
II

Centrum
voor

Wiskunde
en

lnformatica
Centre for Mathematics and Computer Seience

M. Li , J . Tromp, P.M.B. Vitanyi

How to share concurrent wait-free variables

Computer Science/Department of Algorithmics & Architecture Report CS-R8916 April

1989

Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

M. Li, J. Tromp, P.M.B. Vitanyi

How to share concurrent wait-free variables

Computer Science/Department of Algorithmics & Architecture Report CS-R8916 April

_ : _--::-0..:-.--

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com
puter science, and their applications. It is sponsored by the Dutch Govern
ment through the Netherlands Organization for the Advancement of Research
(N.W.0 .).

Copyright © Stichting Mathematisch Centrum, Amsterdam

How to Share Concurrent Wait-Free Variables

Ming Li•
Computer Science Department, York University

North York, Ontario M3J 1P3, Canada

John Tromp
Paul M.B. Vit&nyi

Centrum voor Wiskunde en Informatica
Kruisla.a.n 413, 1098 SJ Amsterdam, The Netherlands

a.nd
Faculteit Wiskunde en Informatica

Universiteit van Amsterdam

April 19, 1989

Abstract

We present a solution to the problem of sharing data between multiple
asynchronous uaers---each of which can both read and write the data
such tha.t the accesses a.re aeria.lisable and free from wa.iting. This allows
a maximum of parallelliam in distributed systems. By using a. structured,
top-down approach, we obta.in a better understanding of what the algo
rithms do, why they do it, and that they correctly implement the apecifi
ca.tion. Our ma.in construction of an n--user atomic variable directly from
single-writer, single-reader atomic variables requires O{n) control bits per
subvariable and 0(n) a.cceues to subvari&blea per read/write action.

1980 Mathematica Subject Cla11ification: 68C05, 68C25, 68A05, 68B20.
CR Categorie1: B.3.2, B.4.3, D.4.1, D.4.4.
Ke71tDord1 and Phra1e1: Sha.red variable {register),
concurrent reading and writing, atomicity, muliwriter variable, simulation.
Note: This paper is submitted for publication elsewhere.

"M. Li was supported m part by the National Science Foundation under Grant DCR-
8606366 at Ohio State University, by Office of Naval Re•earch Grant N00014-81>-K-0446 and
Arrey Re•earch Office Grant DAAL03-8S.K-0171 at Harvard University, and by NSERC Grant
OGP-0036747 at York. The basic: algorithm presented here was fint announced m M. Li,
P.M.B. Vitanyi, Tech. Report. TR 01-87, Aileen Comp. Lab., Harvard University, November
1987. E-mail adrenea: liOyuyetti.bitnet, trompOc:wi.nl and paulvOc:wi.nl

1
Report CS-R8916
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1 Introduction

In [8] Lamport has shown how an atomic variable-one whose accesses appear to
be indivisible-shared between one writer and one reader, acting asynchronously
and without waiting, can be constructed from lower level hardware rather than
just assuming its existence. Naturally, these ideas have aroused interest in the
construction of multi-user atomic variables of that type. In a short time this
has already led to a large number of conceptually extremely complicated ad
hoe constructs and (erroneous) proofs. In this paper we will supply a uniform
solution to all subproblems, given Lamport's construction, and derive the im
plementations by correctness-preserving transformations from the specification.

1.1 Informal Problem Statement and Main Result

Usually, with asynchronous readers and writers, atomicity of operations is sim
ply assumed or enforced by synchronization primitives like semaphores. How
ever, active serialization of asynchronous concurrent actions always implies wait
ing by one action for another. In contrast, our aim is to realize the maximum
amount of parallellism inherent in concurrent actions by avoiding waiting alto
gether in our algorithms. In such a setting, serializability is not actively enforced,
rather it is the result of a pre-established harmony in the way the executions of
the algorithm by the various processors interact. Any one of the references, say
(8] or (16], describes the problem area in some detail.

Our point of departure is the solution [12, 8] of the following problem. (We
keep the discussion informal). A flip-flop is a Boolean variable that can be
read (tested) by one processor and written (set, reset, or changed) by another.
Suppose, we are given atomic flip-flops as building blocks, and are asked to
implement an atomic variable with range 0 to n - 1, that can be written by
one processor and read by another one. Of course, flog nl flip-flops suffice to
hold such a value. We stipulate that the two processors are asynchronous and
do not wait for one another. Suppose the writer gets stuck after it has set half
the bits of the new value. If the reader executes a read while the writer is
stuck, it obtains a value that consists of half the new value and half the old one.
Obviously, this violates atomicity.

We will use the following naming convention for classifying the accessibility
of a variable (also called register):

single-user just a local variable

single-reader implicitly a single writer

multi-reader again a single writer

multi-writer implicitly multiple readers

multi-user each user can both write and read

2

This constitutes a hietarchy of variables1 • At the outset we state out main
Iesult:

Theorem 1 We aupply a conatruction for an atomic n-uaer variable from
O(n2) atomic l -reader l -writer variablea, uaing O(n) acceuea of nbvariablea
per operation ezecution and O(n) control bita per aubvariable.

By opetation we mean a higheI level Iead or write action on the shared
vatiable. The algorithm is developed from fotmal specifications in a sttuctuted
progtamming style, such that conectness ptoof and algorithm development go
hand in hand.

1.2 Comparison with R elated W or k.

Related ad hoe and vety difficult consttuctions are given by [14, 7, 3, 10, 6) for
the single-teadeI to multi-IeadeI case (which we deal with in appendix B), and
by [16, 11, 6, 4] foI the multi-Ieader to multi-wiiteI case (see appendix A). We
note that especially the latteI consttuction has appeated to be quite difficult.
Both algotithms that have been completely published, and subjected to scrunity,
turned out to contain errors. I.e., the algotithm in [16) presented in FOCS86 is
not fully atomic but only satisfies the weaker "regularity" condition, as pointed
out in FOCS87 errata. A modification of this algorithm presented subsequently
in FOCS87 [11], was found to contain several errors by Russel Schaffer [13]. The
multiwriter algorithm promised in [6] has not yet been published in any detail.
The recent [4] starts from multi-reader variables, and uses the simplified version
of the unbounded tag algorithm of [16) (presented here) as point of departure.
Generally, papers in the area are hard to comprehend and check.

With these difficulties, there has been no previous attempt to implement
an n-user variable directly from single reader variables, like we present here.
Yet we believe the construction we present is relatively simple and transparent.
Both problems above, that have been the subject of other investigations, are
solved by simplifications (as it were "projections") of our main solution. The
precise form of our solution was arrived at by implementing and empirically
testing several candidates. Appendix C decribes the results of the aimulation of
our main algorithms. We appear to improve all existing algorithms under some
natural measures of complexity. See t able 1 for a complexity-wise comparison
of our direct solution here with the best combinations.

Ezplanation: The compound variable (here n-user) is composed from prim
itive variables (here single-reader). To store a value in the compound variable,
it is stored in a subset of the primitive variables, along with some control in
formation (like timestamps) to allow selection of the most recent value. The

1 Although & multi-user varie.ble c111.11 be trivi&lly implemented by & mult.i-writer varie.ble
(111.11d ia not more powerful in th&t aenae), thia requires in the wont cue & que.clrupling in
the number of aubv&rie.bles ("ape.cc") used. It &lao aeema impre.ctic&l to make & distinction
between uaen restricted to write e.ctiona 111.11d uaera restricted to re&d e.ctiona.

