A

Centrum voor Wiskunde en Informatica
Centre for Mathematics and Computer Science

E.D. de Goede

A computational model for three-dimensional shallow
water flows on the ALLIANT FX/4

Department of Numerical Mathematics Report NM-R8910 May

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum, which was founded on February 11,
1946, as a nonprofit institution aiming at the promotion of mathematics, com-
puter science, and their applications. It is sponsored by the Dutch Govern-
ment through the Netherlands Organization for the Advancement of Research
(N.W.O)).

Copyright © Stichting Mathematisch Centrum, Amsterdam

A Computational Model for Three-Dimensional Shallow
Water Flows on the ALLIANT FX/4

Erik D. de Goede
Centre for Mathematics and Computer Science
P.O.Box 4079, 1009AB Amsterdam, The Netherlands

Numerical methods for the simulation of three-dimensional water flows require a very great
computational effort. Therefore, numerical methods should exploit the full potential of vector and
parallel computers. In this contribution we investigate the efficiency of a numerical method on
the ALLIANT FX/4.

1980 Mathematics Subject Classification: 65SM10, 76D99.

Key Words & Phrases: three-dimensional shallow water equations, numerical methods, ALLIANT FX/4.
Note: This work was supported by the Ministry of Public Works (RWS).

Note: This report will be submitted for publication in the Journal Supercomputer.

Introduction

Flows in rivers, estuaries and seas can be described by mathematical models based on the shallow
water equations (SWEs). In hydraulic engineering, these models are becoming more and more important.
A well known application is made for the storm surge barrier in the mouth of the Oosterschelde
(Eastern Scheldt), which is in the south-western part of The Netherlands. An accurate prediction of the
water level is required to ensure that the barrier will be closed in time in case of extremely high
water. Mathematical models are applied not only to estimate the water levels, but also the flow
patterns. In many cases the flow exhibits a three-dimensional structure and contains variable densities
in all directions. This is important in cases where a detailed dispersion of a pollutant is desired.
However, the application of three-dimensional models requires a great computational effort, especially
when a high resolution is needed. Therefore, it is necessary to construct numerical methods that are
not only robust and accurate, but also efficient on vector and parallel computers. To obtain a
computationally efficient method the VECPARCOMP project has been started. This project is a
cooperation between the Data Processing Division of Rijkswaterstaat (Water Control and Public Works
department) and the CWI (Centre for Mathematics and Computer Science).

This contribution deals with the efficient implementation on vector and parallel computers of a
numerical method for the simplified three-dimensional shallow water equations. The second section
contains the mathematical model and a brief description of the numerical method. This method results in
the solution of a large number of tridiagonal systems. In the third section we describe two possible
methods for the solution of these systems. The performance of these two methods has been tested on
the ALLIANT FX/4 at CWI. For the most efficient method we also list the computation times on a number
of computers (ranging from supercomputers to personal computers). The results clearly illustrate the
necessity of supercomputers for such time-consuming computations.

Mathematical model

In this section we present the simplified three-dimensional shallow water equations [1,2]

9
iiu-:fv-gag—+—1——a—(A°£) (1)

Report NM-R8910
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Q..‘_’.-_—-fu-ga—§+1—a—(A°3—v) (2)
ot oy ph2 do C

1 1
9 _ --Q-(h Judci) -—a—(h vdo) , (3)
ot aX o oy 0

where the following notation is used:

AS vertical diffusion coefficient

f Coriolis term

o] acceleration due to gravity

h undisturbed depth of water

t time

u,v velocity components in x,y-direction
X,Y,C a left-handed set of coordinates

) density

g elevation above undisturbed depth.

The equations (1) and (2) are the momentum equations and (3) denotes the continuity equation. In the
vertical the domain is bounded by the bottom topography and the time-dependent water elevation. Here,
system (1)-(8) has been transformed in the vertical into depth-following coordinates to ensure the
domain to be constant in time. For the description of the domain, the initial conditions and boundary
conditions we refer to [1,2].

To obtain a discrete system representing (1)-(3), the equations are discretized in space and time.
Firstly, we apply a finite difference space discretization on a spatial grid that is staggered in both the
horizontal and the vertical direction. The computational domain is covered by an nx-ny-ns rectangular
grid. E.g., Ujjx denotes the approximation of the velocity u at the horizontal grid point (i,j) and
layerk. Figure 1 shows the horizontal grid spacing.

CELL

O
@)
O

O

X|® X|© X
O

X e X & X

O
X ® X & X
O
®

X & X & X

Fig. 1. Staggered grid in (x,y)-plane.

e

The main advantage of a staggered grid is that it reduces the computation time and the storage
requirements with a factor 8 (in our case), while the accuracy is hardly influenced.

