is shortening.
ii) The loop check EIGM is weakly sound.

PROOF. i) Let D be an SLD-refutation of Go with computed answer substitution
cr. If D is pruned by EIRM then we have to find in every SLD-tree containing D
an SLD-refutation D' of Go with computed answer substitution cr' such that
Gocr' :5 Gocr, ID'l<IDI and D' is not pruned by EIRM. We prove this by
induction on the length l of the refutation D. We have P-1. For l== 1, D cannot be
pruned. Now suppose the theorem is true for every refutation of Go of length
:51. Let D be a refutation of length l+ 1. Suppose that D is pruned by EIRM. Then
we have D ==(Go =>c1,e1 Gl => ... => Gi-1 =>ci,ei Gi =>ci+l,0i+t Gi+t => ... =>
Gk-1 =>ck,0k Gk =>ck+l,0k+l Gk+l => ... => D), and for some substitution t:
Gk ==M Git and Go01 ... 0k = Go01 ... 0it.

By Lemma 4.5 we have a refutation of Git with a computed answer
substitution 0k+l· .. 0/. Now we can obtain an unrestricted (in the sense of [L])
SLD-refutation D1 of Go (that is in the step Gi-1 =>ci,0i't Grt we do not use an
mgu), which is shorter than D. Using the Mgu Lemma of [L], we have an SLD
refutation D2 of Go with the same length as D1 and a computed answer
substitution cr2~01 ... 0it0k+l· .. 0/. (Lemma 4.5 and the proof of the Mgu Lemma
show that for every SLD-tree containing D, such a derivation D2 can be
constructed.) D2 is an SLD-refutation of Go which is shorter than D, so by the
induction hypothesis there exists an SLD-derivation D3 of Go with computed
answer substitution cr3 such that Gocr3 ~ Gocr2 and D3 is not pruned by EIRM.

Now we can take D'=D3 and we have Goa' = Goa3 :::;; Goa2 ~
Goe~_..J)itek+1 ... 01 = Goe1 ... eiei+1 ... ekek+1 ... ez = Goa.

u) Note that the extra condition Go01 ... 0k=Go01 ... 0rt was only used to
prove that Goa' ~ Gocr. o

COROLLARY 4.7. i) EVR and EIR are shortening.
ii) EVG and EIG are weakly sound.

PROOF. By Theorem 4.6 and Theorem 3.3.2. 0

For completeness issues, it is sufficient to consider the weakest of the
equality checks: the EVRL check. We know that EVRL is not complete -
Theorem 3.4.1 presents a counterexample that holds for every simple loop
check. However, for the EVRL check this counterexample can be simplified.
The program in Theorem 3.4.1 consists of a collection of ground facts and one
recursive clause. Clearly, this clause is the 'core' of the counterexample. It
appears that for EVRL, we need only this clause for a demonstration of its
incompleteness. Moreover, we need only the propositional structure of the
clause: i.e. we may remove the arguments.

EXAMPLE 4.8.
Let P = { A ~ A,S } .
Then for 'the' SLD-tree T of Pu{ ~A} via leftmost selection rule, fEVRL(T) is
infinite. Indeed, every descendant of the initial goal has one occurrence of S
more than its parent goal, so it cannot be a variant of any of its ancestors. O

Obviously, the problem is that the atom A in the goal is allowed to generate
infinitely many S-atoms, which are never selected, thereby making the goal
wider and wider. We now introduce a class of programs for which this
phenomenon cannot occur and we prove that EVRL is complete for these
programs. The necessary restriction is obtained by allowing at most one
recursive call per clause and allowing such a call only after all other atoms in the
body of the clause have been completely resolved. In order to avoid unnecessary
complications, we shall put the atom that causes the recursive call (if present) at
the end of the body of the clause, and consider only derivations via the leftmost
selection rule. For a formal definition, we use the notion of the dependency
graph Dp of a program P.

DEFINITION 4.9.
The dependency graph D p of a program P is a directed graph whose nodes are
the predicate symbols appearing in P and
(p,q) e .Dp iff there is a clause in P using pin its head and q in its body.
D p * is the reflexive, transitive closure of Dp. When (p,q) e .Dp *,we say that p
depends on q. For a predicate symbol p, the class of p is the set of predicate
symbols p 'mutually depends' on: clp(p) = {q I (p,q)eDp* and (q,p)eDp* }. D

DEFINITION 4.10.
Given an atom A, let rel(A) denote its predicate symbol.
A program P is called restricted if in every clause Ao~Ai, ... ,An (n~) of P,
rel(Ai) does not depend on rel(Ao) for i = 1, ... ,n-1. D

Note that this definition allows at most one recursive call per clause. Thus
(disregarding the order of atoms in t~e bodies) restricte~ programs incl;ide s.o
called linear programs, which contam only one recursive clause and m this

13

14

clause only a single recursive call occurs. The 'transitive closure' program from
the introduction is restricted. Note also that programs of which all clauses have a
body with at most one atom are restricted.