3

.~:··~·

paper control bits atonric accesses
[This paper] O(n3) O(n)
[3] + [11] O(n3) O(n3)

[14, 7, 3, 6, 16] O(n3) O(n2)

[14, 7, 3, 4] O(n3) O(n2 logn)

Table 1: worst case complexity comparison

'control bits' column displays the overall number of bits of control information
required, summed over all prilllitive variables ("space complexity"). The 'atolllic
accesses' column displays the number of reads or writes on prilllitive variables
required in the execution of one read or write on the compound variable ("time
complexity"). The related work is [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 16, 15]

1.3 Definitions, the main Problem, and Specification

A concurrent system consists of a collection of sequential processes that com
municate through shared data structures. The most basic such data structure
is a shared variable. A user of such a variable V can start an action a (read
or write) at any time when it is not engaged in another action, by invoking an
"execute a" command on V, which finishes at some later time, possibly return
ing the value read. We can express the semantics in terms of a local value v
of a process P and the global value contained in V . In absence of any other
concurrent action the result of process P writing its local value v to V is that
V :=v is executed, and the result of a process reading the global V is that v:= V
is executed.

An implementation of V consists of a set of protocols, one for each reader and
writer process, and a set of shared variables X, Y, ... , Z (these are sometimes
called regiatera). An operation execution a by user process P on V consists of
an execution of the associated protocol which

• starts at time s (a) (the start time)

• applies some transformations on the variables X, Y, ... , Z

• returns a result to Pat time f(a) > s(a) (the finish time)

We assume that start and finish times of different actions are all disjoint,
i.e., for actions a, b, a f b we have s(a) f s(b), s(a) f f(b) and f(a) f f(b).

All interactions between processes and variables are asynchronous but reli
able, and can be thought of as being mediated by a concurrent scheduler.

The read/write operations are total, i.e., they are defined for every state
of the variable. An implementation is wait-free if the number of subvariable

4

accesses in an operation execution is bounded by a constant, which depends

only on the number of readers and writers .
Linearizability or atomicity is defined in terms of equivalence with a sequen

tial system in which actions are mediated by a sequential scheduler that permits

only one operation to execute on any variable at a time. A shared variable is

atomic, if each read. and write of it actually happens, or appears to take effect,

instantaneously at some point between its invocation and response, irrespective

of its actual duration. This can be formalized as follows.
Let V be a shared variable with associated user processes P,Q, ... ,R which

execute a set of operation executions A on V . Order the set A (of reads and

writes) such that action a precedes b, a - b, if f(a) < s(b) . Note that with this

definition, - is a special type of partial order called an interval order (that is,

a transitive binary relation such that if a - band c - d then a - d or c - b).
Define the reading mapping 1r as a mapping from reads to writes by: if r is a

read that returns the value writ ten by write w, then ?r(r) = w. We call the

triple u = (A,-, 1r) a system e:i:ecution.
Definition. A system execution <T is atomic if we can extend - to a total

order - ' such that

(Al) ?r(r) -' r, and

(A2) there is no write w such that ?r(r) -' w -' r.

That is, the partially ordered set of actions can be linearised while respecting the

logical read/write order. A shared variable is atomic if each system execution

(I'= (A,-, 1r) of it is atomic.

1.4 The Problem to be Solved

Our goal is to implement an atomic wait-free shared variable V for n users

0, .. . , n - 1, such that each user can perform both reads and writes. V is

implemented using atomic variables .Rs,j(O :=:; i, j < n), for which user i is the

only associated writer process and user j is t he only associated reader process.
Since user i is the only one who can write to variables .Rs,0 , • •. , .Rs, .. - 1 , we say

it owns these variables.

1.5 Specification

While the definition of atomicity is quite clear, we transform it into an equiv

alent specification, from which we can directly derive our first algorithm that

implements V. Viz., partition the actions in A into subsets induced by write

actions. Define the equivalance class of a write action w as [w] = {a : a =
w or a is a read and 1r(a) = w }. The precedence relation - on the actions in

A induces a relation «: on the set of [w]'s as follows: [w1] «: [w2] iff w1 -f:. w2

and there are a 1 E [w1] and a2 E [w2] such that a1 - a 2. The following lemma
comes from [1]:

5

.,::...._ :'. __ --- -

Lemma 1 {Al} and {A2} hold if!« ia acyclic and not (r -+ 11"(r)) for any

read r.

Proof. "If". If « has no cycles then it can be extended to a total order <
on the set of [w]'s. Define -+1 on A by:

1. if [a] :/= [b] then a -+1 b iff [a] < [b]

2. within each [w] we can topologically sort the elements beginning with the
write (since r f+ 11'(r)), so that [w] = {w,r1 , • • • ,rii} and r0 -+ r; implies
i < j. Now put w -+1 r1 -+1 r:i -+1

• • • -+1 r11.

We claim that -+1 is an extension of -+. Assume that a -+ b. Then either
[a) :/= [b] and by the definition of« we have that [a] < [b] and thus a -+1 b, or
[a] = [b] and then we also have a -+1 b because a is a write or a = r, and b = r;
with i < j. Furthermore, -+1 is a total order on A since the elements in each
[w] are totally ordered and the [w] themselves are totally ordered by 1. Finally,
(Al) and (A2) hold because 1r(r) is the first write -+1-preceding r.

"Only if". First assume r -+ 11"(r) for some read r . Since -+1 extends -+ 1

we also have r -+1 11"(r) which is in contradiction with (Al). So we have that
r f+ 11'(r) for any read r. Because of (Al) and (A2) each [w] is a consecutive
sequence of actions in the total order -+1

• It follows that the order < on the [w]'s
induced by -+1 is total. If [w1] « [w2] then there are a1 E [w1] and a2 E [w2]
such that a 1 -+ a:;i. Since -+1 extends -+, we also have a1 -+1 a 2 and thus
[w1] < [w:z). We see that< is an extension of«. Since< is acyclic, so must«
be. D

This way we have found the specification that an atomic variable has to
satisfy: for each of its system executions u = (A, -+, 11')

(Sl) not (r-+ 1r(r)) for any read execution r, and

(S2) the induced relation « has no cycles.

2 The Basic Algorithm

Our first approximation of the target algorithm captures the essence of the
problem solution apart from t he boundedness of the constituent shared vari
ables. (In fact, this is essentially the "first solution" in [16], there presented
with a different proof, and the matrix architecture is used in all later construc
tions (14, 7, 3, 6, 10] . This is the only multiwriter algorithm currently generally
accepted as being correct - but it uses unbounded tags.) Let V be as in the
problem description above. For most implementations of V condition (Sl) is
trivially satisfied, since violation of it would mean that a read execution returns
a value before the write of it ever started. This condition will be trivially sat
isfied by all algorithms we consider, so we do not mention it any further. How

6

can we satisfy (S2)? We proceed as follows. Let (T, <) be a partially ordered
set of taga. For each system execution CT = (A,--+, 11'), let tag : A --+ T be a
function such that

(Tl) tag(a) = tag(b) for b E [a],

(T2) if a--+ b then tag(a) ~ tag(b), and

(T3) ifw1 I w2 then tag(w1) I tag(w2).

(Tl) ensures that each [w] has a unique tag. If [w1] ~ [w2] then by definition
w1 I w2 and there are a E [w1] and b E [w2] with a --+ b, so that (T2)
gives tag(w1) ~ tag(w2) and (T3) gives tag(w1) I tag(w2), which combine to
tag(w1) < tag(w2). It suffices to devise an algorithm such that for each system
execution CT there is a function tag satisfying (Tl), (T2), and (T3), in which
case ~ has no cycles and (S2) is satisfied.

Using unbounded tags, we can implement variable V as follows. (Tl) will
be satisfied by letting read-actions copy the tag of the value that they choose to
return. (T2) will be satisfied by letting the users maximize over the tags that
are visible in their actions. Different writers will use different tags by making
the index of a writer part of its tag, i.e., each tag in T is a pair (t, i), where t is
a natural number and i is the index (0 ~ i < n) of the user that writes the tag
first . The <-order on T is the total lexicographic order. Finally a writer will
not use a tag that it has used before because it chooses its tag greater than the
maximum visible tag. Thus, (T3) is also satisfied.

Figure 1 shows the basic algorithm. An atomic subvariable Rt,; can be
written to by user i in a statement Write Rt,; : = loc, where loc is a local
variable. Likewise, it can be read by user j in a statement Read loc : = Rt,;.
Each Rt,; contains the fields value and tag, while the two parts of tag will be
referred to as the fields timestamp and index.

