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Analytical and experimental convergence results are presented for a new pseudo-unsteady solution method
for second-order accurate upwind discretizations of the steady Euler equations. Comparisons are made
with an existing pseudo-unsteady solution method. Both methods make use of nonlinear multigrid for
acceleration and nested iteration for the fine grid initialization. The new method proposed follows a less
direct approach than the existing one. It uses iterative defect correction. Analysis shows that it has better
stability and smoothing properties. The analytical results are confirmed by numerical experiments. The new
method leads to both better convergence and efficiency.
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1. INTRODUCTION

1.1. Equations
The equations considered are the steady, 2D, compressible Euler equations

OF(W) , aG(W) _
™ + 3y 0, (L.D
where
[ pu pv
2
_ |pu _ |put+p _ | puv
W= , F = , G = 1.
| FOn=1" m=1, (1.2)
pe pu(e+p/p) pv(e+p/p)

Assuming a perfect gas, the total energy e satisfies e = p/(p(y— 1))+ %(u?+v?2). The ratio of specific
heats y is assumed to be constant.
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1.2. Spatial discretization

The geometrical partitioning is hybrid. To handle complex geometries, as basic partitioning, a finite
element triangularization is used. The partitioning may be unstructured. For the actual computation,
from this, a finite volume partitioning is derived with as volume vertices the barycentres of the tri-
angular elements. For details about this dual gridding we refer to [1,9]. Given an unstructured tri-
angularization, the finite volume grid is inherently unstructured as well.

For all finite volumes C;, i =1,2, . .., n;, we consider the integral form
a%, {(F(W)n, + G(W)n,}ds =0, i=12,...,n. (1.3)
For the Euler equations, because of their rotational invariance, (1.3) may be rewritten as
a%, T(ny,n,)F(W)ds =0, i=12,...,n, (1.9
where T'(n,,n,) is the rotation matrix
1 0 00O
0 n, n, O
T(nmy) = | _;y nj ol (1.5)
0 0 01
For simplicity, for all i=1,2,...,n; we assume the flux F(W) to be constant along each (bi- or

multi-) segment 9C;; of the volume boundary aC;, 3C;; =C; N Gy, C;; being a neighbouring volume
of C;. (Thus 3C; = UAC;j, j=1,2,...,nm;, with n;; the number of volumes C;;.) Introducing - fol-
lowing [9] - a straight path 9C;; related to dC;, (1.4) can be simplified to

n"l — 3 .
> TG FW) k=0, i=12,...,m, (1.6)

j=1
where (ﬁx,ﬁy)T and [, ; are the outward unit normal and the length of this particular path, respec-
tively.

Crucial and still free in (1.6) is the way of evaluating F(W),;. For this we use an upwind scheme
which may be any scheme from the family of well-known upwind schemes [17,12,14,16]. With this,
(1.6) can be rewritten as

n, _ _ )

2 T(ﬁx,ny)iJ Q(MJ’ W,rd) IIJ = O, 1l =1,2, ... N, (1.7)

j=1
where ® denotes the numerical flux function, and Wi; and W7}, the constant state at the left and right
side of 3C;;, respectively. The flux evaluation, and so the space discretization, may be either first- or
higher-order accurate. First-order accuracy is obtained in the standard way: at each finite volume
wall, the left and right state to be inserted into the numerical flux function are taken equal to that in
the corresponding adjacent volume. Second-order accuracy is obtained with a MUSCL-approach. For
a description of the precise second-order MUSCL-approach applied here, we refer to [4].

1.3. Existing solution method
To solve system (1.7) we consider the general unsteady system

Wi R oi=12....m (1.8)
dt 19 ghmy o o oy (A4 -
The natural choice for R; is
-1 M _ -
Ri=—~ S Tty Wiy, Wiy, (1.9)
i ]:]

where A4; is the area of finite volume C;.
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To have an upwind analogue to Jameson’s central method [6], in [10] an explicit four-stage Runge-
Kutta (RK4) scheme is applied for the temporal discretization of (1.8) with (1.9) as right-hand side.
The benefits of the upwind analogue are evident: better shock capturing, greater robustness and no
tuning of explicitly added artificial viscosity. Just as in [6], multigrid is applied for accelerating the
solution process [11]. Given the upwind discretization, in [10] the Runge-Kutta coefficients are optim-
ized for having both good stability and smoothing properties. Concerning computational efficiency, it
seems that the upwind method is already competitive with Jameson’s method, without introducing a
further acceleration technique such as e.g. residual averaging. Interesting now is that the upwind
analogue still allows another, straightforward efficiency improvement by exploiting the direct availa-
bility of the corresponding first-order upwind discretization with its better stability and smoothing
properties. (We notice that since a first-order central discretization is not directly available, Jameson’s
method does not directly allow this improvement.)