We now prove that EVRL is complete w.r.t. leftmost selection rule for
restricted programs. An interesting feature of restricted programs is that in each
SLD-derivation, goals have a number of atoms which is bounded in advance.
We shall show that this implies that modulo the 'being a variant of relation, the
number of possible goals in a given SLD-derivation is finite.

In the rest of this section, P is a restricted program without function
symbols and G is a goal in Lp. By the length of a goal 0, IOI, we mean the
number of atoms of 0. The maximum length of the goals in a derivation is easily
predictable from the program and the initial goal. This can be done by defining
(simultaneously) the weight-function on goals and predicate symbols (or rather
the classes of predicate symbols).

DEFINITION 4.11.
Let P be a restricted program.
Then the function weight is defined as:
i) for a goal G=rA1, ... ,An (n~l) in Lp,

weight(O) = max{weight(rel(Ai))+n-i I i=l, ... ,n};
ii) for a predicate symbol p of P, weight(p) = ·

max({weight(rA1, ... ,An) I
ArA i, ... ,An E P, n>O, rel(A)e clp(p), (rel(An),p)e Dp *} u

{l+weight(rA1, ... ,An-1) I
ArA1, ... ,An E P, n>l, rel(A)eclp(p), (rel(An),p)eDp*} u

{l}). D

Note that in the definition of weight(p), clauses of the form ArB, with
cl(rel(A))=cl(rel(B)) are not considered - they do not affect the length of goals
appearing in a derivation. Moreover, if the predicate symbols p and q are
mutually dependent, then weight(p)=weight(q).

The fact that P is restricted ensures that the weight-function is well-defined:
if weight(p) is defined in terms of weight(q), then (q,p)ic: Dp *, hence weight(q) is
not defined in terms of weight(p). Intuitively, the weight of a goal 0 majorizes
the length of all goals which appear in an SLD-derivation of Pu{G} using
leftmost selection rule. More precisely, we have the following lemma's.

LEMMA 4.12. /G/~weight(G).
PROOF. Let O=rA1, ... ,An (n~l). Then weight(O) ~ weight(rel(A1))+n-l ~ n
= 101. D

LEMMA 4.13. Let G =>c H be a derivation step w.r.t. P. Then weight(G) ~
weight(H).

PROOF. Since the weight of a goal does only depend on the predicates appearing
in it, and not on the arguments of these predicates, we prove this fact for the
case of programs written in the propositional logic. Let G = rA1, ... ,An; then
weight(O) = max{weight(Ai)+n-i I i=l, ... ,n}, and let C = A1rB1, ... ,Bm.
Then the goal H = rB1, ... ,Bm,A2, ... ,An and therefore weight(H) =
max({weight(Bi)+m+n-1-i I i=l, ... ,m} u {weight(Ai-m+l)+m+n-1-i I i=m+l,
... ,m+n-1}) = max({weight(Bi)+m+n-1-i I i=l, ... ,m} u {weight(Ai)+n-i I
i=2, ... ,n}). Two cases arise.

i) weight(H) = max{weight(Ai)+n-i I i=2, ... ,n}.
Then clearly weight(H) $ weight(G).

ii) weight(H). = ~ax{weight(Bi)+m+n-1-i I i=l, ... ,m} (hence m>O). We will
show th~t m this .case weight(H) $ weight(A1)+n-l (which is$ weight(G)).
Subtracting n-1, 1t suffices to show that max{weight(Bi)+m-i I i=l, ... ,m} $
weight(A1). Again two cases arise.
iia) (rel(Bm),rel(A1))e: Dp *. Then because of the existence of C, weight(A1);;::

weight(~Bi, ... ,Bm) = max{weight(Bi)+m-i I i=l, ... ,m}.
iib) (rel(Bm),rel(A1))eDp*. Then weight(A1);;:: l+weight(~B1, ... ,Bm-1) =

l+max{weight(Bi)+m-1-i I i=l, ... ,m-1} = max{weight(Bi)+m-i I
i=l, .. .,m-1}. Also weight(A1) = weight(Bm)+m-m, since rel(Bm) e
clp(rel(A1)). Now we have proven the claim that max{weight(Bi)+m-i I
i=l, .. .,m} $ weight(A1). 0

COROLLARY 4.14. Let D =Go~ G1 ~ G2 ~ ... ~ Gi ~ ... be an SW
derivation.Thenfor every goal Gi inD: /GJ5weight(Go).

PROOF. By induction on i. The induction basis is provided by Lemma 4.12, the
induction step by Lemma 4.13. o

So weight(Go) is the desired maximum length of goals occurring in any
SLD-derivation of Pu{Go}. Now we shall formalize the 'being a variant of
relation on resultants.