The algorithm is initialized by simply setting all fields of all local and sub
variables to O. This puts the system in a state which appears to have resulted
from an initial write by user 0 of the value 0 with a tag of (0, 0), followed by
succesive reads of the other users 1, ... , n - 1, such that these all choose max : =
0.

Locally, each user i has an array from[O],. .. ,from[n-1] where from[j] is
meant to hold a local copy of R;,i· User i will use the local variable from[i]
instead of Rt,; (which is not really a shared variable), which makes the archi
tecture an n by n - 1 matrix. Note that a single protocol is given for both
read and write actions, with branches to make the necessary distinctions. In
all our algorithms, a return statement e.xits the execution of the protocol. The
argument of the return statement is used by read actions as the return value,
and is ignored by write actions. If the end of a protocol can only be reached by
a write action, then we will refrain from using a return statement in the last
line.

7

- -- _ _::;:·-~.J

1. for j:=O to n-1 •:icc•pt i do ll•ad from[j] := Rj,i

2. Hbct mu: such that Vj (from[j]. tag $ fromUaa:ic]. tag)

3. i'f rea<WM:tion th•n

4. from[i] . -ra1u• := from[ma:ic] .-ralu•

5. from[i] . tag := from[mu:].tag

6. •lH if write.action then

7. from[i] .nlu• := newvalue
8. from[i] .tag := (from[mu:] .timeatmp+1,i)

9. endif
10. for j: "'O to n - 1 e:iccept i do Writ• ~.; : "' from[i]

11. return from[i].-ra1ue

Figure I: Algorithm O; protocol for user i

Lemma 2 Algorithm 0 implements an atomic wait-free multi-user variable.

Proof. (See also [I, I6).) Obviously Algorithm 0 is wait-free. We only
have to argue atomicity. Let u = (A,-., 11") be a system execution according to

Algorithm 0. (TI) is satisfied since a read action writes the same tag as the

write action whose value it returns. The sequence of accesses to from [i] . tag

by user i is a repeated sequence of

in line 2 at least one read to determine the maximum tag,

in line 5/8 a write of a value which is at least the value it replaces,

in line 10 some reads to make the tag visible to all other users.

This proves the following claim.

Claim 1 The sequence of tags, written by user i, is monotonically nondecreas
ing.

Moreover, in a write action, the new timestamp of i is at least the previous

timestamp plus I, and the index equals i, so two different write actions, either by
the same user or by two different users, must have different tags, thus satisfying

(T3). Let a --. b be two actions by users i and j respectively. If i = j then
(T2) is satisfied by claim 1. Suppose i #; j. Then action b will select its tag by

ma.ximizing over, among others, the tag that it read from~.; which is at least
the tag of a by claim I, since action a finished before b started. Again (T2)

holds and therefore (S2) is satisfied. Condition (SI) is satisfied trivially. D

3 Algorithm 1

The only problem with algorithm 0 is that T = N x {O, ... , n - I} is infinite.

Through a series of transformations of the basic algorithm, we shall remove this

inconvenience.

8

1. 'for j :=O t o n-1 ncept i do Read 'from[j] : = R;,i
2. select max such that Vj ('from[j] . tag ~ 'from[max].t ag)

3. 'fr-[i] . • lllu• : = 'fr om[lnax]. v lll.u•
4. 'fr-[i] . tag : = 'fr om [max] . t ag

6 . 'for j: =O t o n -1 u:cept i do Write R; ,; P' 'from[i]

8. i'f read-action then return 'from[i] • Talu•

7 . 'fr-[i] . vlll.u• : = n ewvalue
~ · 'fr om[i]. tag := ('fr-[max] . timeatamp+1 ,i)

9. 'for j: ~o to n - 1 ezcept i do Writ e R; ,; : = 'fr- [i]

Figure 2: Algorithm 1; protocol for user i

In order to motivat e our first transformation , we introduce the following
system execution scenario.

User 0 starts a write operation , but falls asleep after writing to Ro,1 in
line 10. Then user 1 also starts a write operation, sees the new tag (1 , 0) of
user 0, and falls asleep after writing to Ri ,2 in line 10. This continues in the
obvious manner until user n -2 writes to Rn- 2,n-1 and also falls asleep. Clearly,
none of the writing users have informed user n - 1 of the ongoing activities, and
as a result the maximum timestamp in column n - 2 (Ro,n-21 •• • , Rn- 1,n- 2) is
approximately n greater than the maximum timestamp in column n - 1. It will
later prove useful to bound these differences. Algorithm 1 (figure 2) takes care
of this by having the write actions also "propagate" the value and tag that they
consider to be most recent . T his way, the write protocol becomes an extension
of the read protocol.

Since we will prove correctness of the final algorit hm from scratch, we suffice
to say that the correctness of algorithm 1 follows easily from that of algorithm 0,
once we observe that claim 1 still holds.

4 Algorithm 2
It is in this algorithm that we int roduce the concept of "shooting." Shooting

is performed at the end of a write action and is targetted at t he actions seen
by the writer in the read phase. T he idea is that an action starts by "healing"
itself so that is is free from shots, then it does t he usual copying of values to
its fromO array, and then it checks whether it has been wounded by another
user. This is the case if it has received a certain number of shots from that
user. If wounded, then it will abort the protocol execution and return with a
recent value written by the shooting user2 • The number of shots is chosen so as
to ensure that the wounded action completely overlaps the write action by the
shooting user of the returned value.

~recall that by our convention a write action ignores the return value

9

1. for j:•O to n-1 •%c•pt i do
2. had tmp := R;,;
3, from[i].die[j] := tmp.ahoot[i]
4. for j:•O to n-1 e%cept i do Vrit• RtJ :• from[i]
6. for j :a() to n-1 e%cept i do lead from[j] :• R;,;
6 . for j:=O to n- 1 e%c•pt i do
7 . B.•ad tmp : = R; ,;
8. if tmp.shoot[i] - from[i].di•[j] ~ 3 th•n r.turJL tmp.prniou.a
9. Hbct mu: auch that Vj (from[j]. tag ~ from[mu] . tag)

10. from[i] . ·nl.ue : = from[mu:] • Talue
11. from[i]. tag ::a from[mu:]. tag
12. for j: =O to n-1 e%c•pt i do Vrit• R;J : • from[i]
13. if read.action th•n r.turJL from[i] • Talu•
14 . from[i] , Talu• : = newvalue
16. from[i].tag := (from[mu].timeatlllllp+1,i)
16. for j: • O to n-1 •%cept i do
17. if from[i].ahoot[j] - from[j].die[i] < 6 then from[i] .llhoot[j] +:• 1
18. for j:a() to n-1 •%c•pt i do Vrite RtJ : = f r om[i]
19. from[i].preTioua := from[i].Talu•

Figure 3: Algorithm 2; protocol for user i

Looking at figure 3, we see that the implementation of the shooting adds
quite a bit of complexity to the algorithm. All the old lines of Algorithm 1
are still there (lines 5,9,10,11,12,13,14,15,18), in the same order, ma.king this
algorithm an extension of Algorithm 1. In the added lines we can see some
new fields in the registers. The field previous is used to hold the value of the
last completed write (line 19). The shots from user j to user i &re counted on
shoot[i] of user j, while the healing takes place on die[j] of user i. The
difference between these two counters will be a measure of the injuries suffered
by user i's actions. Note that these counters are unbounded like the timestamps.
We will later see that they can be easily bounded. However, doing so at this
point would only complicate the algorithm and its discussion. The way it works
is that at the start of a new action user i reads the shoot [i] entry of R;,i·
Then it sets its die [j] equal to that shoot count. During the reading phase
(line 5) of i's action, user j may perform some write actions. At the end of
each such action, user j checks whether the difference between shoot [i] and
die [j] has reached 5 yet. If not then it shoots the current action of user i by
incrementing(+:= 1) its shoot counter in line 17. This procedure clearly implies
that the difference between a shoot counter and the corresponding die counter
is always between 0 and 5 included. In this algorithm, we concentrate on the
number of shots to wound an action (3). Namely, after the reading phase, user i
will read the shoot [i] entry of R;,i again and compare the difference with its
die [j] against 3. If the difference is smaller, then the normal course of actions
is resumed. Otherwise, the action aborts, i.e., it exits execution of the protocol
returning the value of a recently completed write action by user j.