2. NEwW SOLUTION METHOD

2.1. Explicit time stepping

Compared with the existing solution method, the new solution method only uses a more extensive
right-hand side in the explicit time stepping scheme. The existing right-hand side is extended with two
first-order upwind defects, one which is evaluated at each intermediate step of the multistage scheme
and another which is kept frozen at the old time level and compensated for the other first-order defect
by adding it to the right-hand side with the opposite sign. Further - which is most important - the
second-order defect is kept frozen as well. Writing the four-stage time stepping scheme as

Wrk=wr0 + At o RP*TY, i=1,2,...,n, k=1,2,3,4, Q@.1)
where n denotes the time level, k the intermediate time level, Az; the local time step and a; the
Runge-Kutta coefficients, for the existing method’s right-hand side R}"* ~! we can write

-1 M -
R =20 3 TGy AP W, @2
roj=

with (W};y*¥~! and (W7;y*¥~! second-order accurate. For the new method now we have

RPF =L 2“1 T,y g {QOWPE 1, W) —
J 3
oW, w0 +
(WL, (W) 1y, 2.3)

where only (W},y>° and (W},)"° are second-order accurate.

The new method proposed is of iterative defect correction (IDeC) type [2]. The second-order defect
is evaluated on the finest grid only, using the finite element discretization existing there. Though intro-
ducing defect correction iteration in a pseudo-unsteady solution method is not as necessary as is the
case for a pure relaxation method [7,8], it may lead to an improved efficiency and thus be useful. In
section 3 we will show that the defect correction method proposed here can take advantage of a
greater stability (larger local time steps) guaranteed by the first-order defects in the right-hand side.
Further we will show that with multigrid as an acceleration technique, advantage can also be taken of
better smoothing properties.
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2.2. Multigrid and defect correction

The solution method can be divided into two successive stages. The first stage is nested iteration (full
multigrid) which is applied to obtain a good initial solution on the finest grid. The second stage is the
defect correction iteration which is used to iterate until a second-order accurate solution is obtained.
The first iterate for the defect correction process is the solution obtained by nested iteration. The
building block of both stages is nonlinear multigrid (full approximation scheme).

2.2.1. Nested iteration. To apply multigrid we construct a nested set of grids. For a description of the
coarsening rule applied, we refer to [11]. Let Q;,%,, ..., Q; be a sequence of nested grids with ©,
the coarsest and & the finest grid. The nested iteration starts with a user-defined initial estimate of
W, ; the solution on the coarsest grid ©,. To obtain an initial solution on £,, first the solution on £,
is improved by a few nonlinear multigrid cycles (section 2.2.3). (The number of cycles used at each
nested iteration step can be either fixed or dependent of the residual.) After this, the improved solu-
tion W, is prolongated to £,. The process is repeated until &, is reached.

The prolongation of the solution can be the simple piecewise constant prolongation I}_,,2<I<L
as to be applied for prolongating the correction in nonlinear multigrid, or it can be a smoother one
defined by

AT Wiy + 3 Ay i)y
(W) = =
j=1

, 2=<I<L 2.4

We notice that since I} _; strictly obeys the physical conservation laws by prolongating cell-integrated
amounts of mass, momentum and energy, % -, is strictly conservative also.

2.2.2. Defect correction. Let 3} (W.)=0 and %2(W.)=0 denote the first-order respectively second-
order discretized Euler equations on the finest grid. Then, defect correction iteration can be written as

G =FWL HY-FW?Y), n=12,...,n, (2.5)

where W}, is the solution yielded by nested iteration. For smooth problems, a single IDeC-cycle is
sufficient to obtain second-order accuracy [5]. For problems with discontinuities, experiments have
shown that only a few IDeC-cycles significantly improve the accuracy of the solution [7]. For each
IDeC-cycle we have to solve a first-order system with an appropriate right-hand side. From [7] it is
known that it is inefficient to solve this system very accurately. There, with a steady approach, appli-
cation of only a single nonlinear multigrid cycle per IDeC-cycle appears to be the most efficient stra-
tegy. Here, with our unsteady approach, we will re-investigate what is the optimal number of mul-
tigrid cycles per IDeC-cycle.

2.2.3. Nonlinear multigrid. A single nonlinear multigrid cycle is recursively defined in the following
way:
() Improve on the starting grid £, 1<</<<L, the latest obtained solution by applying »,,, RK4-steps
to
(W) =R 2.6)

(In the nested iteration stage we have on a finest grid €, 1<</<<L : R,=0. In the defect correc-
tion stage we have on the finest grid @ : R, = F1(W,) — B.(WL).)
(ii) Approximate on the underlying coarse grid the solution of

- - ~-1
F @D =, @ @) I G )Ry, @7
by applying a single nonlinear multigrid cycle. Notice that in the RK4-scheme the complete
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right-hand side of (2.7) is kept frozen. The restriction operator I} ! is such that it also exactly
(;)P_e s the conservation of cell-integrated mass, momentum and energy. The restriction operator
;  restricts the defect in the standard way: by summation of mass, momentum and energy
defects over fine grid cells that are to be grouped.
(iii) Improve the solution on &; by correcting the current solution:

Wi=W+Ii-1(AW;-), (2.8

where I}_, is the piecewise constant prolongation operator, and by applying Vpost RK4-steps to
(2.6).