DEFINITION 4.15.
We defme the relation - as the 'being a variant of relation on resultants. Let G
be a goal and let ~l. Then -o k stands for the restriction of the relation - to
resultants G1 ~G2 such that G1 is an instance of G and IG2l$k. D

LEMMA 4.16. For every goal G and k?.l, ""G,k is an equivalence relation.
PROOF. Straightforward. D

The following lemma is crucial for our considerations.

LEMMA 4.17. Suppose that the language L has no function symbols and finitely
many predicate symbols. Then/or every goal G and k?.l, the relation ""G.k
has only finitely many equivalence classes.

PROOF. The proof is straightforward. It will appear in [BAK]. D

We can now prove the desired theorem.

THEOREM 4.18. The loop check EVRL is complete w.r.t. leftmost selection rule
for restricted programs.

PROOF. Let P be a restricted program and let Go be a goal in Lp. Let
k=weight(Go). Consider an infinite Sill-derivation D =Go =>c1,01 G1 => ... =>
Gk-1 =>ck,0k Gk => ... of Pu{ Go}. By Corollary 4.14 for every i~O: 1Gil$k.
Every goal Gi is a goal in Lp and hence every resultant Go01 ... ei~Gi belongs
to an equivalence class of -oo k· Since Lp satisfies the conditions of Lemma
4.17, -oo k has only finitely many equivalence classes, so for some 20 and j>i
(Go01 ... ei~Gi) and Go01 ... ej~Gj are variants. This implies that Dis pruned
byEVRL. 0

15

16
COROLLARY 4.19. All equality checks are complete w.r.t. leftmost selection

rule for restricted programs.
PROOF. By Theorem 4.18 and Theorem 3.3.2. D

Now combining Corollary 3.2.3 and Corollary 3.2.4 with Corollary 4. 7
and Corollary 4.19, we conclude that all equality checks lead to an
implementation of CWA for restricted programs without function symbols.
Moreover, the equality checks based on resultants also lead to an implementation
of query processing for these programs.

REFERENCES
[AvE] K.R. APT and M.H. v AN E:~IDEN, Contributions to the Theory of Logic

Programming, J. ACM, vol. 29, No. 3, 1982, 841-862.
[B] Ph. BESNARD, Sur la Detection des Boucles Infinies en Programmation

en Logique, in: Actes "Seminaire de Programmation en Logique",
Tregastel, 1985 (in French).

[BAK] R.N. BOL, K.R. APT and J.W. KLOP, An Analysis of Loop Checking
Mechanisms for Logic Programs, Technical Report, Centre of
Mathematics and Computer Science, Amsterdam, 1989. (In preparation)

[BW] D.R. BROUGH and A. WALKER, Some Practical Properties of Logic
Programming Interpreters, in: Proceedings of the International
Conference on Fifth Generation Computer Systems, (ICOT eds), 1984,
149-156.

[Cl] K.L. CLARK, Negation as Failure, in: Logic and Data Bases, (H.
Gallaire and J. Minker, eds), Plenum Press, New York, 1978, 293-322.

[CL] C.L. CHANG and R.C. LEE, Symbolic Logic and Mechanical Theorem
Proving, Academic Press, New York, 1973.

[CM] W. CLOCKSIN and C. MELLISH, Programming in PROLOG, Springer
Verlag, New York, 1981.

[Co] M.A. COVINGTON, Eliminating Unwanted Loops in PROLOG,
SIGPLAN Notices, Vol. 20, No. 1, 1985, 20-26.

[vGl] A. VAN GELDER, Efficient Loop Detection in PROLOG using the
Tortoise-and-Hare Technique, J. Logic Programming 4:23-31 (1987).

[vG2] A. VAN GELDER, Negation as Failure Using Tight Derivations for
General Logic Programs, in: Foundations of Deductive Databases and
Logic Programming (J. Minker ed), Morgan Kaufmann, Los Altos,
1988, 149-176.

[K] K. KUNEN, Some remarks on the Completed Database, Technical report,
Computer Sciences Department, University of Wisconsin, Madison,
U.S.A., 1988.

[L] J.W. LLOYD, Foundations of Logic Programming, Second Edition,
Springer-Verlag, Berlin, 1987.

[LS] J.W. LLOYD and J.C. SHEPHERDSON, Partial Evaluation in Logic
Programming, Technical Report CS-87-09, Dept. of Computer Science,
University of Bristol, 1987.

[PG] D POOLE and R. GOEBEL, On Eliminating Loops in PROLOG,
SIGPLAN Notices, Vol. 20, No. 8, 1985, 38-40.

[R] R. REITER, On Closed World Data Bases, in: Logic and Data Bases, (H.
Gallaire and J. Minker, eds), Plenum Press, New York, 1978, 55-76.

[SGG] D.E. SMITH, M.R. GENESERETH and M.L. GINSBERG, Controlling
Recursive Inference, Artificial Intelligence 30:343-389 (1986).