10

We now give an informal motivation for the correctness of algorithm 2. The
restriction of a system execution to the set of non-aborting actions behaves just
like a system execution of algorithm 1, so we need only show that aborting
actions do not violate atomicity. If some action aborts, then the write action
that shoots it first must finish after the start of the former action, otherwise
the shot would be cleared in the healing phase. Call the write action whose
value it returns the returned write. Since that value is the previous field,
another action must have started after the returned write to set that field. So
the returned write finishes before the aborting action does. Also the returned
write is so recent that it delivers at least the second shot so that it must start
later than the aborting action. We conclude that the second-shot write action
is completely overlapped, and in particular the spot where the returned write
action occurs atomically. Now if the aborting action was a write action, then
we can imagine that it occurred atomically just before that spot, while if it was
a read action then we can imagine it having occurred atomically just after that
spot. In both cases (Al) and (A2) are satisfied. Thus if we insert all aborting
actions in this way, then we have shown t he existence of a total atomic extension
of-+, hence the atomicity of the system execution.

5 Algorithm 3

In our quest for boundedness, we would like the actions to consider only recent
tags. Since the shoot and die counters are visible to all users, they can serve the
purpose of recognizing old actions. More precisely, if user i reads the R;,i quickly
enough so as not to abort, and sees :trom[k] .ahoot[j] 2: :trom[j].die[k] + 5, then
it will assume that :trom[j] is too old- at least older than :trom[k] . The value
5 is the "fatal" or "terminal" amount of shots and in the above case we say that
i sees j killed by k, or simply k has killed j .

There is however one complication. Namely, if user i starts a new action,
then its die counters- as visible in the Rt,;- still correspond to its previous
action, and changing them as may be required in line 4 would invalidate this
correspondence. The solution is to use separate die counters for an action in
progress, and to cause them to come into effect as soon as a new value and
tag have been chosen for propagation. In algorithm 3 (figure 4), we see that
each shoot a.nd die counter has been duplicated (as an array of length 2),
and that an extra index is used in their addressing. There is also a new field
by the name of ss (short for shoot selector), which is the index of the die
counters corresponding to the values in the tag and value fields. The other set
of counters (with index 1 - ss) is used for an action in progress which hasn't
yet chosen a tag/value. The reason for also duplicating the shoot counters is
that with two die counters, we might want to increase the shoot counter for
one, while we might already be 5 ahead of the other3 • The fields num, pnum,

3Jn fact , the two die counters can differ arbitr arily in case of repeated abortion.

11

1. s := 1 - from[i].aa

2. for j:=O to n-1 except i do

3. 11.ead tmp := R;,;
4. fro11.[i] .die [j] [a] : = tmp . ahoot[i] [s)

5 . { f r om[i) . n11111 +: = 1}

6. for j:=O to n-1 except i do Vrih R;J := from[i)
7. for j: no to n-1 except i do B.ead from[j] : = R;,;
8. f or j:=O to n-1 except i do

9. 11.ead tmp : = R;,;
10. if tmp. shoot [i][a] - from[i) . die [j][a] ~ 3 then return tmp. prnioua

11. L := { 0, . .. ,n-1 }
12. select -x E L such that Vj E L (from[j]. tag ::; from[max]. tag)

13. from[i] .ya1ue : = from[mu] .'t'a1U•

14. from[i].tag := from [max) . tag

15. from[i] . aa := •
16. { from[i).pn'Dlll := from[i].n'Dlll}

17. for j :=O to n-1 exc•pt i do Vrit• R;J := from[i]

18. if read..ac:tion then return from[i] • Ya.lu•

19. from[i] .'t'a1u• := newvalue
20. from[i].t ag := (from [max].t imestamp+1 ,i)

21. for j:=O to n-1 • xcept i and for a:•O t o 1 do
22. if from[i].shoot[j][s] - from [j] .die [i][s] < 5

23. then from[i].ahoot[j][a] +:= 1
24. { from[i].an'Dlll := from.[i].n'Dlll}

25. fo r j 1 • 0 to n-1 •xc•pt i do Vrite R;.; : .. from[i]
26. from[i].pr•Yioua := from[i]. 't'a1ue

Figure 4: Algorithm 3; protocol for user i

and snum serve no other purpose than simplifying the proofs. They number the
actions of each user from 0 onwards. We place the auxiliary lines 5,16 and 24
between braces ({,}) to emphasize that they are not part of the algorithm itself.
Algorithm 3 can be divided into 5 phases4 , defined as follows:

heal lines 1- 6

read line 7

test lines 8- 10

propagate lines 11-17

write lines 19- 25

Lines 11 and 12 together are called the ma:i:imization step, and lines 21- 23 the
shoot phase.

4aparl from the reader'& point of return line 18

12

Claim 2 For each of the fielda shoot, die, timestamp, tag, num, pnum and
snum in either a ahared regiater or a local copy {the from[] array), it holda that
the aequence of valuea ia monotonically nondecreaaing {in time).

Proof. First consider the local variable from[i] of user i . Examination
of the algorithm and the maximization step (line 12) in particular shows that
the claim holds for the fields num, pnum, snum, shoot, tag and timestamp of
this variable. It therefore holds for Hi,; as well since that is only changed by
assigning from[i] to it. The same applies to the from[i] variable of other
users, and likewise to their die [i] , since that is only changed by assigning
Hi,;.shoot to it. D

Before giving the proof of correctness of Algorithm 3, let us introduce some
conventions and notations to help state the proofs.

Definition 1 Let a E A be an action by user i . Define sr(a) and fr(a) as the
start time and finish time of the read phase respectively, such that

• all accesses in the heal phase occur between s(a) and sr(a),

• all accesses in the read phase occur between ar(a) and fr(a) and

o all accesses in the propagate and write phase occur between fr(a) and
f(a) .

Definition 2 Let a EA be an action by user i, lnr a line number, and loc a
local variable of user i. We define loc(a.lnr) as the value of that variable at
the time a completes line lnr of its protocol. If loc is a field of from[i] then
we may omit the from[i] . part and just give the field name. The line number
may also be omitted in which case the value at the end of the protocol execution
of a is meant.

With a few exceptions, loc(a) is the single value assigned to loc during the
protocol execution of a. When referring to values as they are at the end of the
maximization step-which is often necessary in case the from subscript may
equal i-we use the notation loc(a.12).

Lemma S Let a be a non-aborting action by uaer i and b an action by uaer j
with num(b) = from[j] .pnum(a.12). Define js = from[j] .BB(a.12). Then

1. b doea not abort

2. ss(b) = js

9. for any k E {O, .. . ,n - 1}, die[k] [js](b) = from[j] .die[k] [js](a.12)

4. tag(b) ~ from[j] .tag(a.12)

13

-- ----~::-.

Proof. The case i = j is straightforward, so we assume i =F j 5 • If b
aborts, then it doesn't execute line 16 and therefore num(b) is never written to
R;,,.pnum. This contradicts from[j] .pnum(a.12) = num(b), sob doesn't abort.
Furthermore, the value of R;,,.pnum remains num(b) until the first non-aborting
action by user j, succeeding b, writes its num in that subva.riable-which it
does in line 17. At that moment pnum changes again. And only then can
R;,,aa or R;,•die[k][js] change (as line 1 shows). Given the fact that action a
observes the pnum of b, it can only be that the observed 88 and die [k] [j a]
equal those of b. This proves js = BB(b) and that for any k, die[k] [jal(b) =
from[j] .die[k] [ja](a.12). Finally, for a to see a tag greater than that of b,
a change in pnum is also required, contradictory to the definition of b. D

Lemma 3 provides a convenient way to relate actions and will be used when
ever we introduce an action by its num.