3. REsuLTS

3.1. Analysis
To analyze the convergence properties of the iterative defect correction method proposed, we consider
the unsteady 1D model equation

aw aw _
o +c r 0, ¢>0 3.1
For the spatial discretization we consider a grid with a uniformly constant mesh size 4. For the first-
order upwind spatial discretization we have
a_w —W;i—1 + W;

- Tom. (32

As a second-order upwind discretization we take the Fromm scheme (i.e. van Leer’s x-scheme [13]
with k=0), which leads to

ow _ Wi—a—5w;—1 +3w;+w; 4 2
= - + O(h?). (.3)

For both spatial discretizations and the existing explicit method, in [10] the following optimal
Runge-Kutta coefficients are found: a; =0.11, @, =0.2767, a3 =0.5. (Consistency requires: a;=1.)
The optimization can be redone for the defect correction method. However, simply omitting the
optimization, in the next section we will show that with the optimal a;’s found for the existing
second-order method, defect correction already yields a better stability and smoothing.

3.1.1. Stability analysis. We will first perform a stability analysis for iterative defect correction with
an explicit RK4-scheme as inner solution method. For this we consider the linear system

AW =b, (3.49)

and the two operators A! and A2, resulting from the first-order accurate and second-order accurate
spatial discretization of (3.1), respectively. To solve the second-order system

A*W =b, (33)
we apply the IDeC-process

A'W® =b, (3.62)

AW =AW+ (b—A*W"Y), n=12,...,n, (3.6b)
Assuming A! to be invertible, the corresponding amplification matrix G reads

G=I—-(4")"142 3.7

Instead of solving each W” from (3.6b) exactly, we approximate it by means of an explicit RK4-
scheme. With » the number of RK4-steps which allows us to define an (approximate) solution W”,
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we will now investigate how the corresponding amplification matrix G, is related to the amplification
matrix G that corresponds with the exact solution of W” from (3.6b). Denoting the approximate solu-
tion after » RK4-steps as W™”, for »=1 we have

Wnl = (P+Q(A'—AY)}W" 1 +Qb, (3.8)
with

P =I—AtA'(I—AtasA (I —Atay A (I — Aty A 1)), (3.92)

Q = At(I —Atazs A (I — Atay A (I — Atay A 1))). (3.9b)
Hence, for G, we can write

G, =P+Q(4'—4?. (3.10)
For »>1, one can easily find the recurrent relation

G, =PG,_,+0Q(A4'—4?), @3.11)
which leads to

G,=I+P+P*+ --- +P""HQMU'—4?)+P". (3.12)

THEOREM. Let || . || be some matrix norm. If 7 — P is invertible and if ||P||<1, then lim ,_,, G, = G.

PrOOF. If I —P is invertible, then for all »>1: I+P+P%*+ --- +P*" ! =(I—P)"'(I —P?).
If |Pll<]1, then lim,_,,(I—P)"'(I—P*)=(I—P)"\.
Hence, lim ,_,,G, = (I—P)"'Q(4' —4*) = (4'Q)"'Q' —4*) =
Ah o lgUl'-4H=6 O

Local mode analysis applied to (3.1) with 4! and 4? corresponding with (3.2) and (3.3), respectively,
yields then for the maximally allowable value of ¢ = cAt/Ax: 6,=y =2.21 and Ojim,e0 = 2.12.
Notice that the difference between both values is very small. For an arbitrary » it is safe and still
efficient to take ¢ = 2.12. The value ¢ = 2.12 is lower than that for the existing method applied to the
first-order upwind system (o = 2.5105, [9]), but higher than that for the existing method applied to the
second-order (k=0) system (¢ = 1.9186, [9]).

For ¢ = 2.12 and increasing », we show in Fig. 1 the behaviour of the convergence factor |u| versus
the frequency @ in the range [0,7]. Already for » =1, it appears that the convergence behaviour is
better than that for the existing second-order method (Fig. 2.27 in [9]). Clearly visible for increasing »
is the rapid improvement of the smoothing (i.e. the convergence in the range 6 €[n/2,7]), and the get-
ting coincident of the curves. The curves converge to that corresponding with the exact solution of
(3.6b): |u| = %sin(8), 6 E€[0,7].