The time discretization is performed by a method developed in [2]. In the appendix this method is given
in detail. Here, we describe this method in the following schematical form:

T un+l - Fy(un, vo zn)
T yo+l _ FV(U“+1, vn zn) (4)
zn+l _ FZ(U.IHI, vo+l zoy

where Fyy/z contains for the corresponding component the computation of all terms except for the
vertical diffusion term, which is included in matrix T. Matrix T is a block tridiagonal matrix with equal
blocks. U, V and Z are grid functions approximating the velocities u and v and the water elevation ¢,
respectively. The upper indices denote the time level. As shown in (4) the components are computed
sequentially (firstly the U-, then the V- and finally the Z-component). This is advantageous for both the
stability of the method and the storage requirements. The Z-component can be computed explicitly from
the updated velocity components and from the 'old' Z-component. The implicit treatment of the vertical
diffusion term results in a tridiagonal system for each (i,j)-point in the horizontal. Thus, nx-ny
tridiagonal systems of dimension ns have to be solved for the velocity components U and V.

Method (4) possesses second-order accuracy in space and first-order accuracy in time. In [2] it is
shown that the time step restriction for this method is

”@ : ; 2(Ac)2 ph2’

ax)2 " (ay)2

where t denotes the time step and Ax and Ay denote the horizontal mesh sizes and Ac the vertical mesh
size.

Solution of the tridiagonal systems

For the solution of the tridiagonal systems the Gaussian Elimination (double sweep) method can be
applied. Since this is a recursive method, it seems to be unattractive on vector and parallel computers.
However, in our case a large number of tridiagonal systems have to be solved. Therefore, the
systems can be solved in a vector-parallel mode on the ALLIANT FX/4. This means that each processor
is executing vector instructions to compute a certain operation of the Gaussian Elimination method for
all tridiagonal systems. This method, which we denote by method A, can be described schematically by

Method A (Gausslan Ellmination method (GE))
for k=1,...,ns do (in scalar mode)
for j=1,...,ny
fori=1,...,nx
perform some step of the GE method at layer k and point (i,j).

do (in vector-paraliel mode) (A)

The loops with indices i and j are formed into a single DO-loop to obtain a more efficient code (loop
collapsing). These iterations are executed in vector-parallel mode. For relatively small values of nx
and ny we may expect a considerable overhead for this innermost DO-loop, which is due to
vectorization and especially to synchronization. Therefore, we also examine methods that contain
parallelism at a higher level. For method A the loop with index k is recursive and is therefore not suited
for parallel execution. Several methods have been developed to reduce this recursion problem to
smaller recursion problems. Here, we use a variant of Wang's method that has been developed for
bidiagonal systems in [3]. A similar approach can be followed for tridiagonal systems. We briefly
describe this method. Let us assume that ns can be factorized as ns = pg. Then, we write the tridiagonal
system as a p by p block matrix, the elements of which are q by q matrices. Now, the off-diagonal
elements on the p diagonal blocks are eliminated in parallel. This method, which we denote by method B,
can be considered as a method in which the Gaussian Elimination method is applied in parallel for all p
diagonal blocks. Moreover, for all tridiagonal systems this elimination is performed in vector mode.
Schematically, this method reads

Method B (varlant of Wang's method (WANG))
for ki=1,..,p do (in scalar-parallel mode)
for k2=1,...,q do
for j=1,...,ny
fori=1,...,nx
perform some step of the WANG method at layer k2+(k1-1)q and point (i,j).

do (in vector mode) (B)

Here, the loop with index k2 is recursive. Method B requires more operations than method A (about 2.5
times as many).

Numerical illustration

In this section we give the results for a wind driven test problem [1,2]. We integrated over a period of
24 hours with a time step t = 1200 sec. The computations have been performed on a grid with nx = 10,
ny = 18 and ns = 24. In this case, 180 tridiagonal systems of dimension 24 have to be solved. In
Table 1 we list the computation times for the solution of the tridiagonal systems on the ALLIANT FX/4
for method A and B for various optimizations (- = no optimization, G = Global, V = Vector and P =
Parallel). This mini-supercomputer consists of four vector processors. For method B we partitioned the
24 vertical layers into four blocks (i.e., p = 4 and q = 6). The blocks were solved in parallel. Moreover,
for each block the computations were performed in vector mode.

Table 1 : Computation times on the ALLIANT FX/4 (In seconds).
OPTIMALIZATION

PROC. (-) (G) (GV) (GVP)

METHOD A 1 37.2 9.6 2.47 2.59
2 1.36

3 1.00

4 9.6 2.47 0.87

METHOD B 1 87.7 17.3 4.91 4.95
2 2.64

3 2.47

4 17.3 4.01 1.60

In scalar mode method A is about a factor 2.4 faster, which is in accordance with the number of
operations. Also in vector mode, method A is better. Both methods have the same vectorization
properties. Although method B requires about 2.5 times as many operations, the number of divisions is
equal for both methods. Since divisions are more expensive than additions and multiplications we obtain
a gain factor of 1.8 for method A. It is remarkable that for the (GV)-optimization we obtain different
computation times on one and four processors for method B. It appears that some operations are done in
parallel already. This is one of the few unexpected (unwanted) results that we encountered on the
ALLIANT FX/4.