5.1 Correctness of Algorithm 3

Theorem 2 Let t7 = (A, -+, 11') be a ayatem ezecution according to Algorithm 9.
Then there ia a function tag() aatiafying (TJ), (T2) and (T9).

Proof. {Tl) states that tag(r) = tag(1r(r)) must hold for all read actions r.
Let a be an action by user i. We will satisfy (Tl) by defining tag : A -+ R as
follows. If a doesn't abort, then define tag(a)= n x timeatamp(a) +index(a).
For convenience we will sometimes forget the distinction between tag(a) and
tag(a). If a is an aborting read action, then define tag(a) = tag(w), where
w is the non-aborting write of the return-value tmp.previoua(a). Clearly this
definition of tag satisfies (Tl). Note that tag remains to be defined on aborting
write actions. This will be done (more conveniently) in the next lemma.

Lemma 4 If an action a by uaer i aborta, then there eziata a non-aborting write

action w, auch that s(a) < s(w) < f(w) < f(a) and ftag(a)l = tag(w).

Proof. Define j = j(a) as the user by which a sees itselfwounded6 • Let w be
the last non-aborting write action by user j with num(w) < tmp.num(a). Then
obviously f(w) < f(a). Examination of Algorithm 3 shows that value(w) =
tmp.previoua(a). From the definition of w and the abortion of a follows
ahoot[i](w) ~ tmp.ahoot[il(a) - 1 ~ die[j](a) + 2. Therefore, the pre
vious action u of user j has shoot [i] (u) ~ die [j] (a)+ 1, so -.(u-+ a). This
proves s(a) < s(w). If a is a read action then ftag(a)l = tag(a) = tag(w).
Otherwise, a is an aborting write action. We complete the definition of tag with
tag(a) = tag(w) - Eci, where 0 < Eci < 1 is a small positive real number unique
to a. D

&The .12 extension is uaed to generalize the lemma to the case i = j. It can be omitted for ·

i #= j.
6 recall that a ends execution of the protocol in lines 8- 10.

14

(T2) states that if a --+ b then t ag(a) :::,; t ag(b) . Let a --+ b be actions by
users i and j respectively.

Case 1: a does not abort. Suppose b doesn't abort either. Then

tag(b) = tag(b) 2'.: from[max] . t ag(b.12)

2'.: from[i] .tag(b.12) 2'.: tag(a) = tag(a).

The last inequality is based on claim 2, and in case i =f. j also on the fact that
a writes tag(a) to Rt,;.

Now suppose b aborts. By lemma 4 there is a non-aborting write action w11
with tag(b) > tag(w11) - 1 and a--+ wi.. Then

tag(w11) - 1 = tag(wi.) - 1 2: from[max] . tag(w11.12)

2: f r om[i] .tag(wi..12) 2'.: tag(a) = t ag(a).

The first inequality follows from the increment of the timestamp in line 20 of
the write protocol.

Case 2: a aborts . T hen by lemma 4 there is a non-aborting w,. with
tag(a):::,; tag(w,.) and w,. --+ b. Hence this case reduces to the former.

(T3) states that if w1 :f w2 then tag(wi) :f tag(w2). Let i ,j be the users
executing w1 and w2 respectively. If either w1 or w2 aborts, then either tag(w1)
or tag(w2) has a unique fractional part , hence (T3) holds. Now assume that
neither one aborts. Then tag(wi) = i (mod n), while tag(w2) = j (mod n).
Clearly, (T3) holds in case i =f. j . In case i = j, assume w.l.o.g. that w1 --+ w2.
Then

tag(w2) = tag(w2) > from[max] . tag(w2.12)

2: from[i] . tag(w:i .12) 2'.: tag(wi) = tag(wi) .

The last inequality follows from claim 2. D

5.2 An important Modification to Algorithm 3

We will now show how L as set in line 11 can be restricted without affecting
the choice of max. Lemma 5 implies that an index wit h maximum tag cannot
be killed.

Lemma 5 Let <7 = (A, --+ , ?r) be a system ezecution according to Algorithm 3,
a a non-aborting action by user i, and j, k E L two indices. Define js
from[j] .aa(a.12). If

from[k] .ahoot [j] [ja](a .12) - f rom[j] . clie [k] [j s](a.12) 2'.: 5

(a sees j killed by k) , then

from[k] .tag(a.12) > from[j] . tag(a .12)

15

_ _:.:.:::··;,..:::-...

Proof. Let b be the action by user j with num(b) = from[j] .pnum(a.12).
Let wo --+ • • • --+ ws be non-aborting write actions by user k such that

shoot [j] [js] (wm) =di e [k] [j e] (b) + m,

where 0 ~ m ~ 5, and tag(ws) ~ from[k] .tag(a.12).
Since by lemma 3, b doesn't abort, it is not the case that f(w3) < fr(b).

Therefore f r (b) < f(w3) < s(w4).
Since tag(w5) 2: (timestamp(w4) + 1, k), and application oflemma 3 yields

(from[max] .timestamp(b.12) + 1,j) ~ tag(b) ~ from[j] .tag(a.12),

we can prove lemma 5 by showing that

(timestamp(w4) + 1, k) > (from[max] .timestamp(b.12) + 1,j).

We examine two cases:

j < k Define id = from[max]. index(b.12). Because of the propagate phase,
from[max] . timestamp(b.12) - 1 is written in R.d,lc before fr(b). So

(timeetamp(w4) + 1, k) ~ (from[max] .timestamp(b.12) + 1, k)

> (from[max] .timestamp(b.12) + 1,j).

k < j From the ordering of the for loops in lines 17 and 25, we deduce that
from[max] .timestamp(b.12) is written in ~ax(b),1c before fr(b). So

(timestamp(w4) + 1, k) 2: (from[max] .timeetamp(b.12) + 2, k)

> (from[max] .timeetamp(b.12) + 1,j).

D

Lemma 5 is very important, since it shows that we can replace line 11 in
Algorithm 3 with

11•. L • {j I VJt;Cj :from0tl.•hoot[j]['from[j] .H]-:froa[j].4ie[);][:fr-[j].••] < 6}

Intuitively, we restrict the set from which to choose max to the alive tags. The
resulting algorithm will be referred to as Algorithm 4.

6 Final Algorithm

In this section we will show how to get rid of the unbounded tags and counters
in Algorithm 4. Additionally, the control-bit complexity will be minimized by
removing from R.,i any information not relevant to user j.

16

Due to the behaviour of shoot and die counters, the perceived differences in
lines 10 and 22 are in the range from 0 to 5 inclusive. This is not the case in
line 11 ' where the two comparands have been acquired at different times. We
will show that these differences are bounded nevertheless .

Suppose user i is active in the read phase of action a. If p; and Pie with j < k
are the atomic reads from R;,• and R1e,i respectively, then other users may be
executing arbitrarily many actions between P; and Pie · Generally, this has the
effect that t he values obtained from R1e,• in Pie are greater then they were at
the time of P;. Thus, k appears to have higher tags, higher shoot counters,
and higher die counters. Since read actions do not introduce any higher values
than those already in existence, this effect must be caused by write actions.
We have however introduced a shooting mechanism which makes actions abort
if they overlap-in their read phase-a certain number of write actions by the
same user . Furthermore, those aborting actions do not even get to line 11'.
By bounding the number of overlapped write actions, we can also bound the
apparent increase in k's values. The next two sections discuss the differences
between shoot and die counters and after that comes a discussion of timestamp
differences.

6.1 Upper Bound on Perceived Differences

Lemma 6 Let a be a non-aborting action by user i, and 0 ~ j, k < n. Define
js = from[j] .ss(a.12). Then

from[k] .shoot[j] [j s] (a.12) - from[j] . die[k] [js](a.12) ~ 8

Proof. Let b be the action by user j with num(b) = from[j] .pnum(a.12).
Let w0 -+ • • · -+ w9 be non-aborting write actions by user k such that

shoot [j] [js] (Wm) = die [k] [j s] (b) + m ,

where 0 ~ m ~ 9. Since

die [k] [j s] (b) + 6 = shoot [j][j s] (w6) ~ from[j] .die [k][js] (w6) + 5,

we have that

from[j] .die[k] [js](w6) > die [k] [js](b).