3.1.2. Smoothing analysis. Local mode analysis yields that with the new method optimal smoothing of
the highest frequency, § = =, is obtained for 6=1.8921 and 0=1.4869. Similar to o = 2.12 (Fig. 1),
for 0=1.8921 and 0=1.4869 we show in Fig. 2 and Fig. 3, respectively, the convergence behaviour
with increasing ». For both values of o the smoothing is clearly better than for 6=2.12. For 0=1.4869
the smoothing clearly is the best.

In Fig. 4,5 and 6 we show the smoothing behaviour for varying o, the f-range considered being
[7/2,7], and the quantity |u| along the vertical axis being the maximum smoothing factor found over
this range. Considered are successively: the first-order method (Fig. 4), the old second-order method
(Fig. 5) and the new second-order method (Fig. 6). Comparing the results of the old and new
second-order method, it clearly appears that the latter has better smoothing properties. Notice that in
particular the o-range over which its smoothing is good is much wider.
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3.2. Experiments
To verify the previously predicted better stability and convergence properties of iterative defect
correction, we consider the standard transonic channel flow from [15].

As finest grid we apply the 161-cells grid given in Fig. 4.1 of [9]. The multigrid strategy applied is
a 4-level strategy, each multigrid cycle being a V-cycle with »,,, =»,,; =1, VI. On all coarser grids we
apply the first-order scheme only. Convergence results for the old second-order method are given in
Fig. 7 and Tab. 1. (Notice that Fig. 7 and all similar convergence graphs in this paper start at the
very beginning of the solution process; the beginning of the nested iteration.) In Tab. 1, a denotes
the convergence factor per multigrid cycle, n the total number of multigrid cycles (starting from Q)
that are required for obtaining a fixed residual reduction, and ¢ the computing time measured on a
Convex-C2. Similar convergence results for the new second-order method are given in Fig. 8 and Tab.
2 for successively vrqs = 1,2,5 and 10, »g4s denoting the number of multigrid cycles per IDeC-cycle.
Notice that, in agreement with the theoretical results just obtained, the convergence rate increases
with decreasing vr4s, but the efficiency decreases. The most efficient strategy is obtained for vg45 = 1.
Comparison of the new method’s efficiency with that of the old second-order method shows that, for
vras =1, the new method is significantly more efficient than the old method.

multigrid cycles

125 250 375

“7|||0| renpisor || Sop

Fig. 7. Convergence history 161-cells problem,
old second-order method.

a ng; t(sec)

0.8853 77 187.6

Tab. 1. Performance old second-order method (161-cells problem).
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“7||0| renpisor || Sop

“1|||0| renpisar || Sop

multigrid cycles multigrid cycles
125 250 375 125 250 375
1
0
1
2
3
a. ”FAS=1' b. PFAS=2'
125 250 375 125 250 375
1
0
1
2
3
C. VFAS=5' d. "FAS=10-

Fig. 8. Convergence history 161-cells problem,
new second-order method.

a ng; t(sec)

0.7664 36 73.4
0.6139 20 80.7
04063 12 1045
03784 11 1749

'fab. 2. Performance new second-order method (161-cells problem).
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In Fig. 9 and Tab. 3 we present the convergence results for a 5-level strategy with a finer finest grid
(the 585-cells grid also given in Fig. 4.1 of [9]) and with »,s=10. Notice that the convergence rate is
about the same as that for the previously considered coarser vp,s =10-case (Fig. 8d and Tab. 2). The
convergence rate of IDeC seems to be independent of the number of grid cells. The observed grid
independence is supported by a study made by Désidéri [3] on the convergence of solution methods
for second-order systems, using a first-order preconditioning. (The study referred to yields (%2)" as
asymptotic convergence rate, with n denoting the total number of iterations performed; in our case

the number of IDeC-cycles ny, which in our case also is the number of multigrid cycles starting from
Q)

multigrid cycles

125 250 375

“7)||0| renpisax || Sof

Fig. 9. Convergence history 585-cells problem,
new second-order method (vg4s = 10).

a ng; t(sec)

04106 12 7482

Tab. 3. Performance new second-order method (585-cells problem).
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4. CONCLUSIONS

Fully implicit solution methods may strongly benefit from defect correction iteration when the
system(s) of discretized equations are not diagonally dominant, as may be the case with higher-order
accurate discretizations. Fully explicit solution methods now may also profit from defect correction
iteration. Here, the profits are faster convergence and higher efficiency. The defect correction method
appears to be more stable (and hence more robust) than the old (standard) explicit method. Com-
pared to the old explicit method it possesses remarkably good smoothing properties, in fact even
better than the first-order method (compare Fig. 4 and 6). Last but not least its convergence rate
seems to be grid-independent. For upwind discretizations, the ‘price’ that has to be paid for using
defect correction iteration - a more complex algorithm - is negligible. This because of the direct avai-
lability of an appropriate approximate operator; the first-order upwind operator.
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