In parallel mode, we expected the smallest computation time for method B. Although method B requires
more operations, we expected the synchronization overhead for method A to be relatively larger.
However, it turns out that even for our relatively small test problem method A is faster. Thus, it can
be concluded that the ALLIANT FX/4 allows parallel processing with a very low overhead. On four
processors we obtain a speed-up of about three for method A.

Method A was developed for execution on the CDC CYBER 205 [2]. The entire code was structured in
such a way that large vector lengths were obtained (of course depending on the size of the test

problem). This is very important on the CDC CYBER 205, because of its relatively large start-up time
for DO-loops. It took very limited effort to optimize this code on the ALLIANT FX/4. Moreover, it turns
out that it is not worthwhile to develop a method that contains parallelism at a higher level (viz. method
B), because a large number of tridiagonal systems had to be solved. Method A is also very efficient on
irregular regions, because of the constant number of grid layers in the vertical direction due to the
sigma-coordinates (see (1)-(3)). It should be noted that method B is superior when e.g. one large
tridiagonal system has to be solved [3].

For method A we have also measured the total computation times (thus, inclusive computation of the
function Fyy/z in (4), etc.) on various computers, ranging from supercomputers to personal computers.
This could be easily done, since the code was written in the ANSI FORTRAN 77 programming language.
In Table 2 we list the results (* = 32 bits precision, otherwise 64 bits precision).

Table 2 : Computation times (In seconds).

OPTIMALIZATION

COMPUTER (-) (G) (GV) (GVP)
MACINTOSH PLUS * 5076

VAX-11/780 * 422 148

ALLIANT FX/4 * 104.6 25.7 7.0 2.34
ALLIANT FX/4 3.05
CDC CYBER 990 44.3 8.8

CDC CYBER 205 9.9 4.8 0.54

CRAY X-MP/28 0.196

NEC SX/22 * 0.073

For this test problem the CDC CYBER 205 is about 5 times faster than the ALLIANT FX/4, and the NEC
SX/2 supercomputer is about 70.000 times faster than the MACINTOSH PLUS !

Conclusions

In this contribution we investigated the performance of a numerical method for the solution of the
simplified shallow water equations on the ALLIANT FX/4. The results showed that even for a relatively
small test problem, a considerable reduction in computation time can be obtained when the numerical
method fully exploits the potential of vector and parallel facilities of this mini-supercomputer.

References

[1] Davies, A.M., Application of the DuFort-Frankel and Saul'ev methods with time splitting to the
formulation of a three dimensional hydrodynamic sea model, Intern. J. Numer. Methods Fluids, 5
(1985), pp. 405-425.

[2] Goede, E.D. de, Finite difference methods for the three-dimensional hydrodynamic equations,
Report NM-R8813, CWI, Amsterdam, 1988.

[8] Vorst, H.A. van der & K. Dekker, The vectorization of linear recurrence relations, SIAM J. Sci.
and Stat. Comput., 2 (1989), pp. 27-35.

Appendix: a detailed description of the time integrator

Here, we give a detailed description of the method that has been briefly described in (4).

n+1 n+1 n+1 n+1l
Ar1Uijke1-Uije) AUy -U i,j,k-l)l
n+l 1 T
',.’k Y -
B ph2 Aoy, | 0.5(Acy, +Acy) 0.5(Ac,+Acy ;) |

Zj- 25,

n ~n
= Ui,j,k + f Vi,j,k - 19

AX
n+1 n+1 n+1 n+l
Aa1Vijke1 - Vi) AV k- V i,j,k-l)l
n+1 1 T
ik .
LLE 5h2 Aoy 0.5(Ac) , 1 +Acy) 0.5(Acy+Acy ;) J
n n
Zi,j+1 -Z i,j

n ~n+l
= Vi,j,k - 1f Ui,j,k - 19 Ay

n+1 n T & n+l - n+l
zi,j = Zi,j - -A—)-(- hz Ackui+1,j,k - hZAO'kU i,j,k
k= k=1

T i n+l L n+l
- E hkglAO'kVi’j’k - hl;AGkvi,j'lgk ,

~

where Vi,j,k = 0.25(\/1,]’1(+ Vi,j-l,k + Vi-l,j,k + Vi—l,j-l,k) ,

c?

ik = 025 (Vijp+ Ui+ Upjan i+ Uirrjetk) -

This averaging is a consequence of the space staggering. The velocities are denoted by U?,',k and Vli]’j’k,
where i,j refers to a horizontal grid point, k to a vertical layer and n to a time level. The surface
elevation points are denoted by Zj; and are specified at the sea surface. In the vertical we have varying
mesh sizes Aoy, where k refers to the kth grid layer. The vertical diffusion coefficient is assumed to
vary only through the vertical. Hence, A, refers to the coefficient at layer k.