Therefore, if we let d be the first action by user j with die [k] [js] (d) >
die[k] [js](b), then /(w6) > s (d) . Furthermore, there must exist a non
aborting action c, with b -+ c -+ d and s s (c) = 1 - ss(b)7. Since num(c) >

7 See also the proof of lemma 3.

17

_ __ .._:.,;_.

num(b) = from[j] .pnum(a.12), and c writes the latter to Ri
1
.; .pnum, we have

--.(f(c) < sr(a)). This leads to the following ordering of events:

sr(a) < f(c) < s(d) < f(w6) < s(w7).

As a consequence (with is= ss(a)),

from[i] .die[k] [is l(w7);::: die[k] [isl(a),

so w7 and the following write actions by user le will take shots at a. Formally,
ahoot[i] [is](wm);::: die[k] [isl(a)+m-6, 7 :Sm S 9. We now use the fact
that a does not abort to conclude that from[k] .snum(a.12) < num(w9), hence

from[k] . shoot [j] [j s] (a .12) < shoot [j] [js] (w9) =

die [k] [j s] (b) + 9 = from[j] .die [k] [ja](a.12) + 9.

The last equality follows of course from lemma 3. D

6.2 Lower Bound on Perceived Differences

We stick to the convention that k shoots at j, and consider the case k < j, and

therefore Pie - Pi . It is possible that between these two atomic reads, user k

performs some writes, and user j catches up with a read action. It can then
be the case that the die counter read in Pi is actually greater than the shoot
counter read in Pie!

Lemma 7 Let a be a non-aborting action by u&er i, and 0 S j, le < n. Define

js = from[j]. H(a.12) . Then

from[k] .shoot[j] [jsl(a.12) - from[j] . die[k] [jsl(a.12);::: -4

Proof. Let wo - · · · - Ws be non-aborting write actions by user k such
that

shoot [j] [j s] (wm) = from [k] shoot [j] [js] (a.12) + m,

where 0 Sm S 5. From this definition it follows that --. (f(w1) < sr(a)). As a
consequence, w 2 and the following write actions by user le will take shots at a.
Formally (with is = u(a)),

shoot [i] [is] (wm) ;::: die [k] [is] (a)+ m - 1,

for 0 :S m S 5. We use the fact that a does not abort to conclude that fr(a) <
f(w4). Let b be the action by user j with num(b) = from[j] .pnum(a.12). Then

by lemma 3 and because sr(b) < fr(a) < /(w4) < s(ws),

from[j] .die[k] [jsl(a .12) = die[k] [jsl(b) :S

18

shoot [j] [j s] (w4) = from [k] shoot [j] [js] (a.12) + 4

The inequality follows from the observation that b fixes its die counter before
w5 starts-therefore it cannot be greater than the shoot counter of w4 . D

We observe that the result of any comparison between a shoot counter and

the corresponding die counter always lies in the range -4, . .. , 8 inclusive. Since
the only purpose served by these counters is comparison, we might as well

store them modulo 8 + 1 - (-4) = 13. For the algorithm, this only involves

performing the shoot counter increment modulo 13 and mapping all differences

between shoot and die counters to the above range. This mapping can be done
in the comparison by treating 9, 10, 11, 12 as - 4, -3, -2, - 1. Instead of counter,
the name ring now seems more appropriate. There are shoot rings and die rings,
and the next section will introduce another member in the ring-family.

6.3 Range of Alive Timestamps

Having restricted L in Algorithm 4 to the set of alive tags, we would expect the
tags- and therefore the timestamps- to be relatively close to each other. This

is formalized in the next lemma.

Lemma 8 Let a be a non-aborting action by uaer i, and 0 ~ j, l < n. Define

js = from[j]. BB(a.12). If

from[l] .timestamp(a.12) - from[j] .timestamp(a.12) > 9n

then there eziata a k, 0 ~ k < n auch that

from[k] . shoot[j] [js](a.12)- from[j] .die[k] [jsJ(a.12) ~ 5.

Proof. Let b be the action by user j with num(b) = from[j] .pnum(a.12),
so that from[j] .timestamp(a.12);::: from[max] .timestamp(b.12). More than

9n non-aborting write actions-starting before /r(a)- must have a timestamp
greater than from[max]. timestamp(b.12). Therefore all these actions finish
after sr(b). Since each user can start at most one such action before sr(b), no

more than n of the over 9n write actions start before sr(b). Therefore more
than 8n of the write actions start after sr(b). Let k be a user which executed at
least 9 of those write actions. Rename these as u1 -+ · · · -+ u9 • Then (because
sr(b) < s(u1)) these actions will shoot at b, as in

shoot [j] [js] (um) 2: die [k] [js] (b) + m,

for 1 ~ m ~ 5. Since /(us) < s(ug) < /r(a), it cannot be that sr(a) < s(u6),

because in that case us , u7 and us would all shoot a and would thus cause a to
abort ; a contradiction. So then /(u5) < s(Us) < sr(a), and therefore

f rom[k] .shoot[j][js](a.12) 2: shoot[j] [js](u5)

19

--~: . .:; : .

1 . • := 1 - from[i] . ss

2. for j:=O to n-1 except i do

3 . !Lead tmp := R;,i
4. from[i] .die [j] [a] : = tmp .shoot[i] [11]

6 . for j: =O to n-1 except i do Write RiJ : = from[i]

8 . for j: =O to n - 1 except i d o Read from[j] : = R; ,;
7. for j:=O to n-1 except i do

8. !lead tmp := R;,;
9. if (tmp.•hoot[i][a] - from[i] .die [j][a]) mod 13 ~ 3

10. then retu=. tmp.prnious

11. L :=• { j I Y k~j (from[k] .•hoot [j][from [j] . H]

- from[j] .die [k] [from[j] .u]) mod 13 jl {6, ... ,8}) }

12. select max E L •uch that Y j E L

13. dta $ 9n I\ (dt• > 0 V mu > j), vhere

14. dt•= (from[max] .tim••tamp - from[j].time•t11111p) mod (18n+1)

16 . from[i] .value := from[max] .n.l.u•

18 . from[i].tat; := f r om[max].tag

17 . fr om[i].11s := 11
18. for j:=O t o n -1 exc ept i do Write R;J : m from[i]

19 . if re&d..action then retu=. from[i] .va1u•

20. from[i]. Yalue : = newvalue
21. from[i].t ag :>= ((from[max] .t ime•tllmp+1) mod (18n+1), i)

22. for j:=O t o n-1 except i and • E {0,1} do

23 . if (from[i] . shoot [j] [a] - from[j]. die [i] [•]) mod 13 < 6

24 . then from[i] . ahoot [j] [•] :• (from[i]. shoot [j] [•]+1) mod 13

26 . for j:=O to n-1 except i do Write R;J := from[i]

28. from[i].previous := from[i].va1ue

Figure 5: Final Algorithm; protocol for user i

~ die [k] [j 8] (b) + 5 = fr<?m[j] .die [k] [js] (a.12) + 5.

The last equality follows again from lemma 3. D

By lemma 8, the result of comparing two alive timestamps in Algorithm 4
lies in the range -9n, . . . , 9n inclusive. That being the only use of timestamps,
we might as well use all timestamps modulo 18n + 1, without affecting the
behaviour of the algorithm. With these timeatamp ringa, we have bounded all
variables used by the algorithm. The final algorithm, incorporating all three
kinds of ring, is worth a picture (fig 5).

We may note that user j makes no use of the fields die[# j] [1-99] in
R;,j· We exploit this by storing only a single dieO array in R.;,ji where the
second index is understood to be the R.,j ·881 and in addition the single die ring
die [j] [1-88] . Table 2 shows all the fields in R3,1 in the case of 5 users.

20

shoot [O] [O] shoot [1] [O] shoot [2] [O] shoot [4] [O]

shoot [O] [1] shoot [1] [1] shoot [2] [1] shoot [4] [1]

value times tamp SS

previous index
die [1] [1-ss]

die [O] [ss] die [1] [ss] die [2] [ss] die [4] [ss]

Table 2: the fields of R3
1
1 with 5 users

7 Subproblems and Implementation

The final algorithm implements a multi-user variable with single-reader vari
ables. If we are given multi-reader variables as the basis of a multi-user im
plementation, then we can make some simplifications. The interested reader
is referred to appendix A. Another projection of the algorithm implements a
multi-reader variable from single-reader ones. See appendix B for details.

Some of the algorithms presented here have been implemented and tested.
See appendix C8 for the results.

8 Conclusions

We have proven that Algorithm 5, by equivalence with Algorithm 3, correctly
implements an atomic multi-user variable without waiting. The number of sub
variable accesses in an operation execution is at most 6(n - 1} in the case of a
write action and at most 5(n - 1} in the case of a read action. This proves the
O(n) subvariable accesses or "time complexity" of theorem 1. The number of
bits in each subvariable Rt,; equals 2b+(3n -2) log13 + log(18n+l}+logn+l,
with b the number of bits ("width") of the shared variable V. This proves the
O(n) control bits or "space complexity" of theorem 1, and thereby completes
its proof. Unfortunately, the extra value previous may put a heavy burden on
the size of the subvariables if b > > n. This cannot be helped since the whole
solution relies on the principle of abortion and aborting actions are required to
return the value of a completed write.

We would like to make some final remarks about the possibility of parallel
lizing the algorithm. T he order of the for loops in Algorithm 5 is only important
in lines 18 and 25. All other for loops could be replaced by a "for all j in"
construct which means that the different instances of the loop body can be exe
cuted in parallel. By increasing the lethal number of shots from 5 to 6, the above
two loops can also be relaxed. This would enlarge the range of perceived shoot
- die differences to - 4, .. . , 9 hence a 14-valued shoot/die ring (instead of 13).

1Incidentally, the appendix name equals the name of the programming language we uaed.

21

. - - - -;•- ~.

~-~::<" =---=~ -- -

The si1e of the timestamp ring should accordingly be increased from 18n + 1
to 20n + 1. These numbers follow from careful examination of the lemmas 6, 7,
and 8 in the light of the incremented lethal number of shots. We end the paper
with the conclusion that a parallellized version of the algorithm can be made to
run in 0(1) time complexity and the same (O(n)) space comple.:rity.

9 Acknowledgements

We thank Amos Israeli for many fruitful discussions.

22

1. • : = 1 - :trom[iJ . ••
2. :tor j:•O to n-1 ezcept i do

3. Jlead tmp := R;
4. :trom[i] .die[j][a] := tmp.ahoot[i][a]

6 . Vrit• R; := :trom[i]

e. :tor j:-0 to n-1 ezcept i do a.ad :trom[j] :• R;
7 . :tor j:=O to n-1 ezcept i do

s . lead tmp : = R;
9. i:t (tmp.ahoot[i] [a] - :trom[i] .die[j] [a]) mod 9 ;:: 2

10. then return tmp. n.l.ue

11 • L : = { j I V Jt# j (:trom[lt] • ahoot[j] [:trom[j] • as]
- :trom[j] .die[lt] [:trom[j] .u]) mod 9 e {4,6,6}) }

12 . Hlect 1111LZ E L auch that V j E L
13. dta ~ 9n /\ (dta > O V 1lllllX > j) , vhere

14. dta=(:trom(Jaaz] .timeat11111p - :trom[j] .tim.atamp) mod (12n+1)

16. i:t read.action then r e turn :trom(Jaaz]. Yalu•

16. :trom[i] • Yalue : "' new'Y11.lue
17. :trom[i].tag : 2 ((:trom(Jaaz].tim••tamp+1) 111.od (12n+1), i)

18. :trom[i].aa := •

19. :tor j:=O to n-1 ezcept i and• E {0,1} do

20. i:t (:trom[i] • llhoot[j][a] - :trom[j]. die [i][a]) mod 9 < 4

21. then :trom[i]. ahooHj][a] : = (:trom[i]. ahooHjH•]+1) mod 9

22. Vrih R; := :trom[i]

Figure 6: Algorithm 6; protocol for user i

A From Multi-reader to Multi-user

A restriction of our original goal corresponds to the problem that (16) and (11)
unsuccesfully tried to solve. Viz., to implement an atomic wait-free n-user
shared variable V using atomic multi-reader variables .Rt(O 5 i < n) for which
user i is the single writer and the other n - 1 users are the readers.

To implement V, collapse row .Rt,01 ••• , .Rt,n-l in Algorithms 0--5 to the
single multi-reader variable Rt owned by user i. So the write loops turn into a
single atomic write. Each variable R;,i read is replaced by Rj. The previous
field is no longer needed, since the value of a write action becomes visible to
all users at the same time, thus making it suitable for return by an aborting
action. The complete propagate phase can be skipped for similar reasons. The
wounding number of shots can be reduced from 3 to 2, since the write action
firing the second shot must have finished by the time the shot is noticed. The
lethal (killing) number of shots can then be reduced to 4. The affected ring-sizes
are 9 for the shoot/die rings and 12n+l for the timestamp rings. Figure 6 shows
the resulting algorithm, given without a proof of correctness. This solution uses
O(n) control bits per variable Rt and O(n) atomic accesses ofsubvariables per
read or write action on V.

23

.,·"":":---: :-_: _··· -

1 . 'from. Ta111• := newvalue
2. 'from.ti.meatuap := ('from. ti.meatamp+1) mod 8

3. 'for j:=O to u-1 do

4. !Lead tmp : = Rj,n

s. 'for a E {0,1} do

8 . i'f ('from.ahoot[j] (a] - tmp .die[a]) mod 8 < 3

7. theu 'fr om.ahoot[j][a] := ('from.ahoot[j](a]+1) mod 8

8 . 'for j:=O to u-1 do Vrite R.,.,j :='from

9. 'from.preYioua := 'fr0lll.Ta1ue

Figure 7: Algorithm 7; protocol for writer (user n)

B From Single-reader to Multi-reader

Another restriction of our original goal above corresponds to the problem that
was attacked in [14, 7, 3, 10, 6] . Viz., to implement an atomic wait-free multi
reader shared variable V with n readers 0, ... , n - 1 and a single writer n. V is
implemented using atomic single-reader variables Rt.;, (0:::; i,j:::; n) for which
user i is the single associated writer and user j is the single associated reader.
We show how to implement V using O(n) control bits in each variable Rn,;
owned by the writer, and 0(1) control bits in each variable Rt,;, (0 :::; i < n)
owned by the readers.

With a single writer, there obviously is no need for an index part in the tag,
none of the readers need a shoot array, and the die [j] [s] array of a reader
collapses into die [s]. Also the writer doesn't need a die array and therefore
no 88. While the wounding number of shots remains 3, the killing number of
shots can be reduced to 3. Because the writer will be last in the reader's read
phase, the observed die counters (timestamps) are at most 1 greater than the
corresponding shoot counters (resp. timestamp) of the writer. As a result,
the size of the shoot/die rings can be reduced to 8. Analysis also shows that
alive readers are perceived to be at most 6 timestamps behind the writer, so
a timestamp ring of size 8 suffices. There are separate protocols for the writer
(fig 7) and the readers (fig 8), as to reflect the functional difference. Note that
the writer has no propagate phase-there are no other writers that could have
more recent values.

24

1. • := 1 - 'from[i] ·••
2. Read 'from[n] : = Rn,i
3. 'from[i].die[a] := 'from[:nJ.llhoot[i][a]

4. Vrite Ro,,. := 'from[i]

6. 'for j:=O to n except i do !lead 'from[j] := R j,i

8. i'f ('from[n] .shoot[i] [a] - 'from[i] .die[a]) mod 8 ~ 3

7. then retvu 'from[n] .preTioua

8. ma.JC : = n
9. 'for j:=O to n-1 except i do

10. i'f 'from[j] .tilllHtamp = ('from[:nl .t:iJD.Hhmp+l) mod 8 A

11 . ('from[:nJ .ahoot [j] ['from[j] .aa]~rom[j] .die['from[j] . 11a]) mod 8 ~ {3,. .. ,6})

12. then max := j

13. 'from[i] . Talue : = 'fromC.Ul. Talue

14. 'from[i]. timeatmnp : .. 'fromC.Ul. tilllHtmnp

16. 'from[i].aa :=a
18. 'for j: .-o to n-1 except i do Vrite Rt.; : = 'from[i]

17. return 'from[i].Talue

Figure 8: Algorithm 7; protocol for reader i

25

- .:.:- -_ ,.... ':. ~

-· ~ =~ ~=~ -

C Simulation of the Algorithm

Both Algorithm 3 and Algorithm 5 have been implemented and a program was
written which simulates (pseudo-) randomly interleaved system executions of

both algorithms in parallel.
An explanation of the interleaving process follows. First a distribution of

sleeptimes was fixed. A sleeptime is a number of steps which a user has to

wait before it may continue the execution of a protocol. Initially all users start

awake, i.e., with a sleeptime of zero. In general, if more than one user is awake,
then one such user is selected at random and a new, positive sleeptime is chosen
from the sleeptimes distribution. This procedure is repeated until a single user
remains awake. In that case the minimum of the sleeptimes of the other users
is determined and taken as the number of steps to run the remaining user. A
step is defined as a part of the protocol involving exactly one primitive register

access and any local computations- this reftects the atomicity of the constituent
registers. When the desired number of steps is completed, it is subtracted from
the sleeptimes of the other users and the whole process repeats. This sleeptime
algorithm helps to find counter examples in which one user is required to sleep

while most of the other ones repeatedly run.
By testing whether actions have the same behaviour under both protocols,

the program empirically tests the correctness of Algorithm 5 relative to Algo
rithm 3. While the latter uses unbounded counters and tags, the former uses
modulos and a restricted "alive" set to choose max from. The simulator allows
the setting of the following parameters:

• number of users (n)

• lower bound of the range of shoot/ die ring values (lb)

• upper bound of the range of shoot/ die ring values (ub)

o number of shots to wound an action (wd)

• number of shots to kill an action (kl)

• size of the ring of timestamps (ts)

• percentage of write actions (wp)

• number of steps simulated with same sleeptime distribution (nd)

o size of the sleeptime distribution (ds)

• maximum sleeptime (ms)

Given the last two parameters, the logarithms of the ds sleeptimes were cho

sen randomly from the uniform distribution [O, log ms]. After each nd. simulated

26

lb ub kl ta ms steps
-4 8 5 55 64
-3
- 2 32 106
-1 32 106

7
6 106

5 106

4 48 106

3 48 104
21
17 106

13 106

9 103

Table 3: simulation results.

steps a new sleeptime distribution is chosen. Sooner or later we will find a dis
tribution that is appropriate for the search of a counter example. This means
that nd should be taken neither too small nor too large; any value between 103

and 106 seems reasonable. Curiously, the best value of wp for finding counter
examples proved to be 100. We refer to table 3 for some of the results obtained.
The last column shows the order of the average number of steps executed before
the simulator runs into a discrepancy between the two algorithms. The top row
shows the default values and the blank last entry shows that the simulator kept
running for millions of steps without ever detecting a failure. A blank entry
in any column but the last refers to the default value. Throughout the testing
done for compiling table 3, we fixed n = 3, wd = 3, wp = 100, nd = 100000,
and ds = 6. The reason for the fixed number of users is that the set of counter
examples found with n = 4 was a proper subset of those found with n = 3.

The counter examples which can be shown to exist for lb= -3 and ub = 7
proved to be too hard to find for the simulator within some 107 simulated
steps. The bounds of the shoot/die rings are optimal in the sense that they
are sufficient to preserve correctness of the algorithm, while tightening either of
them gives rise to a counter example. The size of the timestamp ring is larger
than necessary. Analysis leads us to believe that a size of 18n - 27 is optimal,
but a proof of that claim (if it exists) would probably at least double the length
of this article!

While the use of a simulator may seem of questionable value in supporting
the correctness proofs of the algorithms, it has proven to be of great assistance
in the development of both the algorithms and their formal proofs. Several
alternative implementations of the shooting construct have been tried out, and

27

some were refuted by the simulator much faster than could have been done
manually.

References

(1] B. Awerbuch, L. Kirousis, E. Kranakis, P.M.B. Vitli.nyi, A proof technique
for regiater atomicity, Proc. 8th Conference on Foundations of Software
Technology & Theoretical Computer Science, Lecture Notes in Computer
Science, vol. 338, pp. 286- 303, Springer Verlag, 1988.

(2] B. Bloom, Con1tructing Two-writer Atomic Regi1ter1, IEEE Transactions
on Computers, vol. 37, pp. 1506- 1514, 1988.

(3] J .E. Burns and G.L. Peterson, Conatructing Multi-reader Atomic Values
From Nonatomic Values, Proc. 6th ACM Symposium on Principles of Dis
tributed Computing, pp. 222- 231, 1987.

(4] D. Dolev and N. Shavit, Bounded Concurrent Time-Stamp Syatems Are
Constructible, Proc. 21th ACM Symposium on Theory of Computing, 1989.
(to appear)

(5] M.P. Herlihy, ImpoS1ibility and Univer1ality Results for Wait-Free Synchro
nization, Proc. 7th ACM Symposium on Principles of Distributed Comput
ing, 1988.

(6] A. Israeli and M. Li, Bounded Time-Stamps, Proc. 28th IEEE Symposium
on Foundations of Computer Science, pp. 371-382, 1987.

[7] L.M. Kirousis, E. Kranakis, P.M.B. Vitanyi, Atomic Multireader Register,
Proc. 2nd International Workshop on Distributed Computing, Amsterdam,
J. van Leeuwen (ed.), Springer Verlag Lecture Notes in Computer Science,
vol. 312, pp. 278- 296, July 1987.

(8] L. Lamport, On InterproceBB Communication Parts I and II, Distributed
Computing, vol. 1, pp. 77- 101, 1986.

(9] N. Lynch and M. Tuttle, Hierarchical correctneBB proofs for distributed al
gorithms, Proc. 6th ACM Symposium on Principles of Distributed Com
puting, 1987.

[10] R. Newman-Wolfe, A Protocol for Wait-Free, Atomic, Multi-Reader Shared
Variable1, Proc. 6th ACM Symposium on Principles of Distributed Com
puting, pp. 232- 248, 1987.

(11] G.L. Peterson and J.E. Burns, Concurrent reading while writing II: the
multiwriter case, Proc. 28th IEEE Symposium on Foundations of Computer
Science, pp. 383- 392, 1987.

28

[12) G.L. Peterson, Concurrent reading while writing, ACM Transactions on

Programming Languages and Systems, vol. 5, No. 1, pp. 46-55, 1983.

[13] R. Scha.ff'er, On the correctneaa of atomic multi-writer regiatera, Technical

Report MIT/LCS/TM-364, MIT lab. for Computer Science, June 1988.

[14] A.K. Singh, J.H. Anderson, M.G. Gouda, The Eluaive Atomic Regiater

Reviaited, Proc. 6th ACM Symposium on Principles of Distributed Com
puting, pp. 206-221, 1987.

[15] K. Vidyasankar, Converting Lamport'• Regular Regiater to an atomic reg

iater, Information Processing Letters, vol. 28, pp. 287-290, 1988.

[16) P.M.B. Vitanyi, B. Awerbuch, Atomic Shared Regiater Acceu by Aayn

chronoua Hardware, Proc. 27th IEEE Symposium on Foundations of Com
puter Science, pp. 233-243, 1986. (Errata, Ibid.,1987)

29

